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Abstract
Methane emission reductions are crucial for addressing climate change. It offers short-term benefits as it holds high short-
term reductions in radiative forcing. Efforts towards the reduction of methane emissions are already underway. In this study, 
we compared and analyzed the mitigation benefits of cutting large amounts of methane emissions from the oil and gas sec-
tor on short-time scales with reducing an equivalent amount of carbon dioxide using carbon capture and storage (CCS). 
Characteristics of CCS are that it would require substantial infrastructure development and that it incorporates deployment 
delays. Results illustrate that prioritizing quickly deployable methane emission reduction alternatives that necessitate minimal 
construction is an efficient approach to achieve near-term climate change relief.
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Introduction

In November 2022, the U.S. Environmental Protection 
Agency (US EPA) proposed regulations that would reduce 
methane (CH4) emissions from oil and gas supply chains in 
the U.S. by 87%, compared to 2005 levels (EPA, 2022). If 
emission reductions of this magnitude were deployed glob-
ally, they would result in reductions that could abate 80 Tg 
of CH4 per year (IEA, 2022). Technologies capable of reduc-
ing these emissions already exist. In many cases, they are 
economically attractive because they reduce loss and leakage 
of salable product.
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Efforts to reduce CH4 emissions from the oil and gas sec-
tor are already underway. The Global Methane Pledge and 
commitments at COP26 targeted 30% CH4 emission reduc-
tions by 2030 (DOS, 2021). More recently, COP27 high-
lighted the importance of reducing CH4 emission from oil 
and gas value chains for achieving net zero by 2050. In the 
US, the Inflation Reduction Act (IRA) 2022 incorporated 
fees for entities along the oil and gas supply chain that report 
CH4 emissions above specified thresholds, starting in 2024 
(H.R.5376, 2022). These efforts are part of a broader trend 
that emphasizes emission reductions of short-lived climate 
forcers like CH4 (Solomon et al. 2010; Dreyfus et al. 2022; 
Singh et al. 2022). Reducing CH4 emissions could bring 
benefits in the near-term when compared to reducing emis-
sions of longer-lived climate forcers like CO2 (Abernethy 
et al. 2021; Cain et al. 2022; Ming et al. 2022; Abernethy 
and Jackson 2022). Besides rapid deployment, CH4 reduc-
tions in the energy sector have the additional advantage of 
high short-term reductions in radiative forcing.

In this paper, we compare the climate change mitigation 
benefits of cutting large amounts of CH4 emissions from the 
global energy sector on short time scales with reducing an 
equivalent amount (on a global warming potential basis) of 
CO2 using carbon capture and storage (CCS), a technology 
that would require significant infrastructure development. 
While both of these approaches can be pursued simulta-
neously, our analysis illustrates the short-term benefits of 
exploiting available, economically viable, and scalable CH4 
emission reduction technologies.

Methane and carbon dioxide reduction 
scenarios

Oil and gas CH4 emissions are currently reported as approxi-
mately 80 Tg per year, although they may be 25 to 40% 
greater than this estimate (Hmiel et al. 2020). Our analysis, 

therefore, assumes a business-as-usual emissions level of 
100 Tg of CH4 per year. We then evaluated the changes 
in radiative forcing and consequent global-average sur-
face temperature change from reducing these emissions by 
30%, which is in line with current global targets. A sec-
ond scenario assumes 80% emission reductions to highlight 
the advantages of pushing past current targets for achiev-
ing reductions similar to those proposed by the US EPA 
(EPA, 2022). To evaluate emission reduction scenarios that 
decrease an equivalent amount of CO2, we converted CH4 to 
CO2 emissions using a fossil CH4 GWP20 (global warming 
potential at year 20) of 82.5 as reported in the Sixth Assess-
ment Report (IPCC, 2022). Table 1 describes the proposed 
scenarios.

Using CCS to reduce CO2 emissions requires manufactur-
ing of large-scale equipment, and construction of founda-
tions, pipelines and auxiliary systems. Such activities gen-
erate additional GHG emissions that might vary depending 
on particular characteristics and these systems have a range 
of emission estimates reported in the literature. Manufac-
turing and construction emissions for CCS are reported 
to be between 0.07 and 0.33 Tg of CO2 emitted per unit 
of throughput in Tg of CO2 sequestered per year (Koorn-
neef et al. 2008; Cuellar-Franca and Azapagic, 2015). We 
adopted the average of this range to develop the scenarios 
in Table  1, which include infrastructure emissions and 
construction times (Townsend and Gillespie 2020). These 
scenarios take account of the changes over time in emis-
sions associated with manufacturing the steel and materials 
required to build CCS facilities.

CH4 emission reduction technology options are less 
infrastructure-intensive than CCS. Nonetheless, we assessed 
whether we would need to include GHG emissions from 
infrastructure build out to deploy them. These options 
include replacing pneumatic pumps with electrical pumps, 
replacing pneumatic devices with mechanical controllers, 
and replacing high-bleed or high-emitting pneumatic devices 

Table 1   Scenarios for emissions reductions of CH4 and equivalent amount of CO2 from business-as-usual† levels

† Business-as-usual levels: 100 CH4 Tg/year; 8250 CO2 Tg/year

Emission 
reduction 
target

GHG targeted Description Infrastructure construction emissions for CO2 mitigation

30% CH4 Three-year linear reduction starting at year 0 –
CO2 Step-change reduction at year 5 1.20% of annual operations emissions spread evenly 

across years 0–5
80% CH4 Five-year linear reduction starting at year 0 -

CO2 Step-change reduction to 30% of business-as-usual 
emissions at year 5, and linear decrease over the next 
10 years

Period of rapid build out in years 0–5 incurs 1.20% of 
annual operations emissions spread evenly across 
these years. Relatively slower build-out assumed for 
years 5–15 with 1.43% of annual operations emissions 
spread evenly across those years
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with intermittent or low-bleed devices (Methane Guiding 
Principles 2022). We used the Economic Input–Output 
Life Cycle Assessment (EIO-LCA) model (Green Design 
Institute, 2022) and reported construction costs (Methane 
Guiding Principles 2022) to evaluate construction emissions 
associated with these transitions. Construction emissions are 
approximately 0.01% (installing electric pumps) to 0.5% 
(accelerated installation of low-bleed devices) of one year’s 
worth of emissions reductions. In our analysis, these emis-
sions are treated as negligible. Furthermore, CH4 mitigation 
technologies applicable to the oil and gas sector are off-the-
shelf with minimal lead time for construction. We, therefore, 
assumed installation could begin immediately.

The CH4 and CO2 mitigation scenarios in Table 1 were 
compared on the basis of relative global-average surface 
temperature increase avoided with respect to the business-
as-usual scenario. The higher the value is, the better the miti-
gation effort. We used global surface temperature change 
models reported in the literature in our calculations (IPCC, 
2022; Abernethy & Jackson 2022; Gasser et al 2017). The 

interested reader can find more information on the scenarios 
and modeling approach in the Supporting Information.

Rapidly scalable CH4 reduction technologies 
outperform longer term options to cut CO2 
emissions

Figure 1 displays the effects of mitigation efforts over a 
40-year time horizon. In interpreting this illustration, we 
focus on two primary results. First, the change in surface 
temperature increase avoided eventually levels off in the CH4 
reduction scenarios. This phenomenon reflects the short life 
of CH4 in the atmosphere (half-life of 11.8 years) (IPCC, 
2022). Given CH4’s short atmospheric lifetime, ultimately, 
the reduced CH4 in the atmosphere leads to a reduction 
equivalent to technology-based emission reductions and the 
temperature change plateaus. Second, although the avoided 
surface temperature rise in CO2 reduction scenarios is ini-
tially lower than in CH4 reduction scenarios, eventually it 
catches up. After a crossover point, CO2 emission reduction 
scenarios offer greater benefits. The dashed vertical lines 
in Fig. 1 mark this crossover point, which is on the order 
of decades.

Figure  1a compares the strategies that achieve 30% 
reduction in business-as-usual annual levels (100 Tg CH4 
or 8250 Tg CO2). CH4 reduction technologies are rapidly 
scalable and benefits associated with CH4 reductions are 
evident beginning in year three. In contrast, the waiting 
period and emissions associated with construction of CCS 
facilities delay benefits from CO2 emissions reductions until 
year eight. Accordingly, there is a five-year longer wait for 
any relief from climate change compared to its equivalent 
CH4 scenario. Avoided temperature increases in the CH4 
scenario, however, begins to plateau after year 20. At this 
point, the temperature change avoided by CH4 mitigation 
is 28 mK while the CO2 mitigation scenario reaches only 
20 mK. After about 31 years, the benefits of mitigating CO2 
exceed those of mitigating CH4. At timescales beyond this 
point, the benefits of reducing CO2 will outweigh those of 
reducing CH4 by a large extent.

The trends in Fig. 1b, which reflect an aggressive 80% 
reduction in business-as-usual CH4 emissions, are similar to 
those in Fig. 1a. However, global surface temperature change 
is more quickly avoided. For example, the first 20 mK of 
avoided surface temperature rise for CH4 and CO2 occur 
between years 14 to 20 when the emission reduction target 
is 30%, and between years 8 to 15 when it is 80%. The gap 
in the time required to achieve this benefit (between CH4 and 
CO2) is six and seven years, respectively. Avoided surface 
temperature rise takes 17 years longer to plateau in the 80% 
reduction scenario as compared to the 30% reduction sce-
nario. The greater amount of CH4 reduced (80% versus 30%) 

Fig. 1   Surface temperature change avoided relative to business-as-
usual levels over a 40-year time horizon. Dashed vertical lines indi-
cate the year at which ∆T avoided is equivalent for CH4 and CO2 
reduction scenarios
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causes benefits to accrue for longer. The benefits of reducing 
CO2 emissions with CCS outstrip those of reducing CH4 in 
the oil and gas sector in year 35 at 80% reductions. At this 
point, the avoided surface temperature rise is 97 mK, 62 mK 
greater than when the reduction target is 30%.

Relief from climate change comes sooner 
with scalable technology

Our analysis emphasizes two main points. First, construc-
tion and associated emissions delay the benefits of climate 
change mitigation technologies. Prioritizing quickly-deploy-
able options that require limited construction helps to bring 
relief sooner. Second, GHG mitigation options that require 
longer to scale up can take decades to overtake quickly scal-
able solutions. The results we present add urgency to pursuit 
of rapidly scalable technologies.

One of the primary drivers of our analysis is the long lead 
times required for emissions from CCS to materialize. CCS 
is not unique in this regard. For example, transitioning from 
internal combustion engines to electric vehicles in the light-
duty fleet will take decades. This transtition entails manufac-
turing and installation of charging infrastructure along with 
building factories to produce enough lithium-ion batteries 
to meet demand.

While our analysis emphasizes the importance of reduc-
ing CH4 emissions in achieving short term climate goals, it 
is important to note that reducing CH4 and CO2 emissions 
does not require an either-or choice. CO2 reductions provide 
long term benefits while CH4 reductions provide near-term 
reductions in warming that will be important in mitigating 
the current impacts (Weiskopf et al. 2020; Sarkodie et al. 
2022) of a changing climate.
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