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A B S T R A C T   

Cyanobacteria are the most prevalent bloom-forming harmful algae in freshwater systems around the world. 
Adequate sampling of affected systems is limited spatially, temporally, and fiscally. Remote sensing using space- 
or ground-based systems in large water bodies at spatial and temporal scales that are cost-prohibitive to standard 
water quality monitoring has proven to be useful in detecting and quantifying cyanobacterial harmful algal 
blooms. This study aimed to identify a regional ‘universal’ multispectral reflectance model that could be used for 
rapid, remote detection and quantification of cyanoHABs in small- to medium-sized productive reservoirs, such 
as those typical of Oklahoma, USA. We aimed to include these small waterbodies in our study as they are 
typically overlooked in larger, continental wide studies, yet are widely distributed and used for recreation and 
drinking water supply. We used Landsat satellite reflectance and in-situ pigment data spanning 16 years from 38 
reservoirs in Oklahoma to construct empirical linear models for predicting concentrations of chlorophyll-a and 
phycocyanin, two key algal pigments commonly used for assessing total and cyanobacterial algal abundances, 
respectively. We also used ground-based hyperspectral reflectance and in-situ pigment data from seven reservoirs 
across five years in Oklahoma to build multispectral models predicting algal pigments from newly defined 
reflectance bands. Our Oklahoma-derived Landsat- and ground-based models outperformed established 
reflectance-pigment models on Oklahoma reservoirs. Importantly, our results demonstrate that ground-based 
multispectral models were far superior to Landsat-based models and the Cyanobacteria Index (CI) for detect
ing cyanoHABs in highly productive, small- to mid-sized reservoirs in Oklahoma, providing a valuable tool for 
water management and public health. While satellite-based remote sensing approaches have proven effective for 
relatively large systems, our novel results indicate that ground-based remote sensing may offer better cyanoHAB 
monitoring for small or highly dendritic turbid lakes, such as those throughout the southern Great Plains, and 
thus prove beneficial to efforts aimed at minimizing public health risks associated with cyanoHABs in supply and 
recreational waters.   

1. Introduction 

Cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters 
are a topic of global concern (Paerl and Barnard, 2020). Blooms are 
increasing in frequency and magnitude due, in part, to increased 
anthropogenic nutrient loading (Paerl and Paul, 2012). CyanoHABs are 
particularly problematic because many species of harmful algae produce 
toxins that pose health risks to humans and other animals through 
exposure by toxin consumption, inhalation, and topical contact (Ham
bright et al., 2014; Hilborn and Beasley, 2015; Plaas and Paerl, 2021). 

While some cyanotoxins may be only dermatotoxic, producing mild to 
moderate allergic reactions, common cyanotoxins, such as microcystin, 
cylindrospermopsin, saxitoxin, and anatoxin are powerful hepato- and 
neurotoxins that can cause chronic illness and death. With increasing 
threats of cyanoHAB development in inland waters, there is an equally 
increasing need for rigorous monitoring for cyanobacteria and their 
toxins to minimize public health risk associated with cyanoHABs (Paerl 
and Barnard, 2020). 

Unfortunately, cyanoHAB monitoring today is highly insufficient for 
the needs of health risk management (Almuhtaram et al., 2021). 
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Historically, cyanoHAB assessment has been based on standard limno
logical monitoring of water quality with focus on criteria, such as water 
clarity or concentrations of chlorophyll-a and nutrients. Monitoring of 
cyanoHAB densities and cyanotoxins requires specialized skill and 
instrumentation and is thus generally conducted routinely only in lakes 
that provide water supply to large metropolitan communities. Similar 
routine cyanoHAB monitoring for the vast majority of lakes and reser
voirs in rural settings is physically and economically impractical 
(Almuhtaram et al., 2021). High-frequency autonomous monitoring is 
possible with expensive, high-maintenance monitoring platforms (Coad 
et al., 2014). However, sufficient spatial coverage, particularly for 
moderate- to large-sized dendritic reservoirs, with tens to hundreds of 
semi-enclosed bays and coves (areas with high recreational use), would 
be prohibitively expensive. To minimize potential health risks associ
ated with cyanoHAB toxin exposure in such systems, lake management 
and public health agencies need new tools that are amenable to broad 
and simple implementation across multiple and diverse systems, 
particularly those supporting high recreational tourism. 

An early solution to the monitoring needs of public health protection 
emerged as remote measurement of solar reflectance by satellite-based 
sensors was shown to be effective and economically beneficial in 
assessing general chlorophyll-a concentrations in surface waters (Gons 
et al., 2002; Stroming et al., 2020). Satellite imagers have the potential 
to allow monitoring without the expensive person-hours and equipment 
required for a physical visit to a lake or a permanent autosampler/
profiler, due to their large spatial coverage (~900–90,000 m2) which 
can collect images for many lakes simultaneously and their fine tem
poral resolution (daily to fortnightly flyovers, depending on satellite). 
Obviously, satellites are expensive, but many currently in use for earth 
observations were launched by public entities that offer users 
open-access data (images), thus providing lake managers a low-cost 
option for surface water observation. 

Successful application of satellite-based remote sensing to cyanoHAB 
assessment, particularly for large waterbodies (Coffer et al., 2020; 
Urquhart et al., 2017; Wynne et al., 2010), has fueled a search for uni
versal models that can predict concentrations of chlorophyll-a and 
phycocyanin, two key algal pigments commonly used for assessing total 
and cyanobacterial algal abundances (Shi et al., 2019). However, there 
are well-known limitations that may interfere with a satellite-based 
approach, including significant loss of usable images due to cloud 
cover (Ju and Roy, 2008) and sun-glint contamination (Overstreet and 
Legleiter, 2017). Moreover, satellite sensors frequently used for remote 
sensing of HABs (MODerate resolution Imaging Spectroradiometer, 
MODIS, aboard the National Aeronautics and Space Administration’s 
(NASA) Terra and Aqua satellites; MEdium Resolution Imaging Spec
trometer, MERIS, aboard the European Space Agency’s (ESA) Envisat-1 
satellite; and Ocean Land Colour Instrument, OLCI, a follow-up to ESA’s 
MERIS) were built for a combination of atmosphere, terrestrial, and 
oceanic applications (Barnes et al., 1998; Nieke et al., 2012; Rast et al., 
1999). The sensors on these satellites quantify reflectance from rela
tively large areas (e.g., 250 × 250 to 500 × 500 m) in each pixel. This 
resolution is not amenable for observing most inland lakes and reser
voirs that are either too small or are highly dendritic in structure, such 
that many water pixels can be contaminated by littoral, shoreline, and 
terrestrial reflectance (Verpoorter et al., 2014; Wetzel, 2001). Addi
tionally, water levels in smaller water bodies fluctuate seasonally, 
making the delineation between water and non-water contamination 
notoriously difficult (Zou et al., 2017), especially with low spatial res
olution instruments. These spatial resolution limitations have led to a 
lack of data for smaller waterbodies in the remote sensing literature and 
the call for development and use of satellites with spatial resolutions of 
30 × 30 m or smaller (Beck et al., 2016; Urquhart et al., 2017; Coffer 
et al., 2020). 

An alternative to satellite-based remote sensing is the use of ground- 
based sensors, which do not suffer from the previously mentioned sat
ellite limitations, like atmospheric interference (Wu et al., 2019). 

Ground-based instruments with multispectral sensors have many ad
vantages to satellites, like the ability to capture images with very fine 
spatial resolution, flexible temporal resolution, and rapid data 
turn-around time; studies suggest ground-based instruments will pro
vide better capability for monitoring cyanoHABs than satellite-based 
remote sensing (Wu et al., 2019). There are commercially available 
sensors for use on ground-based instruments, but most were designed for 
terrestrial application. No commercially available sensors have a band 
designed specifically for phycocyanin. Fernandez-Figueroa et al. (2021) 
found commercially available cameras and multispectral sensors were 
more sensitive to chlorophyll-a than phycocyanin in eutrophic ponds. 
Multispectral sensors built for detection of phycocyanin are needed for 
adequate monitoring of cyanoHABs (Almuhtaram et al., 2021; Fernan
dez-Figueroa et al., 2021). 

In this study, we sought a universal multispectral reflectance model 
that could be used for rapid, remote detection and quantification of 
cyanoHABs in reservoirs that are relatively small or highly dendritic, 
productive, and often turbid, like those in Oklahoma. We aimed to 
explore the effectiveness of satellite-based multispectral models for 
predicting chlorophyll-a and phycocyanin concentrations in Oklahoman 
reservoirs in comparison to new ground-based multispectral models 
derived from the same Oklahoma systems. Our results show that the 
published models had little to no predictive power with respect to 
assessing cyanoHABs in a study system outside those used to establish 
the models, and that ground-based sensors and multispectral models, 
particularly for phycocyanin, were far superior to Landsat-based sensors 
and models for assessing cyanoHABs in small, dendritic, productive 
reservoirs in Oklahoma. 

2. Materials and methods 

2.1. Study sites 

Oklahoma is an ideal study system for turbid, small- to medium-sized 
reservoirs. The majority of Oklahoma lakes are smaller than the average 
American football field (i.e., ca. 0.5 ha, Zou et al., 2017) or are highly 
dendritic, with high shoreline to surface area ratios (aka, shoreline 
development; (Wetzel, 2001)). Oklahoma lakes are typical of lakes in the 
southern Great Plains with high turbidity, high chlorophyll-a, and 
frequent cyanoHABs (Oklahoma Water Resources Board, 2017). Lakes in 
Oklahoma are used primarily for water supply and recreation, and 
therefore monitoring harmful algal blooms is necessary to protect public 
health (Smithee et al., 2012). 

With these characteristics in mind, we compared reflectance-algal 
pigment models using Landsat satellite data and ground-based hyper
spectral reflectance. We built empirical models relating satellite spectral 
reflectance to chlorophyll-a (Table. S1) and phycocyanin (Table. S2) 
concentrations from 38 lakes (N = 1060 paired observations) sampled 
between 2001 – 2017 and ground-based reflectance to chlorophyll-a (N 
= 124) and phycocyanin (N = 125) concentrations from 7 lakes sampled 
between 2012 – 2016 (see Fig. 1A and B for map of sample locations). 
We also compared our Oklahoma-specific models to published models. 

2.2. Satellite reflectance data 

The Enhanced Thematic Mapper Plus (ETM+) and Operational Land 
Imager (OLI) are multispectral sensors onboard the Landsat 7 and 
Landsat 8 satellites, respectively, that consist of different spectral bands 
(ETM+ has eight bands and OLI has 11 bands) that record select areas of 
the electromagnetic spectrum (please see Irons et al. (2012) for details 
on the sensors and bands). These two satellites were chosen over other 
potential sensors (e.g., MERIS, OLCI, MSI) for this study due to the 
relatively small pixel size (30 × 30 m) of the ETM+ and OLI sensors and 
the eight-day revisit time between the satellites. Sentinel-3A OLCI was 
not chosen due to its large pixel size of 300 m which is difficult to resolve 
on small, dendritic Oklahoma reservoirs (see Fig. S6 for Landsat and 
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Sentinel-3A image comparison) and it only became operational in 2016, 
years after much of our in-situ water sampling Sentinel-2A MSI has a 
smaller pixel size (10 and 20 m) to Landsat (30 m) and a few more 
spectral bands that might be more useful than Landsat. One limitation of 
Sentinel-2A MSI, much like Landsat, is that it does not have a spectral 
band to measure phycocyanin. In addition, it was launched in 2015, 
after which only ~7% of our in-situ samples occurred. Thus, use of 
Sentinel-2A MSI would markedly decrease the data available for 
modeling in this study. 

Surface reflectance data were obtained from EROS Data Center, 
Sioux Falls, SD (USGS) for each site-date combination. Surface reflec
tance data are generated by the USGS from Level 1 Digital Number (DN) 
products by applying a MODIS/6S atmospheric correction routine using 
the Landsat Ecosystem Disturbance Adaptive Processing System 
(LEDAPS) software (Masek et al., 2006). Images (N = 247) were 
matched with in-situ measurements within a ± 7-day window of the 
sampling date, ensuring a difference of no more than seven days be
tween the satellite image and the in-situ measurements. This window 
was informed by a concurrent study measuring temporal autocorrelation 
in cyanobacterial blooms in Oklahoma (Beyer and Hambright, 2017) 
which showed that proxies (chlorophyll-a and phycocyanin) for cya
nobacterial abundance during bloom periods were strongly temporally 
autocorrelated over a period of 10–11 days. 

Images were visually screened for cloud cover and excluded if the 
lake area had >10% cloud cover. Since July 14, 2003, the Landsat 7 
ETM+ Scan Line Corrector has been turned off due to an instrument 
failure, leaving stripes of missing data across images (Markham et al., 
2004). To minimize the potential impact of missing data, and to account 
for the anchored swing radius of the boat under changing winds and 
currents, we averaged reflectance values from nine pixels (a 3 × 3 grid 
consisting of the sampling point pixel and the eight surrounding pixels) 
for each site. This approach maximized the number of usable data points 
and achieved the most representative sample for each reflectance mea
sure (Baban, 1993). Reflectance data were extracted from images using 

R (R Development Core Team, 2014) (see Supplemental for code). The 
data were then plotted and screened for high reflectance outliers 
(reflectance greater than 1). Water reflectance is much lower than land 
reflectance, so high reflectance values could indicate shoreline, or bot
tom interference, or an object (e.g., a boat) in the pixel. 

2.3. Ground-based reflectance data 

We collected in-situ hyperspectral reflectance data from seven lakes 
(see Fig. 1C for map) over a period spanning 2012–2016 using an ASD 
FieldSpec spectroradiometer (Malvern Panalytical, Malvern, United 
Kingdom). At each lake, the ASD was calibrated using a Spectralon 
reflectance panel (Labsphere, North Sutton, NH, USA). At each pelagic 
site (n = 14) and shoreline site on Lake Thunderbird (n = 12), the optical 
probe was held over the non-shaded side of the boat or boat dock at a 45- 
degree angle to the water and five spectra were recorded. These five 
spectra were averaged for each site to minimize the impact of sun glint 
or water waves and the resulting spectra were used in downstream an
alyses. For many of these lakes, we had repeat visits to multiple sites 
(Table. S3) and where feasible we took measurements at multiple lo
cations on the lake to increase our spatial coverage. In total, we collected 
hyperspectral data from 132 site-date combinations. 

Quality control and quality assurance were performed on the spectra. 
Spectra were visually examined, and six spectra were discarded: three 
due to the loss of the raw files, one due to an abnormal horizontal spike 
at 1000 nm, one due to abnormal low reflectance values, and another 
due to an outlier in the limnological data. Each spectrum was matched 
with same day in-situ pigment data. One additional site-date combina
tion was discarded due to lack of corresponding limnological data and 
another was missing only chlorophyll-a data. The final working sample 
size was 125 for phycocyanin and 124 for chlorophyll-a. 

2.4. In-situ surface water pigment data 

Each satellite image and ground-based measurement has a corre
sponding pigment measurement from an Oklahoma lake. These data 
were collected by personnel in the Plankton Ecology and Limnology Lab 
(PELL) at the University of Oklahoma, as well as the Oklahoma Water 
Resources Board (OWRB) and the Grand River Dam Authority (GRDA). 
For the satellite dataset, 38 lakes were sampled between 2001 – 2017 for 
a total of 1060 chlorophyll-a data points (Fig. S1; Table. S1) and 97 
phycocyanin data points (Fig. S3; Table. 2). For the ground-based 
measurements, seven lakes were sampled between 2012 – 2016 for a 
total of 124 chlorophyll-a (Fig. S4; Table. S3) and 125 phycocyanin data 
points (Fig. S5; Table. S3). 

Lake sampling by PELL is briefly summarized here, for details see 
Hambright et al. (2010). At each site, a Hydrolab DS5X (OTT Hydromet, 
Kempten, Germany) sonde was used to measure phycocyanin (PCY) 
concentrations (starting in 2009). Although PCY in nature will generally 
be bound within cells, the Hydrolab PCY sensor was calibrated using 
serial dilutions of biologically relevant levels of pure PCY solution 
(Sigma Aldrich) and thus provides an underestimate of the actual 
amount of PCY in lakes. Nevertheless, relative changes can still provide 
meaningful insight into seasonality and site-to-site comparisons. Such 
PCY measurements have previously been found to correlate with cya
nobacterial biomass (Thomson-Laing et al., 2020). At deeper sites, 
measurements were taken in the upper 10 m of the water column at 1-m 
intervals, and at shallow sites measurements were taken at 0.5-meter 
intervals through the entire water column (on average around 2 m). 
Phycocyanin measurements were averaged across the photic zone (as 
determined by a LI-COR light meter (LI-COR Biosciences, Lincoln, NE, 
USA) or 2.5 times the Secchi depth). For acetone-extracted chlor
ophyll-a, depth-integrated water samples were taken from the photic 
zone depth or the entire water column, whichever was shallower, and 
placed into acid-washed, deionized- and sample-rinsed Nalgene bottles, 
and kept on ice prior to filtration. The water was filtered onto 

Fig. 1. Map of study sites in the US state of Oklahoma for (A) satellite-based 
chlorophyll-a model (N = 191), (B) satellite-based phycocyanin model (N =

11), and (C) ground-based multispectral chlorophyll-a and phycocyanin models 
(N = 45). Each point represents one site. Darker colors indicate overlap of 
geographically close sites. 
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25-mm-diameter GF/F filters and stored in the freezer until chlor
ophyll-a extraction. In a reduced light environment, the filters were 
homogenized with a small volume of 70% acetone using a mortar and 
pestle, then incubated in 70% acetone at 4–8◦C for 6–24 h. Samples were 
centrifuged prior to analysis on a Turner Designs 700 (pre-2012) or 
Trilogy (2012-present) bench-top fluorometers (Arar and Collins, 1997). 

The OWRB and GRDA collected water samples from the upper 0.5 m 
for chlorophyll analysis. The agencies did not measure phycocyanin and 
both used the previously described EPA chlorophyll-a acetone extraction 
method. For the satellite dataset, OWRB contributed 836 data points, 
GRDA contributed 56, and PELL contributed a total of 168. For the 
ground-based dataset, all chlorophyll-a (N = 124) and phycocyanin (N 
= 125) pigment data points were contributed by PELL. 

2.5. Landsat multispectral models 

To quantify cyanoHABs in Oklahoma, we built empirical linear 
regression models using the chlorophyll-a, phycocyanin, and satellite 
reflectance values (see Fig. 2 for methods diagram). We used Landsat 
band ratios as our predictors because spectral ratios have been shown to 
be more robust than single bands (Vincent et al., 2004). We eliminated 
potential collinearity in the models using variance inflation factors (VIF) 
by sequentially removing the predictors with the highest VIF score until 
all scores were at the predetermined threshold of 10 (Zuur et al., 2010). 
The spectral ratios used to determine the final chlorophyll-a model 
included the following band ratios: Blue:Green, Red:Blue, Green:Red, 
Blue:Near Infared (NIR), and NIR:Red; and in the PCY model: Blue: 
Green, Green:Red, NIR:Red, and Red:NIR. We used Bayesian Informa
tion Criterion (BIC) to select the model that explained the most variance 
in the response variable using the fewest predictors (Schwarz, 1978). All 
statistical analyses were completed in the R environment (version 
4.2.1). 

To test how published models effectively predicted cyanoHABs in 
Oklahoma lakes, we applied a set of chlorophyll-a algorithms adapted to 
Landsat 7 from the Landsat 8 models (Landsat 8 bands 2–6 match 
Landsat 7 bands 1–5) in Beck et al. (2016) (Table 1). The algorithms 
from the literature include the Normalized Difference Chlorophyll Index 
(NDCI) (Mishra and Mishra, 2012), the Surface Algal Bloom Index 
(SABI) (Alawadi, 2010), the Fluorescence Line Height algorithm 
focusing on the blue band (FLH blue) (Zhao et al., 2010), the two-band 
algorithm (2BDA) (Gitelson et al., 2003), the three-band algorithm 
(3BDA) (Dall’Olmo and Gitelson, 2005) and the three band-like algo
rithm (KIVU) (Brivio et al., 2001; Kneubühler et al., 2007). We also used 
one established phycocyanin Landsat algorithm from the literature 
(Vincent et al., 2004) to compare with our Landsat phycocyanin model 
(Table 1). These algorithms were chosen in part because they were built 

using Landsat bands or because they have been shown to successfully 
predict chlorophyll-a or phycocyanin. 

Each of the previously mentioned chlorophyll-a models was applied 
to our Oklahoma satellite reflectance data set (N = 1060) and compared 
to in-situ chlorophyll-a values to determine model accuracy. As per the 
original use, each algorithm was solved prior to regressing (meaning 
there is a single regression coefficient for each algorithm). For the 
Vincent et al. (2004) phycocyanin algorithm, we fit a regression coef
ficient to each spectral ratio as was done in the original model. To assess 
the fit of the regressions, we compared the in-situ observed pigment 
values with the predicted algorithm pigment values and evaluated the 
relationship using the root mean square error (RMSE; lower values 
indicate better model fit) and Pearson’s r correlation test (range from +1 
to –1 with numbers closer to 0 indicating no correlation) (Table 3). We 
also report the adjusted R2 of each regression as this is a direct measure 
of model predictability (ranges from 0 to 1 with higher values being 
more predictive). 

In addition to the above-described empirical models, we built 
random forest models to explore the utility of machine learning as an 
approach for generating useful predictive models. We used the ran
domForest function in the randomForest package in R (Liaw and 
Wiener, 2002) to grow random forests with ntree = 500. For both 
chlorophyll-a and phycocyanin models we used the non-collinear pre
dictors described above for the linear models. We chose regression 
random forest because we are most interested in prediction across a 
range of pigment values and they are more comparable to previously 
described linear models. We evaluated model performance similarly to 
the linear models using RMSE and R2 but in addition, we tested signif
icance against a null model. We extracted the performance statistics and 
significance using the rfUtilities package in R using the rf.regression and 
rf.significance functions, respectively (https://cran.r-project.org/we 
b/packages/utility/index.html). 

2.6. Ground-based multispectral models 

We built a semi-empirical model using the ground-based measure
ments by first selecting five bands based on spectral properties of optical 
constituents of cyanobacteria and other non-target components that 
could affect reflectance of light from Oklahoma reservoirs, specifically, 
chlorophyll-a, phycocyanin, and turbidity (see Fig. 3 for methods dia
gram). The medians of the bands were based on published values 
(Matthews, 2011) and the width of the bands were optimized by 
comparing correlations of candidate bands with our measured optical 
constituents (Table 2). We calculated the average reflectance over the 
wavelengths included in the band. Using the bands (described in 
Table 2), we constructed candidate linear models for chlorophyll-a 

Response variables:
In-situ pigment (µg/L)
- Chl-a (N = 1060)
- PCY (N = 97)

Predictor variables:
Satellite – Landsat 7 & 8
- Lakes = 38
- Samples = 1060

Built candidate 
linear models 

relating band ratios 
to pigments

Applied data to 
published 

models (N = 6)

Chose model 
with lowest BIC

Calculated model statistics
- R2

- RMSE
- Pearson’s r

Compared 
performance of our 

models with 
literature models

Fig. 2. Diagram showing satellite model development methods. See methods for details.  
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Table 1 
Band math for each algorithm (derived from Beck et al. 2016, Vincent et al., 2004, and Randolph et al., 2008) used to estimate chlorophyll-a (1–5, 7, 9–10) and 
phycocyanin (6, 8–10) concentrations in Oklahoma lakes and each original citation. In addition, we have listed the type of algorithm and the original location and the 
algorithm for the relevant sensor. Ground-truthed data refers to pigment concentrations from waterbodies that were used to calibrate (build the model) or validate (test 
the model). Please see Eqs. (4) and (5) in Randolph et al. (2008) for complete algorithms.   

Algorithm Equation Citation Type, location Original sensor # 
Ground- 
truthed 
data 

Ground-truthed waterbody Method 

1 NDCI (b4 - b3)/(b4 + b3) Mishra and 
Mishra 
(2012) 

semi- 
empirical, 
oceans 

MERIS 56 Chesapeake Bay, Delaware Bay, 
the river Mississippi Delta 
region, and the Mobile Bay, USA 

Calibrated with 
simulated data, 
validated with field 
data 

2 SABI (b4 - b3)/(b1 + b2) Alawadi 
(2010) 

semi- 
empirical, 
surface 
blooms 

MODIS 0 – Used Chlor-a 
MODIS product to 
validate 

3 FLH blue (b2)-[b3 + (b1 - 
b3)] 

Zhao et al. 
(2010) 

semi- 
empirical, 
oceans 

Hyperspectral 
spectroradio- 
meter 

41 – Validated with 
laboratory cultures 

4 3BDA (b3 - b4)*b4 Dall’Olmo 
and Gitelson 
(2005) 

semi- 
empirical, 
reservoirs 

Hyperspectral 
radiometer 

144 2 sand pit lakes and 2 reservoirs, 
Nebraska; 1 lake, Iowa, USA 

Calibrated with N 
= 86 and 
validation N = 58 

5 KIVU (3BDA – 
like) 

(b1 - b3)/(b2) Brivio et al. 
(2001) 

semi- 
empirical, 
lakes 

Landsat 5 TM 6 Lake Garda, Italy Validated with in- 
situ data 

6 Vincent (b3/ b1) + (b4/b1) 
+ (b4/b3) + (b5/ 
b3) + (b7/b3) +
(b7/b4) 

Vincent et al. 
(2004) 

empirical, 
great lakes 

Landsat 7 ETM+

and Landsat 5 TM 
52 Lake Erie, USA Calibrated model 

with in-situ data 

7 Randolph (chla) (((R(709)/R 
(620))*(0.727 +
bb)) – bb – 0.401) * 
(1/0.68) 

Randolph 
et al. (2008) 

semi- 
empirical, 
reservoirs 

Hyperspectral 
spectroradio- 
meter 

55 Geist and Morse reservoirs, 
Indiana, USA 

Calibrated model 
with in-situ data 

8 Randolph (pcy) ((((R(709)/R 
(620))*(0.727 +
bb)) – bb – 0.281) * 
(1/0.84)) – 
(0.24*achl) 

Randolph 
et al. (2008) 

semi- 
empirical, 
reservoirs 

Hyperspectral 
spectroradio- 
meter 

55 Geist and Morse reservoirs, 
Indiana, USA 

Calibrated model 
with in-situ data 

9 Cyanobacteria 
Index (CI) 

SS(ʎ) = R(ʎ) – R 
(ʎ−) – [R(ʎ+) – R 
(ʎ−)] * 
[(ʎ - ʎ−)/(ʎ+– ʎ−)] 
(CI) = −SS(ʎ) 

Wynne et al. 
(2008) 

empirical, 
lakes 

Hyperspectral 
spectroradio- 
meter, MERIS 

NA Bear Lake, MI, USA; Saginaw 
Bay, Lake Huron, MI, USA 

Calibrated model 
with in-situ 
spectra, validated 
with satellite 
imagery 

10 Cyanobacteria 
Index-multi (CI- 
multi) 

If −SS(665) < 0, 
CI-multi = 0 
If −SS(665) > 0, 
CI-multi = CI 

Matthews 
et al. (2012) 

empirical, 
oceans & 
lakes/ 
reservoirs 

MERIS 74 Benguela (Atlantic Ocean), 
Loskop Dam Reservoir (South 
Africa), Zeekoevlei (South 
Africa), Hartbeespoort Dam 
Reservoir (South Africa) 

Validated with in- 
situ data  

Evaluated model 
performance
- R2

- RMSE Compared 
performance of 
our models with 
literature models

Response variable:
In-situ pigment (µg/L) 
- Chl-a (N = 124)
- PCY (N = 125)

Predictor variables:
Multispectral bands and 
satellite bands from 
hyperspectral data
- Lakes = 7
- Samples = 125

Built candidate linear 
models using custom 
band ratios for both 

pigments

Used simulated 
satellite bands to 

implement published 
models (N = 3)

Chose model with 
lowest AICc

Fig. 3. Diagram showing ground-based model development methods. See methods for details.  
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including all possible combinations of ratios of the five bands and 
selected the best model using the corrected Akaike information criterion 
(AICc). As prediction was our goal, and not inferring causality, we 
moved forward in analyzing the model with the lowest AICc value. This 
process was repeated for phycocyanin. We compared our models (using 
adjusted R2 and RMSE) with the chlorophyll-a and phycocyanin 
nested-band models from Randolph et al. (2008) which have been found 
to accurately predict chlorophyll-a and phycocyanin concentrations 
using hyperspectral data (see Table. 1 for algorithms and see Eqs. (4) and 
(5) in Randolph et al. (2008) for complete algorithms). We also 
compared our models with the Cyanobacterial Index (CI) and updated 
Cyanobacterial Index (CI-multi; Matthews et al., 2012) as defined in 
Coffer et al. (2020), which allows chlorophyll-a reflectance to be 
attributed to cyanobacteria based off the spectral shape at wavelength 
665. To implement the CI and CI-multi algorithms, we first resampled 
our ground-based hyperspectral data to match the bands of MERIS by 
calculating the average reflectance over the wavelengths included in 
each band. Then we calculated CI and CI-multi following the methods of 
Coffer et al. (2020). The CI-multi algorithm is intended to filter out 
samples where phytoplankton composition is dominated by 
non-cyanobacteria. As such, we removed samples from further analysis 
(including model fit calculations) if the algorithm indicated cyanobac
teria were not present. CI and CI-multi were converted to chlorophyll-a 
(µg/L) using the equation in (Seegers et al., 2021). 

3. Results 

3.1. Satellite models for chlorophyll-a and phycocyanin concentrations in 
small lakes 

The best chlorophyll-a model built using Oklahoma data (N = 1060) 
contained four Landsat ETM+ and OLI band ratios: Blue:Green, 
Red:Blue, Blue:NIR, and NIR:Red Table 3.7). 

Chl − a = 71.8 − 37.3 (Blue:Green) − 10.1 (Red:Blue) − 6.6 (Blue:NIR)

− 3.8 (NIR:Red),

(1) 

Based on the adjusted R2, RMSE, and Pearson’s r correlation coeffi
cient, our Oklahoma-derived model outperformed all other models 
(Table 3.1–6), although they had relatively low predictive power. Of the 
literature algorithms, the KIVU algorithm (adapted from Beck et al., 
2016) performed the best, having the lowest RMSE and highest adjusted 
R2 values, although it had low predictability. The remainder of the 
literature models performed poorly with little to no predictive power for 
algal pigments in Oklahoma lakes (Table 3.1–6). 

The initial performance of our chlorophyll-a model was poor. This 
poor performance could be due in part to the skewed nature of our data, 
with the majority of the chlorophyll-a values falling between 2 and 30 
µg/L (Fig. S1). To test if this skew in the data was causing poor pre
diction in the model we resampled chlorophyll-a data to create a more 
even distribution. Specifically, the original data was sorted into 30 in
tervals. The intervals containing the chlorophyll-a values 2–37 µg/L 

(intervals 2–8) were randomly subsampled without replacement to 
reduce the whole data set by approximately half (N = 511) (Fig. S2). We 
retained all higher chlorophyll-a values, because while we believe the 
original data distribution is reflective of total chlorophyll-a values seen 
annually in Oklahoma lakes, we are interested in predicting the higher 
chlorophyll-a values that would be associated with a bloom. We then 
applied the best chlorophyll-a model (Eq. (1)) to the new data set (N =
511) and found the predictability did not improve from the full data set. 
The literature algorithms were also tested on the reduced dataset and 
there was no improvement in performance (Table S4.1–6). All models, 
including our own, showed systematic bias where samples with medium 
to high (30–150 µg/L) observed chlorophyll-a values had much lower 
predicted values, never exceeding 30 µg/L (Fig. 4A). 

The best phycocyanin (N = 97) model built using Oklahoma data 
used two band ratios: Blue:Green and Red:NIR (Table 3.10). 

PCY = 146.7 − 124.5 (Blue:Green) − 16.7 (Red:NIR), (2) 

This phycocyanin model underpredicted at higher values, meaning it 
predicted much lower phycocyanin values than were observed (Fig. 4B). 
We also tested a phycocyanin model from the literature, the Vincent 
et al. (2004) model, on the Oklahoma dataset. The Vincent et al. (2004) 
model performed better than the model from this paper (Table 3.9). 

The chlorophyll-a random forest model constructed using satellite 
data performed poorly, only explaining 3.07% of the variance (Table 
3.11) and it was not significantly different when tested against a null 
model built with the same data. The phycocyanin random forest 
explained 32.9% of the variance and performed better than our linear 
two-band ratio model but not as well as Vincent’s satellite phycocyanin 
model (Table 3.9–10, 11). 

3.2. Ground-based models for chlorophyll-a and phycocyanin 
concentrations in small lakes 

To test the efficacy of ground-based sensors at quantifying cyano
HABs in Oklahoma we built a semi-empirical multispectral model using 
hyperspectral data taken from Oklahoma lakes over a variety of condi
tions to predict chlorophyll-a and phycocyanin concentrations, respec
tively. The best chlorophyll-a model included six band ratios (1:3, 1:5, 
2:3, 3:4, 3:5, 4:5; see Table 2 for band information, see Eq. S1 for full 
equation). The CI, CI-multi, and Randolph et al. (2008) chlorophyll-a 
nested-band-ratio model were also applied to the Oklahoma lakes data 
and resulted in slightly lower performance compared to our six-band 
ratio multispectral model (Table 4.1–4; Fig. 5). 

Our best phycocyanin model included seven band ratios (1:2, 1:5, 
2:3, 2:4, 3:4, 3:5, 4:5; see Table 2 for band information, see Eq. S2 for full 
equation). Comparison of the predictions of our phycocyanin seven- 
band ratio multispectral model with those of a common nested-band- 
ratio model (Randolph et al., 2008), CI, and CI-multi revealed 
increased accuracy with the seven-band ratio approach (Table 4.5–8; 
Fig. 6). 

4. Discussion 

The frequency and magnitude of cyanoHABs are increasing globally, 
in pace with climate and land-use change, and increasing nutrient 
pollution (Huisman et al., 2018). Detecting and tracking blooms in a 
timely manner for risk management has proven to be difficult and costly 
(Almuhtaram et al., 2021). Remote sensing has the potential to alleviate 
the insufficiencies of traditional monitoring by providing fast and less 
expensive information while allowing the end user to monitor many 
lakes simultaneously. Ground-based remote sensing has increased in 
popularity in recent years and appears more adaptable for many 
different systems and scenarios, thus it could be better for monitoring 
cyanoHABs. Here, we assessed the possibility of using satellite- and 
ground-based remote sensing for quantifying cyanoHABs in Oklahoma 
reservoirs. 

Table 2 
List of bands used to build a semi-empirical model to estimate phycocyanin. 
Bands were developed from hyperspectral data collected from Oklahoma lakes.  

Band Purpose Minimum 
reflectance (nm) 

Maximum 
reflectance (nm) 

1 chlorophyll absorption 
minimum 

546 591 

2 phycocyanin trough 610 620 
3 chlorophyll absorption 

trough 
660 670 

4 chlorophyll trough 678 684 
5 reference band 700 710  
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We were unsuccessful in finding a `universal’ satellite pigment 
model for Oklahoma lakes. Our Landsat-based models for chlorophyll-a 
derived from Oklahoma reservoirs were only marginally better than 
published algorithms, and none of them were sufficiently predictive (R2 

≤ 0.035) for implementation in monitoring programs. Even though we 
were using mostly Landsat 7 data, our results corroborate those of Beck 
et al. (2016), who applied these algorithms to Landsat 8 simulated im
agery and found poor performance across the board except with the 
Fluorescence Line Height violet algorithm. We were unable to use this 
algorithm because Landsat 7 lacks a comparable band to Landsat 8′s 
Coastal/Aerosol Band 1 (0.435–0.451 nm) used in the algorithm. While 
it was our `best’ performing literature algorithm, we expected better 

performance from the KIVU 3-band-like algorithm because it performed 
well on Lake Garda when adapted from MERIS bands to Landsat 5 TM 
bands (Brivio et al., 2001), which are comparable to Landsat 7 ETM+

bands. The other algorithms were originally created using other sensors, 
such as MERIS and MODIS, or hyperspectral data that was translated to 
match Landsat satellite bands. This cross-sensor translation was likely 
another contributor to the poor performance of the models (Beck et al., 
2016). 

The poor prediction of the algorithm may also reflect the size of our 
data set, consisting of 1060 paired data points (much larger than pre
vious studies) and a large number of waterbodies used (N = 38). The 
reflectance values we measured ranged from 0.0025 to 0.37 and Landsat 

Fig. 4. Comparison of predicted and observed 
in-situ concentrations of algal pigments based 
on models built using Landsat 7 and 8 reflec
tance values. (A) The best chlorophyll-a (N =

1060) model based on BIC had an adjusted R2 

= 0.035 and p ≤ 0.001. (B) The best phycocy
anin (N = 97) model based on BIC had an 
adjusted R2 = 0.29 and p ≤ 0.001. Dashed line 
shows a 1:1 ratio between observed and pre
dicted pigment concentrations. Darker areas in 
(A) indicate increased overlap of points.   

Fig. 5. Comparison of the observed in-situ chlorophyll-a 
and the predicted chlorophyll-a concentrations from (A) 
the Oklahoma multispectral 6-band ratio model from this 
paper (N = 124), (B) the Randolph model (N = 124), (C) 
the Cyanobacterial Index (CI) (N = 124), and (D) the 
updated Cyanobacterial Index (CI-multi) (N = 37). See 
Table 4 for model fit statistics. The solid line shows a 1:1 
ratio between observed and predicted pigment concentra
tions to visually show the accuracy of the predicted values 
(closer to the line is more accurate). Darker areas indicate 
increased overlap of points.   
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surface reflectance values ranged from 0 to 1, meaning instrument 
saturation is unlikely the cause of the poor performance (Landsat surface 
reflectance data, 2015). Instead, this prediction bias is likely due to the 
distribution of the original data, where the majority of the chlorophyll-a 
values ranged 2–30 µg/L. Considering the wide temporal nature of our 
data (2001–2017; all months retained), we believe this chlorophyll-a 
distribution is representative of natural conditions. Even when the data 
were subsampled to reduce the potential bias of abundant values in the 
low-medium chlorophyll-a range, the models did not improve in accu
rately predicting chlorophyll-a. The previously published models also 
displayed this bias, with no model accurately predicting values of 
chlorophyll-a greater than ~30 µg/L, and following a similar shape as 
displayed in Fig. 4A. With the lack of correspondence between high 
observed and predicted chlorophyll-a values it seems unlikely a uni
versal Landsat algorithm will accurately predict chlorophyll-a concen
trations in Oklahoma. 

The phycocyanin satellite models performed better than the chlo
rophyll-a models and specifically, the phycocyanin model from Vincent 
et al. (2004) outperformed our model (Table. 3). The better performance 
by the phycocyanin models was a surprising finding considering current 
Landsat sensor bands are not optimized for detecting phycocyanin. This 
pigment, found only in cyanobacteria, is characterized by an absorption 
trough around 621 nm (Almuhtaram et al., 2021). Due to the lack of a 
specific band for phycocyanin, cyanobacteria are detected using bands 
associated with chlorophyll-a when using Landsat satellites, making 
cyanobacteria frequently indistinguishable from aquatic macrophytes 
(Oyama et al., 2015). The detection of cyanobacteria is also confounded 
by turbidity, as bands commonly used in chlorophyll-a retrieval algo
rithms are susceptible to interference by suspended sediment (Almuh
taram et al., 2021; Shi et al., 2019). In fact, others have hypothesized the 

Fig. 6. Comparison of the observed and predicted con
centrations of phycocyanin based on the Oklahoma multi
spectral 7-band ratio model (N = 125) from this paper (A), 
the Randolph model (N = 125) (B), CI (C), and CI-multi 
(D). Model fit statistics can be found in Table 4. The CI (N 
= 125) and CI-multi (N = 38) were used to ‘predict’ 
phycocyanin. There are currently no models translating the 
raw model output (CI, CI-multi) to µg/L phycocyanin, 
therefore observed phycocyanin was plotted against the 
raw model outputs (unitless) to test correlation. The solid 
line in panels A and B shows a 1:1 ratio between observed 
and predicted pigment concentrations to visually show the 
accuracy of the predicted values (closer to the line is more 
accurate). Darker areas indicate increased overlap of 
points.   

Table 3 
Performance of satellite algorithms for chlorophyll-a and phycocyanin estima
tion on Oklahoma lakes was evaluated using the adjusted R2 from the given 
linear model, the root mean square error (RMSE), and Pearson’s r correlation 
coefficient. *The RMSE for the resampled model should not be directly 
compared to the other models because the dataset used to build the model was 
different.   

Algorithm 
name 

Adjusted 
R2 

Model P- 
value 

RMSE Pearson’s r  

Chlorophyll-a algorithms 
1 NDCI −0.0009 0.81 17.57 0.007 
2 SABI 0.001 0.16 17.55 0.044 
3 FLHB −0.0009 0.90 17.57 0.004 
4 2BDA 0.002 0.10 17.55 0.050 
5 3BDA 0.0003 0.25 17.56 0.035 
6 KIVU (3BDA – 

like) 
0.003 0.05 17.54 0.060 

7 this paper (full 
dataset) 

0.035 <0.001 17.22 0.198 

8 this paper 
(resampled 
dataset) 

0.025 <0.001 21.95* 0.170  

Phycocyanin algorithms 
9 Vincent 0.384 <0.001 16.85 0.650 
10 this paper 0.291 <0.001 18.49 0.553  

Random 
Forests 

R2 % Variance 
explained 

RMSE Model 
significantly 
different from 
null? 

11 chlorophyll-a 0.011 3.07 17.30 No 
12 phycocyanin 0.321 32.86 18.18 No  
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Vincent et al. (2004) algorithm is simply detecting turbidity or chlor
ophyll-a which are correlated with phycocyanin (Hunter et al., 2010). 
The phycocyanin dataset (N = 97) was an order of magnitude smaller 
than chlorophyll-a dataset and only represented two lakes, Lake Thun
derbird and Lake Texoma. The small number of lakes could contribute to 
the increased predictability in these models, potentially due to a 
decrease in noise by fewer optical characteristic combinations in the 
data, as discussed above. Since our phycocyanin model outperformed 
our chlorophyll-a model, we suggest implementing the phycocyanin 
model if satellites are the only possible source of spectral data. Unlike 
chlorophyll-a, phycocyanin has been shown to be well correlated with 
cyanobacterial biomass (Thomson-Lang 2020). 

We utilized multiple commonly used metrics for determining model 
performance of the satellite models, including R2, RMSE, and Pearson’s 
R. The next step would be to validate these models by collecting addi
tional ground-reference data and using the independent dataset to 
measure model performance. We did not do this for the chlorophyll-a 
and phycocyanin Landsat models simply due to their poor performance 
on the initial data pool. 

As for our random forest models built using satellite data, the chlo
rophyll-a random forest regression model performed better than all of 
the literature models but slightly worse than our satellite linear model. 
The phycocyanin random forest model was better than our model but 
not better than the best phycocyanin model, the Vincent model. We 
thought because random forests are based on non-linear models that 
they would outperform the multiple linear regression models in our 
dataset, but this was not the case. While random forest modeling is a 
newer, machine learning approach that might be touted as a better so
lution to model problems, one of the drawbacks is the difficulty of 
implementation of the model, as you cannot ‘see’ the model or report a 
formula describing the forest. Trying more ‘sophisticated’ modeling 
techniques may not be the correct solution if your underlying data is not 
showing any predictive trends using simpler modeling methods. 

Many of the current standard algorithms were calibrated or validated 
on very few ground-reference data points from a small number of lakes. 
Literature algorithms were calibrated on five or fewer lakes. The number 
of unique optical characteristics, such as different colors and levels of 
turbidity and suspended solids, would likely increase with lake number, 
thus increasing the overall variability in satellite reflectance values. One 
of the obvious goals of universal algorithms is to predict cyanoHABs 
across many different lakes and seasons, therefore we think it is 
important to include a wide range of training data for model building. 
The lack of representative training data could be why the published 
satellite-based algorithms, for which training data does not include data 
from Oklahoma lakes, perform worse than our model on Oklahoma 
lakes. Given the failure of satellite-based models in predicting chloro
phyll-a within a single U.S. state, we are doubtful that a truly universal 

model can be developed. 
The disconnect between satellite observations and actual pigment 

concentrations could also be due to satellite sensors not capturing all 
water-leaving reflectance due to atmospheric interference or cloud- 
cover, and not capturing data below the surface of the water column, 
because the satellite sensors only measure chlorophyll-a at the surface, 
but in-situ measurements of chlorophyll-a are generally taken across the 
photic zone for mid-column bloom formers. This would cause mid- 
column blooming cyanobacteria or well mixed blooms to appear less 
concentrated or less pigmented than surface blooms (Coffer et al., 
2021a). In Oklahoma lakes, for example, we frequently experience 
Raphidiopsis blooms and other non-surface bloomers (Antunes et al., 
2015). These problems would be less of an issue for ground-based sen
sors that are not affected by atmospheric aerosols and when suspended 
close to the water surface can capture a large majority of the water 
leaving reflectance. 

Our ground-based multispectral models reliably predicted both 
chlorophyll-a and phycocyanin in Oklahoma lakes and performed 
remarkably better than the satellite models. The chlorophyll-a six-band 
ratio model we developed slightly outperformed Randolph et al. (2008) 
nested-band ratio chlorophyll-a model, with both models having similar 
R2 values. The CI and CI-multi performed substantially worse than our 
model and Randolph et al. (2008) model. All four models generally 
underpredicted at very high levels of chlorophyll-a. Our phycocyanin 
seven-band ratio model outperformed the phycocyanin nested-band 
ratio model from Randolph et al. (2008), the CI model, and CI-multi 
model. Notably, our model performed better on extreme phycocyanin 
values (> 50 µg/L) compared with the established model which had 
systematic underprediction of high phycocyanin events. While Coffer 
et al. (2021b, 2021a, 2020) and Handler et al. (2023) have successfully 
used MERIS and OLCI data to detect cyanobacteria in larger Oklahoma 
reservoirs, we did not corroborate these results with our simulated data. 
The CI-multi includes a filtering step with the aim of removing 
non-cyanobacterial blooms after calculating the CI (Coffer et al., 2020). 
This filtering step is meant to remove samples that are not from cya
nobacteria dominated systems, i.e., classified as CI-noncyano. This step 
seemed to fail in our system, with 87 samples filtered out. With the 
exception of one high outlier, the phycocyanin in these samples ranged 
between 3 and 71 µg/L phycocyanin, which are low to moderate levels 
of phycocyanin. We know that many of the lakes removed at this step are 
cyanobacteria dominated systems. For example, both Lake Texoma and 
Grand Lake O’ the Cherokees have a rich history of cyanobacteria 
blooms. This failure of the CI-multi algorithm is problematic because 
predicting these low to moderate phycocyanin concentrations allows us 
to detect blooms as they develop. If detected early, measures may be 
taken to lower risks to humans, like closing swim beaches and posting 
educational signs. False negatives (model returning no bloom when 
blooms are present) could lead to failure to act to protect the public, 
pets, and livestock. 

Our ground-based models, including the simulated CI models, out
performed all of the Landsat models. The poor performance of Landsat 
models is possibly due in part to the Landsat’s band limitations. With 
limited band number and wavelength range, we found that even with a 
variety of algorithms employing different band math strategies, Landsat 
was not useful for detecting pigments in reservoirs. Researchers have 
moved away from using band ratios in recent years in favor of spectral 
shape algorithms, such as CI, or maximum peak height algorithms 
(Coffer et al., 2020; Matthews and Odermatt, 2015). We did find that our 
satellite models relying on band ratios were substantially worse than the 
CI models. Our results suggest that satellites where the CI could be 
implemented, such as Sentinel-3, would be better able to detect cya
nobacteria blooms than Landsat. In Oklahoma, we found that 
ground-based instruments show more promise than satellite-based in
struments for monitoring cyanoHABs, but other methods exist for cya
nobacteria bloom detection with different accuracy, scale, and cost 
trade-offs. These alternative approaches include various satellite 

Table 4 
Performance of hyperspectral algorithms for chlorophyll-a and phycocyanin 
estimation on Oklahoma lakes evaluated using the adjusted R2 from the given 
linear model, the root mean square error (RMSE), and Pearson’s r correlation 
coefficient.   

Algorithm name Adjusted 
R2 

Model P- 
value 

RMSE Pearson’s r  

Chlorophyll-a algorithms 
1 Randolph et al. 

model 
0.509 <0.001 22.07 0.717 

2 CI 0.472 <0.001 20.26 0.690 
3 CI-multi 0.376 <0.001 21.93 0.617 
4 this paper 0.660 <0.001 16.03 0.814  

Phycocyanin algorithms 
5 Randolph et al. 

model 
0.592 <0.001 34.99 0.772 

6 CI 0.594 <0.001 69.33 0.773 
7 CI-multi 0.519 <0.001 69.33 0.723 
8 this paper 0.816 <0.001 19.16 0.904  
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sensors, ground-based remote sensing, airplane-based sensors, and flu
orometry options. Satellites with freely available images excel in the 
category of low cost, but as we have demonstrated, they lack accuracy 
and do not sample at spatial scales relevant to small or dendritic reser
voirs (Fig. S6). Additionally, clouds are often an underestimated prob
lem in collecting regular satellite images, which may limit timely 
detection of algal blooms (Ju and Roy 2008). As we have shown, 
ground-based remote sensing offers high accuracy at a fine scale but has 
an upfront cost for multi- or hyper-spectral sensors. As a bonus, such 
sensors could be deployed aerially, giving broader coverage. For 
example, the National Ecological Observatory Network (NEON) has 
deployed airplane-based hyperspectral sensors at NEON sites to measure 
land-cover and vegetation metrics at a fine scale without the interfer
ence of clouds (https://www.neonscience.org/data-collection/imagi 
ng-spectrometer). One trade-off of ground-based sensors is they are 
spatially limited compared to satellites. A multispectral sensor sus
pended above a lake would cover a very small area. A sensor attached to 
a drone or airplane would afford increased spatial coverage at the lim
itation of drone battery life or airplane fly time. Another option, 
deployed sondes, have high up-front and maintenance costs but provide 
highly accurate measurements on a fine scale. Manual sampling of water 
followed by in-lab extraction of chlorophyll has a high cost of 
human-hours but is accurate and operates on a fine scale (Almuhtaram 
et al., 2021). Given our results, we suggest that ground-based remote 
sensing offers the best of both worlds in terms of cost, accuracy, and 
scale for many scenarios, however the needs of the researcher or water 
quality manager will determine which of these approaches best meet 
their needs based on cost, accuracy, and scale. 

Our finding that models using ground-based multispectral data bet
ter predict chlorophyll-a and phycocyanin concentrations compared to 
models built using Landsat imagery is likely applicable to small lakes 
and reservoirs around the globe, though transferring models such as ours 
to other systems may require additional ground-reference data and 
model adjustment. That is, we do not propose our model as a ̀ universal’ 
model, but rather we suggest our approach of ground-based remote 
sensing coupled with custom spectral bands and band ratios. The lakes 
we analyzed in Oklahoma range from 49 to 42,695 hectares in size 
(Table S1) and are representative of smaller lakes and reservoirs across 
the southern Great Plains. There are millions of small lakes in the world 
(Verpoorter et al., 2014; Cael and Seekell, 2016) and reservoirs cover 
approximately 0.26 Mkm2 globally (Downing et al., 2006). Many of 
these small waterbodies experience cyanoHABs that cannot be clearly 
resolved by larger satellite pixels. Because of this resolution limitation, 
small lakes and reservoirs are likely underrepresented in remote sensing 
monitoring programs. While Landsat has the appropriate pixel size for 
sensing small waterbodies, it does not have a band useful for detecting 
phycocyanin. As previously concluded by Beck et al. (2016), future 
satellite-based remote sensing for cyanoHABs will require higher reso
lution (30-m pixels or less), and more appropriate bands that are nar
rower and similar to those of WorldView-2/-3 and Sentinel-3. In the 
meantime, ground-based sensors offer an excellent alternative for small- 
to mid-sized lakes. Timely and effective monitoring of water quality in 
small to moderate size lakes cannot rely on satellite sensors with inap
propriate spatial resolution and spectral band design. Instead, we 
recommend the novel and herein demonstrated successful approach of 
ground-based remote sensing with customized bands. Our approach will 
be a valuable addition to water quality monitoring efforts in small and 
dendritic reservoirs. 

5. Conclusion 

Based on a multi-year, multi-lake comparison of in-situ algal pigment 
data with Landsat- and ground-derived reflectance models, we conclude 
that:  

• Oklahoma-derived Landsat- and ground-based models outperform 
established reflectance-pigment models for Oklahoma reservoirs.  

• Ground-based, multispectral models are superior to Landsat-based 
models for predicting cyanoHABs in Oklahoma reservoirs. 

• Ground-based and multispectral sensors can offer cost-efficient so
lutions for cyanoHAB monitoring in small- to mid-sized lakes where 
satellite images may not be appropriate. 
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Figure S1. Distribution of chlorophyll-a in the full satellite 
dataset (n = 1160). 

Figure S2. Distribution of chlorophyll-a in the re-sampled 
dataset (n = 511). 
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Figure S3. Distribution of phycocyanin in the full satellite 
dataset (n = 97). 

Figure S4. Distribution of chlorophyll-a in the ground-based 
dataset (n = 124). 
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Figure S5. Distribution of phycocyanin in the ground-based 
dataset (n = 125). 

Figure S6. Comparison of Sentinel-3a and Landsat 8 images to demonstrate how the 
difference in pixel size impacts lake resolvability. Lake Thunderbird is pictured here at the 
center of each image, the Shawnee Twin Lakes in the upper right-hand corner, and Lake 
Stanley Draper to the upper left-hand corner of the images. (A) shows a Sentinel-3b (pixel 
size 300 x 300 m) false color composite of bands 1, 2, and 3 built using Sentinels Application 
Platform (SNAP) from the European Space Agency (ESA) and (B) shows a Landsat-8 (pixel 
size 30 x 30 m) false color composite of bands 2, 3, and 4 built in QGIS. 
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Table S1. Site information for the ground-truthed satellite chlorophyll-a data. Sampling 
organizations included Oklahoma Water Resources Board (OWRB), Plankton Ecology and 
Limnology Lab (PELL), and Grand River Dam Authority (GRDA). 

Lake Site Number of 
samples 

Sampling 
organization 

Latitude Longitude Lake area 
(hectare) 

Altus  Site 2 3 OWRB 34.90247 -99.2937 2,600 
Altus  Site 3 2 OWRB 34.92733 -99.3130  
Altus  Surface 2 OWRB 34.88722 -99.2949  
Arcadia  Site 2 5 OWRB 35.63511 -97.3714 737 
Arcadia  Site 3 5 OWRB 35.64489 -97.3853  
Arcadia  Site 4 5 OWRB 35.62770 -97.3939  
Arcadia  Site 5 5 OWRB 35.61594 -97.4059  
Atoka  Site 2 6 OWRB 34.47904 -96.0908 2,307 
Atoka  Site 3 5 OWRB 34.50523 -96.0754  
Atoka  Site 4 3 OWRB 34.54017 -96.0462  
Atoka  Surface 3 OWRB 34.44624 -96.0872  
Birch 77 1 OWRB 36.51479 -96.1912 460 
Canton  Site 2 2 OWRB 36.12572 -98.6014 3,201 
Canton  Site 3 3 OWRB 36.14255 -98.6339  
Canton  Site 4 1 OWRB 36.14261 -98.6549  
Canton  Site 5 1 OWRB 36.09548 -98.5867  
Canton  Surface 3 OWRB 36.09337 -98.5883  
Chickasha  Site 2 4 OWRB 35.14737 -98.1502 837 
Chickasha  Site 3 4 OWRB 35.14995 -98.1307  
Chickasha  Site 4 1 OWRB 35.13559 -98.1402  
Chickasha  Site 5 1 OWRB 35.14373 -98.1368  
Chickasha  Surface 4 OWRB 35.13199 -98.1329  
Claremore  Site 2 4 OWRB 36.34031 -95.5725 190 
Claremore  Site 3 4 OWRB 36.34092 -95.5599  
Claremore  Site 4 2 OWRB 36.33351 -95.5786  
Claremore  Surface 4 OWRB 36.32514 -95.5796  
Clinton  Site 3 1 OWRB 35.42906 -99.2231 136 
Copan  Site 2 4 OWRB 36.91109 -95.9564 1,963 
Copan  Site 3 4 OWRB 36.92622 -95.9528  
Copan  Site 4 4 OWRB 36.94839 -95.9401  
Copan  Site 5 4 OWRB 36.93934 -95.9559  
Copan  Surface 4 OWRB 36.88641 -95.9679  
Crowder  Site 2 11 OWRB 35.39980 -98.7074 64 
Cushing 80 2 NLA 36.00416 -96.879 170 
Dave Boyer 73 2 NLA 34.37438 -98.3367 49 
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El Reno 2 5 PELL 35.52391 -97.9897 69 
El Reno 3 5 PELL 35.51955 -97.9962  
Ellsworth  Site 2 5 OWRB 34.82185 -98.356 2,266 
Ellsworth  Site 4 4 OWRB 34.81763 -98.3397  
Ellsworth  Site 5 3 OWRB 34.84256 -98.3584  
Eufaula  Site 11 6 OWRB 35.22886 -95.6338 42,695 
Eufaula  Site 12 5 OWRB 35.20047 -95.5938  
Eufaula  Site 13 5 OWRB 35.16440 -95.5995  
Eufaula  Site 14 5 OWRB 35.10144 -95.6472  
Eufaula  Site 15 4 OWRB 35.05004 -95.6711  
Eufaula  Site 16 4 OWRB 35.01996 -95.6023  
Eufaula  Site 17 4 OWRB 34.97471 -95.6303  
Eufaula  Site 2 6 OWRB 35.42767 -95.6001  
Eufaula  Site 3 5 OWRB 35.38221 -95.6300  
Eufaula  Site 4 6 OWRB 35.30045 -95.5540  
Eufaula  Site 5 4 OWRB 35.28483 -95.5147  
Eufaula  Site 6 5 OWRB 35.30704 -95.4376  
Eufaula  Site 8 6 OWRB 35.23392 -95.4999  
Eufaula  Site 9 6 OWRB 35.22526 -95.5963  
Eufaula  Surface 4 OWRB 35.45436 -95.6129  
Fort Cobb  Site 1 4 OWRB 35.16215 -98.4568 1,619 
Fort Cobb  Site 2 5 OWRB 35.18004 -98.4623  
Fort Cobb  Site 3 5 OWRB 35.18973 -98.4734  
Fort Cobb  Site 4 3 OWRB 35.21948 -98.5095  
Fort Cobb  Site 5 4 OWRB 35.20804 -98.4911  
Fort Cobb  Site 6 1 OWRB 35.21919 -98.4804  
Foss  Site 2 4 OWRB 35.56204 -99.2101 3,561 
Foss  Site 3 5 OWRB 35.57753 -99.2352  
Foss  Site 4 5 OWRB 35.60198 -99.2327  
Foss  Site 5 5 OWRB 35.61109 -99.2619  
Foss  Surface 4 OWRB 35.53936 -99.1890  
Grand  Site 10 3 OWRB 36.66528 -94.7703 16,908 
Grand  Site 11 3 OWRB 36.65250 -94.7183  
Grand  Site 12 3 OWRB 36.69889 -94.7431  
Grand  Site 13 3 OWRB 36.73333 -94.7739  
Grand  Site 2 2 OWRB 36.51028 -94.9650  
Grand  Site 3 2 OWRB 36.54417 -94.9303  
Grand  Site 4 2 OWRB 36.60361 -94.9039  
Grand  Site 5 3 OWRB 36.56361 -94.8606  
Grand  Site 6 1 OWRB 36.56306 -94.7692  
Grand  Site 7 3 OWRB 36.57194 -94.8331  
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Grand  Site 8 3 OWRB 36.62278 -94.8433  
Grand  Site 9 3 OWRB 36.63750 -94.8014  
Grand  Surface 3 OWRB 36.47472 -95.0347  
Grand 12 5 GRDA 36.64998 -94.7084  
Grand 13 6 GRDA 36.68269 -94.7728  
Grand 14 5 GRDA 36.57437 -94.7899  
Grand 15 5 GRDA 36.62237 -94.9079  
Grand 18 1 GRDA 36.49758 -95.0109  
Grand 2 1 GRDA 36.62441 -94.9007  
Grand 21 1 GRDA 36.50138 -94.9242  
Grand 22 6 GRDA 36.55447 -94.8449  
Grand 26 5 GRDA 36.56396 -94.9128  
Grand 27 1 GRDA 36.53917 -94.8389  
Grand 28 1 GRDA 36.53807 -94.8352  
Grand 29 5 GRDA 36.54386 -94.8436  
Grand 7 6 GRDA 36.49768 -94.9185  
Grand 8 1 GRDA 36.50451 -94.9646  
Greenleaf  Site 2 4 OWRB 35.63017 -95.1600 229 
Greenleaf  Site 3 4 OWRB 35.64416 -95.1522  
Greenleaf  Site 4 2 OWRB 35.64852 -95.1408  
Greenleaf  Site 5 2 OWRB 35.62183 -95.1605  
Greenleaf  Surface 3 OWRB 35.61719 -95.1664  
Hefner  Site 2 3 OWRB 35.56324 -97.6041 1,000 
Hefner  Site 3 3 OWRB 35.56239 -97.5827  
Hefner  Site 4 1 OWRB 35.55528 -97.5929  
Hefner  Site 5 1 OWRB 35.57542 -97.5896  
Hefner  Surface 2 OWRB 35.58102 -97.5974  
Hudson 34 2 GRDA 36.37373 -95.1225 4,856 
Hudson 35 2 GRDA 36.30724 -95.1813  
Hudson 87 1 OWRB 36.82300 -96.0476  
Hulah 85 1 OWRB 36.93107 -96.1030 1,445 
Jean Neustadt 90 1 OWRB 34.28478 -97.1710 187 
Kaw  Site 2 5 OWRB 36.74621 -96.8831 6,879 
Kaw  Site 3 4 OWRB 36.76728 -96.8269  
Kaw  Site 4 3 OWRB 36.79969 -96.8291  
Kaw  Site 5 3 OWRB 36.79038 -96.9080  
Kaw  Surface 2 OWRB 36.70118 -96.9242  
Keystone  Site 10 4 OWRB 36.19266 -96.3167 10,523 
Keystone  Site 2 3 OWRB 36.19016 -96.2537  
Keystone  Site 3 4 OWRB 36.23228 -96.3001  
Keystone  Site 4 4 OWRB 36.23771 -96.3551  
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Keystone  Site 6 4 OWRB 36.16468 -96.2934  
Keystone  Site 8 4 OWRB 36.13969 -96.3285  
Keystone  Site 9 4 OWRB 36.16656 -96.3126  
Keystone  Surface 3 OWRB 36.14726 -96.2573  
Keystone 89 1 OWRB 36.15061 -96.4397  
New Spiro  Site 2 3 OWRB 35.19968 -94.6198 83 
Okemah  Site 2 2 OWRB 35.52537 -96.3203 308 
Okemah  Site 3 2 OWRB 35.52375 -96.3323  
Okemah  Site 4 1 OWRB 35.50891 -96.3231  
Overholser  Site 2 4 OWRB 35.49974 -97.6766 640 
Overholser  Site 3 3 OWRB 35.50848 -97.6700  
Overholser  Site 5 1 OWRB 35.50661 -97.6777  
Overholser  Surface 4 OWRB 35.48716 -97.6682  
Overholser 75 1 OWRB 35.49774 -97.6793  
Perry  Site 2 4 OWRB 36.24243 -97.3409 227 
Perry  Site 3 3 OWRB 36.23827 -97.3496  
Perry  Site 5 2 OWRB 36.24680 -97.3398  
Ponca  Site 2 2 OWRB 36.73613 -97.0343 326 
Ponca  Site 4 2 OWRB 36.72930 -97.0294  
Ponca  Site 5 2 OWRB 36.71885 -97.0167  
RC Longmire  Site 2 3 OWRB 34.75152 -97.0511 301 
RC Longmire  Site 4 2 OWRB 34.75060 -97.0447  
RC Longmire  Site 5 1 OWRB 34.75533 -97.0521  
Rocky (Hobart)  Site 2 2 OWRB 35.17303 -99.0768 138 
Rocky (Hobart)  Site 3 3 OWRB 35.18312 -99.0738  
Rocky (Hobart)  Site 4 2 OWRB 35.17694 -99.0788  
Taylor (Marlow)  Site 2 2 OWRB 34.75048 -97.9278 92 
Tenkiller Ferry  Site 2 7 OWRB 35.67443 -94.9764 5,221 
Tenkiller Ferry  Site 3 5 OWRB 35.73905 -94.9543  
Tenkiller Ferry  Site 4 3 OWRB 35.75542 -94.9051  
Tenkiller Ferry  Site 6 2 OWRB 35.76634 -94.8872  
Tenkiller Ferry  Site 7 6 OWRB 35.63938 -95.0146  
Tenkiller Ferry  Surface 2 OWRB 35.60002 -95.0446  
Tenkiller Ferry 91 1 OWRB 35.75412 -94.9149  
Texoma  Site 10 3 OWRB 33.78593 -96.7962 35,613 
Texoma  Site 11 4 OWRB 33.86820 -96.8383  
Texoma  Site 12 4 OWRB 33.89428 -96.8888  
Texoma  Site 2 3 OWRB 33.89302 -96.6113  
Texoma  Site 3 3 OWRB 33.95756 -96.5871  
Texoma  Site 4 3 OWRB 34.00762 -96.6299  
Texoma  Site 6 4 OWRB 33.85604 -96.6915  
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Texoma  Site 7 4 OWRB 33.82814 -96.7376  
Texoma  Site 8 4 OWRB 33.84694 -96.7801  
Texoma  Site 9 4 OWRB 33.81989 -96.8054  
Texoma  Surface 4 OWRB 33.82997 -96.5768  
Texoma Buncombe 

North 5 
1 PELL 33.87486 -96.8073  

Texoma Buncombe 
Pelagic 2 

30 PELL 33.87125 -96.8074  

Texoma Buncombe 
South 1 

1 PELL 33.86158 -96.8069  

Texoma Dam North 1 PELL 33.83689 -96.5892  
Texoma Dam Pelagic 

4 
27 PELL 33.82319 -96.5902  

Texoma Islands 
Pelagic 3 

30 PELL 33.82875 -96.7304  

Texoma Red River 
Pelagic 1 

30 PELL 33.89742 -96.8874  

Texoma Washita 
Pelagic 5 

29 PELL 33.96403 -96.5769  

Texoma Washita 
South 1 

1 PELL 33.89358 -96.5808  

Thunderbird 1 42 OWRB 35.22333 -97.2208 2,456 
Thunderbird 2 56 OWRB 35.23889 -97.2289  
Thunderbird 3 54 OWRB 35.26222 -97.2389  
Thunderbird 4 56 OWRB 35.22444 -97.2508  
Thunderbird 5 54 OWRB 35.22028 -97.2906  
Thunderbird 7 23 OWRB 35.20306 -97.2581  
Thunderbird 8 31 OWRB 35.28641 -97.2449  
Thunderbird Fisherman’s 

point 
4 PELL 35.22862 -97.2460  

Thunderbird North 
Sentinel 

4 PELL 35.23219 -97.3075  

Webbers Falls  Site 2 4 OWRB 35.60167 -95.1817 4,694 
Webbers Falls  Site 4 2 OWRB 35.63056 -95.2717  
Webbers Falls  Site 6 4 OWRB 35.70000 -95.2314  
Webbers Falls  Surface 3 OWRB 35.55472 -95.1706  
WRHoloway  Site 2 6 OWRB 36.24564 -95.0996 318 
WRHoloway  Site 3 9 OWRB 36.25695 -95.0868  
WRHoloway  Site 4 3 OWRB 36.25100 -95.1021  
WRHoloway  Site 5 1 OWRB 36.25209 -95.0931  
WRHoloway  Surface 10 OWRB 36.25634 -95.1023  
WRHoloway 36 2 GRDA 36.25576 -95.1006  
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WRHoloway 38 1 GRDA 36.25562 -95.0900  
 

 

 

 

 

Table S2. Site information for the satellite ground-truthed phycocyanin samples. Sampling 
organization included the Plankton Ecology and Limnology Lab (PELL). 

Lake Site Number of 
samples 

Sampling 
organization 

Latitude Longitude 

Texoma Buncombe 
North 5 

1 PELL 33.87486 -96.8073 

Texoma Buncombe 
Pelagic 2 

17 PELL 33.87125 -96.8074 

Texoma Buncombe 
South 1 

1 PELL 33.86158 -96.8069 

Texoma Dam North 1 PELL 33.83689 -96.5892 
Texoma Dam Pelagic 4 17 PELL 33.82319 -96.5902 
Texoma Islands Pelagic 

3 
17 PELL 33.82875 -96.7304 

Texoma Red River 
Pelagic 1 

17 PELL 33.89742 -96.8874 

Texoma Washita 
Pelagic 5 

17 PELL 33.96403 -96.5769 

Texoma Washita South 
1 

1 PELL 33.89358 -96.5808 

Thunderbird Fisherman’s 
Point 

4 PELL 35.22862 -97.2460 

Thunderbird North Sentinel 4 PELL 35.23219 -97.3075 
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Table S3. Ground-based site information. Sampling organization included the Plankton Ecology 
and Limnology Lab (PELL). 

Lake Site Number of 
samples 

Sampling 
organization 

Latitude Longitude 

Ellsworth Dam 1 PELL 34.79550 -98.36640 
El Reno 1 1 PELL 35.52718 -97.98684 
El Reno 2 1 PELL 35.52373 -97.98925 
El Reno 3 1 PELL 35.51960 -97.99631 
El Reno 4 1 PELL 35.52640 -97.98934 
El Reno 5 1 PELL 35.52110 -97.99271 
Grand Drip 4 PELL 36.49969 -94.95614 
Grand Drown 4 PELL 36.49842 -94.91957 
Grand Duck 5 PELL 36.53644 -94.97219 
Grand Grand 5 PELL 36.68269 -94.77286 
Grand Honey 5 PELL 36.57511 -94.78772 
Grand Horse 5 PELL 36.62122 -94.90856 
Grand IS1 5 PELL 36.49250 -95.04489 
Grand IS3 5 PELL 36.50858 -94.95539 
Grand Sail 5 PELL 36.64175 -94.81478 
Grand Tree 5 PELL 36.56339 -94.91283 
Grand Wood 5 PELL 36.53644 -94.82236 
Overholser 1 1 PELL 35.48720 -97.66820 
Overholser 2 1 PELL 35.49970 -97.67660 
Overholser 4 1 PELL 35.49230 -97.67560 
Rocky Dam 1 PELL 35.16720 -99.07430 
Texoma Buncombe 

North 4 
1 PELL 33.87317 -96.80725 

Texoma Buncombe 
North 5 

3 PELL 33.87472 -96.80722 

Texoma Buncombe 
Pelagic 2 

4 PELL 33.87125 -96.80744 

Texoma Buncombe 
South 1 

2 PELL 33.86158 -96.80692 

Texoma Buncombe 
South 2 

1 PELL 33.86572 -96.80764 

Texoma Dam North 3 PELL 33.83689 -96.58919 
Texoma Dam Pelagic 4 4 PELL 33.82319 -96.59022 
Texoma Islands Pelagic 

3 
4 PELL 33.82875 -96.73044 

Texoma Red River 
Pelagic 1 

3 PELL 33.89481 -96.89172 
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Texoma Washita 
Pelagic 5 

4 PELL 33.96403 -96.57692 

Texoma Washita South 
1 

3 PELL 33.87553 -96.61975 

Texoma Washita South 
2 

3 PELL 33.92900 -96.57131 

Thunderbird 1 2 PELL 35.22275 -97.22237 
Thunderbird 2 2 PELL 35.23855 -97.22916 
Thunderbird 3 2 PELL 35.26260 -97.23883 
Thunderbird 4 2 PELL 35.22381 -97.25139 
Thunderbird 5 1 PELL 35.22016 -97.28863 
Thunderbird 6 1 PELL 35.23065 -97.30523 
Thunderbird 8 2 PELL 35.28664 -97.24446 
Thunderbird 11 2 PELL 35.21296 -97.30335 
Thunderbird 13 1 PELL - - 
Thunderbird Fisherman’s 

Point 
4 PELL 35.22909 -97.24615 

Thunderbird North Sentinel 4 PELL 35.23194 -97.30929 
Thunderbird Sailboat 4 PELL 35.23037 -97.23629 
 

Table S4. Performance of satellite algorithms on the resampled data set (N = 511) for 
chlorophyll-a estimation on Oklahoma lakes was evaluated using the adjusted R2 from the 
given linear model, the root mean square error (RMSE), and Pearson’s r correlation 
coefficient. *The RMSE for the resampled model should not be directly compared to the other 
models because the dataset used to build the model was different 
 Algorithm name Adjusted 

R2 
Model 
P-value 

RMSE Pearson’s 
r 

Pearson’s r 
P-value 

 Chlorophyll-a algorithms 
1 NDCI (Normalized 

Difference Chlorophyll 
Index) 

-0.0013 0.57 22.26 0.025 0.57 

2 SABI (Surface Algal 
Bloom Index) 

-0.0014 0.58 22.26 0.024 0.58 

3 FLHB (Fluorescence Line 
Height algorithm blue) 

-0.0014 0.59 22.26 0.024 0.59 

4 2BDA (two-band 
algorithm) 

-0.0007 0.42 22.26 0.036 0.42 

5 3BDA (three-band 
algorithm) 

-0.0007 0.43 22.26 0.035 0.43 

6 KIVU (3BDA – like) -0.0009 0.46 22.26 0.029 0.46 
7 this paper (resampled 

dataset) 
0.025 <0.001 21.95 0.170 <0.001 
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Equation for the ground-based chlorophyll-a model. For band information see Table 2. 

CHLA = -222.71 – 100.43(Band1:Band3) + 107.2(Band1:Band5)                                   (eq. S1)  
– 34.52(Band2:Band3) + 564.61(Band3:Band4) – 856.16(Band3:Band5)  
+ 564.63(Band4:Band5) 
 

Equation for the ground-based phycocyanin model. For band information see Table 2. 

PCY = -1311.71 – 161.24 (Band1:Band2) + 145.35 (Band1:Band5) +                             (eq. S2) 
568.31 (Band2:Band3) – 836.64 (Band2:Band4) + 2074.41 (Band3:Band4)  
– 1370.80 (Band3:Band5) + 948.89 (Band4:Band5) 
 
 
 
 
 
 
 
 
R code for processing Landsat images in the R environment: 
 
require(raster) 
require(rgdal) 
require(dplyr) 
require(sp) 
 
#set your working directory, all of your image folders should be in this folder 
your_working_directory <- "K:/Images for qaqc - 10Nov20/Thunderbird8" 
 
setwd(your_working_directory) 
 
file.names <- list.files(your_working_directory) 
 
for (x in 1:length(file.names)){ 
  print(x) 
  holder <- paste0(your_working_directory, file.names[x], "/") 
  file.names[x] <- holder 
} 
 
field_points <- read.csv(file="K:/Images for qaqc - 10Nov20/Thunderbird8.csv") #csv has to be 
set up with longitude in a column before latitude, can have as many lake site combinations as 
needed 
 
#field_points2 <- select(field_points, -Lake) 
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field_points2 <- project(as.matrix(field_points[3:4]), proj="+proj=utm +zone=14 
ellps=WGS84") ##use this if you need to change the projection of the field points, all of the 
images should be in the same projection for each field point file ##for field_points[x:y] put the 
longitude (x) and latitude (y) columns   
 
 
#calculate the extent of the image you need to look at based on field points 
e <- extent(min(field_points2[,1])-1000, max(field_points2[,1])+1000,  
            min(field_points2[,2])-1000,max(field_points2[,2])+1000) 
 
for(j in 1:length(file.names)){ 
   
  bands = list.files(path = paste(file.names[j]), pattern = "sr_band[1-7].tif$", recursive = TRUE) 
##make sure this is correct 
   
  for(i in 1:6){ 
    r=raster(paste(paste(file.names[j]),bands[i],sep='')) 
    r <- crop(r, e) 
    r <- focal(r, w=matrix(1/9, nrow=3, ncol=3), na.rm=TRUE) 
    names(r) <- paste("layer",i) 
    if(i==1){ 
      b=r 
    } 
    else { 
      b=addLayer(b,r) 
    } 
    print(i) 
  } 
 
  #extract points of interest (these represent the average of the 3x3 neighborhood of the point of  
interest) 
  tempDF3x3 <- as.data.frame(extract(b,field_points2)) 
   
  #add info about site 
  tempDF3x3$site <- c(seq(1,1))  
     
  #add filename to df 
  tempDF3x3$filename <- c(rep(file.names[j],1)) #is this the number of sites? 
     
  #rename columns that hold the band data 
  names(tempDF3x3)[1:6] <- c("band_1", "band_2", "band_3", "band_4", "band_5", "band_7") 
 
if(j==1){ 
    masterDF <- tempDF3x3 
  } 
  else{ 
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    masterDF <- bind_rows(masterDF, tempDF3x3) 
  } 
} 
 
#save the surface reflectance to a csv 
write.csv(masterDF, file='./Landsat_sr.csv') 
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