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Abstract

Methane emission reductions are crucial for addressing climate change. It offers short-term benefits as it holds high short-
term reductions in radiative forcing. Efforts towards the reduction of methane emissions are already underway. In this study,
we compared and analyzed the mitigation benefits of cutting large amounts of methane emissions from the oil and gas sec-
tor on short-time scales with reducing an equivalent amount of carbon dioxide using carbon capture and storage (CCS).
Characteristics of CCS are that it would require substantial infrastructure development and that it incorporates deployment
delays. Results illustrate that prioritizing quickly deployable methane emission reduction alternatives that necessitate minimal
construction is an efficient approach to achieve near-term climate change relief.
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Introduction

In November 2022, the U.S. Environmental Protection
Agency (US EPA) proposed regulations that would reduce
methane (CH,) emissions from oil and gas supply chains in
the U.S. by 87%, compared to 2005 levels (EPA, 2022). If
emission reductions of this magnitude were deployed glob-
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Efforts to reduce CH, emissions from the oil and gas sec-
tor are already underway. The Global Methane Pledge and
commitments at COP26 targeted 30% CH, emission reduc-
tions by 2030 (DOS, 2021). More recently, COP27 high-
lighted the importance of reducing CH, emission from oil
and gas value chains for achieving net zero by 2050. In the
US, the Inflation Reduction Act (IRA) 2022 incorporated
fees for entities along the oil and gas supply chain that report
CH, emissions above specified thresholds, starting in 2024
(H.R.5376, 2022). These efforts are part of a broader trend
that emphasizes emission reductions of short-lived climate
forcers like CH, (Solomon et al. 2010; Dreyfus et al. 2022;
Singh et al. 2022). Reducing CH, emissions could bring
benefits in the near-term when compared to reducing emis-
sions of longer-lived climate forcers like CO, (Abernethy
et al. 2021; Cain et al. 2022; Ming et al. 2022; Abernethy
and Jackson 2022). Besides rapid deployment, CH, reduc-
tions in the energy sector have the additional advantage of
high short-term reductions in radiative forcing.

In this paper, we compare the climate change mitigation
benefits of cutting large amounts of CH, emissions from the
global energy sector on short time scales with reducing an
equivalent amount (on a global warming potential basis) of
CO, using carbon capture and storage (CCS), a technology
that would require significant infrastructure development.
While both of these approaches can be pursued simulta-
neously, our analysis illustrates the short-term benefits of
exploiting available, economically viable, and scalable CH,
emission reduction technologies.

Methane and carbon dioxide reduction
scenarios

Oil and gas CH, emissions are currently reported as approxi-
mately 80 Tg per year, although they may be 25 to 40%
greater than this estimate (Hmiel et al. 2020). Our analysis,

therefore, assumes a business-as-usual emissions level of
100 Tg of CH, per year. We then evaluated the changes
in radiative forcing and consequent global-average sur-
face temperature change from reducing these emissions by
30%, which is in line with current global targets. A sec-
ond scenario assumes 80% emission reductions to highlight
the advantages of pushing past current targets for achiev-
ing reductions similar to those proposed by the US EPA
(EPA, 2022). To evaluate emission reduction scenarios that
decrease an equivalent amount of CO,, we converted CH, to
CO, emissions using a fossil CH; GWP,,, (global warming
potential at year 20) of 82.5 as reported in the Sixth Assess-
ment Report (IPCC, 2022). Table 1 describes the proposed
scenarios.

Using CCS to reduce CO, emissions requires manufactur-
ing of large-scale equipment, and construction of founda-
tions, pipelines and auxiliary systems. Such activities gen-
erate additional GHG emissions that might vary depending
on particular characteristics and these systems have a range
of emission estimates reported in the literature. Manufac-
turing and construction emissions for CCS are reported
to be between 0.07 and 0.33 Tg of CO, emitted per unit
of throughput in Tg of CO, sequestered per year (Koorn-
neef et al. 2008; Cuellar-Franca and Azapagic, 2015). We
adopted the average of this range to develop the scenarios
in Table 1, which include infrastructure emissions and
construction times (Townsend and Gillespie 2020). These
scenarios take account of the changes over time in emis-
sions associated with manufacturing the steel and materials
required to build CCS facilities.

CH, emission reduction technology options are less
infrastructure-intensive than CCS. Nonetheless, we assessed
whether we would need to include GHG emissions from
infrastructure build out to deploy them. These options
include replacing pneumatic pumps with electrical pumps,
replacing pneumatic devices with mechanical controllers,
and replacing high-bleed or high-emitting pneumatic devices

Table 1 Scenarios for emissions reductions of CH, and equivalent amount of CO, from business-as-usual’ levels

Emission GHG targeted Description Infrastructure construction emissions for CO, mitigation
reduction
target
30% CH, Three-year linear reduction starting at year 0 -
CO, Step-change reduction at year 5 1.20% of annual operations emissions spread evenly
across years 0-5
80% CH, Five-year linear reduction starting at year 0 -

CO, Step-change reduction to 30% of business-as-usual
emissions at year 5, and linear decrease over the next

10 years

Period of rapid build out in years 0-5 incurs 1.20% of
annual operations emissions spread evenly across
these years. Relatively slower build-out assumed for
years 5—15 with 1.43% of annual operations emissions
spread evenly across those years

"Business-as-usual levels: 100 CH, Tg/year; 8250 CO, Tg/year
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Fig. 1 Surface temperature change avoided relative to business-as-
usual levels over a 40-year time horizon. Dashed vertical lines indi-
cate the year at which AT avoided is equivalent for CH, and CO,
reduction scenarios

with intermittent or low-bleed devices (Methane Guiding
Principles 2022). We used the Economic Input—Output
Life Cycle Assessment (EIO-LCA) model (Green Design
Institute, 2022) and reported construction costs (Methane
Guiding Principles 2022) to evaluate construction emissions
associated with these transitions. Construction emissions are
approximately 0.01% (installing electric pumps) to 0.5%
(accelerated installation of low-bleed devices) of one year’s
worth of emissions reductions. In our analysis, these emis-
sions are treated as negligible. Furthermore, CH, mitigation
technologies applicable to the oil and gas sector are off-the-
shelf with minimal lead time for construction. We, therefore,
assumed installation could begin immediately.

The CH, and CO, mitigation scenarios in Table 1 were
compared on the basis of relative global-average surface
temperature increase avoided with respect to the business-
as-usual scenario. The higher the value is, the better the miti-
gation effort. We used global surface temperature change
models reported in the literature in our calculations (IPCC,
2022; Abernethy & Jackson 2022; Gasser et al 2017). The

interested reader can find more information on the scenarios
and modeling approach in the Supporting Information.

Rapidly scalable CH, reduction technologies
outperform longer term options to cut CO,
emissions

Figure 1 displays the effects of mitigation efforts over a
40-year time horizon. In interpreting this illustration, we
focus on two primary results. First, the change in surface
temperature increase avoided eventually levels off in the CH,
reduction scenarios. This phenomenon reflects the short life
of CH, in the atmosphere (half-life of 11.8 years) (IPCC,
2022). Given CH,’s short atmospheric lifetime, ultimately,
the reduced CH, in the atmosphere leads to a reduction
equivalent to technology-based emission reductions and the
temperature change plateaus. Second, although the avoided
surface temperature rise in CO, reduction scenarios is ini-
tially lower than in CH, reduction scenarios, eventually it
catches up. After a crossover point, CO, emission reduction
scenarios offer greater benefits. The dashed vertical lines
in Fig. 1 mark this crossover point, which is on the order
of decades.

Figure la compares the strategies that achieve 30%
reduction in business-as-usual annual levels (100 Tg CH,
or 8250 Tg CO,). CH, reduction technologies are rapidly
scalable and benefits associated with CH, reductions are
evident beginning in year three. In contrast, the waiting
period and emissions associated with construction of CCS
facilities delay benefits from CO, emissions reductions until
year eight. Accordingly, there is a five-year longer wait for
any relief from climate change compared to its equivalent
CH, scenario. Avoided temperature increases in the CH,
scenario, however, begins to plateau after year 20. At this
point, the temperature change avoided by CH, mitigation
is 28 mK while the CO, mitigation scenario reaches only
20 mK. After about 31 years, the benefits of mitigating CO,
exceed those of mitigating CH,. At timescales beyond this
point, the benefits of reducing CO, will outweigh those of
reducing CH, by a large extent.

The trends in Fig. 1b, which reflect an aggressive 80%
reduction in business-as-usual CH, emissions, are similar to
those in Fig. 1a. However, global surface temperature change
is more quickly avoided. For example, the first 20 mK of
avoided surface temperature rise for CH, and CO, occur
between years 14 to 20 when the emission reduction target
is 30%, and between years 8 to 15 when it is 80%. The gap
in the time required to achieve this benefit (between CH, and
CO,) is six and seven years, respectively. Avoided surface
temperature rise takes 17 years longer to plateau in the 80%
reduction scenario as compared to the 30% reduction sce-
nario. The greater amount of CH, reduced (80% versus 30%)
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causes benefits to accrue for longer. The benefits of reducing
CO, emissions with CCS outstrip those of reducing CH, in
the oil and gas sector in year 35 at 80% reductions. At this
point, the avoided surface temperature rise is 97 mK, 62 mK
greater than when the reduction target is 30%.

Relief from climate change comes sooner
with scalable technology

Our analysis emphasizes two main points. First, construc-
tion and associated emissions delay the benefits of climate
change mitigation technologies. Prioritizing quickly-deploy-
able options that require limited construction helps to bring
relief sooner. Second, GHG mitigation options that require
longer to scale up can take decades to overtake quickly scal-
able solutions. The results we present add urgency to pursuit
of rapidly scalable technologies.

One of the primary drivers of our analysis is the long lead
times required for emissions from CCS to materialize. CCS
is not unique in this regard. For example, transitioning from
internal combustion engines to electric vehicles in the light-
duty fleet will take decades. This transtition entails manufac-
turing and installation of charging infrastructure along with
building factories to produce enough lithium-ion batteries
to meet demand.

While our analysis emphasizes the importance of reduc-
ing CH, emissions in achieving short term climate goals, it
is important to note that reducing CH, and CO, emissions
does not require an either-or choice. CO, reductions provide
long term benefits while CH, reductions provide near-term
reductions in warming that will be important in mitigating
the current impacts (Weiskopf et al. 2020; Sarkodie et al.
2022) of a changing climate.

Supplementary Information The online version contains supplemen-
tary material available at https://doi.org/10.1007/s10098-023-02521-3.
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