
Sample-efficient verification of continuously-parameterized
quantum gates for small quantum processors
Ryan Shaffer1,3, Hang Ren1,3, Emiliia Dyrenkova2,3, Christopher G. Yale4, Daniel S. Lobser4,
Ashlyn D. Burch4, Matthew N. H. Chow4,5,6, Melissa C. Revelle4, Susan M. Clark4, and
Hartmut Häffner1,3

1Department of Physics, University of California, Berkeley, CA 94720, USA
2Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA 94720, USA
3Challenge Institute for Quantum Computation, University of California, Berkeley, CA 94720, USA
4Sandia National Laboratories, Albuquerque, NM 87123, USA
5Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM 87131, USA
6Center for Quantum Information and Control, University of New Mexico, Albuquerque, NM 87131, USA

Most near-term quantum information
processing devices will not be capable of
implementing quantum error correction
and the associated logical quantum gate
set. Instead, quantum circuits will be im-
plemented directly using the physical na-
tive gate set of the device. These native
gates often have a parameterization (e.g.,
rotation angles) which provide the abil-
ity to perform a continuous range of op-
erations. Verification of the correct oper-
ation of these gates across the allowable
range of parameters is important for gain-
ing confidence in the reliability of these
devices. In this work, we demonstrate
a procedure for sample-efficient verifica-
tion of continuously-parameterized quan-
tum gates for small quantum processors
of up to approximately 10 qubits. This
procedure involves generating random se-
quences of randomly-parameterized layers
of gates chosen from the native gate set
of the device, and then stochastically com-
piling an approximate inverse to this se-
quence such that executing the full se-
quence on the device should leave the
system near its initial state. We show
that fidelity estimates made via this tech-
nique have a lower variance than fidelity
estimates made via cross-entropy bench-
marking. This provides an experimentally-

Ryan Shaffer: ryan.shaffer@berkeley.edu, Current affiliation:
AWS Quantum Technologies, Seattle, WA 98170, USA.
Work done prior to joining Amazon.

relevant advantage in sample efficiency
when estimating the fidelity loss to some
desired precision. We describe the exper-
imental realization of this technique using
continuously-parameterized quantum gate
sets on a trapped-ion quantum processor
from Sandia QSCOUT and a supercon-
ducting quantum processor from IBM Q,
and we demonstrate the sample efficiency
advantage of this technique both numeri-
cally and experimentally.

1 Introduction

Verifying the correct operation of quantum com-
putations is an essential step toward building a re-
liable and scalable quantum information process-
ing device [1]. Most commonly, quantum compu-
tations are broken down into fundamental build-
ing blocks known as quantum gates, which may
include gates such as the well-known Hadamard,
Pauli, and CNOT operations. Verifying the be-
havior of a device’s physically-realizable gates,
known as a native gate set, is a primary area of re-
search in this field. The most complete techniques
for gate verification belong to a family of tech-
niques known as tomography. Such techniques in-
clude quantum state tomography [2, 3], quantum
process tomography [4], and gate set tomography
[5, 6]. Tomographic techniques produce a com-
plete characterization of a quantum operation,
which provides a detailed mathematical descrip-
tion of the errors present in the system. However,
tomography is extremely resource-intensive, and

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

20
5.

13
07

4v
3

 [q
ua

nt
-p

h]
 8

 M
ay

 2
02

3

https://quantum-journal.org/?s=Sample-efficient%20verification%20of%20continuously-parameterized%20quantum%20gates%20for%20small%20quantum%20processors&reason=title-click
https://quantum-journal.org/?s=Sample-efficient%20verification%20of%20continuously-parameterized%20quantum%20gates%20for%20small%20quantum%20processors&reason=title-click
mailto:ryan.shaffer@berkeley.edu

although techniques exist to improve its scalabil-
ity somewhat [7, 8], its cost still typically scales
exponentially with qubit count.

In contrast, benchmarking techniques for ver-
ifying quantum gates are typically resource-
efficient and in principle can be scaled to much
larger qubit counts than tomographic techniques.
These techniques notably include randomized
benchmarking (RB) [9, 10] and more scalable
variants such as cycle benchmarking [11], direct
RB [12], and mirror RB [13], which involve exe-
cuting randomized circuits which are equivalent
to the identity. Additional techniques include
as cross-entropy benchmarking (XEB) [14] and
matchgate benchmarking [15, 16], which compare
the ideal and experimental output probabilities
of random quantum circuits. Benchmarking pro-
vides an incomplete characterization of a quan-
tum system, typically producing a small number
of values which attempt to characterize the aver-
age error rate of particular operations performed
by the system. But as the name implies, such
techniques are particularly useful when attempt-
ing to compare the performance of distinct de-
vices, since they provide metrics which are os-
tensibly hardware-agnostic. For example, bench-
marking techniques may provide an estimate of
the average error rate of executing a CNOT gate
or of a device’s average state preparation and
measurement (SPAM) error.

Because many quantum algorithms and espe-
cially quantum error correction schemes are ex-
pressed in terms of particular fixed sets of gates
– most commonly, the Clifford+T family, which
is universal for quantum computation – much of
the benchmarking literature is focused on veri-
fying the operation of these fixed one-qubit and
two-qubit gates, or their device-native equiva-
lents. However, near-term quantum devices are
unlikely to implement large-scale quantum error
correction [17], and instead will implement cir-
cuits directly using the physical native gate set
of the device. These native gates are often not
limited to the fixed gate set used by error cor-
rection schemes, but rather have a parameteri-
zation which provides the ability to perform a
continuous range of operations. For example, a
single-qubit operation may frequently be param-
eterized as R(θ, ϕ), where θ is the rotation angle
and ϕ is the axis of rotation. Multi-qubit oper-
ations may also be parameterized. The typical

multi-qubit gate for trapped-ion devices, based
on the Mølmer-Sørensen interaction [18, 19], can
be parameterized as MS(θ, ϕ), where θ can be
interpreted as the effective rotation angle in the
multi-qubit space, and ϕ is the effective multi-
qubit axis of rotation [20]. In many instances,
compiling quantum circuits using continuously-
parameterized native gate sets can produce more
efficient compilations on physical devices than
when limited to fixed gate sets [21].

Systematic and efficient verification techniques
for continuously-parameterized quantum gates,
therefore, are a key ingredient for near-term
quantum computers to reliably take advantage
of the full scope of physically-realizable opera-
tions. Standard RB-based techniques are sample-
efficient and often scalable to large system sizes,
but these protocols typically have restrictions
on the gate sets (e.g., limited to only Clifford
gates) and therefore are not generally applica-
ble to this task. A notable exception is a recent
proposed variant of mirror RB for universal gate
sets [22], which provides a scalable RB-like proto-
col for gate sets which may include non-Cliffords
(although some restrictions on the gate set re-
main) and was demonstrated on a 27-qubit de-
vice. Previous work has also developed an inter-
leaved RB technique to estimate the fidelity of
an arbitrary gate [23, 24], which allows for veri-
fication of a particular instance of a parameter-
ized gate, but not across the range of allowed pa-
rameters. The XEB protocol, which was used to
demonstrate quantum computational supremacy
on a 53-qubit device [25], uses random quantum
circuits formed from an arbitrary continuously-
parameterized gate set with randomly-chosen pa-
rameters. However, because XEB circuits have a
broad probability distribution over measurement
outcomes, XEB is less sample-efficient than RB,
which ideally concentrates all of the probability
on a single measurement outcome.

In this work, we discuss the application of the
randomized analog verification (RAV) technique
[26] to the task of verifying an arbitrary gate set
consisting of continuously-parameterized quan-
tum gates. By concentrating most of the mea-
surement probability on a single outcome (like
RB), RAV provides a sample-efficient protocol
for verification of gate sets across the range of
allowed parameters. As we show in this work,
RAV can be practically implemented for quan-

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 2

tum processors of up to approximately 10 qubits.
In Section 2, we provide an overview of the RAV
technique and compare it to XEB; we describe
the stochastic compilation scheme used in con-
structing the RAV sequences; and we provide de-
tails on the experimental setup of the trapped-ion
quantum processor, the Quantum Scientific Com-
puting Open User Testbed (QSCOUT) operated
by Sandia National Laboratories [27], including
the technical details of the functionality required
to support the continuously-parameterized gate
set and large circuit depths used in the RAV se-
quences. In Section 3, we provide numerical simu-
lations demonstrating the conditions under which
we expect RAV to provide a sample efficiency
advantage over XEB, and we report experimen-
tal demonstrations of this efficiency advantage on
the QSCOUT trapped-ion device and on a super-
conducting quantum processor from the publicly-
available IBM Q service [28]. We conclude with
additional discussion of these results in Section 4.

2 Methods

2.1 Randomized analog verification for
continuously-parameterized quantum gates

2.1.1 RAV protocol

The verification technique introduced in this work
is a gate-based adaptation of the randomized ana-
log verification (RAV) protocol for analog quan-
tum simulators [26]. When applied to analog
quantum simulations, the RAV protocol consists
of running randomized analog sequences of sub-
sets of terms of a target Hamiltonian. In par-
ticular, a set of unitary operators is chosen con-
sisting of short, discrete time steps of each of the
terms of the target Hamiltonian. A randomly-
generated sequence of these operations is then
applied, which evolves the system to some arbi-
trary state. Next, an approximate inverse of this
sequence, generated using the same set of uni-
tary operators by using a stochastic compilation
protocol (see Section 2.2), is applied to the sys-
tem, which returns it to the initial state with high
probability.

Because current gate-based, non-error-
corrected quantum computers are realized
by carefully tuning the underlying analog in-
teractions to implement quantum gates with
the highest fidelity possible, it is natural to

adapt the RAV protocol for use in verify-
ing the behavior of gate-based devices with
continuously-parameterized native gates. The
RAV protocol is described in Figure 1. The
RAV protocol, like XEB, constructs random
sequences of layers, each of which consists of
some fixed number of each of the device’s native
gates in some randomly-chosen order. Random
parameter values are then provided to each of
these gates, which allows the protocol to verify
the behavior of the device across the range of
allowable parameter values for each gate. But
unlike XEB, which proceeds by sampling directly
from the output of these random sequences,
RAV appends a compiled sequence of layers
which approximately inverts the initial sequence.
Sequences of varying lengths are generated and
run on the target device. Finally, an average
error per layer is extracted from the results.

Schematics of the XEB and RAV protocols are
displayed in Figure 2, which illustrate the fact
that the primary difference of RAV from XEB is
the inversion sequence which returns the system
nearly to the initial state.

2.1.2 Fidelity estimates using XEB and RAV

Given a single XEB sequence on an n-qubit sys-
tem, we can approximate the resulting fidelity as

F̂XEB =
∑
x P (x)Q(x)− 1

N∑
x P (x)2 − 1

N

(1)

where we have simplified the linear cross-entropy
fidelity formula [14] for the case of a single cir-
cuit.1 Here, P (x) represents the classically-
computed ideal output probability distribution
for the sequence, Q(x) is the observed sample
probability of obtaining measurement result x,
and N = 2n is the dimension of the system. F̂XEB
is constructed such that its observed value for a
single circuit might not fall within the range [0, 1].
But in general, the expected fidelity of the ideal
output state (i.e., if P (x) = Q(x) ∀ x) is 1, and
the expected fidelity of a maximally-mixed out-
put state is 0.

1The fidelity estimates for XEB and RAV discussed
in this section are strictly valid only when averaging over
ensembles of circuits; however, we write our expressions in
terms of only a single circuit in order to make the analysis
more readable.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 3

1. Choose a gate set G. Typically this will be the native gate set of the device. Each gate
in G is specified as a parameterized unitary (with zero or more parameters), along with
the set of allowed target qubits.

2. Choose a layer design LG as follows. For each gate in G, specify the number of such gates
that will appear in each layer, along with allowed ranges for each parameter. A layer is
generated from LG by the following steps:

(a) Select each gate the specified number of times.
(b) Choose parameters for each gate uniformly at random from the allowed range.
(c) Choose target qubit(s) for each gate uniformly at random from the allowed set.
(d) Randomly permute the order of the selected gates.

3. Generate the RAV sequences as follows. Choose a range of initial layer counts for the RAV
sequences M0 = (m0,min, . . . ,m0,max) which can be expected to cover a reasonable range
of fidelity loss. For example, m0,min should be small enough to have expected sequence
fidelity near 1, and m0,max should be large enough to have expected sequence fidelity near
the fully-decayed limit (but not too large). Then, for each m0 ∈M0:

(a) Generate a sequence of m0 random layers, each generated independently according
to the layer design LG.

(b) Calculate the product of this sequence U . Generate an approximate compilation
using STOQ (see Section 2.2), where the target unitary is U † and the instruction set
consists of layers generated by LG. The resulting inversion sequence has length minv
and error ε = 1 − 1

N2 |Tr(V U)|2, where V is the product of the generated inversion
sequence and N = 2n is the dimension of the n-qubit system. If necessary, repeat
the STOQ compilation until a desired ε is achieved.

(c) Concatenate the initial random sequence and the inversion sequence to produce the
final RAV sequence with layer count m = m0 + minv. This sequence ideally leaves
the system in the initial state x0 with probability P (x0) = 1− ε when averaged over
all initial states.

4. Run K shots of each RAV sequence, with randomly chosen initial states, and record the
probability Q(x0) of measuring the system to be in the initial state after running the
sequence. Calculate F̂RAV for each sequence as specified in Equation 2.

5. Plot F̂RAV as a function of the total layer count m. Assuming negligible state preparation
errors, fit the results to an appropriate fidelity loss curve based on the properties of the
experimental error, e.g., an exponential decay curve F̂RAV = αm or a Gaussian curve
F̂RAV = αm

2 (see Section 2.1.4 for further discussion).

Figure 1: Description of the randomized analog verification (RAV) protocol for continuously-parameterized gate sets.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 4

To derive a formula for the fidelity of a sin-
gle RAV sequence on an n-qubit system, we start
with the XEB formula in Equation 1. We then
note that, by construction of the RAV sequence,
P (x0) = 1 − ε, where x0 is the initial state
(and expected final state) of the RAV sequence
and ε is the approximation error of the inver-
sion sequence. After some simplification (see Ap-
pendix A), we arrive at the following expression
for the approximate RAV sequence fidelity:

F̂RAV =
Q(x0)− 1

N

P (x0)− 1
N

. (2)

We use the hat on the symbols F̂XEB and F̂RAV
to emphasize that they are only estimates of fi-
delity based on a single circuit instance. To ob-
tain reliable information about the fidelity, these
results must be aggregated over many circuit in-
stances. In addition, the use of the linear cross-
entropy to estimate F̂XEB as in Equation 1 is only
strictly true in the limit of large circuit depth and
when averaged over ensembles of random circuits
[14]; therefore, the expression for F̂RAV in Equa-
tion 2 is subject to the same limitation. However,
as we demonstrate by numerical simulations (see
Figure 4), the derived variance of F̂RAV agrees
well with observed data even in the regime of
small qubit count 2 ≤ n ≤ 8 and moderate circuit
depth of 10 ≤ m ≤ 30 layers.

The quantity estimated by F̂XEB and F̂RAV is
known as the depolarization fidelity [25]. For a
circuit whose ideal pure output state is |ψ〉 and
whose execution is subject to purely depolarizing
errors, the true mixed output state can be defined
in terms of a depolarization parameter λ as

ρλ = (1− λ)|ψ〉〈ψ|+ λ

N
I (3)

where λ ∈ [0, 1] is the fraction to which the out-
put state is depolarized. The depolarization fi-
delity of this state is then defined as F = 1 − λ.
This quantity is related to, but distinct from, the
typical state fidelity f =

(
Tr
√√

ρλ|ψ〉〈ψ|
√
ρλ
)2
.

As derived in [25], the average depolarization fi-
delity F is related to the average state fidelity f
as f = F + (1 − F)/N . For a fully-depolarized
system, the average depolarization fidelity F = 0,
whereas the average state fidelity f = 1

N . We also
note that because depolarization fidelity is lin-
early related to state fidelity, the shape of the loss
curve of either quantity will maintain the same
character (e.g., exponential or Gaussian).

2.1.3 Sample efficiency of RAV

Intuitively, we expect that measuring the success
of RAV sequences should be more sample-efficient
than measuring the success of XEB sequences.
This is because RAV requires estimating the out-
put probability Q(x0) of only the initial state (un-
der the assumptions used to derive Equation 2),
whereas XEB requires sampling from the full out-
put probability distribution Q(x). Additionally,
in the case where the error is small, we expect
the final state of a RAV sequence to be close to
a basis state, which minimizes the quantum pro-
jection noise associated with the measurement.

More concretely, we can demonstrate this sam-
ple efficiency advantage by calculating the sta-
tistical variance associated with measurement of
F̂RAV and F̂XEB for a single sequence. By making
several simplifying assumptions (see Appendix B
for full details), we can approximate the variance
of these quantities as

Var
[
F̂RAV

]
≈ 1

K

(
1

(1−ε)− 1
N

)2

×[
(1− λ)(1− ε) + λ

N

]
×[

1− (1− λ)(1− ε)− λ
N

]
(4)

Var
[
F̂XEB

]
≈ 1

K

(
1

1
2−

1
N

)2 [
1
2

(
λ
N

) (
1− λ

N

)
+

1
3(1− λ)

(
1− 2λ

N

)
− 1

4(1− λ)2
]
(5)

where K is the number of independent experi-
mental shots taken for the given sequence and
ε � 1 is the error in the compiled inversion of
the RAV sequence.

We plot the standard deviation (i.e.,√
Var

[
F̂RAV

]
and

√
Var

[
F̂XEB

]
) of these fi-

delity estimates in Figure 3 for 2 ≤ n ≤ 16
qubits and 0 ≤ λ ≤ 1, assuming K = 100 and
ε = 0.04. The mean of the RAV and XEB
fidelity estimates are in agreement in all cases,
but we observe from these plots that RAV fidelity
estimates have a lower standard deviation than
XEB in all cases, with the advantage tending to
shrink as λ and n increase. This implies that
fewer RAV repetitions are necessary in order
to get an equivalently-precise estimate of the
fidelity of a given sequence.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 5

Random
layer of

gates

Random
layer of

gates

Random
layer of

gates

Random
layer of

gates

Random
layer of

gates

Random
layer of

gates

Approx.
inversion
sequence

(approx.)

(a) XEB

(b) RAV

ȁ ۧ0 ȁ ۧ0

ȁ ۧ0 ȁ ۧ𝜑

Figure 2: Schematics of sequences used in (a) cross-entropy benchmarking (XEB) and (b) randomized analog
verification (RAV) protocols for continuously-parameterized quantum gates. The states denoted as |0〉 can in general
be any computational basis state. In XEB, the state denoted as |ϕ〉 is the ideal result of applying the XEB sequence
to the initial state, and is in general far from any computational basis state. Each protocol includes a sequence of
randomly-generated layers of native gates with randomly-chosen parameters. In RAV, this is followed by a compiled
sequence of layers which is an approximate inverse of the initial sequence and returns the system to the initial state
with high probability.

2 6 10 14
n

0.00

0.05

0.10

0.15

√ V
ar

(F̂
)

λ= 0.0

2 6 10 14
n

λ= 0.25

2 6 10 14
n

λ= 0.5

2 6 10 14
n

λ= 0.75

2 6 10 14
n

λ= 1.0

RAV
XEB

Figure 3: Ideal standard deviation of F̂RAV and F̂XEB measurements for n-qubit systems as calculated analytically
by Equation 4 and Equation 5, where λ = 0 corresponds to an ideal output state, λ = 1 corresponds to a maximally-
mixed output state (see Equation 3), and we assume a RAV inverse approximation error of ε = 0.04. All plots use
K = 100 independent measurement shots per sequence.

0.0 0.5 1.0
λ

0.00

0.05

0.10

0.15

√ V
ar

(F̂
)

n= 2

0.0 0.5 1.0
λ

n= 3

0.0 0.5 1.0
λ

n= 4

0.0 0.5 1.0
λ

n= 5

0.0 0.5 1.0
λ

n= 6

0.0 0.5 1.0
λ

n= 7

0.0 0.5 1.0
λ

n= 8

RAV…(ideal)
XEB…(ideal)
RAV…(simulated)
XEB…(simulated)

Figure 4: Comparison of the precision of fidelity measurements using RAV and XEB at various levels of fidelity
loss, where λ = 0 corresponds to an ideal output state and λ = 1 corresponds to a maximally-mixed output state
(see Equation 3). The “simulated” data points, marked by circles, represent the observed standard deviation of 100
simulated measurements of F̂RAV (or F̂XEB) for a set of representative RAV (or XEB) sequences on an n-qubit system
with 10 ≤ m ≤ 30 layers per circuit. Error bars indicate standard error of the mean across the set of sequences; for
the RAV data points, the error bars are smaller than the data markers. The “ideal” solid curves represent the ideal
standard deviation of F̂RAV and F̂XEB measurements for the given n and λ as calculated analytically by Equation 4
and Equation 5, assuming a RAV inverse approximation error of ε = 0.04. All plots use K = 100 independent
measurement shots per sequence.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 6

We note that the RAV precision advantage is
largest in the regime where λ is small, since this is
exactly the regime where the final state of a RAV
sequence is near a basis state, which minimizes
the quantum projection noise associated with the
computational basis measurement.

As a further illustration, we perform a simu-
lation of RAV and XEB fidelity measurements
across various regimes of fidelity decay assuming
a purely depolarizing channel. We generate rep-
resentative RAV and XEB sequences for systems
with 2 ≤ n ≤ 8 qubits, and we calculate the stan-
dard deviation of fidelity measurements on these
sequences for 0 ≤ λ ≤ 1. These plots, shown in
Figure 4, show good agreement between the cal-
culated standard deviation for the RAV circuits
and the standard deviation extracted from simu-
lations. We observe some quantitative disagree-
ment for the XEB circuits, which is likely because
the assumptions behind Equation 5 are not nec-
essarily valid in the 2 ≤ n ≤ 8 and 10 ≤ m ≤ 30
parameter regime used in these simulations (see
Appendix B). Nonetheless, we observe qualitative
agreement between the calculated and simulated
results for the XEB circuits as well as for the RAV
circuits, and we observe that the variance of the
RAV fidelity estimates is lower than the variance
of the XEB fidelity estimates in all cases. This
supports the existence of the RAV sample effi-
ciency advantage, even in the absence of the sim-
plifying assumptions used to derive Equation 4
and Equation 5.

2.1.4 Fitting RAV fidelity loss curves

The RAV protocol description (see Figure 1) does
not prescribe a particular fit function, since the
shape of the fidelity loss depends on properties
of the generated circuits and of the experimen-
tal error sources. Random quantum circuits of
large-enough depth (i.e., deep enough that the
circuits form approximate 2-designs [29]) effec-
tively transform coherent errors into global de-
polarizing noise [14, 30], which would result in
a pure single exponential decay. This argument
applies to both XEB circuits and RAV circuits,
which both consist of sequences of random lay-
ers. However, for sequences which are not of suf-
ficient depth, the fidelity loss curve contains ad-
ditional terms and cannot be accurately modeled
as a single exponential decay. Attempting to do
so can easily result in an overestimate of per-layer

(a)

0 50 100 150
Layer…count

0.2

0.0

0.2

0.4

0.6

0.8

1.0

F̂
R

A
V

RAV…with…simulated…coherent…error,…n= 2

Simulated…data
Exponential…fit,…χ2

r = 1.35

Gaussian…fit,…χ2
r = 1.35

(b)

0 20 40 60 80 100
Layer…count

0.2

0.0

0.2

0.4

0.6

0.8

1.0

F̂
R

A
V

RAV…with…simulated…coherent…error,…n= 5

Simulated…data
Exponential…fit,…χ2

r = 1.72

Gaussian…fit,…χ2
r = 11.78

Figure 5: Simulated results of RAV sequences under co-
herent error showing different fidelity loss behavior. Co-
herent error is implemented in these simulations as a
fixed over-rotation of 0.15 radians (≈ π/20) applied to
each physical single-qubit and two-qubit gate. Each data
point represents the mean result of six distinct circuits.
Error bars represent the standard error of the mean. Fits
are a single-parameter exponential curve F̂RAV = αm

and a single-parameter Gaussian curve F̂RAV = αm2 .
Goodness of fit is reported as the reduced chi-squared
statistic χ2

r. (a) Simulated results of 50 RAV sequences
on n = 2 qubits. Sequences are the same as used for ex-
perimental demonstration in Section 3.2. (b) Simulated
results of 50 RAV sequences on n = 5 qubits. Sequences
are the same as used for numerical demonstration in Sec-
tion 3.1.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 7

fidelities [31, 32]. In addition, we note that any
real device is subject to a variety of coherent and
stochastic error sources which on their own would
not act as a depolarizing channel. So it is not
likely that experimental results under various re-
alistic noise sources using relatively small-depth
sequences will show good agreement with the ide-
alized results under the assumption of purely de-
polarizing noise, or that the fidelity estimates ex-
tracted under such an assumption will be accu-
rate.

To demonstrate this concretely, we show in Fig-
ure 5 the results of simulating RAV sequences un-
der a fixed coherent error, which we model as a
fixed over-rotation of 0.15 radians (≈ π/20) ap-
plied to each physical single-qubit and two-qubit
gate. Sequences are generated using the native
gate set described in Section 3.1. In Figure 5(a),
we observe that F̂RAV for these two-qubit RAV se-
quences appears to follow something in between a
Gaussian curve and an exponential curve. In Fig-
ure 5(b), for this set of five-qubit RAV sequences,
we observe that F̂RAV appears to be fit more
closely by an exponential than a Gaussian, but
still deviates notably from the ideal exponential
decay. These results indicate that the sequences
do not satisfy the conditions described above in
order to transform the coherent errors into global
depolarizing noise. We further note that in an
experimental setting, it is likely not feasible to
know the shape of the fidelity loss curve in ad-
vance, since the properties of the noise are not
fully known and may change with time.

For our experimental results in Section 3.2, we
use different fits for the fidelity loss depending
on the observed shape of the data. Because this
decision is partially dependent on the properties
of the particular device, RAV (as the name im-
plies) should be considered a verification protocol
rather than a benchmarking protocol. It provides
quantitative metrics about the correctness of a
device’s operation, but one cannot interpret these
metrics in a device-independent way without fur-
ther assumptions about the types of errors that
exist in the device.

2.2 Stochastic compilation using continuously-
parameterized quantum gates

We now discuss our technique for compiling the
approximate inversion sequence as part of RAV
sequence generation. Compiling an inversion se-

quence for a given random quantum circuit in a
non-trivial manner (i.e., other than simply revers-
ing and inverting the original random sequence)
into a sequence of continuously-parameterized
gates is a difficult problem that in general is in-
feasible to solve exactly. To produce the inver-
sion portion of the RAV sequences, we introduce a
stochastic protocol for approximate quantum uni-
tary compilation, which we abbreviate as STOQ.
We note that this protocol generalizes a similar
technique used for variational quantum compila-
tion algorithms [33, 34].

The process of compilation requires specifica-
tion of the unitary operation to be compiled,
known as the target unitary. This is the 2n-
dimensional unitary operator U implementing
some desired effect on the n-qubit system. In
the case of RAV, the target unitary is the inverse
of the product of the initial randomly-generated
sequence of layers.

The set of gates used for the compilation may,
in general, be fixed or parameterized. Fixed gates,
such as Cliffords, are discrete operations that can
be represented as a fixed unitary matrix. In con-
trast, parameterized gates, such as rotations, are
continuous operations that can be represented as
a unitary matrix with one or more continuously-
variable parameters. The allowed set of gates for
the compilation may then consist of some combi-
nation of fixed and parameterized gates. For an
n-qubit system, the instruction set (often called
native gate set) is a set of fixed gates and/or pa-
rameterized gates that represent the fundamental
set of operations that can be physically applied
to the system.

For a protocol such as RAV, it is desirable that
gates occur in the sequence in specific patterns,
which we refer to as layers. In this case, we can
define the instruction set in terms of these layers
of fixed and/or parameterized native gates, such
that the resulting compilation will be a sequence
of layers. Each layer consists of a fixed num-
ber of each type of native gate, where each gate
is assigned a randomly-chosen parameter value
(within some allowed parameter range) and the
order of the gates within the layer is also ran-
domly chosen. In the following description of the
STOQ algorithm, we refer to the components of
an instruction set as instructions, where each in-
struction can be either a single gate or a layer,
depending on the definition of the instruction set

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 8

for the given problem.

Given a target unitary U and an instruction
set G, then, the goal of an approximate com-
pilation protocol is to find a sequence of in-
structions {G1, . . . , GM} such that the product
GMGM−1 · · ·G1 is as close as possible to U for
some reasonable choice of distance metric. Note
that this definition does not require any particu-
lar closeness of approximation, but it does require
that the quality of approximation can be mea-
sured. That is, given some appropriate distance
metric which defines a distance d between the se-
quence product GMGM−1 · · ·G1 and the target
unitary U , an approximate compilation proce-
dure treats d as the value of a cost function to
be minimized.

The STOQ protocol for approximate compila-
tion proceeds according to the pseudocode dis-
played in Figure 6. Intuitively, the STOQ algo-
rithm can be thought of as a randomized explo-
ration of the full set of possible n-qubit unitary
operators (or the subset that can be generated by
the instruction set G, if G is not universal), using
a technique known as Markov chain Monte Carlo
(MCMC) search [35]. The algorithm is always
initialized with an empty sequence, meaning that
it always starts from the identity operator in the
search space. At each iteration, a random step is
proposed, in which an item is either added to or
removed from the sequence. If this step brings the
product of the sequence closer to the target uni-
tary as determined by the cost function, it is ac-
cepted; otherwise, it is either accepted or rejected
with some probability, where the probability of
accepting such “bad” steps decreases with each it-
eration. The algorithm continues until some max-
imum number of iterations is reached, at which
point the final cost can be evaluated and the se-
quence either kept or discarded, depending on the
accuracy requirements of the given problem.

One critical component of the algorithm is
the choice of an appropriate and efficiently-
computable cost function. Naturally, the cost
function should be a distance measure between
the the target unitary U and the unitary V which
is the product of the currently-compiled sequence.
One commonly-used and operationally-relevant
choice, used also in variational quantum compila-
tion approaches [33, 34], is a distance metric de-
fined using the norm of the Hilbert-Schmidt inner

function StochasticCompilation
(params U, G, num_iterations):

sequence := []
beta := 0
cost := Cost(U, Prod(sequence))
for i in 1 to num_iterations :

beta := IncreaseBeta (beta)
new_sequence := RandomChange (sequence , G)
new_cost := Cost(U, Prod(new_sequence))
if Accept (cost , new_cost , beta):

sequence := new_sequence
cost := new_cost

return seq

Figure 6: Pseudocode for STOQ stochastic compilation
algorithm. The inputs to the algorithm are the target
unitary U, the parameterized instruction set G, and the
number of iterations to perform num_iterations. The
algorithm is described in Section 2.2, with additional
implementation details provided in Appendix C.2.

product,

DHS(U, V) =
∣∣∣Tr(V †U)

∣∣∣ , (6)

which is related to the fidelity of a process [36].
We therefore use the cost function

Cost(U, V) = 1− 1
2nDHS(U, V), (7)

noting that Cost(U, V) ranges from 0 to 1 and
vanishes if and only if U and V are equivalent up
to a global phase.

Additional technical details and discussion of
STOQ are provided in Appendix C, including
demonstrations of using STOQ for compilation
of sequences to approximately implement time-
evolution unitaries, as well as for approximate
compilation of randomly-generated unitaries.

2.3 QSCOUT experimental setup
The Quantum Scientific Computing Open User
Testbed (QSCOUT) is a quantum processor
based on trapped ions housed at Sandia National
Laboratories [27]. For the experiments shown
here, two 171Yb+ ions were used, in which the
qubit states are defined by the hyperfine ‘clock’
transition of a 171Yb+ ion, 2S1/2 |F=0, mF = 0〉
(|0〉) and |F=1, mF = 0〉 (|1〉). The ions are
controlled via Raman transitions using a pulsed
355 nm laser in the counter-propagating configu-
ration [37, 38], where one arm is a “global” beam
that spans all qubits and the other arm con-
sists of up to 32 individual addressing beams,
each of which illuminates a single ion [39]. All

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 9

beams, individual or global, are controlled via the
Sandia developed “Octet” coherent control hard-
ware with complete two-tone frequency, phase,
and amplitude control via rf pulses. The indi-
vidual addressing beams are created by a spe-
cialized multichannel acousto-optic modulator
(AOM) from L3Harris, which divides a single
laser beam into 32 beams and propagates each
through a separate AOM crystal.

The single- and two-qubit gates used in the sys-
tem are all generated via Raman transitions and
are parameterized. The single-qubit gates utilize
the appropriate individual beam with two tones
applied the AOM, generating the necessary tran-
sitions in what is known as a co-propagating con-
figuration. Gates about an equatorial axis on the
Bloch sphere are physical gates called R(θ, ϕ),
and defined by both θ, which is determined by
the duration of the pulse, and ϕ, determined by
the relative phase of the two tones in the Ra-
man transition. The pulse amplitudes are square-
shaped and gapless, meaning there is no “off” time
between single qubit gates. Fidelities for physi-
cal single-qubit gates, R(π/2, 0) and R(π/2, π/2)
have been estimated to be 99.5±0.3% using a va-
riety of techniques including gate set tomography.
The gates used for this work do not contain any
form of compensation, such as SK1 [40], simplify-
ing the bare gate error analysis and reducing the
data acquisition time to limit the effects of drift,
especially in the case of significant layer sizes.
RZ(θ) gates are applied virtually by Octet and
seen by the qubits as a cumulative phase shift.

Two-qubit gates in the system are Mølmer-
Sørensen (MS) interactions of the form XX(θ) =
e−i

θ
2σX⊗σX and are also parameterized. They

are defined by a desired phase, ϕ and angle, θ.
The MS gate pulses have a Gaussian-shaped am-
plitude and are composed of one tone on the
global beam and two tones each on the individ-
ual beams, generating Raman transitions which
are detuned symmetrically from a red and blue
motional sideband pair.

Unlike the single-qubit gates, the MS gate has
a fixed duration of 200µs, and the rotation angle
θ is determined by the global beam amplitude, ac-
counting for distortions and saturation effects in
the global beam amplifier and AOM. In addition,
negative rotation angles are generated by chang-
ing the relative phase on one of the two ions by π
radians. For the purposes of this demonstration,

all MS(θ, ϕ) gates had |θ| ≤ π/10, and for these
small values of θ, calibrations suggest deviations
in the resultant rotation angle of . 8%.

Additionally, the MS gates also account for the
AC Stark effect through the use of frame rota-
tions, which are virtual Z rotations, applied dur-
ing the MS gate to cancel phase accumulation
from the AC Stark effect. As the global beam
and individual beams both contribute to phase
shifts caused by the AC Stark shift, the frame
rotation also changes depending on the desired
θ. These are calibrated to within ±3.5 × 10−3

radians, or ±0.2 degrees, for the range of θ used.
The MS gates are performed in a counter-

propagating beam configuration while the single-
qubit gates are performed in a co-propagating
configuration. Because the relative phase stabil-
ity between the counter-propagating beams is less
stable than that of co-propagating beams, inter-
mixing gates from the two configurations leads
to unpredictable phase relationships. To combat
this instability, we perform basis transformations
on all two-qubit gates. We first surround the MS
gate with counter-propagating single-qubit π/2
gates to transform an XX interaction into a ZZ
interaction [41]. We then further surround those
with co-propagating single-qubit gates to bring
the interaction back onto an equatorial axis. The
desired phase of the MS gate, ϕ, is then intro-
duced through the respective phase of these co-
propagating single-qubit gates. When including
the basis transformation gates, we estimate fideli-
ties for MS(π/2, 0) to be 97± 1%.

Due to the nature of the RAV sequences, some
extra consideration was needed to deal with non-
standard sequences. Low-level pulse data is com-
pressed and stored in a series of lookup tables
(LUTs) in Octet’s programmable logic for fast
readout of data-intensive gate sequences.2 The
topology of these LUTs and the compression
scheme is designed to leverage redundant gate in-
formation common to a wide array of quantum
circuits. Because of the numerous unique gate
calls in RAV sequences, the compression ratio is
limited and more LUT storage is required. While
storage was increased for certain LUTs using a
custom addressing scheme for dense packing of
data (not limited to byte-write boundaries), fi-

2Gate sizes are comparatively larger than other con-
trol systems because of the designed flexibility for multi-
parameter spline-based modulation [27].

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 10

nite memory availability is still a limitation.
Increasing the LUT storage was supplemented

by a compilation technique developed to partially
reprogram large segments of the LUTs mid cir-
cuit. In this work, the RAV sequences used nu-
merous virtual RZ gates. Due to their virtual
nature, RZ gates are typically on the order of 10
ns, and continuous streaming of raw data for such
short gates exceeds the maximum data through-
put supported by the device. The compiler was
set up to run recursively, essentially breaking long
circuits into smaller pieces based on where the
LUT capacity was exceeded. To prevent under-
flow conditions, partial reprogramming data was
placed after gates with long durations by strategic
adjustment of the initial boundaries determined
by the compiler.

3 Results
3.1 Numerical demonstrations
To demonstrate the sample efficiency advan-
tage of RAV, we generated 50 RAV and 50
XEB sequences of varying lengths for a five-
qubit system. We generated these sequences us-
ing a continuously-parameterized native gate set
{R(θ, ϕ), RZ(θ),MS(θ, ϕ)}, where these opera-
tions are defined in matrix form using the com-
putational basis as follows:

R(θ, ϕ) =

 cos θ2 −ieiϕ sin θ
2

ie−iϕ sin θ
2 cos θ2

 (8)

RZ(θ) =
[
1 0
0 eiθ

]
(9)

MS(θ, ϕ) = (10)
cos θ2 0 0 −ie−i2ϕ sin θ

2

0 cos θ2 −i sin θ
2 0

0 −i sin θ
2 cos θ2 0

−iei2ϕ sin θ
2 0 0 cos θ2


We chose this gate set because it aligns most

directly with the native gate set of the QSCOUT
trapped-ion processor.3 Specifically, R(θ, ϕ) and

3In our implementation of RAV and XEB sequence
generation, we used the Python representation of these
parameterized operations provided by Sandia at https:
//gitlab.com/jaqal/qscout-gatemodels/.

(a)

10-4 10-3 10-2

Simulated…depolarization…rate

10-4

10-3

10-2

M
ea

n…
of

fit
te

d…
er

ro
r…

pe
r…

la
ye

r

RAV
XEB

(b)

10-4 10-3 10-2

Simulated…depolarization…rate

10-4

10-3

St
an

da
rd

…
de

vi
at

io
n…

of
fit

te
d…

er
ro

r…
pe

r…
la

ye
r

RAV
XEB

Figure 7: Statistics of fitted error rates from simulations
of five-qubit RAV and XEB runs, using an exponential fit
F̂ = αm to extract the result from each run, and using
the quantity 1 − α as the error rate. Each data point
represents the fitted error rate statistics of 100 indepen-
dent simulations, using 50 RAV or XEB circuits of up to
800 layers with K = 100 shots per circuit, as described
in Section 3.1. The sets of RAV and XEB sequences
are of matching lengths; i.e., for each of the 50 RAV se-
quences, an XEB sequence was generated with the same
number of layers. Error bars, which are smaller than the
data markers, represent the standard error of the mean
across 10 independent repetitions. Simulated depolar-
ization rate is implemented as the amount of depolar-
ization per θ = π/2 rotation via single-qubit R(θ, ϕ)
gate or θ = π/20 rotation via two-qubit MS(θ, ϕ) gate,
where the total amount of depolarization is proportional
to the rotation angle θ. Simulated RZ(θ) gates are un-
affected by depolarization rate. (a) Mean fitted error per
layer as a function of simulated depolarization rate. (b)
Standard deviation of fitted error per layer as a function
of simulated depolarization rate.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 11

https://gitlab.com/jaqal/qscout-gatemodels/
https://gitlab.com/jaqal/qscout-gatemodels/

MS(θ, ϕ) are implemented by the QSCOUT de-
vice as native one-qubit and two-qubit physical
operations, and RZ(θ) is implemented by the QS-
COUT device as a virtual one-qubit operation
which requires no physical interaction with the
qubits.

We generated the sets of sequences such that
the total layer counts of the RAV and XEB se-
quences are equivalent. Because RAV sequence
lengths are unpredictable due to the stochastic in-
version compilation process, we first generated 50
RAV sequences over a range of sequence lengths
up to 800 layers. For each RAV sequence, we then
generated an XEB sequence of exactly the same
length.

Each generated layer consists of three R(i)(θ, ϕ)
gates, three R(i)

Z (θ) gates, and one MS(i,j)(θ, ϕ)
gate. The target qubit(s) for each gate, repre-
sented by the superscript indices, are chosen uni-
formly at random from the set of all qubits in
the system. A layer is constructed by first choos-
ing random parameter values for each of these
seven gates. Values for each θ rotation angle
are chosen uniformly at random in the interval
[−π/10, π/10],4 and values for each ϕ axis angle
are chosen uniformly at random in the interval
[−π, π]. After the parameter values are chosen,
the order of the gates within the layer is then ran-
domly permuted, which produces the layer that
is ultimately used in the sequence.

Figure 7 depicts the mean and standard devi-
ation of error rates per layer obtained via both
RAV and XEB for sequences under varying sim-
ulated depolarization rates, using an exponential
fit F̂ = αm and using the quantity 1 − α as the
error rate. We observe that, over a wide range of
depolarization rates, the mean fitted error rates
from RAV and XEB are closely aligned, but the
error rates estimated by RAV have a significantly
smaller standard deviation than those obtained
via XEB, indicating that RAV provides more pre-
cise information about the overall error rate of
these sequences. We also observe that this ad-

4Allowed parameter ranges are chosen with consider-
ation to the performance of the inverse compilation via
STOQ. The stochastic search process resembles a stochas-
tic gradient descent, meaning that each generated layer
should ideally result in a “small” change to the circuit.
Empirically, for this gate set, we find that this tends to
be satisfied when each rotation angle |θ| � π. Here we
chose the allowed parameter range |θ| ≤ π/10 because this
resulted in reasonably good convergence behavior.

vantage is more significant in the regime of lower
depolarization rates. For a depolarization rate
around 10−2, the RAV error rate estimates are
roughly twice as precise as the XEB error rate es-
timates, whereas around 10−4, they are roughly
three times as precise.

We note that because the RAV sample effi-
ciency advantage comes partially from reduced
quantum projection noise due to measurement,
we expect that we will find the largest advan-
tage when operating in the early part of the RAV
decay curve (which in this simulation is realized
by lower depolarization rate). This is the regime
where the RAV sequence results remain closest
to a basis state, where quantum projection noise
is minimized. However, as described previously,
RAV continues to have a sample efficiency advan-
tage in the regime of larger error rates because
it requires estimating the output probability of
only a single state, rather than sampling from the
full output probability distribution as required by
XEB.

3.2 Experimental demonstrations
To demonstrate the RAV sample efficiency advan-
tage experimentally, we generated RAV and XEB
sequences of varying lengths for a 2-qubit system
using the same native gate set as in Section 3.1.
In this subsection, we report the results from ex-
ecuting these sequences on quantum processors
from QSCOUT and IBM Q.

3.2.1 QSCOUT trapped-ion processor

As a first experimental demonstration, we ex-
ecuted 50 RAV and 50 XEB sequences on
the two-qubit trapped-ion quantum processor at
the Quantum Scientific Computing Open User
Testbed (QSCOUT) operated by Sandia National
Laboratories [27]. Details of the experiment are
provided in Section 2.3. We note that this de-
vice directly implements the parameterized na-
tive gate set {R(θ, ϕ), RZ(θ),MS(θ, ϕ)} that we
used to generate these sequences.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 12

0 50 100
Layer…count

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
F̂

R
A

V

QSCOUT…RAV…results,…K= 25

Raw…data
Binned…data
Fit,…single…run
Fit,…all…runs

(a)

0 50 100
Layer…count

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F̂
X

E
B

QSCOUT…XEB…results,…K= 25

Raw…data
Binned…data
Fit,…single…run
Fit,…all…runs

(b)

5 10 25 50 100
Shots…per…run

10-3

10-2

St
d.

…
de

vi
at

io
n…

of
…

fid
el

ity
…

lo
ss

…
es

tim
at

e QSCOUT…fit…precision

RAV
XEB

(c)

(d) RAV: fidelity loss estimate XEB: fidelity loss estimate

Shots per run Mean (×10−2) SD (×10−2) SD
Mean Mean (×10−2) SD (×10−2) SD

Mean
XEB SD

Mean

RAV SD
Mean

K = 5 1.407 0.108 0.076 1.506 0.637 0.423 5.53
K = 10 1.404 0.087 0.062 1.463 0.470 0.321 5.21
K = 25 1.403 0.065 0.047 1.399 0.264 0.189 4.04
K = 50 1.402 0.050 0.035 1.353 0.110 0.081 2.30
K = 100 1.402 0.024 0.017 1.345 0.080 0.059 3.40

Figure 8: Experimental results from QSCOUT for two-qubit RAV and XEB runs. Each run consists of 50 sequences
executed K times each. (a,b) Results of 20 independent RAV (or XEB) runs using K = 25 shots per sequence. Raw
data points indicate the fidelity estimate F̂RAV (or F̂XEB) for K shots of a single sequence, calculated according to
Equation 2 (or Equation 1). Each binned data point (with error bars) represents the mean (and standard error of the
mean) of F̂RAV or F̂XEB for a set of six sequences across all 20 runs. Thin curves are single-parameter Gaussian fits
F̂ = αm2 for the data points from each run, which is chosen based on empirical goodness of fit (see Section 3.2.1 for
details). The thick curve is the mean of the individual fit curves. (c) Standard deviation of the fidelity loss estimate√

1− α for RAV and XEB runs for various values of K. Smaller standard deviation indicates a more precise estimate
of the fidelity loss estimate. (d) Fidelity loss estimate statistics for RAV and XEB runs for various values of K.

Figure 8(a) and Figure 8(b) show the results of
20 independent runs of the entire set of RAV and
XEB sequences, using K = 25 shots per exper-
iment. The same set of sequences was used for
each run, but we performed the 20 independent
runs in order to be able to calculate the mean
and standard deviation of the estimated fidelity
loss obtained from fitting each run to a Gaussian
curve F̂ = αm

2 . (For experimental simplicity, 500
executions were performed for each sequence, and
we then separated the shot-level results and in-
terpreted them as 500/K independent runs of K
shots each.) Based on empirical goodness of fit
(see Section 2.1.4), we choose to fit the data to
an Gaussian curve F̂ = αm

2 (RAV χ2
r = 17.4,

XEB χ2
r = 3.64) rather than a exponential curve

F̂ = αm (RAV χ2
r = 64.3, χ2

r = 19.4).
It is clear visually in Figure 8(a) and Fig-

ure 8(b) that the XEB fit curves vary significantly
more from the mean than the RAV fit curves. The

standard deviations of the fidelity loss estimates
for various values of K are plotted in Figure 8(c),
and the corresponding statistics are tabulated in
Figure 8(d). As expected, we observe that the the
fidelity loss estimates obtained via RAV runs have
a significantly smaller relative standard deviation
(by a factor of 2.30 to 5.53) than those obtained
from XEB runs. Since the standard deviation of
the fidelity estimate goes as 1/

√
K (which is sup-

ported by the data in Figure 8(c)), this implies
that XEB would require approximately 5 to 30
times as many experimental shots as RAV to pro-
duce a fidelity loss estimate for this device with
equivalent precision. For example, Figure 8(c) il-
lustrates that the RAV K = 5 runs provide a
more precise fidelity loss estimate than the XEB
K = 50 runs.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 13

0 50 100
Layer…count

-0.2

0.0

0.2

0.4

0.6

0.8

1.0
F̂

R
A

V

ibmq_manila…RAV…results,…K= 50

Raw…data
Binned…data
Fit,…single…run
Fit,…all…runs

(a)

0 50 100
Layer…count

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

F̂
X

E
B

ibmq_manila…XEB…results,…K= 50

Raw…data
Binned…data
Fit,…single…run
Fit,…all…runs

(b)

50 100 500 1000 5000
Shots…per…run

10-3

10-2

St
d.

…
de

vi
at

io
n…

of
…

fid
el

ity
…

lo
ss

…
es

tim
at

e ibmq_manila…fit…precision

RAV
XEB

(c)

(d) RAV: fidelity loss estimate XEB: fidelity loss estimate

Shots per run Mean (×10−2) SD (×10−2) SD
Mean Mean (×10−2) SD (×10−2) SD

Mean
XEB SD

Mean

RAV SD
Mean

K = 50 2.101 0.160 0.076 2.572 0.318 0.123 1.62
K = 100 2.514 0.175 0.070 2.444 0.248 0.101 1.45
K = 500 2.182 0.131 0.060 2.563 0.171 0.067 1.11
K = 1000 2.194 0.097 0.044 2.927 0.256 0.087 1.99
K = 5000 2.047 0.055 0.027 2.434 0.106 0.044 1.62

Figure 9: Experimental results from IBM Q ibmq_manila device for two-qubit RAV and XEB runs. Each run consists
of 50 sequences executed K times each. (a,b) Results of 10 independent RAV (or XEB) runs using K = 50 shots
per sequence. Raw data points indicate the fidelity estimate F̂RAV (or F̂XEB) for K shots of a single sequence,
calculated according to Equation 2 (or Equation 1). Each binned data point (with error bars) represents the mean
(and standard error of the mean) of F̂RAV or F̂XEB for a set of six sequences across all 10 runs. Thin curves are
single-parameter exponential decay fits F̂ = αm for the data points from each individual run, which is chosen based
on empirical goodness of fit (see Section 3.2.2 for details). The thick curve is the mean of the individual fit curves.
(c) Standard deviation of the fidelity loss estimate 1 − α for RAV and XEB runs for various values of K. Smaller
standard deviation indicates a more precise estimate of the fidelity loss. (d) Fidelity loss estimate statistics for RAV
and XEB runs for various values of K.

3.2.2 IBM Q superconducting processor

To provide further experimental results, we exe-
cuted the same 50 RAV and 50 XEB sequences
on the publicly-available ibmq_manila supercon-
ducting processor from IBM [28]. This device
does not directly implement the parameterized
native gate set {R(θ, ϕ), RZ(θ),MS(θ, ϕ)}. To
adapt the sequences for this device, we trans-
lated the sequences from the original parame-
terized native gate set into the instruction set
that is accepted by the IBM Q framework. More
specifically, R(θ, ϕ) = U(ϕ, θ− π/2, π/2− θ) and
MS(θ, ϕ) = RZ(−ϕ)⊗2RXX(θ)RZ(ϕ)⊗2, where
RXX(θ) is itself a composite gate that can be im-
plemented through multiple native gates. RZ(θ)
is implementable directly and does not need to
be translated.

Figure 9(a) and Figure 9(b) show the results

of 10 independent runs of the entire set of RAV
and XEB sequences, using K = 50 shots per ex-
periment. The shapes of the XEB fit curves can
be seen to have a larger spread than the RAV
fit curves, which again illustrates the smaller
uncertainty in estimating fidelity via RAV vs.
XEB. Based on empirical goodness of fit (see Sec-
tion 2.1.4), we choose to fit the data to an ex-
ponential curve F̂ = αm (RAV χ2

r = 1.46, XEB
χ2
r = 4.76) rather than a Gaussian curve F̂ = αm

2

(RAV χ2
r = 24.9, XEB χ2

r = 17.8). The experi-
ment is repeated for varying numbers of shots per
sequence, as is shown in Figure 9(c). Figure 9(d)
tabulates the specific statistics.5 For some of the

5A total of eight RAV runs and five XEB runs on the
IBM Q device are excluded from the statistics reported
in Figure 9 due to abnormally elevated error rates dur-
ing these particular runs. The qualitative results of the
analysis are not affected.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 14

experiments, the relative standard deviation of
the fidelity loss estimates from the XEB experi-
ments is up to twice that of the RAV experiments,
as expected.

Based on the gate error rates published by IBM
at the time the experiments were run, we can
calculate that the error per layer of our RAV
and XEB sequences should be about 1.57×10−2,
which indicates that our experiments overesti-
mated the true error rate. We also note that
the IBM Q results in Figure 9(c) do not demon-
strate the expected scaling of the standard devi-
ation of the fidelity estimate as 1/

√
K. We be-

lieve that this is because the true error rate of
the ibmq_manila device was fluctuating during
the course of the runs, which were spread over
the course of several hours. This led directly to
increased variance in fitted fidelity loss estimates
for some of the experiments; for example, com-
paring to the QSCOUT results in Figure 8(c), we
clearly see much higher variance in the IBM Q re-
sults despite using the same set of RAV and XEB
sequences. Therefore, the variances of our fidelity
loss estimates are including the effects of these
physical fluctuations in addition to the inherent
variance from the RAV and XEB estimates. We
expect that runs in which all of the sequences are
executed in rapid succession would help to reduce
the effect of such fluctuations.

4 Discussion

We note that because of its advantages in sample
efficiency, RAV may be particularly useful in the
context of frequent calibration runs for devices
with continuously-parameterized gates. Minimiz-
ing the number of experimental shots per calibra-
tion run reduces the downtime of a device due
to calibration, and therefore increases its avail-
ability for more useful work. Although RAV it-
self is not a calibration scheme, it can be used to
rapidly obtain an estimate of average error over
the device’s continuously-parameterized gate set
(more rapidly than techniques based on XEB, as
shown in this work), which could in turn be used
as feedback to a calibration technique or as ver-
ification of a completed calibration. In this con-
text, the sample efficiency of RAV provides a no-
table advantage over XEB. We observed from the
two-qubit QSCOUT experimental data (see Fig-
ure 8) that achieving a fidelity estimate precision

of 0.125% required only K = 10 shots of each of
the 50 RAV sequences vs. K = 100 shots of each
of the 50 XEB sequences. Each shot took an aver-
age of 23 ms experimentally. The corresponding
total runtime for a single RAV run is 11.5 s (for
500 total shots), whereas for a single XEB run the
total runtime is 115 s (for 5000 total shots). Typ-
ical operation of the two-qubit QSCOUT device
involves a calibration run approximately every 20
minutes, and so reducing the post-calibration ver-
ification step from 115 s to 11.5 s would result in a
10% increase in the available computational time
of the device. We also note that future systems
will have larger numbers of qubits and smaller er-
ror rates. We expect that both of these aspects
will increase the time needed for verification, such
that the practical advantage of RAV over XEB in
terms of runtime could be substantial.

In this work, we have demonstrated RAV
and XEB experimentally on continuously-
parameterized gate sets of both a trapped-ion
system from Sandia QSCOUT and a super-
conducting system from IBM Q. In particular,
the gate sets used in this demonstration more
closely align with the native physical gates of
trapped-ion systems. In QSCOUT, one circuit
layer contains a single physical two-qubit gate,
where the parameterized θ is directly associated
with physical inputs to that gate; however, on
the IBM Q system, one circuit layer contains
two physical two-qubit gates, and the parame-
terized θ is instead passed into the surrounding
single-qubit gates. As such, the particular RAV
construction demonstrated here provides an esti-
mate of the fidelity loss that may provide more
direct assessment of physical two-qubit controls
for the trapped-ion QSCOUT system, yet still
provides an estimate of the fidelity loss for the
superconducting IBM Q system that can be com-
pared to their published error rate. Additionally,
RAV could easily be adapted to include gates
more closely aligned with the native physical
gates of any system, including superconducting
systems. We also detail the experimental real-
ization of continuously-parameterized two-qubit
gates (and relevant calibration bounds to these
gates) on the QSCOUT system. We note that
additional control-system developments, in the
form of extra storage and partial reprogramming,
were needed to support the lengthy sequences of
unique gate instantiations inherent to verifica-

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 15

tion techniques for continuously-parameterized
gate sets. With these capabilities, the RAV
and XEB sequences were reasonably practical
to experimentally implement on a trapped-ion
system such as QSCOUT.

We have demonstrated the generation of RAV
sequences on systems of up to n = 8 qubits.
The bottleneck in the RAV sequence generation is
the compilation of the approximate inversion se-
quence via STOQ, which scales poorly with sys-
tem size (see Appendix C.5) and is unlikely to
be feasible for n � 10 qubits. For example, the
inversion compilation for each n = 8 RAV se-
quence used for Figure 4 took approximately an
hour to generate using a laptop computer. How-
ever, this is not an inherent limitation of RAV.
If a more efficient technique can be applied to
generating the approximate inversion sequence,
then RAV sequences could be generated for larger
systems. We believe that one promising area of
future work would be to adapt the efficient in-
version techniques from mirror RB [13] to the
context of RAV and verification of continuously-
parameterized gates. For efficient mirroring, this
would likely require some restrictions on the con-
struction of layers of the generated RAV circuits,
such as requiring that each layer consists only of
Clifford gates in order to be efficiently classically
simulable.

Code and Data Availability

An open-source implementation of RAV sequence
generation and the STOQ compilation protocol
[42] is freely available at https://github.com/
rmshaffer/stoq-compiler. Data and sequences
used to generate the plots in this paper are avail-
able upon request from the corresponding author.

Acknowledgements

R.S., H.R., E.D., and H.H. acknowledge support
from the Challenge Institute for Quantum Com-
putation (CIQC) via the NSF Quantum Leap
Challenge Institute (QLCI) program under grant
number OMA-2016245, from the Army Research
Office under grant number W911NF-18-1-0170,
and from the NSF STAQ project under grant
number PHY-1818914. R.S. acknowledges sup-
port from the QISE-NET fellowship under NSF

award DMR-1747426, as well as from the Na-
tional Defense Science and Engineering Graduate
(NDSEG) fellowship under contract FA9550-11-
C-0028 and awarded by the Department of De-
fense, Air Force Office of Scientific Research, 32
CFR 168a.

This material was also funded in part by
the U.S. Department of Energy, Office of Sci-
ence, Office of Advanced Scientific Computing
Research Quantum Testbed Program. Sandia
National Laboratories is a multimission labora-
tory managed and operated by National Tech-
nology & Engineering Solutions of Sandia, LLC,
a wholly owned subsidiary of Honeywell Inter-
national Inc., for the U.S. Department of En-
ergy’s National Nuclear Security Administration
under contract DE-NA0003525. This paper de-
scribes objective technical results and analysis.
Any subjective views or opinions that might be
expressed in the paper do not necessarily repre-
sent the views of the U.S. Department of Energy
or the United States Government. The United
States Government retains and the publisher, by
accepting the article for publication, acknowl-
edges that the United States Government re-
tains a non-exclusive, paid-up, irrevocable, world-
wide license to publish or reproduce the pub-
lished form of this manuscript, or allow others to
do so, for United States Government purposes.
The Department of Energy will provide pub-
lic access to these results of federally sponsored
research in accordance with the DOE Public
Access Plan (http://energy.gov/downloads/doe-
public-access-plan). SAND2023-03170J.

We acknowledge the use of IBM Quantum ser-
vices for this work. The views expressed are those
of the authors, and do not reflect the official pol-
icy or position of IBM or the IBMQuantum team.

References
[1] Alexandru Gheorghiu, Theodoros Kapourni-

otis, and Elham Kashefi. “Verification of
Quantum Computation: An Overview of Ex-
isting Approaches”. Theory of Computing
Systems 63, 715–808 (2019).

[2] P. Walther, K. J. Resch, T. Rudolph,
E. Schenck, H. Weinfurter, V. Vedral, M. As-
pelmeyer, and A. Zeilinger. “Experimental
one-way quantum computing”. Nature 434,
169–176 (2005).

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 16

https://github.com/rmshaffer/stoq-compiler
https://github.com/rmshaffer/stoq-compiler
http://energy.gov/downloads/doe-public-access-plan
http://energy.gov/downloads/doe-public-access-plan
https://dx.doi.org/10.1007/s00224-018-9872-3
https://dx.doi.org/10.1007/s00224-018-9872-3
https://dx.doi.org/10.1038/nature03347
https://dx.doi.org/10.1038/nature03347

[3] Marcus Cramer, Martin B. Plenio, Steven T.
Flammia, Rolando Somma, David Gross,
Stephen D. Bartlett, Olivier Landon-
Cardinal, David Poulin, and Yi Kai Liu. “Ef-
ficient quantum state tomography”. Nature
Communications 1, 149 (2010).

[4] Seth T. Merkel, Jay M. Gambetta, John A.
Smolin, Stefano Poletto, Antonio D. Cór-
coles, Blake R. Johnson, Colm A. Ryan, and
Matthias Steffen. “Self-consistent quantum
process tomography”. Physical Review A 87,
062119 (2013).

[5] Robin Blume-Kohout, John King Gamble,
Erik Nielsen, Kenneth Rudinger, Jonathan
Mizrahi, Kevin Fortier, and Peter Maunz.
“Demonstration of qubit operations below a
rigorous fault tolerance threshold with gate
set tomography”. Nature Communications
8, 14485 (2017).

[6] Erik Nielsen, John King Gamble, Kenneth
Rudinger, Travis Scholten, Kevin Young,
and Robin Blume-Kohout. “Gate Set To-
mography”. Quantum 5, 557 (2021).

[7] A. Shabani, R. L. Kosut, M. Mohseni,
H. Rabitz, M. A. Broome, M. P. Almeida,
A. Fedrizzi, and A. G. White. “Efficient mea-
surement of quantum dynamics via compres-
sive sensing”. Physical Review Letters 106,
100401 (2011).

[8] B. P. Lanyon, C. Maier, M. Holzäpfel,
T. Baumgratz, C. Hempel, P. Jurcevic,
I. Dhand, A. S. Buyskikh, A. J. Daley,
M. Cramer, M. B. Plenio, R. Blatt, and
C. F. Roos. “Efficient tomography of a quan-
tum many-body system”. Nature Physics 13,
1158–1162 (2017).

[9] Joseph Emerson, Robert Alicki, and Karol
Zyczkowski. “Scalable noise estimation with
random unitary operators”. Journal of Op-
tics B: Quantum and Semiclassical Optics 7,
S347 (2005).

[10] E. Knill, D. Leibfried, R. Reichle, J. Brit-
ton, R. B. Blakestad, J. D. Jost, C. Langer,
R. Ozeri, S. Seidelin, and D. J. Wineland.
“Randomized benchmarking of quan-
tum gates”. Physical Review A 77,
012307 (2008).

[11] Alexander Erhard, Joel J. Wallman, Lukas
Postler, Michael Meth, Roman Stricker,

Esteban A. Martinez, Philipp Schindler,
Thomas Monz, Joseph Emerson, and Rainer
Blatt. “Characterizing large-scale quantum
computers via cycle benchmarking”. Nature
Communications 10, 5347 (2019).

[12] Timothy J. Proctor, Arnaud Carignan-
Dugas, Kenneth Rudinger, Erik Nielsen,
Robin Blume-Kohout, and Kevin Young.
“Direct Randomized Benchmarking for Mul-
tiqubit Devices”. Physical Review Letters
123, 030503 (2019).

[13] Timothy Proctor, Stefan Seritan, Ken-
neth Rudinger, Erik Nielsen, Robin Blume-
Kohout, and Kevin Young. “Scalable Ran-
domized Benchmarking of Quantum Com-
puters Using Mirror Circuits”. Physical Re-
view Letters 129, 150502 (2022).

[14] Sergio Boixo, Sergei V. Isakov, Vadim N.
Smelyanskiy, Ryan Babbush, Nan Ding,
Zhang Jiang, Michael J. Bremner, John M.
Martinis, and Hartmut Neven. “Character-
izing quantum supremacy in near-term de-
vices”. Nature Physics 14, 595–600 (2018).

[15] Jahan Claes, Eleanor Rieffel, and Zhihui
Wang. “Character Randomized Bench-
marking for Non-Multiplicity-Free Groups
With Applications to Subspace, Leakage,
and Matchgate Randomized Benchmarking”.
PRX Quantum 2, 010351 (2021).

[16] Jonas Helsen, Sepehr Nezami, Matthew
Reagor, and Michael Walter. “Matchgate
benchmarking: Scalable benchmarking of
a continuous family of many-qubit gates”.
Quantum 6, 657 (2022).

[17] John Preskill. “Quantum Computing in
the NISQ era and beyond”. Quantum 2,
79 (2018).

[18] Anders Sørensen and Klaus Mølmer. “Quan-
tum computation with ions in thermal
motion”. Physical Review Letters 82,
1971 (1999).

[19] Klaus Mølmer and Anders Sørensen. “Mul-
tiparticle Entanglement of Hot Trapped
Ions”. Physical Review Letters 82, 1835–
1838 (1999).

[20] Esteban A. Martinez, Thomas Monz, Daniel
Nigg, Philipp Schindler, and Rainer Blatt.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 17

https://dx.doi.org/10.1038/ncomms1147
https://dx.doi.org/10.1038/ncomms1147
https://dx.doi.org/10.1103/PhysRevA.87.062119
https://dx.doi.org/10.1103/PhysRevA.87.062119
https://dx.doi.org/10.1038/ncomms14485
https://dx.doi.org/10.1038/ncomms14485
https://dx.doi.org/10.22331/q-2021-10-05-557
https://dx.doi.org/10.1103/PhysRevLett.106.100401
https://dx.doi.org/10.1103/PhysRevLett.106.100401
https://dx.doi.org/10.1038/nphys4244
https://dx.doi.org/10.1038/nphys4244
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1088/1464-4266/7/10/021
https://dx.doi.org/10.1103/PhysRevA.77.012307
https://dx.doi.org/10.1103/PhysRevA.77.012307
https://dx.doi.org/10.1038/s41467-019-13068-7
https://dx.doi.org/10.1038/s41467-019-13068-7
https://dx.doi.org/10.1103/PhysRevLett.123.030503
https://dx.doi.org/10.1103/PhysRevLett.123.030503
https://dx.doi.org/10.1103/PhysRevLett.129.150502
https://dx.doi.org/10.1103/PhysRevLett.129.150502
https://dx.doi.org/10.1038/s41567-018-0124-x
https://dx.doi.org/10.1103/PRXQuantum.2.010351
https://dx.doi.org/10.22331/q-2022-02-21-657
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.22331/q-2018-08-06-79
https://dx.doi.org/10.1103/PhysRevLett.82.1971
https://dx.doi.org/10.1103/PhysRevLett.82.1971
https://dx.doi.org/10.1103/PhysRevLett.82.1835
https://dx.doi.org/10.1103/PhysRevLett.82.1835

“Compiling quantum algorithms for archi-
tectures with multi-qubit gates”. New Jour-
nal of Physics 18, 063029 (2016).

[21] V. Nebendahl, H. Häffner, and C. F. Roos.
“Optimal control of entangling operations for
trapped-ion quantum computing”. Physical
Review A 79, 012312 (2009).

[22] Jordan Hines, Marie Lu, Ravi K. Naik, Akel
Hashim, Jean-Loup Ville, Brad Mitchell,
John Mark Kriekebaum, David I. Santi-
ago, Stefan Seritan, Erik Nielsen, Robin
Blume-Kohout, Kevin Young, Irfan Sid-
diqi, Birgitta Whaley, and Timothy Proc-
tor. “Demonstrating scalable randomized
benchmarking of universal gate sets” (2022).
arXiv:2207.07272.

[23] T. Chasseur and F. K. Wilhelm. “Complete
randomized benchmarking protocol account-
ing for leakage errors”. Physical Review A
92, 042333 (2015).

[24] Tobias Chasseur, Daniel M. Reich, Chris-
tiane P. Koch, and Frank K. Wilhelm.
“Hybrid benchmarking of arbitrary quan-
tum gates”. Physical Review A 95,
062335 (2017).

[25] Frank Arute, Kunal Arya, Ryan Bab-
bush, Dave Bacon, Joseph C. Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fer-
nando G. S. L. Brandao, David A. Buell,
Brian Burkett, Yu Chen, Zijun Chen, Ben
Chiaro, Roberto Collins, William Courtney,
Andrew Dunsworth, Edward Farhi, Brooks
Foxen, Austin Fowler, Craig Gidney, Marissa
Giustina, Rob Graff, Keith Guerin, Steve
Habegger, Matthew P. Harrigan, Michael J.
Hartmann, Alan Ho, Markus Hoffmann,
Trent Huang, Travis S. Humble, Sergei V.
Isakov, Evan Jeffrey, Zhang Jiang, Dvir
Kafri, Kostyantyn Kechedzhi, Julian Kelly,
Paul V. Klimov, Sergey Knysh, Alexander
Korotkov, Fedor Kostritsa, David Landhuis,
Mike Lindmark, Erik Lucero, Dmitry Lyakh,
Salvatore Mandrà, Jarrod R. McClean,
Matthew McEwen, Anthony Megrant, Xiao
Mi, Kristel Michielsen, Masoud Mohseni,
Josh Mutus, Ofer Naaman, Matthew Nee-
ley, Charles Neill, Murphy Yuezhen Niu,
Eric Ostby, Andre Petukhov, John C. Platt,
Chris Quintana, Eleanor G. Rieffel, Pedram
Roushan, Nicholas C. Rubin, Daniel Sank,

Kevin J. Satzinger, Vadim Smelyanskiy,
Kevin J. Sung, Matthew D. Trevithick, Amit
Vainsencher, Benjamin Villalonga, Theodore
White, Z. Jamie Yao, Ping Yeh, Adam Zal-
cman, Hartmut Neven, and John M. Mar-
tinis. “Quantum supremacy using a pro-
grammable superconducting processor”. Na-
ture 574, 505–510 (2019).

[26] Ryan Shaffer, Eli Megidish, Joseph Broz,
Wei-Ting Chen, and Hartmut Häffner.
“Practical verification protocols for analog
quantum simulators”. npj Quantum Infor-
mation 7, 1–12 (2021).

[27] Susan M. Clark, Daniel Lobser, Melissa C.
Revelle, Christopher G. Yale, David Bossert,
Ashlyn D. Burch, Matthew N. Chow,
Craig W. Hogle, Megan Ivory, Jessica Pehr,
Bradley Salzbrenner, Daniel Stick, William
Sweatt, Joshua M. Wilson, Edward Win-
row, and Peter Maunz. “Engineering the
Quantum Scientific Computing Open User
Testbed”. IEEE Transactions on Quantum
Engineering 2, 1–32 (2021).

[28] IBM. “IBM Quantum”. url: https://
quantum-computing.ibm.com/.

[29] Aram W. Harrow and Richard A. Low.
“Random quantum circuits are approximate
2-designs”. Communications in Mathemati-
cal Physics 291, 257–302 (2009).

[30] Alexander M. Dalzell, Nicholas Hunter-
Jones, and Fernando G. S. L. Brandão.
“Random quantum circuits transform lo-
cal noise into global white noise” (2021).
arXiv:2111.14907.

[31] Kristine Boone, Arnaud Carignan-Dugas,
Joel J. Wallman, and Joseph Emerson.
“Randomized benchmarking under differ-
ent gate sets”. Physical Review A 99,
032329 (2019).

[32] Markus Heinrich, Martin Kliesch, and Ingo
Roth. “General guarantees for randomized
benchmarking with random quantum cir-
cuits” (2022). arXiv:2212.06181.

[33] Sumeet Khatri, Ryan LaRose, Alexander
Poremba, Lukasz Cincio, Andrew T. Sorn-
borger, and Patrick J. Coles. “Quantum-
assisted quantum compiling”. Quantum 3,
140 (2019).

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 18

https://dx.doi.org/10.1088/1367-2630/18/6/063029
https://dx.doi.org/10.1088/1367-2630/18/6/063029
https://dx.doi.org/10.1103/PhysRevA.79.012312
https://dx.doi.org/10.1103/PhysRevA.79.012312
http://arxiv.org/abs/2207.07272
https://dx.doi.org/10.1103/PhysRevA.92.042333
https://dx.doi.org/10.1103/PhysRevA.92.042333
https://dx.doi.org/10.1103/PhysRevA.95.062335
https://dx.doi.org/10.1103/PhysRevA.95.062335
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1038/s41586-019-1666-5
https://dx.doi.org/10.1038/s41534-021-00380-8
https://dx.doi.org/10.1038/s41534-021-00380-8
https://dx.doi.org/10.1109/TQE.2021.3096480
https://dx.doi.org/10.1109/TQE.2021.3096480
https://quantum-computing.ibm.com/
https://quantum-computing.ibm.com/
https://dx.doi.org/10.1007/s00220-009-0873-6
https://dx.doi.org/10.1007/s00220-009-0873-6
http://arxiv.org/abs/2111.14907
https://dx.doi.org/10.1103/PhysRevA.99.032329
https://dx.doi.org/10.1103/PhysRevA.99.032329
http://arxiv.org/abs/2212.06181
https://dx.doi.org/10.22331/q-2019-05-13-140
https://dx.doi.org/10.22331/q-2019-05-13-140

[34] Kunal Sharma, Sumeet Khatri, M Cerezo,
and Patrick J Coles. “Noise resilience of vari-
ational quantum compiling”. New Journal of
Physics 22, 043006 (2020).

[35] W. K. Hastings. “Monte Carlo sampling
methods using Markov chains and their ap-
plications”. Biometrika 57, 97–109 (1970).

[36] Michael A Nielsen. “A simple formula for
the average gate fidelity of a quantum dy-
namical operation”. Physics Letters A 303,
249–252 (2002).

[37] R. Islam, W. C. Campbell, T. Choi, S. M.
Clark, C. W. S. Conover, S. Debnath, E. E.
Edwards, B. Fields, D. Hayes, D. Hucul, I. V.
Inlek, K. G. Johnson, S. Korenblit, A. Lee,
K. W. Lee, T. A. Manning, D. N. Mat-
sukevich, J. Mizrahi, Q. Quraishi, C. Senko,
J. Smith, and C. Monroe. “Beat note sta-
bilization of mode-locked lasers for quantum
information processing”. Optics Letters 39,
3238 (2014).

[38] D. Hayes, D. N. Matsukevich, P. Maunz,
D. Hucul, Q. Quraishi, S. Olmschenk,
W. Campbell, J. Mizrahi, C. Senko, and
C. Monroe. “Entanglement of Atomic Qubits
Using an Optical Frequency Comb”. Physi-
cal Review Letters 104, 140501 (2010).

[39] S. Debnath, N. M. Linke, C. Figgatt, K. A.
Landsman, K. Wright, and C. Monroe.
“Demonstration of a small programmable
quantum computer with atomic qubits”. Na-
ture 536, 63–66 (2016).

[40] Kenneth R. Brown, Aram W. Harrow, and
Isaac L. Chuang. “Arbitrarily accurate com-
posite pulse sequences”. Physical Review A
70, 052318 (2004).

[41] P. J. Lee, K. A. Brickman, L. Deslauriers,
P. C. Haljan, L. M. Duan, and C. Mon-
roe. “Phase control of trapped ion quantum
gates”. Journal of Optics B: Quantum and
Semiclassical Optics 7, S371 (2005).

[42] Ryan Shaffer (2022). code: rmshaffer/stoq-
compiler v0.2.0.

[43] Adriano Barenco, Charles H. Bennett,
Richard Cleve, David P. Divincenzo, Nor-
man Margolus, Peter Shor, Tycho Sleator,
John A. Smolin, and Harald Weinfurter. “El-
ementary gates for quantum computation”.
Physical Review A 52, 3457 (1995).

[44] George Cybenko. “Reducing quantum com-
putations to elementary unitary operations”.
Computing in Science and Engineering 3,
27–32 (2001).

[45] Aram W. Harrow, Benjamin Recht, and
Isaac L. Chuang. “Efficient discrete approxi-
mations of quantum gates”. Journal of Math-
ematical Physics 43, 4445–4451 (2002).

[46] Ali Javadiabhari, Shruti Patil, Daniel
Kudrow, Jeff Heckey, Alexey Lvov, Fred-
eric T. Chong, and Margaret Martonosi.
“ScaffCC: Scalable compilation and analysis
of quantum programs”. Parallel Computing
45, 2–17 (2015).

[47] A. Kitaev. “Quantum computations: algo-
rithms and error correction”. Russian Math-
ematical Surveys 52, 1191–1249 (1997).

[48] Eric Schkufza, Rahul Sharma, and Alex
Aiken. “Stochastic superoptimization”. In
Proceedings of the 18th International Con-
ference on Architectural Support for Pro-
gramming Languages and Operating Sys-
tems. Pages 305–316. New York (2013).
ACM Press.

[49] Joel J. Wallman and Joseph Emerson.
“Noise tailoring for scalable quantum com-
putation via randomized compiling”. Physi-
cal Review A 94, 52325 (2016).

[50] Naomichi Hatano and Masuo Suzuki. “Find-
ing Exponential Product Formulas of Higher
Orders”. In Arnab Das and Bikas
Chakrabarti, editors, Quantum Annealing
and Other Optimization Methods. Chap-
ter 2, pages 37–68. Springer, Berlin (2005).

[51] Guang Hao Low and Isaac L. Chuang.
“Hamiltonian Simulation by Qubitization”.
Quantum 3, 163 (2019).

[52] Andrew M. Childs, Aaron Ostrander, and
Yuan Su. “Faster quantum simulation by
randomization”. Quantum 3, 182 (2019).

[53] Earl Campbell. “Random Compiler for Fast
Hamiltonian Simulation”. Physical Review
Letters 123, 070503 (2019).

[54] Yingkai Ouyang, David R. White, and
Earl T. Campbell. “Compilation by stochas-
tic Hamiltonian sparsification”. Quantum 4,
235 (2020).

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 19

https://dx.doi.org/10.1088/1367-2630/ab784c
https://dx.doi.org/10.1088/1367-2630/ab784c
https://dx.doi.org/10.1093/biomet/57.1.97
https://dx.doi.org/10.1016/S0375-9601(02)01272-0
https://dx.doi.org/10.1016/S0375-9601(02)01272-0
https://dx.doi.org/10.1364/OL.39.003238
https://dx.doi.org/10.1364/OL.39.003238
https://dx.doi.org/10.1103/PhysRevLett.104.140501
https://dx.doi.org/10.1103/PhysRevLett.104.140501
https://dx.doi.org/10.1038/nature18648
https://dx.doi.org/10.1038/nature18648
https://dx.doi.org/10.1103/PhysRevA.70.052318
https://dx.doi.org/10.1103/PhysRevA.70.052318
https://dx.doi.org/10.1088/1464-4266/7/10/025
https://dx.doi.org/10.1088/1464-4266/7/10/025
https://github.com/rmshaffer/stoq-compiler
https://github.com/rmshaffer/stoq-compiler
https://dx.doi.org/10.1103/PhysRevA.52.3457
https://dx.doi.org/10.1109/5992.908999
https://dx.doi.org/10.1109/5992.908999
https://dx.doi.org/10.1063/1.1495899
https://dx.doi.org/10.1063/1.1495899
https://dx.doi.org/10.1016/j.parco.2014.12.001
https://dx.doi.org/10.1016/j.parco.2014.12.001
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1070/RM1997v052n06ABEH002155
https://dx.doi.org/10.1145/2451116.2451150
https://dx.doi.org/10.1103/PhysRevA.94.052325
https://dx.doi.org/10.1103/PhysRevA.94.052325
https://dx.doi.org/10.1007/11526216
https://dx.doi.org/10.1007/11526216
https://dx.doi.org/10.22331/q-2019-07-12-163
https://dx.doi.org/10.22331/q-2019-09-02-182
https://dx.doi.org/10.1103/physrevlett.123.070503
https://dx.doi.org/10.1103/physrevlett.123.070503
https://dx.doi.org/10.22331/q-2020-02-27-235
https://dx.doi.org/10.22331/q-2020-02-27-235

[55] Francesco Mezzadri. “How to generate ran-
dom matrices from the classical compact
groups” (2006). arXiv:math-ph/0609050.

[56] E. Knill. “Approximation by Quantum Cir-
cuits” (1995). arXiv:quant-ph/9508006.

[57] David Poulin, Angie Qarry, Rolando
Somma, and Frank Verstraete. “Quantum
simulation of time-dependent Hamiltonians
and the convenient illusion of Hilbert space”.
Physical Review Letters 106, 170501 (2011).

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 20

http://arxiv.org/abs/math-ph/0609050
http://arxiv.org/abs/quant-ph/9508006
https://dx.doi.org/10.1103/PhysRevLett.106.170501

A Derivation of RAV fidelity estimate
In this appendix, we derive the formula for the approximate fidelity of a RAV sequence on an n-
qubit system. We start with the XEB fidelity estimate in Equation 1, where P (x) represents the
classically-computed ideal output probability distribution for the sequence, Q(x) is the observed sample
probability of obtaining measurement result x, and N = 2n is the dimension of the system. The RAV
sequence is constructed to return nearly all of the population to the initial state x0. Therefore, we
let P (x0) = 1 − ε for some small ε � 1, which represents the approximation error of the inversion
sequence. As a further simplification, we assume that the remaining probability is spread evenly among
the remaining states, such that P (x) = ε

N−1 for each x 6= x0.
We can then derive the RAV fidelity from the XEB fidelity formula as follows:

F̂RAV =
∑
x P (x)Q(x)− 1

N∑
x P (x)2 − 1

N

(11)

=
P (x0)Q(x0) +

∑
x6=x0 P (x)Q(x)− 1

N

P (x0)2 +
∑
x6=x0 P (x)2 − 1

N

(12)

=
(1− ε)Q(x0) + ε

N−1(1−Q(x0))− 1
N

(1− ε)2 + 1
N−1ε

2 − 1
N

(13)

= NQ(x0)− 1
N − 1 + ε

N(NQ(x0)− 1)
(N − 1)2 + ε2

N2(NQ(x0)− 1)
(N − 1)3 + · · · (14)

= NQ(x0)− 1
N − 1

[
1 + Nε

N − 1 +
(

Nε

N − 1

)2
+ · · ·

]
(15)

where in the next-to-last step we have performed a Taylor expansion around ε = 0. Then, in the
final step we note that the expression inside the square brackets is just a geometric series in Nε

N−1 , and
therefore we have

F̂RAV = NQ(x0)− 1
N − 1

[
1

1− Nε
N−1

]
(16)

=
Q(x0)− 1

N

(1− ε)− 1
N

(17)

which, using the fact that P (x0) = 1− ε, becomes:

F̂RAV =
Q(x0)− 1

N

P (x0)− 1
N

(18)

B Derivation of variance in RAV and XEB fidelity estimates
In this appendix, we derive formulas for the variance of the fidelity estimates resulting from K inde-
pendent shots of a single RAV or XEB circuit. We start by assuming that the errors in our device are
purely depolarizing. Under this assumption, we can represent the output state of any n-qubit circuit as
a mixture of the circuit’s ideal output state |ψ〉〈ψ| and the maximally-mixed state 1

N I (where N = 2n),
where λ ∈ [0, 1] is the fraction to which the output state is depolarized:

ρλ = (1− λ)|ψ〉〈ψ|+ λ

N
I (19)

We can then define P (x) and Qλ(x) as the probabilities of measuring outcome x when measuring
the states |ψ〉〈ψ| and ρλ, respectively, as:

P (x) = 〈x|ψ〉〈ψ|x〉 =
∣∣〈x|ψ〉∣∣2 (20)

Qλ(x) = 〈x|ρλ|x〉 = (1− λ)P (x) + λ

N
(21)

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 21

We can restate Equation 1 and Equation 2 to define the fidelity estimates F̂RAV and F̂XEB in terms
of P (x) and Qλ(x) as follows:

F̂RAV =
Qλ(x0)− 1

N

P (x0)− 1
N

(22)

F̂XEB =
∑
x P (x)Qλ(x)− 1

N∑
x P (x)2 − 1

N

(23)

Now, to calculate the expected variance of our these fidelity estimates, we first need to determine their
distribution. To do this, we let Qλ,x ∼ Multinomial(K,N,Qλ(x)) be a random variable representing
the number of times outcome x is observed when taking K independent shots of a RAV or XEB circuit,
where Qλ(x) represents the “true” experimental probability distribution of each of N possible outcomes
when measuring the state ρλ.

By the properties of the multinomial distribution, then, the variance of Qλ,x is:

Var
[
Qλ,x

]
= KQλ(x)

[
1−Qλ(x)

]
(24)

= K

[
(1− λ)P (x) + λ

N

] [
1− (1− λ)P (x)− λ

N

]
. (25)

We can now construct random variables corresponding to measurements of F̂RAV and F̂XEB by
replacing Qλ(x) in Equation 22 and Equation 23 with the scaled random variable 1

KQλ,x, which
represents the sample probability of observing outcome x when taking K independent shots:

F̂RAV =
1
KQλ,x0 − 1

N

P (x0)− 1
N

F̂XEB =
∑
x P (x) 1

KQλ,x − 1
N∑

x P (x)2 − 1
N

(26)

Once we have done this, calculating the variance of these random variables is straightforward algebra:

Var
[
F̂RAV

]
= 1
K2

(
1

P (x0)− 1
N

)2

Var
[
Qλ,x0

]
(27)

= 1
K

(
1

P (x0)− 1
N

)2 [
(1− λ)P (x0) + λ

N

] [
1− (1− λ)P (x0)− λ

N

]
(28)

Var
[
F̂XEB

]
= Var

[1
K

∑
x P (x)Qλ,x − 1

N∑
x P (x)2 − 1

N

]
(29)

= 1
K2

∑
x P (x)2 Var [Qλ,x](∑

x P (x)2 − 1
N

)2 (30)

= 1
K2

(
1∑

x P (x)2 − 1
N

)2∑
x

P (x)2 K

[
(1− λ)P (x) + λ

N

] [
1− (1− λ)P (x)− λ

N

]
(31)

= 1
K

(
1∑

x P (x)2 − 1
N

)2 [(
λ

N

)(
1− λ

N

)∑
x

P (x)2 + (1− λ)
(

1− 2λ
N

)∑
x

P (x)3

− (1− λ)2∑
x

P (x)4
]

(32)

The above formulas are sufficient to predict the variance in fidelity measurements for a particular
circuit, assuming we know the ideal probabilities P (x) of measuring the circuit output. But of course,
these probabilities will be different for every circuit. To make more general predictions, we need to
make additional assumptions.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 22

For RAV, the sequences have been explicitly constructed such that most of the population is returned
to the initial state x0. Therefore, we assume that P (x0) ≈ 1− ε for some small ε� 1, which represents
the approximation error of the inversion sequence. Substituting this into Equation 28 gives

Var
[
F̂RAV

]
≈ 1
K

(
1

(1− ε)− 1
N

)2 [
(1− λ)(1− ε) + λ

N

] [
1− (1− λ)(1− ε)− λ

N

]
. (33)

For XEB, it is known that for ensembles of random circuits of large-enough depth on systems
with tens of qubits, the distribution of ideal output state probabilities can be well-approximated
by a Porter-Thomas distribution [14], in which the probabilities follow an exponential distribution
Pr(Np) = Ne−Np. By the properties of the exponential distribution, then, we have

∑
x P (x)k ≈ 1

k ,
and substituting this into Equation 32 gives

Var
[
F̂XEB

]
≈ 1
K

(
1

1
2 −

1
N

)2 [1
2

(
λ

N

)(
1− λ

N

)
+ 1

3(1− λ)
(

1− 2λ
N

)
− 1

4(1− λ)2
]
. (34)

It is important to note that in Figure 4 we are working with simulations of sequences with n ≤ 8 qubits
and 10 ≤ m ≤ 30 layers, and so the Porter-Thomas assumption is not necessarily valid in this regime.
This is the most likely explanation for the systematic discrepancies between this estimate of the XEB
variance and the observed XEB variance in our simulations. We also note that the convergence to
the Porter-Thomas distribution applies only to ensembles of circuits, since a fixed circuit will have
a particular distribution that does not “converge” toward anything. The expression in Equation 34
should therefore be thought of as an “expected” variance over all XEB circuits, rather than a variance
for a particular fixed circuit.

C Approximate unitary compilation via stochastic search (STOQ)
In this appendix, we supplement the main text with additional implementation details of STOQ and
examples of its use. We report results of applying STOQ to Hamiltonian time-evolution unitaries,
where we compare its performance to existing methods on various metrics. We also demonstrate the
use of STOQ to approximately compile gate sequences for randomly-generated unitaries, although as
one would expect, its performance scales poorly with the required circuit depth. We conclude with
additional discussion of STOQ, including its features and limitations.

C.1 Background

A critical prerequisite to executing any algorithm on a physical quantum computer is the process
commonly known as quantum compilation. One of the primary tasks of quantum compilation is the
conversion of a target unitary operation into a sequence of quantum gates that are native to the
physical device being used [43, 44, 45, 46]. Because unitary operators belong to a continuous space,
such compilation in general results in gate sequences which are only approximately equivalent to the
target unitary. For example, one of the earliest quantum compilation techniques, the Solovay-Kitaev
method [47], compiles gate sequences that differ from the target unitary by an amount that can be
made as small as desired.

Traditional compilation, both in the classical and quantum realms, is most often a deterministic
process, using rules and heuristics to efficiently synthesize a desired program from the native assembly
instructions (in classical compilation) or native physical gates (in quantum compilation). But in some
cases, adding stochasticity to the compilation process has been shown to produce advantages in the
resulting program. In classical compilation, a technique known as stochastic superoptimization [48] has
been shown in certain cases to produce significantly shorter programs than the best-in-class compilers
and optimizers. In quantum compilation, techniques such as randomized compiling [49] have been
demonstrated to improve noise resilience by randomizing errors that occur during program execution.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 23

In the field of quantum compilation, special attention has been paid to compilation of unitaries which
result from the time-evolution of physically-realizable Hamiltonians. The compiled sequences in these
cases can be executed to perform what is known as “Hamiltonian simulation”, or more broadly, “quan-
tum simulation”. Such approaches are of special interest in fields such as quantum chemistry, where
it is desirable to use a quantum computer to simulate the dynamics of physical systems. Common
approaches to this problem include product formula techniques such as the Suzuki-Trotter decomposi-
tion [50] and qubitization [51], which deterministically compile the time-evolution unitary for a given
Hamiltonian into a sequence of quantum gates.

Approaches involving stochasticity have recently been shown to be advantageous in some cases.
Adding randomization to the Suzuki-Trotter decomposition [52] creates approximate compilations that
are better both theoretically and empirically. A stochastic compilation protocol known as QDRIFT [53],
where gate probabilities are weighted according to the strength of each term in the Hamiltonian rather
than using a product formula directly, has been shown to produce much more efficient compilations in
many cases. An interpolation of these two methods [54] has also been proposed, which takes some of
the advantages of each method. The efficiency of these compilation methods is generally independent
of system size when applied to problems involving sparse Hamiltonians.

However, these specialized methods cannot be applied to general-purpose compilation tasks, which
is where we focus specifically here. In Section 2.2 of the main text, a stochastic approximate quantum
unitary compilation procedure, abbreviated as STOQ, is described in detail. The STOQ protocol was
originally developed as part of a verification scheme for analog quantum simulators called randomized
analog verification (RAV) [26]. And in this work, an adaptation of RAV for gate-based quantum devices
is summarized in Section 2.1, demonstrated numerically in Section 3.1, and demonstrated experimen-
tally in Section 3.2. This gate-based version of RAV also uses STOQ to compile the approximate
inversion portion of each sequence.

C.2 Additional implementation details
This section fills in a few important details of the STOQ protocol implementation outlined in Sec-
tion 2.2, specifically referring to the pseudocode representation in Figure 6.

The compiled sequence is stored in the sequence variable, which is initially empty. The
RandomChange function returns a modified sequence on each iteration, either by adding a randomly-
drawn instruction to the sequence from the parameterized instruction set G with randomly-generated
parameter values, or by removing an instruction from the sequence. The Prod function calculates the
unitary that represents the product of all of the operations in the sequence, and the Cost function is
implemented as described in Equation 7.

The variable beta is used as an annealing parameter for the compilation process. The function
IncreaseBeta returns a slightly increased value of beta on each iteration. Defining the annealing
parameter as β = beta and the cost difference of such a proposed change as ∆ = new_cost − cost,
the Accept function calculates the probability of accepting a proposed change as

Paccept =
{
e−β∆ ∆ > 0
1 ∆ ≤ 0.

(35)

The probability of accepting “bad” proposed changes where the cost increases (i.e., where ∆ > 0)
approaches zero as β increases.

C.3 Compilation of time-evolution unitaries
To demonstrate one possible (although not necessarily useful) application of STOQ, we choose an
Ising-type Hamiltonian with nearest-neighbor coupling and transverse field

H =
∑
<i,j>

Jijσ
(i)
x σ(j)

x +
∑
i

hiσ
(i)
y (36)

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 24

0 4000 8000
Iterations

10 2

10 1

100
C

os
t

2…qubits

0 4000 8000
Iterations

3…qubits

0 4000 8000
Iterations

5…qubits

0 4000 8000
Iterations

8…qubits

Figure 10: Compilation via STOQ for two-qubit, three-qubit, five-qubit, and eight-qubit versions of the time-evolution
unitary from Equation 37. Each of the 16 thin curves shows the value of the cost function from Equation 7 during a
single compilation using 10,000 iterations. The thick curve is the average of all runs.

n J12 J23 J34 J45 J56 J67 J78 h1 h2 h3 h4 h5 h6 h7 h8

2 1.27 1.54 1.19
3 1.81 1.27 1.54 1.19 0.53
5 1.20 1.40 1.60 1.80 1.60 1.30 1.00 0.70 0.40
8 1.20 1.30 1.40 1.50 1.60 1.70 1.80 1.40 1.10 0.80 1.00 1.20 1.50 1.70 1.30

Table 1: Coefficients used for application of STOQ to the n-qubit Ising model Hamiltonian in Equation 36. Values
are energies in kHz where ~ = 1.

where the coefficients Jij and hi are energies with particular values for each system size, as shown in
Table 1.

We then define the time-evolution unitary as Ut(τ) = eiHτ , where we choose units such that ~ = 1,
and we concretely choose τ = 0.5 ms, such that

U = Ut(0.5 ms) = eiH(0.5 ms) (37)

is the target unitary for compilation.
To apply STOQ, we need also to choose a parameterized instruction set G from which to approxi-

mately compile a sequence. In a physical device, it is often the case that the dynamics are implemented
such that each term in H can be individually controlled. To define G for such a device, we express
the Hamiltonian as H =

∑
kHk, where each Hk is one of the σxσx or σy terms from Equation 36, and

choose
G =

⋃
k

{
eiHkt

}
− ετ ≤ t ≤ ετ (38)

where the allowed range for t is chosen such that the duration of each instruction is relatively short in
comparison to the timescale of the dynamics of H. (In this demonstration we use ε = 0.2.) Negative
times correspond to reversing the sign of the coefficient of a given term. (We note that for a general
Hamiltonian, it is unlikely that each Hk term is part of the native gate set of the device. In this case,
G should instead represent the interactions which are implemented natively on the device.)

We then apply STOQ to compile many sequences that approximately implement U , using two-qubit,
three-qubit, five-qubit, and eight-qubit versions of the corresponding Hamiltonian. Figure 10 reports
the cost for 16 such compilations as a function of the number of iterations. (Each run of 10,000 iterations
for the five-qubit system takes around 15 minutes to complete on a typical desktop computer.) We
observe that the stochastic search process rapidly reduces the cost at first before noticeably leveling
off. For the two-qubit and three-qubit systems, this cost approaches a limit near 10−2 after 10,000
iterations. For the larger systems, the final average cost is higher, although even for the eight-qubit
system, the final cost reaches a value below 10−1 for some compilations.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 25

0.0

0.1

0.2
D

is
ta

nc
e

STOQ
2…qubits

0.0

0.1

0.2
STOQ

3…qubits

0.0

0.1

0.2
STOQ

5…qubits

0.0

0.2

0.4

0.6

0.8 STOQ
8…qubits

0.00

0.01

D
is

ta
nc

e

Trotter
2…qubits

0.00

0.01 Trotter
3…qubits

0.00

0.01 Trotter
5…qubits

0.00

0.05 Trotter
8…qubits

0 3 6 9
Time…(ms)

0.00

0.01

D
is

ta
nc

e

QDRIFT
2…qubits

0 3 6 9
Time…(ms)

0.00

0.01 QDRIFT
3…qubits

0 3 6 9
Time…(ms)

0.00

0.01 QDRIFT
5…qubits

0 5 10 15
Time…(ms)

0.00

0.05 QDRIFT
8…qubits

Figure 11: Distance from ideal path to compiled path, as defined in Equation 39, for the time-evolution unitary from
Equation 37, illustrating “how different” a particular compilation is from the path that would be followed by the
ideal time evolution of the full Hamiltonian. The distance from the horizontal axis quantifies the deviation in the
system state from the ideal simulation when executing the specified compilation. The ideal simulation would be a
flat curve along the horizontal axis from τ = 0.0 ms to τ = 0.5 ms. Results are shown for 2-qubit, 3-qubit, 5-qubit,
and 8-qubit implementations of the Ising model Hamiltonian from Equation 36. Each curve represents the execution
of one compiled sequence. Filled squares are used to plot the overall running time of the compiled sequence and final
cost of each compilation. Top row depicts the execution of 16 independent STOQ compilations, each using 10,000
iterations. Each curve corresponds to a curve of the same color in Figure 10. Middle row depicts the execution
of a typical randomized Suzuki-Trotter compilation using 10 steps. Bottom row depicts the execution of a typical
QDRIFT compilation using 1,000 repetitions. The horizontal axis of each plot represents the execution time of the
compiled circuits.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 26

Ideal Trotter QDRIFT STOQ
(a) Execution time (ms) 0.50 4.50 5.50 7.32
(b) Average distance — 0.0032 0.0053 0.0469
(c) Maximum distance — 0.0056 0.0099 0.1133
(d) Final cost — 0.0003 0.0077 0.0328

Table 2: Statistics resulting from various compilations of the five-qubit time-evolution unitary from Equation 37,
where the ideal evolution occurs for τ = 0.5 ms. For each of the compilation techniques, means are listed for each
of the following quantities: (a) total execution time of the compiled sequence, (b) average distance

∑M
m=1 dm, (c)

maximum distance maxm∈[1,M] dm, and (d) final cost dM . Corresponds to five-qubit plots in Figure 11.

To compare STOQ to existing compilation techniques, we also compile sequences to approximately
implement U using the randomized Suzuki-Trotter decomposition [52] and the QDRIFT stochastic
compilation protocol [53]. STOQ is designed to create more randomness in the resulting path taken
through state space. To compare these paths quantitatively, we choose to compare the various methods
to an ideal version where H is directly implemented for time τ . We define the ideal path as the path
taken by this ideal time evolution, and we define the compiled path as the path taken by the compiled
sequence, which we represent as a sequence of instructions {G1, . . . , GM}. We then calculate the path
distance dm from the ideal path to step m of the compiled path, where 1 ≤ m ≤M , as

dm = min
t∈ [0,τ]

DHS
(
eiHt, GmGm−1 · · ·G1

)
, (39)

where DHS is the distance metric defined in Equation 6. Thus dm is the shortest distance from step
m of the compiled path to any point in the ideal path.

Results for each compilation technique are shown in Figure 11, and statistics for the five-qubit
example are displayed in Table 2. We observe that the STOQ compilations result in a significantly
greater path distance from the ideal evolution than the other approaches, and that the total running
time of the compiled sequence resulting from the various compilations is within a factor of two.

However, the final cost of the STOQ compilations is typically at least an order of magnitude larger
than the compilations created using the randomized Suzuki-Trotter and QDRIFT techniques, both
of which can reach arbitrarily low costs by increasing the number of steps. This implies that STOQ
would not be a useful tool for applications that require high-fidelity compilations.

C.4 Compilation of random unitaries
In addition to being used for sparse or highly structured unitaries such as those generated from Hamil-
tonian time-evolution, the STOQ protocol can also be used to compile sequences that approximately
implement purely random unitaries in terms of an arbitrary instruction set, without having any prior
knowledge of the structure of the unitary. Such an application of STOQ is not necessarily useful in
general, but is included here for illustrative purposes.

Figure 12 shows typical results of repeatedly using the STOQ protocol to compile sequences for
random two-qubit, three-qubit, and five-qubit unitaries, chosen uniformly at random from the Haar
measure [55], using a simple universal instruction set G = {R(θ, ϕ), XX(θ)}. R(θ, ϕ) is a parameterized
single-qubit rotation

R(θ, ϕ) =

 cos θ2 −ieiϕ sin θ
2

ie−iϕ sin θ
2 cos θ2

 (40)

with 0 ≤ θ < 2π and 0 ≤ ϕ < 2π. XX(θ) is a parameterized two-qubit entangling gate

XX(θ) =


cos θ 0 0 −i sin θ

0 cos θ −i sin θ 0
0 −i sin θ cos θ 0

−i sin θ 0 0 cos θ

 (41)

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 27

0 4000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
C

os
t

compilation…of
random…2-qubit

unitaries

0 4000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0
compilation…of

random…3-qubit
unitaries

0 4000 8000
Iterations

0.0

0.2

0.4

0.6

0.8

1.0

compilation…of
random…5-qubit

unitaries

0 10 20 30 40
Random…circuit…depth

0.0

0.2

0.4

0.6

0.8

1.0
random…5-qubit
unitary

random
5-qubit
circuits

Figure 12: Compilation via STOQ of unitaries chosen uniformly at random from the Haar measure. The left three
plots show the cost during the STOQ compilation process for randomly-generated 2-qubit, 3-qubit, and 5-qubit target
unitaries. Each of the 20 thin curves shows the value of the cost function from Equation 7 during a single compilation
using 10,000 iterations. The thick curve is the average of all runs. The rightmost plot shows the final cost of the
STOQ compilation for target unitaries generated by creating random 5-qubit circuits of varying average circuit depth.
Circuit depth is calculated as the total number of instructions divided by the number of qubits. Each point is the
average of 20 compilations using 100,000 iterations. Error bars indicate standard error of the mean. The solid line
is an exponential decay fit with one free parameter. The dashed line represents the average final cost of compiling
a randomly-generated 5-qubit unitary. Note that one would expect a similar scaling with circuit depth for general
quantum circuits, regardless of whether they are generated randomly.

with 0 ≤ θ < 2π. We note that the instruction set G is a typical native gate set that can be implemented
by trapped-ion quantum devices.

We observe that the final costs of compilation of these random unitaries are significantly larger than
for compilation of the time-evolution unitaries discussed in Appendix C.3. In particular, the final cost
is approximately 0.1 for two-qubit random unitaries, 0.5 for three-qubit random unitaries, and 0.8 for
five-qubit random unitaries. This indicates that the quality of the approximation for such random
unitary compilations scales poorly with system size. This is not surprising, since reaching the vast
majority of states in the Hilbert space of a system requires circuits of depth which grows exponentially
with the dimension of the Hilbert space [56, 57]. Nonetheless, the compilations generated by this
method may be useful in scenarios where high-fidelity approximations are not required.

We also observe that the final cost of such random unitary compilations is relatively stable over a
wide range of STOQ parameter values. Two primary parameters that can be adjusted in the STOQ
algorithm in Figure 6 are the annealing rate ∆β, which is used to increment β at each step inside
the IncreaseBeta function, and the probability pappend that the search appends an instruction (as
opposed to removing an instruction) at each step, which occurs inside the RandomChange function. For
compilation of three-qubit random unitaries, and for values ∆β ∈ {0.001, 0.01, 0.1, 0.5} and pappend ∈
{0.2, 0.5, 0.8}, we find that the average final cost remains between 0.398 (for ∆β = 0.5 and pappend =
0.2) and 0.448 (for ∆β = 0.001 and pappend = 0.5), where each pair of parameter values is averaged
over 32 compilations using 100,000 iterations each.

To provide insight into the low-fidelity approximations of random unitaries produced by STOQ, we
consider the case of target unitaries generated by random circuits of varying depth. To do this, we
generate random five-qubit circuits of average depth ranging from 1 to 40, where the average depth
is calculated as the total number of instructions divided by the number of qubits. The rightmost
plot in Figure 12 shows the final compilation cost after applying STOQ to generate an approximate
compilation of the unitary corresponding to each random circuit. As might be expected, we observe
that STOQ generates relatively high-fidelity approximations for shallow circuits, since such unitaries
are known to be reachable with a fixed number of instructions. But as the circuit depth increases, the
resulting unitaries begin to look more like random unitaries, and the final compilation cost approaches
that of the randomly-generated five-qubit unitary discussed previously. Indeed, we expect a similar
scaling with circuit depth for quantum circuits in general, regardless of whether they are randomly

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 28

generated, since the size of the reachable state space grows exponentially with the depth of the circuit.

C.5 Discussion
We note that because the STOQ protocol requires calculating the product of the compiled sequence
during each iteration, the computational cost of each iteration grows exponentially in the system size n.
Therefore, STOQ is unlikely to be useful for system sizes of more than around 10 qubits. In particular,
for compilation of time-evolution unitaries, this clearly means that STOQ will be less computationally
efficient when compared to compilation methods based on product formulas, which in general have a
computational cost that depends only on the number of terms in the Hamiltonian and is independent
of the system size.

We note that unitaries generated via time evolution of a Hamiltonian often benefit from the sparsity
of the Hamiltonian. In general, an n-qubit Hamiltonian has 4n coefficients when expressed in the
basis of Pauli operators. For the five-qubit version of the Hamiltonian in Equation 36, only nine of
these 1024 coefficients are non-zero. Sparsity in the Hamiltonian greatly limits the subspace of the full
operator space that can be reached by via time evolution, which in turn makes compilation a more
feasible task and allows techniques such as Suzuki-Trotter and QDRIFT to be highly efficient. Because
the number of possible step proposals during each iteration of the STOQ search process is determined
by the number of terms in the Hamiltonian, it is reasonable to infer that STOQ is similarly more
effective when the problem structure contains such sparsity. This is further evidenced by the inability
of the STOQ protocol to efficiently obtain low cost values when compiling sequences for random target
unitaries, which are not sparse in general.

As demonstrated, STOQ has some features that are distinct from other methods. One notable
feature is the capability of generating results with arbitrary gate sets, regardless of whether the gates
are fixed or parameterized or whether the gate set is universal. In addition, repeated application of
STOQ provides many independent approximate compilations of the same unitary, and each compilation
creates a sequence that will cause the system state to traverse a different path in state space. As
depicted in Figure 11, even stochastic techniques such as randomized Suzuki-Trotter or QDRIFT
result in a compiled sequence that will cause the system state to follow very nearly the same path in
state space as the deterministic version, whereas sequences generated by STOQ cause the system to
traverse unique paths that can differ greatly from the ideal path and from each other.

Accepted in Quantum 2023-04-23, click title to verify. Published under CC-BY 4.0. 29

	1 Introduction
	2 Methods
	2.1 Randomized analog verification for continuously-parameterized quantum gates
	2.1.1 RAV protocol
	2.1.2 Fidelity estimates using XEB and RAV
	2.1.3 Sample efficiency of RAV
	2.1.4 Fitting RAV fidelity loss curves

	2.2 Stochastic compilation using continuously-parameterized quantum gates
	2.3 QSCOUT experimental setup

	3 Results
	3.1 Numerical demonstrations
	3.2 Experimental demonstrations
	3.2.1 QSCOUT trapped-ion processor
	3.2.2 IBM Q superconducting processor

	4 Discussion
	 Code and Data Availability
	 Acknowledgements
	 References
	A Derivation of RAV fidelity estimate
	B Derivation of variance in RAV and XEB fidelity estimates
	C Approximate unitary compilation via stochastic search (STOQ)
	C.1 Background
	C.2 Additional implementation details
	C.3 Compilation of time-evolution unitaries
	C.4 Compilation of random unitaries
	C.5 Discussion

