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Cyanobacteria are the most prevalent bloom-forming harmful algae in freshwater systems around the world.
Adequate sampling of affected systems is limited spatially, temporally, and fiscally. Remote sensing using space-
or ground-based systems in large water bodies at spatial and temporal scales that are cost-prohibitive to standard
water quality monitoring has proven to be useful in detecting and quantifying cyanobacterial harmful algal
blooms. This study aimed to identify a regional ‘universal’ multispectral reflectance model that could be used for
rapid, remote detection and quantification of cyanoHABs in small- to medium-sized productive reservoirs, such
as those typical of Oklahoma, USA. We aimed to include these small waterbodies in our study as they are
typically overlooked in larger, continental wide studies, yet are widely distributed and used for recreation and
drinking water supply. We used Landsat satellite reflectance and in-situ pigment data spanning 16 years from 38
reservoirs in Oklahoma to construct empirical linear models for predicting concentrations of chlorophyll-a and
phycocyanin, two key algal pigments commonly used for assessing total and cyanobacterial algal abundances,
respectively. We also used ground-based hyperspectral reflectance and in-situ pigment data from seven reservoirs
across five years in Oklahoma to build multispectral models predicting algal pigments from newly defined
reflectance bands. Our Oklahoma-derived Landsat- and ground-based models outperformed established
reflectance-pigment models on Oklahoma reservoirs. Importantly, our results demonstrate that ground-based
multispectral models were far superior to Landsat-based models and the Cyanobacteria Index (CI) for detect-
ing cyanoHABs in highly productive, small- to mid-sized reservoirs in Oklahoma, providing a valuable tool for
water management and public health. While satellite-based remote sensing approaches have proven effective for
relatively large systems, our novel results indicate that ground-based remote sensing may offer better cyanoHAB
monitoring for small or highly dendritic turbid lakes, such as those throughout the southern Great Plains, and
thus prove beneficial to efforts aimed at minimizing public health risks associated with cyanoHABs in supply and
recreational waters.

1. Introduction

Cyanobacterial harmful algal blooms (cyanoHABs) in freshwaters
are a topic of global concern (Paerl and Barnard, 2020). Blooms are
increasing in frequency and magnitude due, in part, to increased
anthropogenic nutrient loading (Paerl and Paul, 2012). CyanoHABs are
particularly problematic because many species of harmful algae produce
toxins that pose health risks to humans and other animals through
exposure by toxin consumption, inhalation, and topical contact (Ham-
bright et al., 2014; Hilborn and Beasley, 2015; Plaas and Paerl, 2021).
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While some cyanotoxins may be only dermatotoxic, producing mild to
moderate allergic reactions, common cyanotoxins, such as microcystin,
cylindrospermopsin, saxitoxin, and anatoxin are powerful hepato- and
neurotoxins that can cause chronic illness and death. With increasing
threats of cyanoHAB development in inland waters, there is an equally
increasing need for rigorous monitoring for cyanobacteria and their
toxins to minimize public health risk associated with cyanoHABs (Paerl
and Barnard, 2020).

Unfortunately, cyanoHAB monitoring today is highly insufficient for
the needs of health risk management (Almuhtaram et al., 2021).
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Historically, cyanoHAB assessment has been based on standard limno-
logical monitoring of water quality with focus on criteria, such as water
clarity or concentrations of chlorophyll-a and nutrients. Monitoring of
cyanoHAB densities and cyanotoxins requires specialized skill and
instrumentation and is thus generally conducted routinely only in lakes
that provide water supply to large metropolitan communities. Similar
routine cyanoHAB monitoring for the vast majority of lakes and reser-
voirs in rural settings is physically and economically impractical
(Almuhtaram et al., 2021). High-frequency autonomous monitoring is
possible with expensive, high-maintenance monitoring platforms (Coad
et al.,, 2014). However, sufficient spatial coverage, particularly for
moderate- to large-sized dendritic reservoirs, with tens to hundreds of
semi-enclosed bays and coves (areas with high recreational use), would
be prohibitively expensive. To minimize potential health risks associ-
ated with cyanoHAB toxin exposure in such systems, lake management
and public health agencies need new tools that are amenable to broad
and simple implementation across multiple and diverse systems,
particularly those supporting high recreational tourism.

An early solution to the monitoring needs of public health protection
emerged as remote measurement of solar reflectance by satellite-based
sensors was shown to be effective and economically beneficial in
assessing general chlorophyll-a concentrations in surface waters (Gons
et al., 2002; Stroming et al., 2020). Satellite imagers have the potential
to allow monitoring without the expensive person-hours and equipment
required for a physical visit to a lake or a permanent autosampler/-
profiler, due to their large spatial coverage (~900-90,000 m?) which
can collect images for many lakes simultaneously and their fine tem-
poral resolution (daily to fortnightly flyovers, depending on satellite).
Obviously, satellites are expensive, but many currently in use for earth
observations were launched by public entities that offer users
open-access data (images), thus providing lake managers a low-cost
option for surface water observation.

Successful application of satellite-based remote sensing to cyanoHAB
assessment, particularly for large waterbodies (Coffer et al., 2020;
Urquhart et al., 2017; Wynne et al., 2010), has fueled a search for uni-
versal models that can predict concentrations of chlorophyll-a and
phycocyanin, two key algal pigments commonly used for assessing total
and cyanobacterial algal abundances (Shi et al., 2019). However, there
are well-known limitations that may interfere with a satellite-based
approach, including significant loss of usable images due to cloud
cover (Ju and Roy, 2008) and sun-glint contamination (Overstreet and
Legleiter, 2017). Moreover, satellite sensors frequently used for remote
sensing of HABs (MODerate resolution Imaging Spectroradiometer,
MODIS, aboard the National Aeronautics and Space Administration’s
(NASA) Terra and Aqua satellites; MEdium Resolution Imaging Spec-
trometer, MERIS, aboard the European Space Agency’s (ESA) Envisat-1
satellite; and Ocean Land Colour Instrument, OLCI, a follow-up to ESA’s
MERIS) were built for a combination of atmosphere, terrestrial, and
oceanic applications (Barnes et al., 1998; Nieke et al., 2012; Rast et al.,
1999). The sensors on these satellites quantify reflectance from rela-
tively large areas (e.g., 250 x 250 to 500 x 500 m) in each pixel. This
resolution is not amenable for observing most inland lakes and reser-
voirs that are either too small or are highly dendritic in structure, such
that many water pixels can be contaminated by littoral, shoreline, and
terrestrial reflectance (Verpoorter et al., 2014; Wetzel, 2001). Addi-
tionally, water levels in smaller water bodies fluctuate seasonally,
making the delineation between water and non-water contamination
notoriously difficult (Zou et al., 2017), especially with low spatial res-
olution instruments. These spatial resolution limitations have led to a
lack of data for smaller waterbodies in the remote sensing literature and
the call for development and use of satellites with spatial resolutions of
30 x 30 m or smaller (Beck et al., 2016; Urquhart et al., 2017; Coffer
et al., 2020).

An alternative to satellite-based remote sensing is the use of ground-
based sensors, which do not suffer from the previously mentioned sat-
ellite limitations, like atmospheric interference (Wu et al., 2019).

Ground-based instruments with multispectral sensors have many ad-
vantages to satellites, like the ability to capture images with very fine
spatial resolution, flexible temporal resolution, and rapid data
turn-around time; studies suggest ground-based instruments will pro-
vide better capability for monitoring cyanoHABs than satellite-based
remote sensing (Wu et al., 2019). There are commercially available
sensors for use on ground-based instruments, but most were designed for
terrestrial application. No commercially available sensors have a band
designed specifically for phycocyanin. Fernandez-Figueroa et al. (2021)
found commercially available cameras and multispectral sensors were
more sensitive to chlorophyll-a than phycocyanin in eutrophic ponds.
Multispectral sensors built for detection of phycocyanin are needed for
adequate monitoring of cyanoHABs (Almuhtaram et al., 2021; Fernan-
dez-Figueroa et al., 2021).

In this study, we sought a universal multispectral reflectance model
that could be used for rapid, remote detection and quantification of
cyanoHABs in reservoirs that are relatively small or highly dendritic,
productive, and often turbid, like those in Oklahoma. We aimed to
explore the effectiveness of satellite-based multispectral models for
predicting chlorophyll-a and phycocyanin concentrations in Oklahoman
reservoirs in comparison to new ground-based multispectral models
derived from the same Oklahoma systems. Our results show that the
published models had little to no predictive power with respect to
assessing cyanoHABs in a study system outside those used to establish
the models, and that ground-based sensors and multispectral models,
particularly for phycocyanin, were far superior to Landsat-based sensors
and models for assessing cyanoHABs in small, dendritic, productive
reservoirs in Oklahoma.

2. Materials and methods
2.1. Study sites

Oklahoma is an ideal study system for turbid, small- to medium-sized
reservoirs. The majority of Oklahoma lakes are smaller than the average
American football field (i.e., ca. 0.5 ha, Zou et al., 2017) or are highly
dendritic, with high shoreline to surface area ratios (aka, shoreline
development; (Wetzel, 2001)). Oklahoma lakes are typical of lakes in the
southern Great Plains with high turbidity, high chlorophyll-a, and
frequent cyanoHABs (Oklahoma Water Resources Board, 2017). Lakes in
Oklahoma are used primarily for water supply and recreation, and
therefore monitoring harmful algal blooms is necessary to protect public
health (Smithee et al., 2012).

With these characteristics in mind, we compared reflectance-algal
pigment models using Landsat satellite data and ground-based hyper-
spectral reflectance. We built empirical models relating satellite spectral
reflectance to chlorophyll-a (Table. S1) and phycocyanin (Table. S2)
concentrations from 38 lakes (N = 1060 paired observations) sampled
between 2001 - 2017 and ground-based reflectance to chlorophyll-a (N
= 124) and phycocyanin (N = 125) concentrations from 7 lakes sampled
between 2012 - 2016 (see Fig. 1A and B for map of sample locations).
We also compared our Oklahoma-specific models to published models.

2.2. Satellite reflectance data

The Enhanced Thematic Mapper Plus (ETM+) and Operational Land
Imager (OLI) are multispectral sensors onboard the Landsat 7 and
Landsat 8 satellites, respectively, that consist of different spectral bands
(ETM+ has eight bands and OLI has 11 bands) that record select areas of
the electromagnetic spectrum (please see Irons et al. (2012) for details
on the sensors and bands). These two satellites were chosen over other
potential sensors (e.g., MERIS, OLCI, MSI) for this study due to the
relatively small pixel size (30 x 30 m) of the ETM+ and OLI sensors and
the eight-day revisit time between the satellites. Sentinel-3A OLCI was
not chosen due to its large pixel size of 300 m which is difficult to resolve
on small, dendritic Oklahoma reservoirs (see Fig. S6 for Landsat and
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A

Fig. 1. Map of study sites in the US state of Oklahoma for (A) satellite-based
chlorophyll-a model (N = 191), (B) satellite-based phycocyanin model (N =
11), and (C) ground-based multispectral chlorophyll-a and phycocyanin models
(N = 45). Each point represents one site. Darker colors indicate overlap of
geographically close sites.

Sentinel-3A image comparison) and it only became operational in 2016,
years after much of our in-situ water sampling Sentinel-2A MSI has a
smaller pixel size (10 and 20 m) to Landsat (30 m) and a few more
spectral bands that might be more useful than Landsat. One limitation of
Sentinel-2A MSI, much like Landsat, is that it does not have a spectral
band to measure phycocyanin. In addition, it was launched in 2015,
after which only ~7% of our in-situ samples occurred. Thus, use of
Sentinel-2A° MSI would markedly decrease the data available for
modeling in this study.

Surface reflectance data were obtained from EROS Data Center,
Sioux Falls, SD (USGS) for each site-date combination. Surface reflec-
tance data are generated by the USGS from Level 1 Digital Number (DN)
products by applying a MODIS/6S atmospheric correction routine using
the Landsat Ecosystem Disturbance Adaptive Processing System
(LEDAPS) software (Masek et al., 2006). Images (N = 247) were
matched with in-situ measurements within a + 7-day window of the
sampling date, ensuring a difference of no more than seven days be-
tween the satellite image and the in-situ measurements. This window
was informed by a concurrent study measuring temporal autocorrelation
in cyanobacterial blooms in Oklahoma (Beyer and Hambright, 2017)
which showed that proxies (chlorophyll-a and phycocyanin) for cya-
nobacterial abundance during bloom periods were strongly temporally
autocorrelated over a period of 10-11 days.

Images were visually screened for cloud cover and excluded if the
lake area had >10% cloud cover. Since July 14, 2003, the Landsat 7
ETM+ Scan Line Corrector has been turned off due to an instrument
failure, leaving stripes of missing data across images (Markham et al.,
2004). To minimize the potential impact of missing data, and to account
for the anchored swing radius of the boat under changing winds and
currents, we averaged reflectance values from nine pixels (a 3 x 3 grid
consisting of the sampling point pixel and the eight surrounding pixels)
for each site. This approach maximized the number of usable data points
and achieved the most representative sample for each reflectance mea-
sure (Baban, 1993). Reflectance data were extracted from images using

R (R Development Core Team, 2014) (see Supplemental for code). The
data were then plotted and screened for high reflectance outliers
(reflectance greater than 1). Water reflectance is much lower than land
reflectance, so high reflectance values could indicate shoreline, or bot-
tom interference, or an object (e.g., a boat) in the pixel.

2.3. Ground-based reflectance data

We collected in-situ hyperspectral reflectance data from seven lakes
(see Fig. 1C for map) over a period spanning 2012-2016 using an ASD
FieldSpec spectroradiometer (Malvern Panalytical, Malvern, United
Kingdom). At each lake, the ASD was calibrated using a Spectralon
reflectance panel (Labsphere, North Sutton, NH, USA). At each pelagic
site (n = 14) and shoreline site on Lake Thunderbird (n = 12), the optical
probe was held over the non-shaded side of the boat or boat dock at a 45-
degree angle to the water and five spectra were recorded. These five
spectra were averaged for each site to minimize the impact of sun glint
or water waves and the resulting spectra were used in downstream an-
alyses. For many of these lakes, we had repeat visits to multiple sites
(Table. S3) and where feasible we took measurements at multiple lo-
cations on the lake to increase our spatial coverage. In total, we collected
hyperspectral data from 132 site-date combinations.

Quality control and quality assurance were performed on the spectra.
Spectra were visually examined, and six spectra were discarded: three
due to the loss of the raw files, one due to an abnormal horizontal spike
at 1000 nm, one due to abnormal low reflectance values, and another
due to an outlier in the limnological data. Each spectrum was matched
with same day in-situ pigment data. One additional site-date combina-
tion was discarded due to lack of corresponding limnological data and
another was missing only chlorophyll-a data. The final working sample
size was 125 for phycocyanin and 124 for chlorophyll-a.

2.4. In-situ surface water pigment data

Each satellite image and ground-based measurement has a corre-
sponding pigment measurement from an Oklahoma lake. These data
were collected by personnel in the Plankton Ecology and Limnology Lab
(PELL) at the University of Oklahoma, as well as the Oklahoma Water
Resources Board (OWRB) and the Grand River Dam Authority (GRDA).
For the satellite dataset, 38 lakes were sampled between 2001 — 2017 for
a total of 1060 chlorophyll-a data points (Fig. S1; Table. S1) and 97
phycocyanin data points (Fig. S3; Table. 2). For the ground-based
measurements, seven lakes were sampled between 2012 — 2016 for a
total of 124 chlorophyll-a (Fig. S4; Table. S3) and 125 phycocyanin data
points (Fig. S5; Table. S3).

Lake sampling by PELL is briefly summarized here, for details see
Hambright et al. (2010). At each site, a Hydrolab DS5X (OTT Hydromet,
Kempten, Germany) sonde was used to measure phycocyanin (PCY)
concentrations (starting in 2009). Although PCY in nature will generally
be bound within cells, the Hydrolab PCY sensor was calibrated using
serial dilutions of biologically relevant levels of pure PCY solution
(Sigma Aldrich) and thus provides an underestimate of the actual
amount of PCY in lakes. Nevertheless, relative changes can still provide
meaningful insight into seasonality and site-to-site comparisons. Such
PCY measurements have previously been found to correlate with cya-
nobacterial biomass (Thomson-Laing et al., 2020). At deeper sites,
measurements were taken in the upper 10 m of the water column at 1-m
intervals, and at shallow sites measurements were taken at 0.5-meter
intervals through the entire water column (on average around 2 m).
Phycocyanin measurements were averaged across the photic zone (as
determined by a LI-COR light meter (LI-COR Biosciences, Lincoln, NE,
USA) or 2.5 times the Secchi depth). For acetone-extracted chlor-
ophyll-a, depth-integrated water samples were taken from the photic
zone depth or the entire water column, whichever was shallower, and
placed into acid-washed, deionized- and sample-rinsed Nalgene bottles,
and kept on ice prior to filtration. The water was filtered onto
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25-mm-diameter GF/F filters and stored in the freezer until chlor-
ophyll-a extraction. In a reduced light environment, the filters were
homogenized with a small volume of 70% acetone using a mortar and
pestle, then incubated in 70% acetone at 4-8°C for 6-24 h. Samples were
centrifuged prior to analysis on a Turner Designs 700 (pre-2012) or
Trilogy (2012-present) bench-top fluorometers (Arar and Collins, 1997).

The OWRB and GRDA collected water samples from the upper 0.5 m
for chlorophyll analysis. The agencies did not measure phycocyanin and
both used the previously described EPA chlorophyll-a acetone extraction
method. For the satellite dataset, OWRB contributed 836 data points,
GRDA contributed 56, and PELL contributed a total of 168. For the
ground-based dataset, all chlorophyll-a (N = 124) and phycocyanin (N
= 125) pigment data points were contributed by PELL.

2.5. Landsat multispectral models

To quantify cyanoHABs in Oklahoma, we built empirical linear
regression models using the chlorophyll-a, phycocyanin, and satellite
reflectance values (see Fig. 2 for methods diagram). We used Landsat
band ratios as our predictors because spectral ratios have been shown to
be more robust than single bands (Vincent et al., 2004). We eliminated
potential collinearity in the models using variance inflation factors (VIF)
by sequentially removing the predictors with the highest VIF score until
all scores were at the predetermined threshold of 10 (Zuur et al., 2010).
The spectral ratios used to determine the final chlorophyll-a model
included the following band ratios: Blue:Green, Red:Blue, Green:Red,
Blue:Near Infared (NIR), and NIR:Red; and in the PCY model: Blue:
Green, Green:Red, NIR:Red, and Red:NIR. We used Bayesian Informa-
tion Criterion (BIC) to select the model that explained the most variance
in the response variable using the fewest predictors (Schwarz, 1978). All
statistical analyses were completed in the R environment (version
4.2.1).

To test how published models effectively predicted cyanoHABs in
Oklahoma lakes, we applied a set of chlorophyll-a algorithms adapted to
Landsat 7 from the Landsat 8 models (Landsat 8 bands 2-6 match
Landsat 7 bands 1-5) in Beck et al. (2016) (Table 1). The algorithms
from the literature include the Normalized Difference Chlorophyll Index
(NDCI) (Mishra and Mishra, 2012), the Surface Algal Bloom Index
(SABI) (Alawadi, 2010), the Fluorescence Line Height algorithm
focusing on the blue band (FLH blue) (Zhao et al., 2010), the two-band
algorithm (2BDA) (Gitelson et al., 2003), the three-band algorithm
(3BDA) (Dall’Olmo and Gitelson, 2005) and the three band-like algo-
rithm (KIVU) (Brivio et al., 2001; Kneubiihler et al., 2007). We also used
one established phycocyanin Landsat algorithm from the literature
(Vincent et al., 2004) to compare with our Landsat phycocyanin model
(Table 1). These algorithms were chosen in part because they were built

Response variables:
In-situ pigment (pg/L)
- Chl-a (N = 1060)
-PCY (N=97)

Predictor variables:

Applied data to
published
models (N = 6)

using Landsat bands or because they have been shown to successfully
predict chlorophyll-a or phycocyanin.

Each of the previously mentioned chlorophyll-a models was applied
to our Oklahoma satellite reflectance data set (N = 1060) and compared
to in-situ chlorophyll-a values to determine model accuracy. As per the
original use, each algorithm was solved prior to regressing (meaning
there is a single regression coefficient for each algorithm). For the
Vincent et al. (2004) phycocyanin algorithm, we fit a regression coef-
ficient to each spectral ratio as was done in the original model. To assess
the fit of the regressions, we compared the in-situ observed pigment
values with the predicted algorithm pigment values and evaluated the
relationship using the root mean square error (RMSE; lower values
indicate better model fit) and Pearson’s r correlation test (range from +1
to -1 with numbers closer to 0 indicating no correlation) (Table 3). We
also report the adjusted R? of each regression as this is a direct measure
of model predictability (ranges from 0 to 1 with higher values being
more predictive).

In addition to the above-described empirical models, we built
random forest models to explore the utility of machine learning as an
approach for generating useful predictive models. We used the ran-
domForest function in the randomForest package in R (Liaw and
Wiener, 2002) to grow random forests with ntree = 500. For both
chlorophyll-a and phycocyanin models we used the non-collinear pre-
dictors described above for the linear models. We chose regression
random forest because we are most interested in prediction across a
range of pigment values and they are more comparable to previously
described linear models. We evaluated model performance similarly to
the linear models using RMSE and R? but in addition, we tested signif-
icance against a null model. We extracted the performance statistics and
significance using the rfUtilities package in R using the rf.regression and
rf.significance functions, respectively (https://cran.r-project.org/we
b/packages/utility/index.html).

2.6. Ground-based multispectral models

We built a semi-empirical model using the ground-based measure-
ments by first selecting five bands based on spectral properties of optical
constituents of cyanobacteria and other non-target components that
could affect reflectance of light from Oklahoma reservoirs, specifically,
chlorophyll-a, phycocyanin, and turbidity (see Fig. 3 for methods dia-
gram). The medians of the bands were based on published values
(Matthews, 2011) and the width of the bands were optimized by
comparing correlations of candidate bands with our measured optical
constituents (Table 2). We calculated the average reflectance over the
wavelengths included in the band. Using the bands (described in
Table 2), we constructed candidate linear models for chlorophyll-a

Built candidate

Satellite — Landsat 7 & 8 linear models
- Lakes = 38 relating band ratios
- Samples = 1060 to pigments

Chose model
with lowest BIC

Calculated model statistics
-R2

- RMSE

- Pearson’s r

Compared
performance of our
models with
literature models

Fig. 2. Diagram showing satellite model development methods. See methods for details.
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Table 1

Band math for each algorithm (derived from Beck et al. 2016, Vincent et al., 2004, and Randolph et al., 2008) used to estimate chlorophyll-a (1-5, 7, 9-10) and
phycocyanin (6, 8-10) concentrations in Oklahoma lakes and each original citation. In addition, we have listed the type of algorithm and the original location and the
algorithm for the relevant sensor. Ground-truthed data refers to pigment concentrations from waterbodies that were used to calibrate (build the model) or validate (test
the model). Please see Egs. (4) and (5) in Randolph et al. (2008) for complete algorithms.

Algorithm Equation Citation Type, location ~ Original sensor # Ground-truthed waterbody Method
Ground-
truthed
data
1 NDCI (b4 - b3)/(b4 + b3) Mishra and semi- MERIS 56 Chesapeake Bay, Delaware Bay, Calibrated with
Mishra empirical, the river Mississippi Delta simulated data,
(2012) oceans region, and the Mobile Bay, USA validated with field
data

2 SABI (b4 - b3)/(b1 + b2) Alawadi semi- MODIS 0 - Used Chlor-a

(2010) empirical, MODIS product to
surface validate
blooms

3 FLH blue (b2)-[b3 + (b1 - Zhao et al. semi- Hyperspectral 41 - Validated with
b3)] (2010) empirical, spectroradio- laboratory cultures

oceans meter

4 3BDA (b3 - b4)*b4 Dall’Olmo semi- Hyperspectral 144 2 sand pit lakes and 2 reservoirs,  Calibrated with N

and Gitelson empirical, radiometer Nebraska; 1 lake, lowa, USA = 86 and
(2005) reservoirs validation N = 58
5 KIVU (3BDA — (b1 - b3)/(b2) Brivio et al. semi- Landsat 5 TM 6 Lake Garda, Italy Validated with in-
like) (2001) empirical, situ data
lakes

6 Vincent (b3/ b1) + (b4/b1) Vincent et al. empirical, Landsat 7 ETM+ 52 Lake Erie, USA Calibrated model
+ (b4/b3) + (b5/ (2004) great lakes and Landsat 5 TM with in-situ data
b3) + (b7/b3) +
(b7/b4)

7 Randolph (chla) (((R(709)/R Randolph semi- Hyperspectral 55 Geist and Morse reservoirs, Calibrated model
(620))*(0.727 + et al. (2008) empirical, spectroradio- Indiana, USA with in-situ data
bp)) - by, — 0.401) * reservoirs meter
(1/0.68)

8 Randolph (pcy) ((((R(709)/R Randolph semi- Hyperspectral 55 Geist and Morse reservoirs, Calibrated model
(620))*(0.727 + et al. (2008) empirical, spectroradio- Indiana, USA with in-situ data
byp)) — by, — 0.281) * reservoirs meter
(1/0.84)) -

(0.24*acn)
9 Cyanobacteria SS(A) =R(A) -R Wynne et al. empirical, Hyperspectral NA Bear Lake, MI, USA; Saginaw Calibrated model
Index (CI) (A7) - [RAD =R (2008) lakes spectroradio- Bay, Lake Huron, MI, USA with in-situ
A * meter, MERIS spectra, validated
[(A-AD)/(AT=A)] with satellite
(CD) = —-SS(A) imagery
10  Cyanobacteria If —SS(665) < 0, Matthews empirical, MERIS 74 Benguela (Atlantic Ocean), Validated with in-
Index-multi (CI- Cl-multi = 0 et al. (2012) oceans & Loskop Dam Reservoir (South situ data
multi) If —SS(665) > 0, lakes/ Africa), Zeekoevlei (South
CI-multi = CI reservoirs Africa), Hartbeespoort Dam

Reservoir (South Africa)

Response variable:
In-situ pigment (ug/L)
- Chl-a (N =124)

- PCY (N =125)
Predictor variables:
Multispectral bands and
satellite bands from
hyperspectral data

- Lakes =7

- Samples = 125

Built candidate linear
models using custom

band ratios for both
pigments

Chose model with
lowest AlCc

Used simulated
satellite bands to
implement published

models (N = 3)

Evaluated model
performance

Compared
performance of
our models with
literature models

Fig. 3. Diagram showing ground-based model development methods. See methods for details.
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Table 2
List of bands used to build a semi-empirical model to estimate phycocyanin.
Bands were developed from hyperspectral data collected from Oklahoma lakes.

Maximum
reflectance (nm)

Minimum
reflectance (nm)

Band  Purpose

1 chlorophyll absorption 546 591
minimum

2 phycocyanin trough 610 620

3 chlorophyll absorption 660 670
trough

4 chlorophyll trough 678 684

5 reference band 700 710

including all possible combinations of ratios of the five bands and
selected the best model using the corrected Akaike information criterion
(AICc). As prediction was our goal, and not inferring causality, we
moved forward in analyzing the model with the lowest AICc value. This
process was repeated for phycocyanin. We compared our models (using
adjusted R? and RMSE) with the chlorophyll-a and phycocyanin
nested-band models from Randolph et al. (2008) which have been found
to accurately predict chlorophyll-a and phycocyanin concentrations
using hyperspectral data (see Table. 1 for algorithms and see Egs. (4) and
(5) in Randolph et al. (2008) for complete algorithms). We also
compared our models with the Cyanobacterial Index (CI) and updated
Cyanobacterial Index (CI-multi; Matthews et al., 2012) as defined in
Coffer et al. (2020), which allows chlorophyll-a reflectance to be
attributed to cyanobacteria based off the spectral shape at wavelength
665. To implement the CI and CI-multi algorithms, we first resampled
our ground-based hyperspectral data to match the bands of MERIS by
calculating the average reflectance over the wavelengths included in
each band. Then we calculated CI and CI-multi following the methods of
Coffer et al. (2020). The CI-multi algorithm is intended to filter out
samples where phytoplankton composition is dominated by
non-cyanobacteria. As such, we removed samples from further analysis
(including model fit calculations) if the algorithm indicated cyanobac-
teria were not present. CI and CI-multi were converted to chlorophyll-a
(ug/L) using the equation in (Seegers et al., 2021).

3. Results

3.1. Satellite models for chlorophyll-a and phycocyanin concentrations in
small lakes

The best chlorophyll-a model built using Oklahoma data (N = 1060)
contained four Landsat ETM+ and OLI band ratios: Blue:Green,
Red:Blue, Blue:NIR, and NIR:Red Table 3.7).

Chl —a =71.8 — 37.3 (Blue:Green) — 10.1 (Red:Blue) — 6.6 (Blue:NIR)
— 3.8 (NIR:Red),
@

Based on the adjusted Rz, RMSE, and Pearson’s r correlation coeffi-
cient, our Oklahoma-derived model outperformed all other models
(Table 3.1-6), although they had relatively low predictive power. Of the
literature algorithms, the KIVU algorithm (adapted from Beck et al.,
2016) performed the best, having the lowest RMSE and highest adjusted
R? values, although it had low predictability. The remainder of the
literature models performed poorly with little to no predictive power for
algal pigments in Oklahoma lakes (Table 3.1-6).

The initial performance of our chlorophyll-a model was poor. This
poor performance could be due in part to the skewed nature of our data,
with the majority of the chlorophyll-a values falling between 2 and 30
pg/L (Fig. S1). To test if this skew in the data was causing poor pre-
diction in the model we resampled chlorophyll-a data to create a more
even distribution. Specifically, the original data was sorted into 30 in-
tervals. The intervals containing the chlorophyll-a values 2-37 ug/L

(intervals 2-8) were randomly subsampled without replacement to
reduce the whole data set by approximately half (N = 511) (Fig. S2). We
retained all higher chlorophyll-a values, because while we believe the
original data distribution is reflective of total chlorophyll-a values seen
annually in Oklahoma lakes, we are interested in predicting the higher
chlorophyll-a values that would be associated with a bloom. We then
applied the best chlorophyll-a model (Eq. (1)) to the new data set (N =
511) and found the predictability did not improve from the full data set.
The literature algorithms were also tested on the reduced dataset and
there was no improvement in performance (Table S4.1-6). All models,
including our own, showed systematic bias where samples with medium
to high (30-150 pg/L) observed chlorophyll-a values had much lower
predicted values, never exceeding 30 pg/L (Fig. 4A).

The best phycocyanin (N = 97) model built using Oklahoma data
used two band ratios: Blue:Green and Red:NIR (Table 3.10).

PCY = 146.7 — 124.5 (Blue:Green) — 16.7 (Red:NIR), )

This phycocyanin model underpredicted at higher values, meaning it
predicted much lower phycocyanin values than were observed (Fig. 4B).
We also tested a phycocyanin model from the literature, the Vincent
et al. (2004) model, on the Oklahoma dataset. The Vincent et al. (2004)
model performed better than the model from this paper (Table 3.9).

The chlorophyll-a random forest model constructed using satellite
data performed poorly, only explaining 3.07% of the variance (Table
3.11) and it was not significantly different when tested against a null
model built with the same data. The phycocyanin random forest
explained 32.9% of the variance and performed better than our linear
two-band ratio model but not as well as Vincent’s satellite phycocyanin
model (Table 3.9-10, 11).

3.2. Ground-based models for chlorophyll-a and phycocyanin
concentrations in small lakes

To test the efficacy of ground-based sensors at quantifying cyano-
HABs in Oklahoma we built a semi-empirical multispectral model using
hyperspectral data taken from Oklahoma lakes over a variety of condi-
tions to predict chlorophyll-a and phycocyanin concentrations, respec-
tively. The best chlorophyll-a model included six band ratios (1:3, 1:5,
2:3, 3:4, 3:5, 4:5; see Table 2 for band information, see Eq. S1 for full
equation). The CI, CI-multi, and Randolph et al. (2008) chlorophyll-a
nested-band-ratio model were also applied to the Oklahoma lakes data
and resulted in slightly lower performance compared to our six-band
ratio multispectral model (Table 4.1-4; Fig. 5).

Our best phycocyanin model included seven band ratios (1:2, 1:5,
2:3, 2:4, 3:4, 3:5, 4:5; see Table 2 for band information, see Eq. S2 for full
equation). Comparison of the predictions of our phycocyanin seven-
band ratio multispectral model with those of a common nested-band-
ratio model (Randolph et al., 2008), CI, and CI-multi revealed
increased accuracy with the seven-band ratio approach (Table 4.5-8;
Fig. 6).

4. Discussion

The frequency and magnitude of cyanoHABs are increasing globally,
in pace with climate and land-use change, and increasing nutrient
pollution (Huisman et al., 2018). Detecting and tracking blooms in a
timely manner for risk management has proven to be difficult and costly
(Almuhtaram et al., 2021). Remote sensing has the potential to alleviate
the insufficiencies of traditional monitoring by providing fast and less
expensive information while allowing the end user to monitor many
lakes simultaneously. Ground-based remote sensing has increased in
popularity in recent years and appears more adaptable for many
different systems and scenarios, thus it could be better for monitoring
cyanoHABs. Here, we assessed the possibility of using satellite- and
ground-based remote sensing for quantifying cyanoHABs in Oklahoma
reservoirs.
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We were unsuccessful in finding a “universal’ satellite pigment
model for Oklahoma lakes. Our Landsat-based models for chlorophyll-a
derived from Oklahoma reservoirs were only marginally better than
published algorithms, and none of them were sufficiently predictive (R?
< 0.035) for implementation in monitoring programs. Even though we
were using mostly Landsat 7 data, our results corroborate those of Beck
et al. (2016), who applied these algorithms to Landsat 8 simulated im-
agery and found poor performance across the board except with the
Fluorescence Line Height violet algorithm. We were unable to use this
algorithm because Landsat 7 lacks a comparable band to Landsat 8's
Coastal/Aerosol Band 1 (0.435-0.451 nm) used in the algorithm. While
it was our “best’ performing literature algorithm, we expected better

performance from the KIVU 3-band-like algorithm because it performed
well on Lake Garda when adapted from MERIS bands to Landsat 5 TM
bands (Brivio et al., 2001), which are comparable to Landsat 7 ETM+
bands. The other algorithms were originally created using other sensors,
such as MERIS and MODIS, or hyperspectral data that was translated to
match Landsat satellite bands. This cross-sensor translation was likely
another contributor to the poor performance of the models (Beck et al.,
2016).

The poor prediction of the algorithm may also reflect the size of our
data set, consisting of 1060 paired data points (much larger than pre-
vious studies) and a large number of waterbodies used (N = 38). The
reflectance values we measured ranged from 0.0025 to 0.37 and Landsat
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saturation is unlikely the cause of the poor performance (Landsat surface
reflectance data, 2015). Instead, this prediction bias is likely due to the
distribution of the original data, where the majority of the chlorophyll-a
values ranged 2-30 pg/L. Considering the wide temporal nature of our
data (2001-2017; all months retained), we believe this chlorophyll-a
distribution is representative of natural conditions. Even when the data
were subsampled to reduce the potential bias of abundant values in the
low-medium chlorophyll-a range, the models did not improve in accu-
rately predicting chlorophyll-a. The previously published models also
displayed this bias, with no model accurately predicting values of
chlorophyll-a greater than ~30 pg/L, and following a similar shape as
displayed in Fig. 4A. With the lack of correspondence between high
observed and predicted chlorophyll-a values it seems unlikely a uni-
versal Landsat algorithm will accurately predict chlorophyll-a concen-
trations in Oklahoma.

The phycocyanin satellite models performed better than the chlo-
rophyll-a models and specifically, the phycocyanin model from Vincent
et al. (2004) outperformed our model (Table. 3). The better performance
by the phycocyanin models was a surprising finding considering current
Landsat sensor bands are not optimized for detecting phycocyanin. This
pigment, found only in cyanobacteria, is characterized by an absorption
trough around 621 nm (Almuhtaram et al., 2021). Due to the lack of a
specific band for phycocyanin, cyanobacteria are detected using bands
associated with chlorophyll-a when using Landsat satellites, making
cyanobacteria frequently indistinguishable from aquatic macrophytes
(Oyama et al., 2015). The detection of cyanobacteria is also confounded
by turbidity, as bands commonly used in chlorophyll-a retrieval algo-
rithms are susceptible to interference by suspended sediment (Almuh-
taram et al., 2021; Shi et al., 2019). In fact, others have hypothesized the

Performance of satellite algorithms for chlorophyll-a and phycocyanin estima-
tion on Oklahoma lakes was evaluated using the adjusted R? from the given
linear model, the root mean square error (RMSE), and Pearson’s r correlation
coefficient. *The RMSE for the resampled model should not be directly
compared to the other models because the dataset used to build the model was

different.

Algorithm Adjusted Model P- RMSE Pearson’s r
name R? value
Chlorophyll-a algorithms

1 NDCI —0.0009 0.81 17.57 0.007

2 SABI 0.001 0.16 17.55 0.044

3 FLHB —0.0009 0.90 17.57 0.004

4 2BDA 0.002 0.10 17.55 0.050

5 3BDA 0.0003 0.25 17.56 0.035

6 KIVU (3BDA - 0.003 0.05 17.54 0.060
like)

7 this paper (full 0.035 <0.001 17.22 0.198
dataset)

8 this paper 0.025 <0.001 21.95* 0.170
(resampled
dataset)
Phycocyanin algorithms
Vincent 0.384 <0.001 16.85 0.650

10  this paper 0.291 <0.001 18.49 0.553
Random R2 % Variance ~ RMSE Model
Forests explained significantly

different from
null?
11 chlorophyll-a 0.011 3.07 17.30 No
12 phycocyanin 0.321 32.86 18.18 No
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Table 4

Performance of hyperspectral algorithms for chlorophyll-a and phycocyanin
estimation on Oklahoma lakes evaluated using the adjusted R? from the given
linear model, the root mean square error (RMSE), and Pearson’s r correlation
coefficient.

Algorithm name Adjusted Model P- RMSE  Pearson’sr
R? value
Chlorophyll-a algorithms
1  Randolph et al. 0.509 <0.001 22.07 0.717
model
2 0.472 <0.001 20.26  0.690
3 Cl-multi 0.376 <0.001 21.93  0.617
4 this paper 0.660 <0.001 16.03 0.814
Phycocyanin algorithms
5  Randolph et al. 0.592 <0.001 3499 0772
model
6 CI 0.594 <0.001 69.33  0.773
7  Cl-multi 0.519 <0.001 69.33  0.723
8 this paper 0.816 <0.001 19.16 0.904

Vincent et al. (2004) algorithm is simply detecting turbidity or chlor-
ophyll-a which are correlated with phycocyanin (Hunter et al., 2010).
The phycocyanin dataset (N = 97) was an order of magnitude smaller
than chlorophyll-a dataset and only represented two lakes, Lake Thun-
derbird and Lake Texoma. The small number of lakes could contribute to
the increased predictability in these models, potentially due to a
decrease in noise by fewer optical characteristic combinations in the
data, as discussed above. Since our phycocyanin model outperformed
our chlorophyll-a model, we suggest implementing the phycocyanin
model if satellites are the only possible source of spectral data. Unlike
chlorophyll-a, phycocyanin has been shown to be well correlated with
cyanobacterial biomass (Thomson-Lang 2020).

We utilized multiple commonly used metrics for determining model
performance of the satellite models, including Rz, RMSE, and Pearson’s
R. The next step would be to validate these models by collecting addi-
tional ground-reference data and using the independent dataset to
measure model performance. We did not do this for the chlorophyll-a
and phycocyanin Landsat models simply due to their poor performance
on the initial data pool.

As for our random forest models built using satellite data, the chlo-
rophyll-a random forest regression model performed better than all of
the literature models but slightly worse than our satellite linear model.
The phycocyanin random forest model was better than our model but
not better than the best phycocyanin model, the Vincent model. We
thought because random forests are based on non-linear models that
they would outperform the multiple linear regression models in our
dataset, but this was not the case. While random forest modeling is a
newer, machine learning approach that might be touted as a better so-
lution to model problems, one of the drawbacks is the difficulty of
implementation of the model, as you cannot ‘see’ the model or report a
formula describing the forest. Trying more ‘sophisticated’ modeling
techniques may not be the correct solution if your underlying data is not
showing any predictive trends using simpler modeling methods.

Many of the current standard algorithms were calibrated or validated
on very few ground-reference data points from a small number of lakes.
Literature algorithms were calibrated on five or fewer lakes. The number
of unique optical characteristics, such as different colors and levels of
turbidity and suspended solids, would likely increase with lake number,
thus increasing the overall variability in satellite reflectance values. One
of the obvious goals of universal algorithms is to predict cyanoHABs
across many different lakes and seasons, therefore we think it is
important to include a wide range of training data for model building.
The lack of representative training data could be why the published
satellite-based algorithms, for which training data does not include data
from Oklahoma lakes, perform worse than our model on Oklahoma
lakes. Given the failure of satellite-based models in predicting chloro-
phyll-a within a single U.S. state, we are doubtful that a truly universal

model can be developed.

The disconnect between satellite observations and actual pigment
concentrations could also be due to satellite sensors not capturing all
water-leaving reflectance due to atmospheric interference or cloud-
cover, and not capturing data below the surface of the water column,
because the satellite sensors only measure chlorophyll-a at the surface,
but in-situ measurements of chlorophyll-a are generally taken across the
photic zone for mid-column bloom formers. This would cause mid-
column blooming cyanobacteria or well mixed blooms to appear less
concentrated or less pigmented than surface blooms (Coffer et al.,
2021a). In Oklahoma lakes, for example, we frequently experience
Raphidiopsis blooms and other non-surface bloomers (Antunes et al.,
2015). These problems would be less of an issue for ground-based sen-
sors that are not affected by atmospheric aerosols and when suspended
close to the water surface can capture a large majority of the water
leaving reflectance.

Our ground-based multispectral models reliably predicted both
chlorophyll-a and phycocyanin in Oklahoma lakes and performed
remarkably better than the satellite models. The chlorophyll-a six-band
ratio model we developed slightly outperformed Randolph et al. (2008)
nested-band ratio chlorophyll-a model, with both models having similar
R2 values. The CI and CI-multi performed substantially worse than our
model and Randolph et al. (2008) model. All four models generally
underpredicted at very high levels of chlorophyll-a. Our phycocyanin
seven-band ratio model outperformed the phycocyanin nested-band
ratio model from Randolph et al. (2008), the CI model, and CI-multi
model. Notably, our model performed better on extreme phycocyanin
values (> 50 pg/L) compared with the established model which had
systematic underprediction of high phycocyanin events. While Coffer
et al. (2021b, 2021a, 2020) and Handler et al. (2023) have successfully
used MERIS and OLCI data to detect cyanobacteria in larger Oklahoma
reservoirs, we did not corroborate these results with our simulated data.
The CI-multi includes a filtering step with the aim of removing
non-cyanobacterial blooms after calculating the CI (Coffer et al., 2020).
This filtering step is meant to remove samples that are not from cya-
nobacteria dominated systems, i.e., classified as CI-noncyano. This step
seemed to fail in our system, with 87 samples filtered out. With the
exception of one high outlier, the phycocyanin in these samples ranged
between 3 and 71 ug/L phycocyanin, which are low to moderate levels
of phycocyanin. We know that many of the lakes removed at this step are
cyanobacteria dominated systems. For example, both Lake Texoma and
Grand Lake O’ the Cherokees have a rich history of cyanobacteria
blooms. This failure of the CI-multi algorithm is problematic because
predicting these low to moderate phycocyanin concentrations allows us
to detect blooms as they develop. If detected early, measures may be
taken to lower risks to humans, like closing swim beaches and posting
educational signs. False negatives (model returning no bloom when
blooms are present) could lead to failure to act to protect the public,
pets, and livestock.

Our ground-based models, including the simulated CI models, out-
performed all of the Landsat models. The poor performance of Landsat
models is possibly due in part to the Landsat’s band limitations. With
limited band number and wavelength range, we found that even with a
variety of algorithms employing different band math strategies, Landsat
was not useful for detecting pigments in reservoirs. Researchers have
moved away from using band ratios in recent years in favor of spectral
shape algorithms, such as CI, or maximum peak height algorithms
(Coffer et al., 2020; Matthews and Odermatt, 2015). We did find that our
satellite models relying on band ratios were substantially worse than the
CI models. Our results suggest that satellites where the CI could be
implemented, such as Sentinel-3, would be better able to detect cya-
nobacteria blooms than Landsat. In Oklahoma, we found that
ground-based instruments show more promise than satellite-based in-
struments for monitoring cyanoHABs, but other methods exist for cya-
nobacteria bloom detection with different accuracy, scale, and cost
trade-offs. These alternative approaches include various satellite
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sensors, ground-based remote sensing, airplane-based sensors, and flu-
orometry options. Satellites with freely available images excel in the
category of low cost, but as we have demonstrated, they lack accuracy
and do not sample at spatial scales relevant to small or dendritic reser-
voirs (Fig. $6). Additionally, clouds are often an underestimated prob-
lem in collecting regular satellite images, which may limit timely
detection of algal blooms (Ju and Roy 2008). As we have shown,
ground-based remote sensing offers high accuracy at a fine scale but has
an upfront cost for multi- or hyper-spectral sensors. As a bonus, such
sensors could be deployed aerially, giving broader coverage. For
example, the National Ecological Observatory Network (NEON) has
deployed airplane-based hyperspectral sensors at NEON sites to measure
land-cover and vegetation metrics at a fine scale without the interfer-
ence of clouds (https://www.neonscience.org/data-collection/imagi
ng-spectrometer). One trade-off of ground-based sensors is they are
spatially limited compared to satellites. A multispectral sensor sus-
pended above a lake would cover a very small area. A sensor attached to
a drone or airplane would afford increased spatial coverage at the lim-
itation of drone battery life or airplane fly time. Another option,
deployed sondes, have high up-front and maintenance costs but provide
highly accurate measurements on a fine scale. Manual sampling of water
followed by in-lab extraction of chlorophyll has a high cost of
human-hours but is accurate and operates on a fine scale (Almuhtaram
et al., 2021). Given our results, we suggest that ground-based remote
sensing offers the best of both worlds in terms of cost, accuracy, and
scale for many scenarios, however the needs of the researcher or water
quality manager will determine which of these approaches best meet
their needs based on cost, accuracy, and scale.

Our finding that models using ground-based multispectral data bet-
ter predict chlorophyll-a and phycocyanin concentrations compared to
models built using Landsat imagery is likely applicable to small lakes
and reservoirs around the globe, though transferring models such as ours
to other systems may require additional ground-reference data and
model adjustment. That is, we do not propose our model as a “universal’
model, but rather we suggest our approach of ground-based remote
sensing coupled with custom spectral bands and band ratios. The lakes
we analyzed in Oklahoma range from 49 to 42,695 hectares in size
(Table S1) and are representative of smaller lakes and reservoirs across
the southern Great Plains. There are millions of small lakes in the world
(Verpoorter et al., 2014; Cael and Seekell, 2016) and reservoirs cover
approximately 0.26 Mkm? globally (Downing et al., 2006). Many of
these small waterbodies experience cyanoHABs that cannot be clearly
resolved by larger satellite pixels. Because of this resolution limitation,
small lakes and reservoirs are likely underrepresented in remote sensing
monitoring programs. While Landsat has the appropriate pixel size for
sensing small waterbodies, it does not have a band useful for detecting
phycocyanin. As previously concluded by Beck et al. (2016), future
satellite-based remote sensing for cyanoHABs will require higher reso-
lution (30-m pixels or less), and more appropriate bands that are nar-
rower and similar to those of WorldView-2/-3 and Sentinel-3. In the
meantime, ground-based sensors offer an excellent alternative for small-
to mid-sized lakes. Timely and effective monitoring of water quality in
small to moderate size lakes cannot rely on satellite sensors with inap-
propriate spatial resolution and spectral band design. Instead, we
recommend the novel and herein demonstrated successful approach of
ground-based remote sensing with customized bands. Our approach will
be a valuable addition to water quality monitoring efforts in small and
dendritic reservoirs.

5. Conclusion
Based on a multi-year, multi-lake comparison of in-situ algal pigment

data with Landsat- and ground-derived reflectance models, we conclude
that:

e Oklahoma-derived Landsat- and ground-based models outperform
established reflectance-pigment models for Oklahoma reservoirs.

e Ground-based, multispectral models are superior to Landsat-based
models for predicting cyanoHABs in Oklahoma reservoirs.

e Ground-based and multispectral sensors can offer cost-efficient so-
lutions for cyanoHAB monitoring in small- to mid-sized lakes where
satellite images may not be appropriate.
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Figure S1. Distribution of chlorophyll-a in the full satellite
dataset (n = 1160).
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Figure S2. Distribution of chlorophyll-a in the re-sampled
dataset (n =511).
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Figure S3. Distribution of phycocyanin in the full satellite
dataset (n =97).
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Figure S4. Distribution of chlorophyll-a in the ground-based
dataset (n = 124).
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Figure SS. Distribution of phycocyanin in the ground-based
dataset (n = 125).

Figure S6. Comparison of Sentinel-3a and Landsat 8 images to demonstrate how the
difference in pixel size impacts lake resolvability. Lake Thunderbird is pictured here at the
center of each image, the Shawnee Twin Lakes in the upper right-hand corner, and Lake
Stanley Draper to the upper left-hand corner of the images. (A) shows a Sentinel-3b (pixel
size 300 x 300 m) false color composite of bands 1, 2, and 3 built using Sentinels Application
Platform (SNAP) from the European Space Agency (ESA) and (B) shows a Landsat-8 (pixel
size 30 x 30 m) false color composite of bands 2, 3, and 4 built in QGIS.




Table S1. Site information for the ground-truthed satellite chlorophyll-a data. Sampling

organizations included Oklahoma Water Resources Board (OWRB), Plankton Ecology and
Limnology Lab (PELL), and Grand River Dam Authority (GRDA).

Lake Site Number of Sampling Latitude | Longitude | Lake area
samples organization (hectare)

Altus Site 2 3 OWRB 34.90247 | -99.2937 2,600
Altus Site 3 2 OWRB 34.92733 | -99.3130

Altus Surface 2 OWRB 34.88722 | -99.2949

Arcadia Site 2 5 OWRB 35.63511 | -97.3714 737
Arcadia Site 3 5 OWRB 35.64489 | -97.3853

Arcadia Site 4 5 OWRB 35.62770 | -97.3939

Arcadia Site 5 5 OWRB 35.61594 | -97.4059

Atoka Site 2 6 OWRB 34.47904 | -96.0908 2,307
Atoka Site 3 5 OWRB 34.50523 | -96.0754

Atoka Site 4 3 OWRB 34.54017 | -96.0462

Atoka Surface 3 OWRB 34.44624 | -96.0872

Birch 77 1 OWRB 36.51479 | -96.1912 460
Canton Site 2 2 OWRB 36.12572 | -98.6014 3,201
Canton Site 3 3 OWRB 36.14255 | -98.6339

Canton Site 4 1 OWRB 36.14261 | -98.6549

Canton Site 5 1 OWRB 36.09548 | -98.5867

Canton Surface 3 OWRB 36.09337 | -98.5883
Chickasha Site 2 4 OWRB 35.14737 | -98.1502 837
Chickasha Site 3 4 OWRB 35.14995 | -98.1307
Chickasha Site 4 1 OWRB 35.13559 | -98.1402
Chickasha Site 5 1 OWRB 35.14373 | -98.1368
Chickasha Surface 4 OWRB 35.13199 | -98.1329
Claremore Site 2 4 OWRB 36.34031 | -95.5725 190
Claremore Site 3 4 OWRB 36.34092 | -95.5599
Claremore Site 4 2 OWRB 36.33351 | -95.5786
Claremore Surface 4 OWRB 36.32514 | -95.5796

Clinton Site 3 1 OWRB 35.42906 | -99.2231 136
Copan Site 2 4 OWRB 36.91109 | -95.9564 1,963
Copan Site 3 4 OWRB 36.92622 | -95.9528

Copan Site 4 4 OWRB 36.94839 | -95.9401

Copan Site 5 4 OWRB 36.93934 | -95.9559

Copan Surface 4 OWRB 36.88641 | -95.9679

Crowder Site 2 11 OWRB 35.39980 | -98.7074 64
Cushing 80 2 NLA 36.00416 -96.879 170
Dave Boyer 73 2 NLA 34.37438 | -98.3367 49




El Reno 2 5 PELL 35.52391 | -97.9897 69
El Reno 3 5 PELL 35.51955 | -97.9962

Ellsworth Site 2 5 OWRB 34.82185 -98.356 2,266
Ellsworth Site 4 4 OWRB 34.81763 | -98.3397

Ellsworth Site 5 3 OWRB 34.84256 | -98.3584

Eufaula Site 11 6 OWRB 35.22886 | -95.6338 | 42,695
Eufaula Site 12 5 OWRB 35.20047 | -95.5938

Eufaula Site 13 5 OWRB 35.16440 | -95.5995

Eufaula Site 14 5 OWRB 35.10144 | -95.6472

Eufaula Site 15 4 OWRB 35.05004 | -95.6711

Eufaula Site 16 4 OWRB 35.01996 | -95.6023

Eufaula Site 17 4 OWRB 3497471 | -95.6303

Eufaula Site 2 6 OWRB 35.42767 | -95.6001

Eufaula Site 3 5 OWRB 35.38221 | -95.6300

Eufaula Site 4 6 OWRB 35.30045 | -95.5540

Eufaula Site 5 4 OWRB 35.28483 | -95.5147

Eufaula Site 6 5 OWRB 35.30704 | -95.4376

Eufaula Site 8 6 OWRB 35.23392 | -95.4999

Eufaula Site 9 6 OWRB 35.22526 | -95.5963

Eufaula Surface 4 OWRB 35.45436 | -95.6129

Fort Cobb Site 1 4 OWRB 35.16215 | -98.4568 1,619
Fort Cobb Site 2 5 OWRB 35.18004 | -98.4623

Fort Cobb Site 3 5 OWRB 35.18973 | -98.4734

Fort Cobb Site 4 3 OWRB 35.21948 | -98.5095

Fort Cobb Site 5 4 OWRB 35.20804 | -98.4911

Fort Cobb Site 6 1 OWRB 35.21919 | -98.4804

Foss Site 2 4 OWRB 35.56204 | -99.2101 3,561
Foss Site 3 5 OWRB 35.57753 | -99.2352

Foss Site 4 5 OWRB 35.60198 | -99.2327

Foss Site 5 5 OWRB 35.61109 | -99.2619

Foss Surface 4 OWRB 35.53936 | -99.1890

Grand Site 10 3 OWRB 36.66528 | -94.7703 16,908
Grand Site 11 3 OWRB 36.65250 | -94.7183

Grand Site 12 3 OWRB 36.69889 | -94.7431

Grand Site 13 3 OWRB 36.73333 | -94.7739

Grand Site 2 2 OWRB 36.51028 | -94.9650

Grand Site 3 2 OWRB 36.54417 | -94.9303

Grand Site 4 2 OWRB 36.60361 | -94.9039

Grand Site 5 3 OWRB 36.56361 | -94.8606

Grand Site 6 1 OWRB 36.56306 | -94.7692

Grand Site 7 3 OWRB 36.57194 | -94.8331




Grand Site 8 3 OWRB 36.62278 | -94.8433

Grand Site 9 3 OWRB 36.63750 | -94.8014

Grand Surface 3 OWRB 36.47472 | -95.0347

Grand 12 5 GRDA 36.64998 | -94.7084

Grand 13 6 GRDA 36.68269 | -94.7728

Grand 14 5 GRDA 36.57437 | -94.7899

Grand 15 5 GRDA 36.62237 | -94.9079

Grand 18 1 GRDA 36.49758 | -95.0109

Grand 2 1 GRDA 36.62441 | -94.9007

Grand 21 1 GRDA 36.50138 | -94.9242

Grand 22 6 GRDA 36.55447 | -94.8449

Grand 26 5 GRDA 36.56396 | -94.9128

Grand 27 1 GRDA 36.53917 | -94.8389

Grand 28 1 GRDA 36.53807 | -94.8352

Grand 29 5 GRDA 36.54386 | -94.8436

Grand 7 6 GRDA 36.49768 | -94.9185

Grand 8 1 GRDA 36.50451 | -94.9646
Greenleaf Site 2 4 OWRB 35.63017 | -95.1600 229
Greenleaf Site 3 4 OWRB 35.64416 | -95.1522
Greenleaf Site 4 2 OWRB 35.64852 | -95.1408
Greenleaf Site 5 2 OWRB 35.62183 | -95.1605
Greenleaf Surface 3 OWRB 35.61719 | -95.1664

Hefner Site 2 3 OWRB 35.56324 | -97.6041 1,000
Hefner Site 3 3 OWRB 35.56239 | -97.5827

Hefner Site 4 1 OWRB 35.55528 | -97.5929

Hefner Site 5 1 OWRB 35.57542 | -97.5896

Hefner Surface 2 OWRB 35.58102 | -97.5974

Hudson 34 2 GRDA 36.37373 | -95.1225 4,856
Hudson 35 2 GRDA 36.30724 | -95.1813

Hudson 87 1 OWRB 36.82300 | -96.0476

Hulah 85 1 OWRB 36.93107 | -96.1030 1,445
Jean Neustadt 90 1 OWRB 34.28478 | -97.1710 187
Kaw Site 2 5 OWRB 36.74621 | -96.8831 6,879
Kaw Site 3 4 OWRB 36.76728 | -96.8269

Kaw Site 4 3 OWRB 36.79969 | -96.8291

Kaw Site 5 3 OWRB 36.79038 | -96.9080

Kaw Surface 2 OWRB 36.70118 | -96.9242

Keystone Site 10 4 OWRB 36.19266 | -96.3167 | 10,523
Keystone Site 2 3 OWRB 36.19016 | -96.2537

Keystone Site 3 4 OWRB 36.23228 | -96.3001

Keystone Site 4 4 OWRB 36.23771 | -96.3551




Keystone Site 6 4 OWRB 36.16468 | -96.2934
Keystone Site 8 4 OWRB 36.13969 | -96.3285
Keystone Site 9 4 OWRB 36.16656 | -96.3126
Keystone Surface 3 OWRB 36.14726 | -96.2573
Keystone 89 1 OWRB 36.15061 | -96.4397

New Spiro Site 2 3 OWRB 35.19968 | -94.6198 83
Okemah Site 2 2 OWRB 35.52537 | -96.3203 308
Okemah Site 3 2 OWRB 35.52375 | -96.3323

Okemah Site 4 1 OWRB 35.50891 | -96.3231
Overholser Site 2 4 OWRB 35.49974 | -97.6766 640
Overholser Site 3 3 OWRB 35.50848 | -97.6700
Overholser Site 5 1 OWRB 35.50661 | -97.6777
Overholser Surface 4 OWRB 35.48716 | -97.6682
Overholser 75 1 OWRB 35.49774 | -97.6793

Perry Site 2 4 OWRB 36.24243 | -97.3409 227
Perry Site 3 3 OWRB 36.23827 | -97.3496

Perry Site 5 2 OWRB 36.24680 | -97.3398

Ponca Site 2 2 OWRB 36.73613 | -97.0343 326
Ponca Site 4 2 OWRB 36.72930 | -97.0294

Ponca Site 5 2 OWRB 36.71885 | -97.0167

RC Longmire Site 2 3 OWRB 34.75152 | -97.0511 301
RC Longmire Site 4 2 OWRB 34.75060 | -97.0447

RC Longmire Site 5 1 OWRB 34.75533 | -97.0521

Rocky (Hobart) Site 2 2 OWRB 35.17303 | -99.0768 138
Rocky (Hobart) Site 3 3 OWRB 35.18312 | -99.0738

Rocky (Hobart) Site 4 2 OWRB 35.17694 | -99.0788

Taylor (Marlow) Site 2 2 OWRB 34.75048 | -97.9278 92
Tenkiller Ferry Site 2 7 OWRB 35.67443 | -94.9764 5,221
Tenkiller Ferry Site 3 5 OWRB 35.73905 | -94.9543
Tenkiller Ferry Site 4 3 OWRB 35.75542 | -94.9051
Tenkiller Ferry Site 6 2 OWRB 35.76634 | -94.8872
Tenkiller Ferry Site 7 6 OWRB 35.63938 | -95.0146
Tenkiller Ferry Surface 2 OWRB 35.60002 | -95.0446
Tenkiller Ferry 91 1 OWRB 35.75412 | -94.9149

Texoma Site 10 3 OWRB 33.78593 | -96.7962 | 35,613
Texoma Site 11 4 OWRB 33.86820 | -96.8383

Texoma Site 12 4 OWRB 33.89428 | -96.8888

Texoma Site 2 3 OWRB 33.89302 | -96.6113

Texoma Site 3 3 OWRB 33.95756 | -96.5871

Texoma Site 4 3 OWRB 34.00762 | -96.6299

Texoma Site 6 4 OWRB 33.85604 | -96.6915




Texoma Site 7 4 OWRB 33.82814 | -96.7376

Texoma Site 8 4 OWRB 33.84694 | -96.7801

Texoma Site 9 4 OWRB 33.81989 | -96.8054

Texoma Surface 4 OWRB 33.82997 | -96.5768

Texoma Buncombe 1 PELL 33.87486 | -96.8073
North 5

Texoma Buncombe 30 PELL 33.87125 | -96.8074
Pelagic 2

Texoma Buncombe 1 PELL 33.86158 | -96.8069
South 1

Texoma Dam North 1 PELL 33.83689 | -96.5892

Texoma Dam Pelagic 27 PELL 33.82319 | -96.5902

4

Texoma Islands 30 PELL 33.82875 | -96.7304
Pelagic 3

Texoma Red River 30 PELL 33.89742 | -96.8874
Pelagic 1

Texoma Washita 29 PELL 33.96403 | -96.5769
Pelagic 5

Texoma Washita 1 PELL 33.89358 | -96.5808
South 1

Thunderbird 1 42 OWRB 35.22333 | -97.2208 2,456

Thunderbird 2 56 OWRB 35.23889 | -97.2289

Thunderbird 3 54 OWRB 35.26222 | -97.2389

Thunderbird 4 56 OWRB 35.22444 | -97.2508

Thunderbird 5 54 OWRB 35.22028 | -97.2906

Thunderbird 7 23 OWRB 35.20306 | -97.2581

Thunderbird 8 31 OWRB 35.28641 | -97.2449

Thunderbird Fisherman’s 4 PELL 35.22862 | -97.2460

point

Thunderbird North 4 PELL 35.23219 | -97.3075
Sentinel

Webbers Falls Site 2 4 OWRB 35.60167 | -95.1817 4,694

Webbers Falls Site 4 2 OWRB 35.63056 | -95.2717

Webbers Falls Site 6 4 OWRB 35.70000 | -95.2314

Webbers Falls Surface 3 OWRB 35.55472 | -95.1706

WRHoloway Site 2 6 OWRB 36.24564 | -95.0996 318

WRHoloway Site 3 9 OWRB 36.25695 | -95.0868

WRHoloway Site 4 3 OWRB 36.25100 | -95.1021

WRHoloway Site 5 1 OWRB 36.25209 | -95.0931

WRHoloway Surface 10 OWRB 36.25634 | -95.1023

WRHoloway 36 2 GRDA 36.25576 | -95.1006




WRHoloway

38

1

GRDA

36.25562

-95.0900

Table S2. Site information for the satellite ground-truthed phycocyanin samples. Sampling
organization included the Plankton Ecology and Limnology Lab (PELL).

Lake Site Number of Sampling Latitude Longitude
samples organization

Texoma Buncombe 1 PELL 33.87486 -96.8073
North 5

Texoma Buncombe 17 PELL 33.87125 -96.8074
Pelagic 2

Texoma Buncombe 1 PELL 33.86158 -96.8069
South 1

Texoma Dam North 1 PELL 33.83689 -96.5892

Texoma Dam Pelagic 4 17 PELL 33.82319 -96.5902

Texoma Islands Pelagic 17 PELL 33.82875 -96.7304

3

Texoma Red River 17 PELL 33.89742 -96.8874
Pelagic 1

Texoma Washita 17 PELL 33.96403 -96.5769
Pelagic 5

Texoma Woashita South 1 PELL 33.89358 -96.5808

1
Thunderbird Fisherman’s 4 PELL 35.22862 -97.2460
Point
Thunderbird | North Sentinel 4 PELL 35.23219 -97.3075




Table S3. Ground-based site information. Sampling organization included the Plankton Ecology
and Limnology Lab (PELL).

Lake Site Number of Sampling Latitude Longitude
samples organization
Ellsworth Dam 1 PELL 34.79550 -98.36640
El Reno 1 1 PELL 35.52718 -97.98684
El Reno 2 1 PELL 35.52373 -97.98925
El Reno 3 1 PELL 35.51960 -97.99631
El Reno 4 1 PELL 35.52640 -97.98934
El Reno 5 1 PELL 35.52110 -97.99271
Grand Drip 4 PELL 36.49969 -94.95614
Grand Drown 4 PELL 36.49842 -94.91957
Grand Duck 5 PELL 36.53644 -94.97219
Grand Grand 5 PELL 36.68269 -94.77286
Grand Honey 5 PELL 36.57511 -94.78772
Grand Horse 5 PELL 36.62122 -94.90856
Grand IS1 5 PELL 36.49250 -95.04489
Grand IS3 5 PELL 36.50858 -94.95539
Grand Sail 5 PELL 36.64175 -94.81478
Grand Tree 5 PELL 36.56339 -94.91283
Grand Wood 5 PELL 36.53644 -94.82236
Overholser 1 1 PELL 35.48720 -97.66820
Overholser 2 1 PELL 35.49970 -97.67660
Overholser 4 1 PELL 35.49230 -97.67560
Rocky Dam 1 PELL 35.16720 -99.07430
Texoma Buncombe 1 PELL 33.87317 -96.80725
North 4
Texoma Buncombe 3 PELL 33.87472 -96.80722
North 5
Texoma Buncombe 4 PELL 33.87125 -96.80744
Pelagic 2
Texoma Buncombe 2 PELL 33.86158 -96.80692
South 1
Texoma Buncombe 1 PELL 33.86572 -96.80764
South 2
Texoma Dam North 3 PELL 33.83689 -96.58919
Texoma Dam Pelagic 4 4 PELL 33.82319 -96.59022
Texoma Islands Pelagic 4 PELL 33.82875 -96.73044
3
Texoma Red River 3 PELL 33.89481 -96.89172
Pelagic 1
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Texoma Washita 4 PELL 33.96403 -96.57692
Pelagic 5

Texoma Washita South 3 PELL 33.87553 -96.61975
1

Texoma Washita South 3 PELL 33.92900 -96.57131
2

Thunderbird 1 2 PELL 35.22275 -97.22237

Thunderbird 2 2 PELL 35.23855 -97.22916

Thunderbird 3 2 PELL 35.26260 -97.23883

Thunderbird 4 2 PELL 35.22381 -97.25139

Thunderbird 5 1 PELL 35.22016 -97.28863

Thunderbird 6 1 PELL 35.23065 -97.30523

Thunderbird 8 2 PELL 35.28664 -97.24446

Thunderbird 11 2 PELL 35.21296 -97.30335

Thunderbird 13 1 PELL - -

Thunderbird Fisherman’s 4 PELL 35.22909 -97.24615

Point
Thunderbird North Sentinel 4 PELL 35.23194 -97.30929
Thunderbird Sailboat 4 PELL 35.23037 -97.23629

Table S4. Performance of satellite algorithms on the resampled data set (N =511) for
chlorophyll-a estimation on Oklahoma lakes was evaluated using the adjusted R? from the

given linear model, the root mean square error (RMSE), and Pearson’s r correlation

coefficient. *The RMSE for the resampled model should not be directly compared to the other
models because the dataset used to build the model was different

Algorithm name Adjusted Model RMSE  Pearson’s Pearson’sr
R? P-value r P-value

Chlorophyll-a algorithms

1 | NDCI (Normalized -0.0013 0.57 22.26 0.025 0.57
Difference Chlorophyll
Index)

2 | SABI (Surface Algal -0.0014 0.58 22.26 0.024 0.58
Bloom Index)

3 | FLHB (Fluorescence Line | -0.0014 0.59 22.26 0.024 0.59
Height algorithm blue)

4 | 2BDA (two-band -0.0007 0.42 22.26 0.036 0.42
algorithm)

5 | 3BDA (three-band -0.0007 0.43 22.26 0.035 0.43
algorithm)

6 | KIVU (3BDA — like) -0.0009 0.46 22.26 0.029 0.46

7 | this paper (resampled 0.025 <0.001 21.95 0.170 <0.001
dataset)
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Equation for the ground-based chlorophyll-a model. For band information see Table 2.

CHLA =-222.71 — 100.43(Band1:Band3) + 107.2(Band1:Band5)
—34.52(Band2:Band3) + 564.61(Band3:Band4) — 856.16(Band3:Band5)
+ 564.63(Band4:Band5)

(eq. S1)

Equation for the ground-based phycocyanin model. For band information see Table 2.

PCY =-1311.71 — 161.24 (Band1:Band2) + 145.35 (Band1:Band5) +
568.31 (Band2:Band3) — 836.64 (Band2:Band4) + 2074.41 (Band3:Band4)
—1370.80 (Band3:Band5) + 948.89 (Band4:Band5)

(eq. S2)

R code for processing Landsat images in the R environment:

require(raster)
require(rgdal)
require(dplyr)
require(sp)

#set your working directory, all of your image folders should be in this folder
your_working_directory <- "K:/Images for gaqc - 10Nov20/Thunderbird8"

setwd(your working_directory)
file.names <- list.files(your working_directory)

for (x in 1:length(file.names)){
print(x)
holder <- pasteO(your_working_directory, file.names[x], "/")
file.names[x] <- holder

}

field points <- read.csv(file="K:/Images for qaqc - 10Nov20/Thunderbird8.csv") #csv has to be
set up with longitude in a column before latitude, can have as many lake site combinations as

needed

#tield points2 <- select(field points, -Lake)
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field points2 <- project(as.matrix(field points[3:4]), proj="+proj=utm +zone=14
ellps=WGS84") ##use this if you need to change the projection of the field points, all of the
images should be in the same projection for each field point file ##for field points[x:y] put the
longitude (x) and latitude (y) columns

#calculate the extent of the image you need to look at based on field points
e <- extent(min(field points2[,1])-1000, max(field points2[,1])+1000,
min(field points2[,2])-1000,max(field points2[,2])+1000)

for(j in 1:length(file.names)){

bands = list.files(path = paste(file.names[j]), pattern = "sr_band[1-7].tif$", recursive = TRUE)
##make sure this is correct

for(iin 1:6){
r=raster(paste(paste(file.names[j]),bands[i],sep="))
r <- crop(r, €)

r <- focal(r, w=matrix(1/9, nrow=3, ncol=3), na.rm=TRUE)
names(r) <- paste("layer",1)
if(i==1){
b=r
}
else {
b=addLayer(b,r)
}
print(i)
}

#extract points of interest (these represent the average of the 3x3 neighborhood of the point of
interest)
tempDF3x3 <- as.data.frame(extract(b,field points2))

#add info about site
tempDF3x3$site <- c(seq(1,1))

#add filename to df
tempDF3x3$filename <- c(rep(file.names[j],1)) #is this the number of sites?

#rename columns that hold the band data
names(tempDF3x3)[1:6] <- ¢("band 1", "band 2", "band 3", "band 4", "band 5", "band 7")

ifj==D{
masterDF <- tempDF3x3

}

else{
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masterDF <- bind_rows(masterDF, tempDF3x3)

b
b

#save the surface reflectance to a csv
write.csv(masterDF, file='./Landsat_sr.csv')
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