



# Probabilistic chip-collecting games with modulo winning conditions

Joshua Harrington<sup>a</sup>, Xuwen Hua<sup>b</sup>, Xufei Liu<sup>c</sup>, Alex Nash<sup>d</sup>, Rodrigo Rios<sup>e</sup>,  
Tony W.H. Wong<sup>f,\*</sup>

<sup>a</sup> Department of Mathematics, Cedar Crest College, United States of America

<sup>b</sup> Department of Mathematics, Pomona College, United States of America

<sup>c</sup> Department of Industrial Engineering, Georgia Institute of Technology, United States of America

<sup>d</sup> Department of Mathematics, Dickinson College, United States of America

<sup>e</sup> Department of Mathematics, Florida Atlantic University, United States of America

<sup>f</sup> Department of Mathematics, Kutztown University of Pennsylvania, United States of America



## ARTICLE INFO

### Article history:

Received 25 January 2022

Accepted 30 August 2022

Available online xxxx

### Keywords:

Probabilistic game

Random walk

## ABSTRACT

Let  $a$ ,  $b$ , and  $n$  be integers with  $0 < a < b < n$ . In a certain two-player probabilistic chip-collecting game, Alice tosses a coin to determine whether she collects  $a$  chips or  $b$  chips. If Alice collects  $a$  chips, then Bob collects  $b$  chips, and vice versa. A player is announced the winner when they have accumulated a number of chips that is a multiple of  $n$ . In this paper, we settle two conjectures from the literature related to this game.

© 2022 Elsevier B.V. All rights reserved.

## 1. Introduction

In a probabilistic chip-collecting game introduced by Wong and Xu [4], Alice and Bob take turns to toss a coin with Alice tossing first, which determines independently whether the player collects  $a$  chips or  $b$  chips. The winner of the game is the first player to accumulate  $n$  chips. Some variations of this game have been considered by Leung and Thanatipanonda [2,3] and Harrington et al. [1]. The versions of the game that were considered by Harrington et al. removed the independence of the chip collecting process, so that if Alice collects  $a$  chips, then Bob collects  $b$  chips, and vice versa. In one of these versions, called the *modulo dependent game*, a player is announced the winner when they have accumulated a number of chips that is a multiple of  $n$ .

For  $a < b < n$ , the modulo dependent game can be treated as a random walk on  $\mathbb{Z}_n \times \mathbb{Z}_n$ , where the number of chips accumulated by each player is recorded as an ordered pair  $(x, y)$  and each move is represented by either  $(+a, +b)$  or  $(+b, +a)$ . Since Alice always collects chips first, for any  $y \in \mathbb{Z}_n$  and  $x \in \mathbb{Z}_n \setminus \{0\}$ , positions  $(0, y)$  and  $(x, 0)$  are called the *winning positions* of Alice and Bob, respectively, and a random walk on  $\mathbb{Z}_n \times \mathbb{Z}_n$  that starts from  $(0, 0)$  terminates upon landing on any winning position. A position  $(x, y) \in \mathbb{Z}_n \times \mathbb{Z}_n$  is said to be *reachable* if there exists a random walk that lands on  $(x, y)$  after leaving the starting position  $(0, 0)$ . As established by Harrington et al. [1],  $(a, a)$  and  $(b, b)$  are never reachable in  $\mathbb{Z}_n \times \mathbb{Z}_n$ . They further conjectured the following statement, for which we provide a proof in Section 2.

**Theorem 1.1.** *Every position in  $\mathbb{Z}_n \times \mathbb{Z}_n \setminus \{(a, a), (b, b)\}$  is reachable if and only if  $a \not\equiv 2b \pmod{n}$ ,  $2a \not\equiv b \pmod{n}$ , and  $b^2 - a^2$  is relatively prime to  $n$ .*

\* Corresponding author.

E-mail addresses: [joshua.harrington@cedarcrest.edu](mailto:joshua.harrington@cedarcrest.edu) (J. Harrington), [xhaha2019@mymail.pomona.edu](mailto:xhaha2019@mymail.pomona.edu) (X. Hua), [xliu725@gatech.edu](mailto:xliu725@gatech.edu) (X. Liu), [nasha@dickinson.edu](mailto:nasha@dickinson.edu) (A. Nash), [rriosr2018@fau.edu](mailto:rriosr2018@fau.edu) (R. Rios), [wong@kutztown.edu](mailto:wong@kutztown.edu) (T.W.H. Wong).

The modulo dependent game can naturally be extended to a variation that allows Alice and Bob to having different winning conditions. In particular, Harrington et al. considered a variation of the game where Alice wins by collecting a multiple of  $m$  chips and Bob wins by collecting a multiple of  $n$  chips. This game can be recognized as a random walk on  $\mathbb{Z}_m \times \mathbb{Z}_n$ , where  $a < b < \min\{m, n\}$ . Although this variation was not studied by Harrington et al. they did present the following conjecture.

**Conjecture 1.2.** *Let  $m \mid n$ . If all winning positions are of the form  $(0, y)$ , then  $m \mid (b^2 - a^2)$ .*

In Section 3, we will prove the following theorem, which establishes [Conjecture 1.2](#).

**Theorem 1.3.** *In the modulo dependent game with parameters  $a, b, m$ , and  $n$  such that  $\gcd(a, b, m, n) = 1$ , all reachable winning positions are of the form  $(0, y)$  if and only if  $m \mid (b^2 - a^2)$  and  $m \mid \gcd(a, b) \gcd(m, n)$ .*

As a corollary to [Theorem 1.3](#), in the modulo dependent with parameters  $a, b, m$ , and  $n$ , notice that Bob's winning probability is 0 if and only if  $m \mid (b^2 - a^2)$  and  $m \mid \gcd(a, b) \gcd(m, n)$ .

## 2. Proof of Theorem 1.1

**Proof.** If every position in  $\mathbb{Z}_n \times \mathbb{Z}_n \setminus \{(a, a), (b, b)\}$  is reachable, then  $(1, 0)$  is reachable. In other words,  $(ai + bj, aj + bi) = (1, 0)$  for some integers  $i$  and  $j$ . By adding or subtracting the two coordinates, we have  $(a + b)(i + j) \equiv (b - a)(j - i) \equiv 1 \pmod{n}$ , thus  $\gcd(a + b, n) = \gcd(b - a, n) = 1$ . Hence,  $b^2 - a^2$  is relatively prime to  $n$ . To establish the remaining necessary conditions, we proceed with a proof by contrapositive. If  $a \equiv 2b \pmod{n}$ , then the position  $(2b, 3b)$  can only be reached from  $(0, 2b)$  or  $(b, b)$ , so  $(2b, 3b)$  is not reachable. Similarly, if  $b \equiv 2a \pmod{n}$ , then the position  $(2a, 3a)$  is not reachable.

To prove the sufficient condition, let  $\mathbf{q}_{i,j} = (ia + j(a + b), ib + j(a + b))$ , where  $i, j \in \mathbb{Z}$ . Since  $\gcd(b - a, n) = \gcd(a + b, n) = 1$ , every position in  $\mathbb{Z}_n \times \mathbb{Z}_n$  can be expressed in the form of  $\mathbf{q}_{i,j}$  for some  $0 \leq i, j \leq n - 1$ . Furthermore,  $\gcd(k(a + b), n) \leq k < n$  and  $\gcd(k(b - a), n) \leq k < n$  for all  $1 \leq k < n$ , thus

$$k(a + b) \not\equiv 0 \pmod{n} \text{ and } k(b - a) \not\equiv 0 \pmod{n}. \quad (1)$$

As a result,  $2a \not\equiv 2b \pmod{n}$ , which implies that every position  $(x, x) \in \mathbb{Z}_n \times \mathbb{Z}_n \setminus \{(a, a), (b, b)\}$  is reachable by Harrington et al. [[1](#), Theorem 3.6]. Hence, it remains to show that  $\mathbf{q}_{i,j}$  is reachable for all  $1 \leq i \leq n - 1$  and  $0 \leq j \leq n - 1$ .

We will prove by induction on  $j$  that  $\mathbf{q}_{1,j}$  is reachable for all  $0 \leq j \leq n - 1$ . First, the position  $\mathbf{q}_{1,0} = (a, b)$  is reachable, and the position  $\mathbf{q}_{1,1}$  is reachable by the sequence of moves

$$\mathbf{q}_{1,0} = (a, b) \xrightarrow{(+,+a)} (a + b, a + b) \xrightarrow{(+,+b)} \mathbf{q}_{1,1}.$$

Now, assume that for some  $1 \leq j \leq n - 2$ ,  $\mathbf{q}_{1,j'}$  is reachable for all  $0 \leq j' \leq j$ . We proceed by considering the following cases.

*Case 1:  $\mathbf{q}_{1,j}$  is not a winning position.*

*Case 1(a):  $\mathbf{q}_{2,j}$  is not a winning position.*

The position  $\mathbf{q}_{1,j+1}$  is reachable by the sequence of moves

$$\mathbf{q}_{1,j} \xrightarrow{(+,+b)} \mathbf{q}_{2,j} \xrightarrow{(+,+a)} \mathbf{q}_{1,j+1}.$$

*Case 1(b):  $\mathbf{q}_{2,j}$  is a winning position.*

Since  $\mathbf{q}_{2,j} = (2a + j(a + b), 2b + j(a + b))$ , with a simple calculation, we have  $\mathbf{q}_{2,j} \in \{(0, 2b - 2a), (2a - 2b, 0)\}$ . Hence,  $\mathbf{q}_{0,j+1} \in \{(b - a, b - a), (a - b, a - b)\}$ , which does not intersect with  $\{(a, a), (b, b)\}$  since  $a \not\equiv 2b \pmod{n}$  and  $b \not\equiv 2a \pmod{n}$ . Therefore,  $\mathbf{q}_{1,j+1}$  is reachable by the sequence of moves

$$\mathbf{q}_{1,j} \xrightarrow{(+,+a)} \mathbf{q}_{0,j+1} \xrightarrow{(+,+b)} \mathbf{q}_{1,j+1}.$$

*Case 2:  $\mathbf{q}_{1,j}$  is a winning position.*

Since  $\mathbf{q}_{1,j} = (a + j(a + b), b + j(a + b))$ , with a simple calculation, we have  $\mathbf{q}_{1,j} \in \{(0, b - a), (a - b, 0)\}$ . Hence,  $\mathbf{q}_{1,j-1} \in \{(-a - b, -2a), (-2b, -a - b)\}$ .

*Case 2(a):  $\mathbf{q}_{1,j-1}$  is not a winning position.*

Note that  $b - 2a \not\equiv 0 \pmod{n}$  and  $a - 2b \not\equiv 0 \pmod{n}$  by the given conditions, and  $2b - 2a \not\equiv 0 \pmod{n}$  by (1). Hence,  $\mathbf{q}_{2,j-1} \in \{(-b, b - 2a), (a - 2b, -a)\}$ ,  $\mathbf{q}_{3,j-1} \in \{(a - b, 2b - 2a), (2a - 2b, b - a)\}$ , and  $\mathbf{q}_{2,j} \in \{(a, 2b - a), (2a - b, b)\}$  are not winning positions. Therefore,  $\mathbf{q}_{1,j+1}$  is reachable by the sequence of moves

$$\mathbf{q}_{1,j-1} \xrightarrow{(+,+b)} \mathbf{q}_{2,j-1} \xrightarrow{(+,+b)} \mathbf{q}_{3,j-1} \xrightarrow{(+,+a)} \mathbf{q}_{2,j} \xrightarrow{(+,+a)} \mathbf{q}_{1,j+1}.$$

Case 2(b):  $2a \equiv 0 \pmod{n}$  and  $\mathbf{q}_{1,j-1} = (-a - b, 0)$ .

Note that  $j > 1$  since  $\mathbf{q}_{1,1-1} = (a, b) \neq (-a - b, 0)$ . Also note that  $-2a - 2b \equiv -2b \not\equiv -2a \equiv 0 \pmod{n}$  and  $-a - 2b \equiv a - 2b \not\equiv 0 \pmod{n}$ . Therefore,  $\mathbf{q}_{1,j+1}$  is reachable by the sequence of moves

$$\begin{aligned} \mathbf{q}_{1,j-2} &= (-2a - 2b, -a - b) \xrightarrow{(+a,+b)} (-a - 2b, -a) \xrightarrow{(+a,+b)} (-2b, b - a) \\ &\xrightarrow{(+a,+b)} (a - 2b, 2b - a) \xrightarrow{(+b,+a)} (a - b, 2b) \xrightarrow{(+b,+a)} (a, a + 2b) \xrightarrow{(+b,+a)} \mathbf{q}_{1,j+1}. \end{aligned}$$

Case 2(c):  $2b \equiv 0 \pmod{n}$  and  $\mathbf{q}_{1,j-1} = (0, -a - b)$ .

Note that  $j > 1$  since  $\mathbf{q}_{1,1-1} = (a, b) \neq (0, -a - b)$ . Also note that  $-2a - 2b \equiv -2a \not\equiv -2b \equiv 0 \pmod{n}$  and  $-2a - b \equiv -2a + b \not\equiv 0 \pmod{n}$ . Therefore,  $\mathbf{q}_{1,j+1}$  is reachable by the sequence of moves

$$\begin{aligned} \mathbf{q}_{1,j-2} &= (-a - b, -2a - 2b) \xrightarrow{(+a,+b)} (-b, -2a - b) \xrightarrow{(+a,+b)} (a - b, -2a) \\ &\xrightarrow{(+a,+b)} (2a - b, b - 2a) \xrightarrow{(+b,+a)} (2a, b - a) \xrightarrow{(+b,+a)} (2a + b, b) \xrightarrow{(+b,+a)} \mathbf{q}_{1,j+1}. \end{aligned}$$

Having shown that  $\mathbf{q}_{1,j}$  is reachable for all  $0 \leq j \leq n - 1$ , we will now prove by induction on  $i$  that  $\mathbf{q}_{i,j}$  is reachable for all  $2 \leq i \leq n - 1$  and  $0 \leq j \leq n - 1$ . Assume that for some  $1 \leq i \leq n - 2$ ,  $\mathbf{q}_{i,j}$  is reachable for all  $0 \leq j \leq n - 1$ . If  $\mathbf{q}_{i,j}$  is not a winning position, then  $\mathbf{q}_{i+1,j}$  is reachable by the move

$$\mathbf{q}_{i,j} \xrightarrow{(+a,+b)} \mathbf{q}_{i+1,j}.$$

Otherwise, if  $\mathbf{q}_{i,j}$  is a winning position, i.e.,  $\mathbf{q}_{i,j} = (ia + j(a + b), ib + j(a + b)) \in \{(0, i(b - a)), (i(a - b), 0)\}$ , then we proceed by considering the following cases.

Case 1:  $\mathbf{q}_{i,j-1}$  is not a winning position.

Case 1(a):  $\mathbf{q}_{i+1,j-1}$  is not a winning position.

By (1),  $(i + 1)(b - a) \not\equiv 0 \pmod{n}$ . Hence,  $\mathbf{q}_{i+2,j-1} \in \{(a - b, (i + 1)(b - a)), ((i + 1)(a - b), b - a)\}$  is not a winning position. Therefore,  $\mathbf{q}_{i,j+1}$  is reachable by the sequence of moves

$$\mathbf{q}_{i,j-1} \xrightarrow{(+a,+b)} \mathbf{q}_{i+1,j-1} \xrightarrow{(+a,+b)} \mathbf{q}_{i+2,j-1} \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.$$

Case 1(b):  $\mathbf{q}_{i+1,j-1}$  is a winning position.

Since  $\mathbf{q}_{i+1,j-1} \in \{(-b, -a + i(b - a)), (-b + i(a - b), -a)\}$ , we have  $\mathbf{q}_{i+1,j-1} \in \{(-b, 0), (0, -a)\}$ . Then  $\mathbf{q}_{i,j-2} \in \{(-2a - 2b, -a - 2b), (-2a - b, -2a - 2b)\}$  and  $\mathbf{q}_{i+2,j-2} \in \{(-2b, -a), (-b, -2a)\}$ .

Case 1(b)(i):  $\mathbf{q}_{i,j-2}$  and  $\mathbf{q}_{i+2,j-2}$  are not winning positions.

Note that  $\mathbf{q}_{i+1,j-2} \in \{(-a - 2b, -a - b), (-a - b, -2a - b)\}$ ,  $\mathbf{q}_{i+3,j-2} \in \{(a - 2b, b - a), (a - b, b - 2a)\}$ , and  $\mathbf{q}_{i+2,j-1} \in \{(a - b, b), (a, b - a)\}$  are not winning positions. Therefore,  $\mathbf{q}_{i,j+1}$  is reachable by the sequence of moves

$$\begin{aligned} \mathbf{q}_{i,j-2} &\xrightarrow{(+a,+b)} \mathbf{q}_{i+1,j-2} \xrightarrow{(+a,+b)} \mathbf{q}_{i+2,j-2} \\ &\xrightarrow{(+a,+b)} \mathbf{q}_{i+3,j-2} \xrightarrow{(+b,+a)} \mathbf{q}_{i+2,j-1} \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}. \end{aligned}$$

Case 1(b)(ii):  $\mathbf{q}_{i+2,j-2} = (-2b, -a)$  is a winning position, i.e.,  $2b \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i+2,j-2} = (0, -a)$ .

Since  $b < n$  and  $n$  divides  $2b$ , we have  $n = 2b$ , which is an even number. This implies that  $n > 3$ , thus  $-3a - b \equiv -3(a + b) \not\equiv 0 \pmod{n}$  by (1). Moreover,  $-2a - b \equiv -2a + b \not\equiv 0 \pmod{n}$  by the given conditions, and  $-2a \not\equiv 0 \pmod{n}$  since  $a < b = \frac{n}{2}$ . Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{aligned} \mathbf{q}_{i,j-3} &= (-3a - b, -2a - b) \xrightarrow{(+a,+b)} (-2a - b, -2a) \xrightarrow{(+a,+b)} (-a - b, b - 2a) \\ &\xrightarrow{(+a,+b)} (-b, -2a) \xrightarrow{(+a,+b)} (a - b, b - 2a) \xrightarrow{(+b,+a)} (a, b - a) \\ &\xrightarrow{(+b,+a)} (a + b, b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}. \end{aligned}$$

Case 1(b)(iii):  $\mathbf{q}_{i+2,j-2} = (-b, -2a)$  is a winning position, i.e.,  $2a \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i+2,j-2} = (-b, 0)$ .

Since  $a < n$  and  $n$  divides  $2a$ , we have  $n = 2a$ , which is an even number. This implies that  $n > 3$ , thus  $-a - 3b \equiv -3(a + b) \not\equiv 0 \pmod{n}$  by (1). Moreover,  $-a - 2b \equiv a - 2b \not\equiv 0 \pmod{n}$  by the given conditions, and  $-2b \not\equiv 0 \pmod{n}$  since  $\frac{n}{2} = a < b < n$ . Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\mathbf{q}_{i,j-3} = (-a - 2b, -a - 3b) \xrightarrow{(+a,+b)} (-2b, -a - 2b) \xrightarrow{(+a,+b)} (a - 2b, -a - b)$$

$$\begin{array}{c}
 \xrightarrow{(+a,+b)} (-2b, -a) \xrightarrow{(+a,+b)} (a - 2b, b - a) \xrightarrow{(+b,+a)} (a - b, b) \\
 \xrightarrow{(+b,+a)} (a, a + b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 1(b)(iv):  $\mathbf{q}_{i,j-2} = (-2a - 2b, -a - 2b)$  is a winning position, i.e.,  $a + 2b \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i,j-2} = (-a, 0)$ . Note that  $n > 3$ ; otherwise,  $a = 1$  and  $b = 2$  by  $a < b < n$ , which contradicts that  $a + 2b \equiv 0 \pmod{n}$ . By (1),  $-2a - b \equiv -3(a + b) \not\equiv 0 \pmod{n}$ . Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-3} = (-2a - b, -a - b) \xrightarrow{(+a,+b)} (-a - b, -a) \xrightarrow{(+a,+b)} (-b, b - a) \\
 \xrightarrow{(+a,+b)} (a - b, 2b - a) \xrightarrow{(+a,+b)} (2a - b, 3b - a) = (a - 3b, b - 2a) \\
 \xrightarrow{(+b,+a)} (a - 2b, b - a) \xrightarrow{(+b,+a)} (a - b, b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 1(b)(v):  $\mathbf{q}_{i,j-2} = (-2a - b, -2a - 2b)$  is a winning position, i.e.,  $2a + b \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i,j-2} = (0, -b)$ . Note that  $n > 3$ ; otherwise,  $a = 1$  and  $b = 2$  by  $a < b < n$ , which contradicts that  $2a + b \equiv 0 \pmod{n}$ . By (1),  $-a - 2b \equiv -3(a + b) \not\equiv 0 \pmod{n}$ . Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-3} = (-a - b, -a - 2b) \xrightarrow{(+a,+b)} (-b, -a - b) \xrightarrow{(+a,+b)} (a - b, -a) \\
 \xrightarrow{(+a,+b)} (2a - b, b - a) \xrightarrow{(+a,+b)} (3a - b, 2b - a) = (a - 2b, b - 3a) \\
 \xrightarrow{(+b,+a)} (a - b, b - 2a) \xrightarrow{(+b,+a)} (a, b - a) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 2:  $\mathbf{q}_{i,j-1} = (-a - b, (i-1)b - (i+1)a)$  is a winning position, i.e.,  $(i-1)b - (i+1)a \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i,j-1} = (-a - b, 0)$ . If  $2b \equiv 0 \pmod{n}$ , then  $\mathbf{q}_{i+1,j-1} = (-b, b) = (b, b) \in \{\mathbf{q}_{0,j'} : 0 \leq j' \leq n-1\}$ . This implies that  $i = n-1$ , violating the bound given in the induction assumption. Hence,  $2b \not\equiv 0 \pmod{n}$ .

Case 2(a):  $a + 2b \not\equiv 0 \pmod{n}$ .

The position  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-2} = (-2a - 2b, -a - b) \xrightarrow{(+a,+b)} (-a - 2b, -a) \xrightarrow{(+a,+b)} (-2b, b - a) \\
 \xrightarrow{(+a,+b)} (a - 2b, 2b - a) \xrightarrow{(+b,+a)} (a - b, 2b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 2(b):  $a + 2b \equiv 0 \pmod{n}$ .

Note that  $n > 3$ ; otherwise,  $a = 1$  and  $b = 2$  by  $a < b < n$ , which contradicts that  $a + 2b \equiv 0 \pmod{n}$ . By (1),  $-2a - b \equiv -3(a + b) \not\equiv 0 \pmod{n}$ . Moreover,  $-2a \equiv -a + 2b \not\equiv 0 \pmod{n}$  by the given conditions. Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-3} = (-2a - b, -2a - 2b) \xrightarrow{(+a,+b)} (-a - b, -2a - b) \xrightarrow{(+a,+b)} (-b, -2a) \\
 \xrightarrow{(+a,+b)} (a - b, b - 2a) \xrightarrow{(+a,+b)} (2a - b, 2b - 2a) \xrightarrow{(+b,+a)} (2a, 2b - a) \\
 \xrightarrow{(+b,+a)} (2a + b, 2b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 3:  $\mathbf{q}_{i,j-1} = ((i-1)a - (i+1)b, -a - b)$  is a winning position, i.e.,  $(i-1)a - (i+1)b \equiv 0 \pmod{n}$  and  $\mathbf{q}_{i,j-1} = (0, -a - b)$ . If  $2a \equiv 0 \pmod{n}$ , then  $\mathbf{q}_{i+1,j-1} = (a, -a) = (a, a) \in \{\mathbf{q}_{0,j'} : 0 \leq j' \leq n-1\}$ . This implies that  $i = n-1$ , violating the bound given in the induction assumption. Hence,  $2a \not\equiv 0 \pmod{n}$ .

Case 3(a):  $2a + b \not\equiv 0 \pmod{n}$ .

The position  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-2} = (-a - b, -2a - 2b) \xrightarrow{(+a,+b)} (-b, -2a - b) \xrightarrow{(+a,+b)} (a - b, -2a) \\
 \xrightarrow{(+a,+b)} (2a - b, b - 2a) \xrightarrow{(+b,+a)} (2a, b - a) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}.
 \end{array}$$

Case 3(b):  $2a + b \equiv 0 \pmod{n}$ .

Note that  $n > 3$ ; otherwise,  $a = 1$  and  $b = 2$  by  $a < b < n$ , which contradicts that  $2a + b \equiv 0 \pmod{n}$ . By (1),  $-a - 2b \equiv -3(a + b) \not\equiv 0 \pmod{n}$ . Moreover,  $-2b \equiv 2a - b \not\equiv 0 \pmod{n}$  by the given conditions. Therefore,  $\mathbf{q}_{i+1,j}$  is reachable by the sequence of moves

$$\begin{array}{c}
 \mathbf{q}_{i,j-3} = (-2a - 2b, -a - 2b) \xrightarrow{(+a,+b)} (-a - 2b, -a - b) \xrightarrow{(+a,+b)} (-2b, -a) \\
 \xrightarrow{(+a,+b)} (a - 2b, b - a) \xrightarrow{(+a,+b)} (2a - 2b, 2b - a) \xrightarrow{(+b,+a)} (2a - b, 2b) \\
 \xrightarrow{(+b,+a)} (2a, a + 2b) \xrightarrow{(+b,+a)} \mathbf{q}_{i+1,j}. \quad \square
 \end{array}$$

### 3. Proof of Theorem 1.3

**Proof.** Let  $d = \gcd(a, b)$  and  $\delta = \gcd(m, n)$ , and further let  $a = da_0$ ,  $b = db_0$ , and  $n = \delta n_0$  for some integers  $a_0, b_0$ , and  $n_0$ . Note that  $\gcd(d, \delta) = 1$  since  $\gcd(m, n, a, b) = 1$ .

Suppose that  $m \mid (b^2 - a^2)$  and  $m \mid \gcd(a, b)\gcd(m, n)$ . Then  $m = d\delta/c$  for some  $c \mid d$ , and  $(d\delta/c) \mid d^2(b_0^2 - a_0^2)$  implies that  $\delta \mid cd(b_0^2 - a_0^2)$ . Since  $\gcd(c, \delta) = \gcd(d, \delta) = 1$ , we have  $\delta \mid (b_0^2 - a_0^2)$ . Let  $\delta = \delta^+ \delta^-$ , where  $\delta^+ \mid (b_0 + a_0)$  and  $\delta^- \mid (b_0 - a_0)$ . Then  $b_0 = s\delta^- + a_0$  for some integer  $s$ . Moreover,  $\gcd(a_0, \delta^-) = 1$  since  $\gcd(a_0, b_0) = 1$ .

We will now show that if  $(x_0, 0)$  is a reachable winning position, then  $x_0 \equiv 0 \pmod{m}$ . For any reachable position  $(ai + bj, aj + bi)$  with  $aj + bi \equiv 0 \pmod{n}$ , we have  $da_0j + d(s\delta^- + a_0)i = t\delta n_0$  for some integer  $t$ . Rearranging the terms, we have  $da_0(j + i) = \delta^-(dsi + t\delta^+ n_0)$ , so  $\delta^- \mid (j + i)$  since  $\gcd(da_0, \delta^-) = 1$ .

As a result,  $\delta^+ \delta^- \mid (b_0 + a_0)(j + i)$ , so  $\delta \mid (a_0i + b_0j + a_0j + b_0i)$ . Recalling that  $n \mid (aj + bi)$ , we have  $\delta \mid (a_0j + b_0i)$ . Consequently,  $\delta \mid (a_0i + b_0j)$ , which implies that  $d\delta \mid (ai + bj)$ . Therefore,  $x_0 = ai + bj \equiv 0 \pmod{m}$ , thus proving the sufficient condition for all reachable winning positions being of the form  $(0, y)$ .

To prove the necessary condition, we assume that all reachable winning positions are of the form  $(0, y)$ . First, consider the case when  $m = a + b$ . Then  $m \mid (b^2 - a^2)$  trivially. Moreover,  $d \mid m$  and  $\delta \mid m$ , which implies that  $d\delta \mid m$  since  $\gcd(d, \delta) = 1$ . Hence,  $m = \ell d\delta$  for some positive integer  $\ell$ , or equivalently,  $\delta = (a_0 + b_0)/\ell$ . Assume by way of contradiction that  $\ell > 1$ .

Let  $k$  be the smallest positive integer such that  $(ka, kb)$  is a reachable winning position. Then  $ka = \text{lcm}(a, m) = \text{lcm}(a, a + b) = a(a_0 + b_0)$ , implying that  $k = a_0 + b_0$ . Thus  $\delta < k$ , so the positions  $(\delta a, \delta b + um)$  are reachable for all  $u \geq 0$  by the following sequence of moves:

$$\begin{array}{c}
 (0, 0) \xrightarrow{(+a,+b)} (a, b) \xrightarrow{(+a,+b)} (2a, 2b) \xrightarrow{(+a,+b)} \cdots \xrightarrow{(+a,+b)} (\delta a, \delta b) \\
 \underbrace{\qquad\qquad\qquad\qquad\qquad}_{\delta \text{ times of } (+a,+b)} \\
 \xrightarrow{(+b,+a)} ((\delta - 1)a, (\delta - 1)b + m) \xrightarrow{(+a,+b)} (\delta a, \delta b + m) \\
 \vdots \\
 \xrightarrow{(+b,+a)} ((\delta - 1)a, (\delta - 1)b + um) \xrightarrow{(+a,+b)} (\delta a, \delta b + um).
 \end{array} \left. \begin{array}{l} \text{ } \\ \text{ } \end{array} \right\} \begin{array}{l} u \text{ times of } (+b, +a) \\ \text{ and } (+a, +b) \end{array}$$

Since  $\delta = \gcd(m, n)$ , there exist positive integers  $u$  and  $v$  such that  $\delta b = vn - um$ . Hence,  $(\delta a, \delta b + um)$  is a reachable winning position of the form  $(x, 0)$  where  $x \not\equiv 0 \pmod{m}$ , which is a contradiction. Therefore,  $\ell = 1$  and  $m = \gcd(a, b)\gcd(m, n)$ .

It remains to consider the case when  $m \neq a + b$ . For each positive integer  $r$ , let  $\mathcal{D}_r = \{\mathbf{p}_{r,i} = (a(r-i)+bi, ai+b(r-i)) : 0 \leq i \leq r\}$ . Note that  $b - a \not\equiv 0 \pmod{m}$ , so for any positive integer  $r$  and  $0 \leq i \leq r$ ,  $a(r-i)+bi$  and  $a(r-i-1)+b(i+1)$  are not both congruent to 0 modulo  $m$ . In other words,  $\mathbf{p}_{r,i}$  and  $\mathbf{p}_{r,i+1}$  are not both winning positions. As a result, if both  $\mathbf{p}_{r,i}$  and  $\mathbf{p}_{r,i+1}$  are reachable positions, then at least one of the moves

$$\mathbf{p}_{r,i} \xrightarrow{(+b,+a)} \mathbf{p}_{r+1,i+1} \text{ and } \mathbf{p}_{r,i+1} \xrightarrow{(+a,+b)} \mathbf{p}_{r+1,i+1}$$

is valid, implying that  $\mathbf{p}_{r+1,i+1}$  is reachable.

Note that  $\mathbf{p}_{1,0}, \mathbf{p}_{1,1}, \mathbf{p}_{2,0}, \mathbf{p}_{2,1}$ , and  $\mathbf{p}_{2,2}$  are all reachable. Let  $r \geq 2$  such that all positions in  $\{\mathbf{p}_{r,i} : \sigma \leq i \leq \tau\}$  are reachable for some  $0 \leq \sigma < \sigma + 2 \leq \tau \leq r$ . Repeatedly applying the previous argument, we see that all positions in

$$\{\mathbf{p}_{r+1,i} : \sigma + 1 \leq i \leq \tau\} \cup \{\mathbf{p}_{r+2,i} : \sigma + 2 \leq i \leq \tau\} \cup \{\mathbf{p}_{r+3,i} : \sigma + 3 \leq i \leq \tau\} \quad (2)$$

are reachable. Furthermore, we claim that  $\mathbf{p}_{r+2,\sigma+1}, \mathbf{p}_{r+2,\tau+1}, \mathbf{p}_{r+3,\sigma+1}, \mathbf{p}_{r+3,\sigma+2}, \mathbf{p}_{r+3,\tau+1}$ , and  $\mathbf{p}_{r+3,\tau+2}$  are also reachable, and we provide the proof below.

If  $\mathbf{p}_{r,\sigma}$  is a winning position, then  $\mathbf{p}_{r,\sigma} = (0, y_0)$  for some integer  $y_0$ . Hence,  $\mathbf{p}_{r,\sigma+1} = (b - a, y_0 + a - b)$ ,  $\mathbf{p}_{r+1,\sigma+1} = (b, y_0 + a)$ , and  $\mathbf{p}_{r+2,\sigma+1} = (a + b, y_0 + a + b)$  are all reachable non-winning positions, which further implies that both  $\mathbf{p}_{r+3,\sigma+1}$  and  $\mathbf{p}_{r+3,\sigma+2}$  are reachable.

On the other hand, if  $\mathbf{p}_{r,\sigma}$  is not a winning position, then  $\mathbf{p}_{r+1,\sigma}$  is reachable. Now, if  $\mathbf{p}_{r+1,\sigma}$  is a winning position, then  $\mathbf{p}_{r+1,\sigma} = (0, y_1)$  for some integer  $y_1$ . Hence, both  $\mathbf{p}_{r+1,\sigma+1} = (b - a, y_1 + a - b)$  and  $\mathbf{p}_{r+2,\sigma+1} = (b, y_1 + a)$  are reachable non-winning positions, thus both  $\mathbf{p}_{r+3,\sigma+1}$  and  $\mathbf{p}_{r+3,\sigma+2}$  are also reachable. Otherwise, if  $\mathbf{p}_{r+1,\sigma}$  is not a winning position, then  $\mathbf{p}_{r+2,\sigma}$  and  $\mathbf{p}_{r+2,\sigma+1}$  are reachable. Recalling from (2) that  $\mathbf{p}_{r+2,\sigma+2}$  is also reachable, it follows that both  $\mathbf{p}_{r+3,\sigma+1}$  and  $\mathbf{p}_{r+3,\sigma+2}$  are also reachable. Similar arguments will show that  $\mathbf{p}_{r+2,\tau+1}, \mathbf{p}_{r+3,\tau+1}$ , and  $\mathbf{p}_{r+3,\tau+2}$  are all reachable, thus concluding our proof for the claim.

Since  $\mathbf{p}_{r,i} = \mathbf{p}_{r,i'}$  if  $i' = i + \text{lcm}(m, n)$ , the positions in  $\mathcal{D}_r$  are periodic, meaning that as long as  $\tau - \sigma \geq \text{lcm}(m, n)$ , we have  $\{\mathbf{p}_{r,i} : \sigma \leq i \leq \tau\} = \mathcal{D}_r$ . From the claim above, we observe that if all positions in  $\{\mathbf{p}_{r,i} : \sigma \leq i \leq \tau\}$  are reachable for some  $0 \leq \sigma < \sigma + 2 \leq \tau \leq r$ , then all positions in

$$\{\mathbf{p}_{r+1,i} : \sigma + 1 \leq i \leq \tau\} \cup \{\mathbf{p}_{r+2,i} : \sigma + 1 \leq i \leq \tau + 1\} \cup \{\mathbf{p}_{r+3,i} : \sigma + 1 \leq i \leq \tau + 2\}$$

are also reachable. Applying the claim repeatedly, we know that all positions in

$$\begin{aligned} & \{\mathbf{p}_{r+3w+1,i} : \sigma + w + 1 \leq i \leq \tau + 2w\} \cup \{\mathbf{p}_{r+3w+2,i} : \sigma + w + 1 \leq i \leq \tau + 2w + 1\} \\ & \cup \{\mathbf{p}_{r+3w+3,i} : \sigma + w + 1 \leq i \leq \tau + 2w + 2\} \end{aligned}$$

are reachable for all positive integers  $w$ . Hence, for all  $w > \text{lcm}(m, n)$ , all positions in  $\mathcal{D}_{r+3w+1} \cup \mathcal{D}_{r+3w+2} \cup \mathcal{D}_{r+3w+3}$  are reachable. Moreover, since  $\mathcal{D}_r = \mathcal{D}_{r'}$  if  $r' = r + \text{lcm}(m, n)$ , we conclude that every position  $(ai + bj, aj + bi)$  is reachable.

From this, we see that if  $i = \text{lcm}(m, n) - a$  and  $j = b$ , then  $(ai + bj, aj + bi) = (b^2 - a^2, 0)$  is reachable. Based on the assumption that all winning positions are of the form  $(0, y)$ , we have  $m \mid (b^2 - a^2)$ . Similarly, letting  $i = n$  and  $j = \text{lcm}(m, n)$ , we know that both  $(ai + bj, aj + bi) = (an, 0)$  and  $(aj + bi, ai + bj) = (bn, 0)$  are reachable. Again, since all winning positions are of the form  $(0, y)$ , we have  $m \mid an$  and  $m \mid bn$ . This implies that  $m \mid \gcd(a, b)n$ , thus  $m \mid \gcd(a, b)\gcd(m, n)$ .  $\square$

## Acknowledgment

These results are based on work supported by the National Science Foundation under grant number DMS-1852378.

## References

- [1] J. Harrington, K. Karhadkar, M. Kohutka, T. Stevens, T.W.H. Wong, Two dependent probabilistic chip-collecting games, *Discrete Appl. Math.* 288 (2021) 74–86.
- [2] H.H. Leung, T. Thanatipanonda, A probabilistic two-pile game, *J. Integer Seq.* 22 (2019) 19.4.8.
- [3] H.H. Leung, T. Thanatipanonda, Game of pure chance with restricted boundary, *Discrete Appl. Math.* 283 (2020) 613–625.
- [4] T.W.H. Wong, J. Xu, A probabilistic take-away game, *J. Integer Seq.* 21 (2018) 18.6.3.