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The MAJORANA DEMONSTRATOR is a leading experiment searching for neutrinoless double-beta decay with
high purity germanium (HPGe) detectors. Machine learning provides a new way to maximize the amount of
information provided by these detectors, but the data-driven nature makes it less interpretable compared to
traditional analysis. An interpretability study reveals the machine’s decision-making logic, allowing us to learn
from the machine to feed back to the traditional analysis. In this work, we present the first machine learning
analysis of the data from the MAJORANA DEMONSTRATOR; this is also the first interpretable machine learning
analysis of any germanium detector experiment. Two gradient boosted decision tree models are trained to learn
from the data, and a game-theory-based model interpretability study is conducted to understand the origin of
the classification power. By learning from data, this analysis recognizes the correlations among reconstruction
parameters to further enhance the background rejection performance. By learning from the machine, this analysis
reveals the importance of new background categories to reciprocally benefit the standard MAJORANA analysis.
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This model is highly compatible with next-generation germanium detector experiments like LEGEND since it
can be simultaneously trained on a large number of detectors.

DOI: 10.1103/PhysRevC.107.014321

I. INTRODUCTION

Neutrinoless double beta decay (0νββ) [1–3] is a hypo-
thetical lepton number violating process (�L = 2) beyond
the standard model. The observation of 0νββ would prove
that the neutrino is its own antiparticle, also known as the
Majorana particle. This is a key ingredient for leptogenesis
[4], which is one model that explains the observed matter-
antimatter asymmetry in our universe. Measuring 0νββ is
a challenging task since it occurs with an ultralong half-life
(>1026 yr) [5,6]. This limits the number of signal events we
can collect, and requires us to reliably discover them among
a plethora of backgrounds. To maximize their discovery po-
tential, germanium-based 0νββ searches seek to operate in
the quasi-background-free regime, where less than one back-
ground event is expected in the region of interest over the full
lifetime of the experiment. Therefore, the ability to suppress
background as much as possible is pivotal to 0νββ search
experiments.

Traditional background suppression techniques are typi-
cally derived from physical first principles, which are used
to define event-level reconstruction parameters. A cut is then
placed upon the reconstruction parameters to minimize back-
grounds while retaining signals. Because a traditional analysis
begins with first principles, interpretability is inherently built
into this approach. However, there are weaknesses with this
approach as well. The actual response of a detector to a par-
ticular background source is often clouded by complex effects
inherent to the detector technology that are difficult to model,
reducing the effectiveness of any background rejection cuts.
Furthermore, many physical effects that produce backgrounds
must be handled individually, increasing the chances that a
particular source of background will be neglected. Finally,
unknown detector physics could also produce potential bias
in reconstruction parameters, harming the performance of tra-
ditional background cuts.

Machine learning presents an alternative to the traditional
first-principles approach to background rejection, and has
already been proven quite successful for neutrino physics ex-
periments [7–15]. Unlike traditional analyses, the background
suppression power of machine learning algorithms comes pri-
marily from data. This allows machine learning models to
efficiently handle unknown backgrounds to reach state-of-
the-art performance. Unfortunately, learning from data makes
machine learning analyses less interpretable compared to the
traditional ones. Therefore, many machine learning analyses
are equipped with an interpretability study to reveal the un-
derlying decision-making logics [16–18].

In this work, we present the first machine learning analysis
for the MAJORANA DEMONSTRATOR [19–21], which is also
the first interpretable machine learning analysis of any germa-
nium detector experiment. This analysis was inspired by the
drift-time correction to our multisite and surface alpha dis-

crimination parameters, which indicated that accounting for
correlations between parameters could enhance background
suppression power. We constructed two boosted decision tree
(BDT) models to reject two of the most critical backgrounds
in the MAJORANA DEMONSTRATOR, namely the MSBDT
for multisite events and the αBDT for alpha events. Both
models take individual reconstruction parameters as inputs
and are trained on the detector data to provide background
suppression. By learning from the data, this model utilizes
multivariate correlations among reconstruction parameters to
improve the background suppression. It also reduces the need
for detector- and run-level tuning, which would be time con-
suming in future large-scale experiments such as LEGEND
[22].

In addition, we conducted a comprehensive interpretability
study to understand the source of classification power. This
study leverages a coalitional game theory concept to unravel
the black box that is the inside of a machine learning model
[23]. It has been widely used in biomedical science [24–26]
and other fields [27–29]. By learning from the machine, we
verified our BDTs’ abilities to learn multivariate correlations
among different features. Furthermore, we revealed the im-
portance of new background categories that the traditional,
first-principles-based analysis did not address, which even-
tually led to new analysis cuts in the standard MAJORANA

analysis.
The paper is structured as follows. Section II describes

the MAJORANA DEMONSTRATOR experiment, the major back-
ground sources, and the traditional analysis cuts to reject
them. Section III describes the data pipeline for collecting and
preprocessing the training data. Section IV describes the gra-
dient BDT algorithms. Section V reports the training results of
the MSBDT and the αBDT with a comparison to the standard
MAJORANA analysis. Section VI describes the interpretability
study we conducted. We highlight Sec. VI B, which outlines
the ability of machine learning to reveal the importance of new
background categories and reciprocally benefit the standard
MAJORANA analysis pipeline.

II. MAJORANA DEMONSTRATOR

The MAJORANA DEMONSTRATOR experiment searches for
0νββ decay in 76Ge using 40.4 kg of high purity germa-
nium (HPGe) detectors [19]. Of these, 27.2 kg of p-type
point-contact (PPC) HPGe detectors are enriched to 88% in
76Ge [30]. The DEMONSTRATOR is operated at the 4850-ft
level of the Sanford Underground Research Facility in Lead,
South Dakota. Data were taken from August 2015 to March
2021, and are split into nine data set (DS) periods, referred
to as DS0–DS8. Starting with DS8 (August 2020), novel
p-type inverted-coaxial point-contact (ICPC) detectors [31]
were added to the MAJORANA DEMONSTRATOR detector array.
Data taking finished in March 2021, with a total enriched
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FIG. 1. A diagram of one MAJORANA DEMONSTRATOR detector
module and the HPGe detectors within.

exposure of 64.5 kg yr, 2.82 kg yr of which is from ICPC
detectors [32]. The DEMONSTRATOR’s HPGe detectors, in
combination with low-noise electronics [33], have achieved
good linearity over a broad energy range [34], and best-in-
field energy resolution with a full width at half maximum
(FWHM) approaching 0.1% at the Qββ (2039 keV) of 76Ge
[21]. This excellent energy performance, coupled with the low
energy threshold and low background of the DEMONSTRATOR,
makes it a competitive 0νββ decay experiment. One module
of the DEMONSTRATOR is shown in Fig. 1.

A weekly calibration is conducted to monitor detector
stability and provide data for developing analysis cuts. The
thorium isotope 228Th was selected as the primary calibration
source because its decay chain emits several gamma rays
spanning from a few hundred to 2615 keV, which covers the
Qββ of 76Ge and allows for calibration over a wide energy

range. During calibrations, the 228Th source is deployed into
the calibration track, which surrounds the cryostat in a helical
path [35]. Event energies are tuned to minimize 228Th calibra-
tion source gamma line width [36]. This routine calibration
provides an excellent source of training data that will be
discussed in Sec. III.

Most 0νββ events are single-site events which deposit all
of their charge in a single location of <1 mm linear dimension
in a detector. This type of event appears in a MAJORANA

DEMONSTRATOR detector as a waveform with a single sharply
rising step, as indicated by the black trace in the top panel of
Fig. 2(a). Since the waveform itself is the integrated ionized
charge collected from an energy deposition in the detector, the
derivative of the waveform (red traces in the same panel) is ef-
fectively the current induced as charges drift towards the point
contact. In the MAJORANA DEMONSTRATOR, two major back-
ground sources are multisite events and surface-alpha events.
If charge is deposited at multiple locations within the crystal,
the drift times may differ up to≈1μs, resulting in a waveform
with multiple steps as shown in the bottom panel of Fig. 2(a).
This leads to a current pulse with a smaller maximum value
than that of a single-site event with the same energy. Based
on this first principle, we designed the current amplitude vs
energy (AvsE) described in Ref. [37]. The current amplitude
is estimated by a linear fit to a smaller range of the waveform.
Cutting on the energy-normalized current amplitude (or AvsE)
leads to efficient multisite event rejection. In the standard
MAJORANA analysis, we select events from a dedicated AvsE
range by applying both low and high AvsE cuts.

The other major source of backgrounds at Qββ is from
the alpha particles impacting the passivated surface and p+
contact surfaces of detectors. Prior to the most recent MA-
JORANA DEMONSTRATOR data release [32], this background
source was rejected entirely using the first principle of the
“delayed charge recovery” effect [38]. Based on the charac-
teristics of alpha interactions, it appears that charge mobility
is drastically reduced on or near the passivated surface. There-
fore, a fraction of the charge from these interactions is slowly
released on the timescale of waveform digitization, leading to

FIG. 2. (a) Pulse shape plot of single-site events (top) and multisite events (bottom). The black line shows the raw waveform in ADC
(analog-to-digital converter) counts and the red line shows the waveform in current amplitude. (b) Illustration of waveforms from surface alpha
event and bulk event.
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a measurable increase in the slope of the waveform tail. The
delayed charge recovery effect lowers the peak amplitude and,
as shown in Fig. 2(b), results in a slowly rising tail slope that
distinguishes this event from a bulk event at the same energy.
The delayed charge recovery (DCR) cut tags events with larger
tail slopes to efficiently reject surface alphas.

At a later stage of the standard MAJORANA analysis, a
novel analysis cut based on the first principles of late charge
(LQ) was developed. The LQ cut probes the top of the rising
edge of the waveform to identify delayed charge collection on
≈1 μs timescale. It efficiently eliminates events in the transi-
tion layer and an additional population of near-point-contact
events.

The final MAJORANA DEMONSTRATOR standard analysis is
described in Ref. [32]. The standard MAJORANA analysis for
the PPC detectors is developed with the Germanium Analysis
Toolkit (GAT), and is thus referred to as the “GAT analysis.”
The standard MAJORANA analysis for the ICPC detectors is
developed independently from GAT, and is referred to as
the “ORNL analysis.” Both the GAT and ORNL analyses
contain independently developed pulse shape discrimination
(PSD) cuts derived from the first principles of HPGe detector
charge collection: current amplitude versus energy, the de-
layed charge recovery effect, as well as the late charge effect.
In this paper, we denote those cuts as GAT AvsE/DCR/LQ cut
and ORNL AvsE/DCR/LQ cut, respectively.

During the development of the standard MAJORANA anal-
ysis, we observed that the PSD parameters vary with the
length of time it takes the charges to drift to the p+ elec-
trode, defined as drift time, due to well-understood charge
cloud diffusion and bulk charge trapping effects. Therefore,
a drift-time correction was made to correct for this correla-
tion. In the following text, we will use the terms “standard
AvsE/DCR/LQ” to refer to the GAT analysis for PPC detectors
and ORNL analysis for ICPC detectors, respectively. Addi-
tionally, we extracted the raw AvsE and raw DCR parameters,
which are preliminary versions of standard AvsE/DCR thereby
not directly used by the standard MAJORANA analysis. The
raw parameters are generated under the GAT framework with
a detector- and run-wise energy calibration applied. How-
ever, the raw parameters are not drift-time corrected, thus
underperforming compared to the standard MAJORANA anal-
ysis parameters. In this work, we decided to use the raw
AvsE/DCR parameters to train the BDTs, and then compare
the training results to the standard MAJORANA analysis pa-
rameters. The LQ parameters are introduced at a later stage
of the standard MAJORANA analysis, thus we decided not to
incorporate them to train the machine learning analysis. How-
ever, we did include LQ when comparing the two analyses in
Sec. VC.

III. DATA PIPELINE

We collected both a signal and a background dataset to
train the BDT. The signal dataset should be representative
of the signal (0νββ events in our case), and the back-
ground dataset should represent the proper background to
reject. Before creating signal and background datasets from
the MAJORANA data, a standard suite of cuts is applied:

periods of high noise associated with liquid nitrogen fills
or unstable operation are removed; nonphysical waveforms,
pileup waveforms, and pulser events are then removed by
data cleaning cuts; and finally events in which multiple ger-
manium detectors are triggered are removed. We particularly
avoided the usage of high-level selection cuts, such as stan-
dard AvsE/DCR/LQ, since the tuning and validation of these
cuts can be time consuming. Decoupling from these cuts al-
lows a fast-track application of this model on newly taken data
from multiple detectors. We then chose events in the double
escape peak (DEP) from 228Th calibration data as the signal
dataset. The DEP events are pair production events where both
gammas have successfully escaped from the detector, thus
they are mostly single-site events. An energy cut of 1592.5 ±
2.5 keV is applied to select DEP events. Monte Carlo simula-
tions including x-ray excitations and bremsstrahlung predict
the events under DEP selection criteria to be 90% single
site with 10% multisite impurities. The background datasets
for the MSBDT and the αBDT are selected separately. For
MSBDT, we select events under the single escape peak (SEP)
of 228Th calibration data. The SEP events are pair production
events where only one gamma has escaped from the detector.
Although all SEP events are technically multisite, if those sites
occur at the isochrones of equal drift time, they will reach the
point contact at roughly the same time. In that case, the time
difference between the two sites is smaller than the detec-
tor’s timing resolution, resulting in an apparently single-site
waveform even though more than one energy deposition has
occurred. These events are the impurities to the background
dataset. An energy cut of 2103.5 ± 2.5 keV is applied to select
these events.

For the αBDT, since the major alpha backgrounds are
energy-degraded alpha events from the continuum, we have
to select training data from a broader spectrum. We first select
high energy alpha events by collecting events above 2615 keV
in background runs. This sample is expected to have some
contamination from high energy gamma events, originating
from the decay of cosmogenically- and neutron-induced iso-
topes and uranium/thorium chain. We then select low energy
alpha events by collecting the DCR tagged background events
in a 1000–2615 keV energy range. In this way, a total of
723 high energy alpha and 2839 low energy alpha events are
selected.

After event selection, we extract eight features from every
event. The names and descriptions of these parameters are
listed in Table I. AvsE and DCR are dedicated pulse shape pa-
rameters for multisite and alpha rejection respectively. Other
parameters are added to probe their multivariate correlations
with AvsE/DCR and to each other. For example, adding the
channel parameter will allow the model to perform detector-
wise tuning, adding tDrift and tDrift50 will allow the
model to perform a drift-time correction, and our noise pa-
rameter allows us to look for correlations during noisy periods
in the data. Among all features in Table I, some features
are continuous and some features are categorical. BDTs nat-
urally handle both types of feature in the structure of the
tree, allowing us to train on all detectors from all run periods
simultaneously.
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TABLE I. List of input features to the MSBDT and the αBDT.
Cat. stands for categorical and Cont. stands for continuous.

Features Type Description

detType Cat. detector type:
enriched PPC or ICPC

channel Cat. detector DAQ channel
tDrift Cont. drift time from the start of the rise

to 99% waveform amplitude
tDrift50 Cont. drift time from the start of the rise

to 50% waveform amplitude
AvsE Cont. raw A vs E , pulse shape parameter

for multisite event rejection [32,37]
DCR Cont. raw DCR, pulse shape parameter

for alpha event rejection [32,38]
noise Cont. measuring 10–20 MHz noise
DS Cat. data period the event belongs to,

defined by run ranges

A. Data augmentation

The data we selected above are highly imbalanced. First
of all, only about 4% of data points are provided by ICPC
detectors while the rest are from PPC detectors. Secondly,
only 3562 α events are collected compared to 600 000 DEP
events in αBDT training. This forms a typical long tail distri-
bution where the head class contains most of the events and
the tail class contains only a minimal proportion. If a BDT
is trained with such an imbalanced dataset, it will be heavily
biased towards the ample head class while ignoring the scarce
tail class. We fix this issue by performing data augmentation.

Data augmentation refers to algorithms that generate syn-
thetic data points to boost the population of the tail class
for training purposes. We employ it to boost the popula-
tion of both ICPC detector events and surface alpha events.
The input dataset contains eight features per event, three of
which are categorical features. A synthetic minority over-
sampling technique–nominal and continuous (SMOTE-NC)
[39] algorithm is adopted for data augmentation. SMOTE-NC
generates synthesized data by randomly interpolating between
data points and their nearest neighbors. It works well on
low dimensional data with both continuous and categorical
features. It is first applied to all three datasets (DEP, SEP,
and alpha) to boost the population of ICPC events by a factor
of ≈50, then applied again on the alpha dataset to boost the
population of alpha events by a factor of≈115. We refer to the
events directly collected from detectors as genuine events and
the events from data augmentation as augmented events. The
augmented events are only used for training; model evaluation
that will be discussed in Sec. V is based on genuine events.

B. Distribution matching

While building our BDT models, we want them to look at
the correlations of features instead of single features, unless
that single feature is the first-principle feature as discussed in
Sec. II. The first-principle feature—that is AvsE for MSBDT
or DCR for αBDT—is designed to fulfill the same background
rejection goal as the BDT model. We do not expect fea-
tures other than the first-principle feature to contribute to the

FIG. 3. Distribution matching of the tDrift feature in input data.

classification independently, but they can contribute through
their correlations with the first-principle feature or other fea-
tures. Undesirable behavior arises when other parameters are
allowed to contribute independently to classification. For ex-
ample, if a given channel in the MSBDT training dataset is
accidentally biased to contain 50% more signals than back-
grounds, the BDT will “remember” this bias and tend to
classify events in this channel as signal regardless of the rest
of the features. If we then validate the BDT on another out-
of-sample, unbiased dataset, the classification performance
on this channel will be suppressed. This phenomenon is
referred to as overfitting. To avoid this kind of overfitting,
we carried out a process called “distribution matching” on six
out of eight secondary features. Figure 3 shows the distribu-
tion matching effect on the tDrift feature. The distribution
of each secondary feature is first put into a histogram with
predefined bin width. Then for every bin in the histogram,
we randomly sample without replacement the same number
of events from the signal and background datasets. This will
reduce the size of both signal and background datasets to
the same amount. Eventually, the sampled events are ag-
gregated into a new signal/background dataset. We leave
the first-principle feature—AvsE for MSBDT and DCR for
αBDT—unmatched because we expect them to follow differ-
ent distributions between the signal and background dataset.
The detType feature is not matched either since it overlaps
with the channel feature. After distribution matching, the
signal/background dataset spectrum will exhibit the same
spectrum shape over matched secondary features. Distribution
matching only affects the training dataset. The performance
of trained BDT is evaluated on both DEP and SEP datasets
and a flat Compton continuum (CC) dataset, as described in
Sec. VC and Table II.

In summary, the data pipeline for the MSBDT contains the
following steps: we first select 228Th DEP events as the signal
dataset and 228Th SEP events as the background dataset; we
then extract eight features as described in Table I for every
event in both datasets; we then perform data augmentation to
generate augmented ICPC events; lastly, we perform distribu-
tion matching on all features except AvsE and detType. The
data pipeline of the αBDT contains the following steps: we
first select 228Th DEP events as the signal dataset, and aggre-
gate both low- and high-energy alphas to form the genuine
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TABLE II. Table of survival fractions of signal and background events in each MAJORANA DEMONSTRATOR dataset. The signal and
background event selection is defined in Sec. VA for MSBDT and Sec. VB for the αBDT. The BDT cutting thresholds are selected so
that they produce the same signal acceptance with the standard analyses. The AvsE corrected, DCR corrected, and LQ parameters are adopted in
the standard MAJORANA analysis. CC stands for the Compton continuum (1989–2089 keV) events in the 228Th calibration dataset, and BEW
stands for the 0νββ background estimation window events (1950–2350 keV, excluding three gamma peaks) in the 0νββ search dataset. The
survival numbers in BEW are calculated after joint cuts. The number in parentheses (last column of row 11) is the survival number without the
LQ cut.

Row Dataset DS0 DS1 DS2 DS3 DS4 DS5 DS5c DS6 DS6c DS7 DS8 DS8 All DS
Index Detector type PPC PPC PPC PPC PPC PPC PPC PPC PPC PPC PPC ICPC (Expo. weighted)

1 Exposure (kg yr) 1.13 2.24 1.13 0.96 0.26 4.49 2.34 24.52 13.25 4.44 6.41 2.74 64.5
2 Single-site signal (%) 90.3 89.8 88.6 89.9 89.4 89.1 87.4 89.4 89.8 89.7 89.7 88.7 89.5
3 MSBDT bkg. (%) 5.62 5.85 5.01 5.71 6.31 5.95 5.70 5.73 5.58 4.57 6.41 5.76 5.71
4 Standard AvsE bkg. (%) 6.13 6.29 5.93 5.31 5.48 6.24 6.51 6.25 6.39 6.00 6.78 6.17 6.25
5 MSBDT calc. CC (%) 41.9 38.9 36.8 39.7 42.1 41.9 42.6 42.1 40.5 35.6 32.5 31.4 40.3
6 Standard AvsE calc. CC (%) 43.1 42.9 41.5 41.0 42.1 42.0 41.6 42.3 42.7 42.1 43.3 35.0 42.3
7 Bulk event signal (%) 97.9 97.8 98.1 98.9 98.0 97.8 97.8 98.5 98.3 98.5 98.6 97.6 98.2
8 αBDT bkg. (%) 0.4 1.4 2.1 0.8 1.2 3.8 3.4 1.6 1.9 3.5 4.7 8.1 2.1
9 Standard DCR Bkg. (%) 1.7 1.9 2.8 3.9 0.0 2.9 5.7 2.6 3.1 5.4 2.8 0.8 2.9
10 BDT 0νββ BEW (#) 11 6 2 0 0 8 6 66 23 20 19 3 164
11 Standard 0νββ BEW (#) 11 4 1 0 0 9 5 58 20 17 24 4 153 (168)

alpha dataset; we then extract eight features; perform data
augmentation to generate augmented ICPC detector events
and alpha events as the background dataset; lastly, we perform
distribution matching on all features except DCR and detType.

IV. BOOSTED DECISION TREE

The decision tree (DT) model produces classification de-
cisions by making a series of binary choices. This features
allow the decision tree to naturally handle both continuous
and categorical dataset, without the need of additional struc-
tures such as one-hot encoding. Boosting algorithms allow the
machine to generate many decision trees iteratively to form
a classification “committee.” After training the mth decision
tree, the classification committee containing the first through
mth trees is denoted Tm(xi ). The dataset can be described as
{xi, yi}ki=0, where xi is the input event, yi is the label and k is
the number of events. The dataset is modified according to
the output of Tm(xi ). The modified dataset is then fed into
Tm+1(xi ) for training. The way the dataset is modified for
each iteration defines the boosting algorithm type. In this
work, the BDT model is trained using the LightGBM package
[40]. LightGBM adopts a gradient boosting algorithm [41] to
grow decision trees. First, a binary cross-entropy loss function
L(yi,Tm(xi )) is defined for the classification task, where yi is
the event label. Then, for each data point, we calculate the
pseudo-residual rim:

rim = −∂L(yi,Tm(xi ))
∂Tm(xi )

. (1)

rim is the negative gradient of the loss function with respect
to the classification committee output at xi. For each boosting
iteration, the dataset is modified from {xi, yi}ki=0 to {xi, rim}ki=0,
then a new decision tree hm+1(x) is fit to the modified dataset.
The new decision tree is incorporated into the committee via

the equation

Tm+1(x) = Tm(x) + γm+1hm+1(x), (2)

where γm+1 is chosen to minimize the loss function by solving
the optimization problem

γm+1 = argmin
γ

k∑

i=0

L(yi,Tm(xi ) + γ hm+1(xi )) (3)

The procedure above describes the mathematical formula-
tion of BDT training. To train the BDT model, we first mix
and shuffle the signal and background datasets. We then split
the mixed dataset into training and validation datasets with
an 80:20 ratio. The BDT models are trained on the train-
ing dataset. An early stopping algorithm will terminate the
training process if the loss on the validation dataset does not
decrease for a given number of iterations. The performance
is quantified on a dedicated evaluation dataset, which will be
discussed later in Sec. V; the interpretability study is con-
ducted on a customized interpretability dataset, which will be
discussed later in Sec. VI.

LightGBM contains several highly customizable BDT
models defined by collections of hyperparameters. Hyper-
parameters refer to parameters that do not change during
training, such as the type of boosting algorithms, maximum
number of trees to grow, number of early stopping iterations,
and maximum number of leaves per tree. Some hyperparam-
eters may greatly impact the metric, while other parameters
may have minimal to no impact. All hyperparameters are
searched simultaneously using Bayesian optimization to max-
imize the background rejection efficiencies at 90% signal
acceptance [42].

V. RESULT

After training, we evaluate the performance of both the
MSBDT and the αBDT. The trained BDT model takes the
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(a) (b)

FIG. 4. (a) MSBDT score distribution for signal and background events. (b) Background subtracted ROC curve for MSBDT classifier, AvsE
corrected classifier, and AvsE classifier. The ROC curve plots the true positive rate (TPR) vs the false positive rate (FPR) of a binary classifier
by placing the cutting threshold at every possible location. The larger area under ROC curve represents better classification performance. For
both AvsE classifiers, only the traditional low AvsE cuts are applied.

input of eight features as described in Table I, and outputs
a single floating point number as the classification score be-
tween 0 and 1. A higher classification score indicates the
input event is more signal-like and a lower classification score
indicates the input event is more background-like. A cutting
threshold is placed to accept signals and reject backgrounds.
The selection criteria of the cutting threshold will be discussed
in the following subsections. We also use the receiver operat-
ing characteristic (ROC) [43] curve to gauge the classification
performance of our models. The ROC curve plots the true
positive rate (TPR) vs the false positive rate (FPR) by placing
the cutting threshold at every possible location. The fraction
of area under the ROC curve (AUC) statistically describes the
classification power of a binary classifier, in that larger AUC
corresponds to better classification performance and smaller
AUC corresponds to worse classification performance. For
example, an AUC of 1 indicates perfect classification, and an
AUC of 0.5 indicates no classification.

A. MSBDT result

Events from the 228Th calibration data sets are used to test
the MSBDT. The DEP events from 1590 to 1595 keV are
used as the signal event sample, and the SEP events from
2101 to 2106 keV are used as the background event sample.
The MSBDT score spectra for signal and background samples
are illustrated in Fig. 4(a). The signal and background peaks
are well separated, albeit with “misclassified” events under
both peaks. Since both the signal and the background samples
have impurities described in Sec. III, these events could be the
impure events and thus be correctly classified.

The ROC curves of MSBDT, standard AvsE, and raw AvsE
are shown in Fig. 4(b). At each cutting location, the baseline
subtraction and uncertainty evaluation are then performed in
the same way as in Ref. [37]. To set the MSBDT cutting
threshold, we first apply the standard AvsE cut, that is, AvsE
> −1.0, to the evaluation dataset. This cut leads to a TPR
of 89.6%, shown as the horizontal magenta line in Fig. 4(b).
Next, the BDT cutting threshold and raw AvsE cutting thresh-

old are selected to reach the same TPR as the standard AvsE.
At this level of TPR, the survival fraction of background
samples of the raw AvsE, the standard AvsE, and MSBDT are
7.40%, 6.25%, and 5.71%, respectively. The standard AvsE
leverages the drift-time correlations to reject 16.3% of SEP
events that the raw AvsE accepts. MSBDT leverages addi-
tional multivariate correlations to reject a further 8.6% of SEP
events that the standard AvsE accepts.

Rows 2–4 in Table II compare the performance of the
MSBDT and the standard AvsE for each MAJORANA dataset.
For most datasets, the MSBDT outperforms the standard
AvsE on selected data samples. This demonstrates the ability
of our BDTs to self-discover the drift-time corrections and
other possible feature correlations to improve background
rejection performance. Meanwhile, introducing DS, channel,
and detType as categorical features allows the machine to
perform detector- and run-level tuning without explicitly pro-
gramming. However, the background data samples described
above are only good representations of the true background
dataset; the deviation from true background dataset could
come from energy (DEP energy vs Qββ energy) and subtle
differences in the intradetector distribution of event positions.
Therefore, additional data samples are collected to examine
model performance near the true energy region of interest
of 0νββ decay. These data samples, denoted as calibration
Compton continuum (Cal. CC) samples, contain all events
between 1989 and 2089 keV from the 228Th calibration runs.
Only 40.3% of Cal. CC samples survive MSBDTwhile 42.3%
survive standard AvsE, as shown in rows 5 and 6, Table II.

B. αBDT result

Events from the 228Th calibration data sets and the 0νββ

search data sets are used to test the αBDT. All 228Th cal-
ibration events between 1000 and 2380 keV that pass the
standard AvsE cut are selected as the signal samples, and
the collection of genuine alpha events are selected as the
background samples. The αBDT output distribution of signal
and background datasets are shown in Fig. 5(a). Based on the
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(a) (b)

FIG. 5. (a) αBDT output distribution for signal and background events. (b) ROC curve for αBDT classifier and standard DCR classifier.

plot, the background dataset is highly concentrated near 0.0
BDT score, indicating an excellent alpha tagging efficiency
of the αBDT. Meanwhile, the signal dataset spans the entire
range, but most events are still concentrated near 1.0 αBDT
output.

The ROC curves of the αBDT and the standard DCR pa-
rameter are shown in Fig. 5(b). A cutting threshold is set at
the horizontal red line to accept 98.2% of signal events. This
acceptance matches the standard DCR acceptance in the stan-
dard MAJORANA analysis. At this cutting threshold, the DCR
corrected analysis has 2.9% background acceptance, while the
αBDT only accepts 2.1% of surface alpha events. As men-
tioned in Sec. III, low energy genuine alphas are DCR tagged
background events between 1000 and 2615 keV. Therefore,
when evaluating the performance of the standard DCR cut,
100% of low energy genuine alphas will be manifestly re-
moved. Given the fact that standard DCR is “cheating” on low
energy alpha rejection, the αBDT still outperforms standard
DCR by rejecting 27.6% of genuine alpha events that standard
DCR accepts.

C. Comparison to standard MAJORANA analysis

The background index of the standard MAJORANA analy-
sis is evaluated in the 0νββ background estimation window
(0νββ BEW). The 0νββ BEW samples are collected from
1950 to 2350 keV, excluding ±5 keV region around the 2039
keV Qββ value and three gamma peaks at 2103, 2118, and
2204 keV. Based on simulations, the background rate is ex-
pected to be flat after the exclusion. Both BDTs are applied to
produce a number of survival events for 0νββ BEW in each
dataset, which can be compared to the number of survival
events for each dataset after applying the suites of standard
MAJORANA analysis cuts: the standard AvsE cut, the high
AvsE cut, the DCR cut, and the LQ cut. Note that neither the LQ
feature nor the transition layer events are included in the BDT
training process; thus, the BDT analysis will not be sensitive
to these events. Given this “unfair” condition, the BDT anal-
ysis still manages to match and, in some datasets, outperform
the standard MAJORANA analysis. The total number of 0νββ

BEW survival events for BDT and standard MAJORANA anal-

yses are 164 and 153 [32], indicating consistency between the
two. As a comparison, standard MAJORANA analysis without
LQ cut allows 168 events to remain in the 0νββ BEW. Figure 6
shows the comparison between the two analyses over the
entire energy range. The two analyses agrees well except in
the low energy region, where the standardMAJORANA analysis
cuts more aggressively. This discrepancy is mainly subject to
the LQ cut, and the applicability of LQ at low energy is still
under investigation. Therefore, these agreements show that the
BDT analysis can start from raw parameters and tune them to
match a highly optimized analysis.

D. ICPC detectors

For the ICPC detectors, the trained BDT model takes the
raw parameters as input and compares the output BDT score
to the ORNL analysis parameters. This leads to additional
challenges since the raw parameters are developed with GAT
while the ORNL parameters are independently developed and
customized for ICPC detectors. In this analysis, we use the
raw parameters as inputs to train the BDT models to reach or
exceed the background rejection performance of the ORNL
analysis. This means that the BDT must perform multivariate
corrections and account for the technical differences between
two independently developed analyses. The second-to-last
column of Table II shows the model evaluation results on
ICPC detectors. MSBDT outperforms the ORNL AvsE for
multisite event rejection, with a background survival fraction
of only 5.76%, compared to 6.17% for the ORNL AvsE. It
also makes a significant improvement over its primary input
parameter, raw AvsE, which has a 25% background survival
fraction (not shown in Table II). On the other hand, the αBDT
underperforms the ORNL DCR with a 8.1% genuine alpha
survival fraction, compared to 0.8% for the ORNL DCR. How-
ever, the αBDT still makes a significant improvement over
its primary input parameter, raw DCR, which allows 18% of
genuine alphas to survive (not shown in Table II). The BDT
analyses account for the technical differences among indepen-
dently developed analyses to simultaneously analyze different
types of germanium detectors. Finally, the results of the BDT
analyses indicate that the GAT analysis has the potential to
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FIG. 6. Energy spectrum of the standard MAJORANA analysis and the BDT analysis with 64.5 ± 0.9 kg exposure; a good agreement is
reached within the background estimation window. The low energy discrepancy between two analyses was mainly due to the LQ cut.

reach the same level of performance on ICPC detectors under
proper tuning.

VI. MACHINE INTERPRETABILITY

We demonstrated the BDT’s ability to outperform the
standard MAJORANA analysis, but the source of additional
classification power was not readily apparent. To identify
these sources, a post facto machine interpretability study was
performed on the trained MSBDT and αBDT. This study
used a coalitional game theory concept, Shapley value [44], to
interpret the decision of a BDT. The Shapley value is defined
as follows:

φi(v) =
∑

S⊆N/{i}

|S|!(n − |S| − 1)!

n!
[v(S ∪ {i}) − v(S)]. (4)

v is the characteristic function that maps a subset of players
to a real number. S represents a coalition of players without
the player i. N is the set of all players and n is the size of
that set. In this analysis, v is the BDT model mapping input
features to the BDT score. Each feature is a “player” of the
game. v(S ∪ {i}) − v(S) describes the difference in BDT score
including/excluding feature i. This difference is summed over
all coalitions S—that is, the possible combinations of all other
features except {i}—to produce the Shapley value for i. There-
fore, the Shapley value in the context of a BDT represents
each feature’s contribution to the final BDT score, assuming
they work collaboratively.

The interpretability study was conducted using the SHAP
package [23]. The underlying mechanism is analogous to a
one-dimensional free body diagram [45]. SHAP assigns a
Shapley value to each feature of the events to be interpreted.
The Shapley value acts as a “force” to change the BDT score:
a positive Shapley value pushes the BDT score toward a more
signal-like score, while a negative Shapley value pushes the
BDT score toward a more background-like score. After all
“forces” are applied, the BDT reaches an equilibrium, and
the equilibrium position is the BDT score of the input event.
Therefore, if an event is classified as signal, the feature with
the largest positive Shapley value will be the driving factor
for this classification decision, while features with negative

Shapley values suggest against the classification decision. An
example force plot of a single MAJORANA DEMONSTRATOR

event is shown in Fig. 7(c). By investigating the Shapley
values on designated datasets, we will understand the driving
feature which leads to the additional classification power.

A. Interpreting MSBDT

Figure 7(a) presents a summary plot to illustrate the feature
importance of the MSBDT. To make this plot, we first ran-
domly sampled 10 000 228Th DEP events and 10 000 228Th
SEP events to form the interpretability dataset. The Shapley
values are calculated for each event in the dataset, and the
distribution of Shapley values with respect to each input fea-
ture is plotted in Fig. 7(a). The shape of these distributions
represents the importance of the given feature. An impor-
tant feature exhibits a dumbbell shape, indicating this feature
drives the decision by a large magnitude most of the time.
A less important feature exhibits a spindle shape, indicating
this feature outputs a nearzero Shapley value most of the time
but occasionally drives the decision with a large amplitude.
An irrelevant feature exhibits a vertical bar shape, indicating
that this feature almost always outputs a Shapley value of
0. Figure 7(a) ranks the importance of features from top to
bottom according to this rule. The most important feature is
AvsE as we expected, and the second most important fea-
ture is channel. This means MSBDT’s classification power
mainly comes from channel-wise calibration of AvsE. The
least important feature is detType since it is redundant with
channel. The importance ranking shown in Fig. 7(a) can also
be used for feature selection. In case the computation power
is limited, low-importance features such as detType can be
removed from the input. In this work, the BDT training takes
less than one minute on CPU. Therefore, low-importance fea-
tures are kept since they do not seem to adversely affect the
performance.

To further understand the classification power of MSBDT,
especially the additional classification power compared to
standard AvsE, we collected outperforming events from the
interpretability dataset with two criteria:
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FIG. 7. (a) Feature importance plot of the MSBDT. From top to bottom, the features are ranked from the most important to the least
important. The color of each dot represents the Shapley value of each feature, normalized by the highest and lowest Shapley values of all input
samples. (b) The scatter plot of raw AvsE vs tDrift for outperforming events in a single detector in DS6. The color of each dot represents
the sum of Shapley values assigned to both tDrift and tDrift50. Higher magnitude represents more important contributions from drift
time. The green line represents a linear fit to the linear dependency of drift time. (c) Force plot of a single MAJORANA DEMONSTRATOR event
denoted by the magenta diamond in (b). The Shapley values of AvsE and channel provide positive forces, while the Shapley values of tDrift,
tDrift50, and dcr provide negative forces. The equilibrium position is at 0.34.

(i) DEP events that MSBDT classifies as signal but raw
AvsE classifies as background,

(ii) SEP events that MSBDT classifies as background but
raw AvsE classifies as signal.

Figure 7(b) shows the joint distribution of drift time and
raw AvsE on a two-dimensional (2D) scatter plot on out-
performing events. To avoid smearing caused by different
detectors or different datasets, only outperforming events
from a single detector in DS6 are shown. The color of each
dot indicates the summed Shapley value of tDrift and
tDrift50. Two types of drift-time dependencies are observed
on raw AvsE: a linear dependency appears on the raw AvsE for
large drift-time events, and a nonlinear dependency appears on
low drift-time events. In the standard MAJORANA analysis, the
linear dependence is corrected through a detector-by-detector
drift-time correction as discussed in Sec. II. From the MS-
BDT’s perspective, the BDT assigns a positive Shapley value
on drift time to reproduce the drift-time correction: although
the linear dependency leads to lower-than-usual AvsE at large
drift time, the MSBDT successfully captures this dependency
and produces a positive Shapley value to compensate for
this effect. This is equivalent to the drift-time correction in
standard MAJORANA analysis. Without explicit programming,
the MSBDT independently learns these correlations from data
and leverages them to further improve background rejection
performance as expected.

The non-linear dependency happens primarily on events
with drift time below 400 ns. These events happen near the
point contact and drift almost immediately to it. As shown in
Fig. 7(b), these fast-drifting events possess excessively high

AvsE and will be classified as signals even if the waveform
is multisite. In the standard MAJORANA analysis, we use the
high AvsE cut and the LQ cut to remove these events near the
point contact. In this analysis, the MSBDT assigns a negative
Shapley value according to the drift time to compensate for
the higher-than-usual AvsE values. To demonstrate this, we
selected a single event from this region [the magenta diamond
on Fig. 7(b)] and showed its Shapley forces in Fig. 7(c).
Although the excessively high AvsE produces an overwhelm-
ingly positive force, MSBDT recognizes the nonlinear drift
time dependency and assigns negative forces to tDrift and
tDrift50 to counteract the positive force. The equilibrium
position is at 0.34, which falls below the cutting threshold
of MSBDT. Therefore, this event is rejected by MSBDT but
accepted by standard AvsE. Without explicit programming,
the MSBDT learns the linear and non-linear correlation from
data and handles them correctly to produce better background
tagging efficiency.

B. Interpreting αBDT

We used a similar approach to interpret the αBDT. Since
there are only 3562 genuine alpha events, we collected all the
genuine alpha events as backgrounds and 3562 randomly sam-
pled 228Th DEP events as signals to form the interpretability
dataset. The summary plot is shown in Fig. 8(a). As expected,
raw DCR is the most important feature in making a classifica-
tion decision. tDrift50 is the second most important feature,
indicating that the αBDT is mainly performing a drift-time
correction on raw DCR to enhance its classification power.
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FIG. 8. (a) Feature importance plot of the αBDT. (b) The scatter plot of raw DCR vs tDrift for all outperforming genuine alpha events. The
color of each dot represents the sum of Shapley values assigned to both tDrift and tDrift50. Higher magnitude represents more important
contributions from drift time.

Similarly to the MSBDT, detType is the least important
feature since it is redundant with channel.

Outperforming events are collected from the interpretabil-
ity dataset to understand the additional classification power
of the αBDT. Since the signal sacrifice of the αBDT and
DCR is negligible, the outperforming dataset is defined as
genuine alpha events rejected by the αBDT but accepted by
the standard DCR. Figure 8(b) shows the joint distribution
of drift time and standard DCR on a 2D scatter plot on out-
performing events. These events form a cluster near a drift
time of 200 ns, indicating that they are surface alpha events
near the point contact. After creation, these events drift to
the point contact almost immediately, leaving almost no de-
layed charge on the passivated surface, thus violating the first
principle of the DCR cut. However, the fast-drifting nature
allows the αBDT to efficiently tag these events based on
their drift time, thus outperforming the traditional analysis.
As αBDT interpretability study revealed the importance of
these backgrounds, a dedicated high AvsE cut is introduced
into the standard MAJORANA analysis to reject them. High
AvsE turns out to also reject multisite event near the point con-
tact as we discussed in Sec. VIA. The interpretability study
also shows that tDrift50 is more important in the αBDT
model than tDrift. This can be explained by the difference
between the calculation of these two parameters. A typical
outperforming event is shown in Fig. 9. When a surface alpha
event happens near the point contact, the charge deposition
starts almost immediately, leading to a sharp rising edge of
the waveform. On the other hand, the passivated surface re-
duces the drift speed of charges comparatively further away
from the point contact. This effect delays the completion of
charge deposition, leading to a rounded top of the waveform.
Since tDrift is calculated from the the start of the rise to
the time when the waveform reaches 99% of its maximum
amplitude, the rounded-top structure significantly increases
the value of tDrift, allowing it to appear as a slowly drifting
event, thus escaping the low-drift-time/high-AvsE cut. How-
ever, tDrift50 is immune to the rounded-top structure since
it is calculated only up to 50% of the waveform amplitude.
The interpretability study suggests that a tDrift50-based cut

could be developed to further benefit the alpha rejection in
future first-principle analyses.

The interpretability study allows machine learning analysis
to unveil physics in germanium detectors. Leveraging mul-
tivariate correlations and automatic categorization, the BDT
was able to outperform individual PSD parameters and match
both the GAT and the ORNL analyses, as discussed in Sec. V
with less detector-by-detector calibration. Furthermore, the
interpretability study leverages the additional classification
power to reveal the importance of new background categories.
This eventually led to the implementation of a high AvsE
cut in the standard MAJORANA analysis and suggests a new
direction for future improvement. The reciprocal relationship
between the machine learning analysis and the traditional,
first-principle analysis revealed by the interpretability study
demonstrates that an interpretable machine learning analysis
can not only outperform but also benefit the traditional analy-
sis.

FIG. 9. A typical surface alpha event waveform (black) near the
point contact of the MAJORANA PPC detector. t0 is the start of charge
deposition. The time intervals of tDrift50 and tDrift features are
shown.
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VII. CONCLUSION

In this work, we have presented the first machine learning
analysis for the MAJORANA DEMONSTRATOR; this is also the
first interpretable machine learning analysis of any germa-
nium detector experiment. This analysis contains two parts:
learning from the data to improve background rejections
and learning from the machine to understand classification
power. Leveraging gradient boosted decision trees and data
augmentation, this analysis outperforms the the individual
PSD parameters and matches the overall results of the highly
optimized standard MAJORANA analysis [32]. Learning from
data also closes the gap between two independently developed
analyses applied to different types of detectors.

For the first time in the field, a thorough machine inter-
pretability study is conducted, leveraging the Shapley value in
coalitional game theory. This study not only justifies BDT’s
capability to capture multivariate correlations but also to in-
dependently discover new background categories to reveal
its importance. The machine learning analysis and the stan-
dard MAJORANA analysis established a reciprocal relationship
through the interpretability study. Since BDT model is widely
used in the particle and nuclear physics community [46–52],
this work provides a template for interpreting the BDT model
to gain more physical insight and even make new scientific
discoveries.

This work has focused on developing and interpreting the
first machine learning analysis for the MAJORANA DEMON-
STRATOR. The data-driven nature of this analysis allows a
straightforward generalization to different germanium detec-
tor experiments, especially the next-generation tonne-scale
experiment LEGEND-1000 [22]. Given the large number
of detectors, detector- and run-level tuning may be time
consuming in LEGEND. In that case, the BDT’s ability to si-
multaneously train on all detectors would be highly beneficial.
Furthermore, the interpretability study allows us to unravel
the black-box nature of machine learning models to reveal un-
derlying physics and independently discover new background
categories without explicit programming. We intend to apply
this model to LEGEND data, which could enable improve-
ments in background rejection, and possibly help us gain
a more nuanced understanding of the detector performance.

Our future work involves using more powerful and versatile
machine learning models such as recurrent neural network
(RNN). RNN can be trained directly on the DEMONSTRATOR’s
waveform, which opens up an entirely new avenue for more
machine learning applications.
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