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Individuals who have suffered neurotrauma like a stroke or brachial plexus injury
often experience reduced limb functionality. Soft robotic exoskeletons have
been successful in assisting rehabilitative treatment and improving activities of
daily life but restoring dexterity for tasks such as playing musical instruments
has proven challenging. This research presents a soft robotic hand exoskeleton
coupled with machine learning algorithms to aid in relearning how to play the
piano by ‘feeling’ the difference between correct and incorrect versions of the
same song. The exoskeleton features piezoresistive sensor arrays with 16 taxels
integrated into each fingertip. The hand exoskeleton was created as a single unit,
with polyvinyl acid (PVA) used as a stent and later dissolved to construct the
internal pressure chambers for the five individually actuated digits. Ten variations
of a song were produced, one that was correct and nine containing rhythmic
errors. To classify these song variations, Random Forest (RF), K-Nearest Neighbor
(KNN), and Artificial Neural Network (ANN) algorithms were trained with data
from the 80 taxels combined from the tactile sensors in the fingertips. Feeling the
differences between correct and incorrect versions of the song was done with
the exoskeleton independently and while the exoskeleton was worn by a person.
Results demonstrated that the ANN algorithm had the highest classification
accuracy of 97.13% ± 2.00%with the human subject and 94.60%± 1.26%without.
These findings highlight the potential of the smart exoskeleton to aid disabled
individuals in relearning dexterous tasks like playing musical instruments.
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1 Introduction

Patients with neuromuscular disorders commonly face challenges when it comes to
engaging in everyday activities. For instance, after a stroke, their ability to carry out daily
tasks can be affected due to decreased coordination and strength in one or both of their
upper limbs (Lai et al., 2019). As a result, they may experience asymmetric function caused
by unilateral hand weakness (Patel and Lodha, 2019). Moreover, spasticity can develop
over time and affect their ability to perform personal hygiene tasks, leading to further
deterioration of the affected limb’s function (Kerr et al., 2020).This pattern of disability is also
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evident in conditions like cerebral palsy (Gordon et al., 2013).These
problems have spurred the development of robotic devices to
enhance the abilities of patients recovering from these debilitating
disorders (Lum et al., 2012; Polotto et al., 2012; Squeri et al., 2013;
Aubin et al., 2014).

Exoskeletons are a relatively new solution for addressing support
and enhancing user movements (Tran et al., 2021). Traditionally,
exoskeleton systems have consisted of inflexible mechanical
structures that are often powered by electric motors (Herder
and Antonides, 2006; Rahman et al., 2006; Rahman et al., 2015;
Gopura et al., 2016). These systems are precise and offer numerous
control techniques (Gopura and Kiguchi, 2008; Kiguchi and
Hayashi, 2012; Li et al., 2013; Ambrosini et al., 2014; Jarrassé et al.,
2014; Leonardis et al., 2015; Lambelet et al., 2017). They have
proven especially beneficial in stable scenarios such as when
attached to wheelchairs or if used as standing aids in physical
therapy (Iwamuro et al., 2008). Nonetheless, the rigid nature of
such assistive devices can create problems of their own. Properly
distributing force for user safety and comfort can be challenging
in some cases (Mohamaddan and Komeda, 2010; Pons, 2010;
Rahman et al., 2015). Although various approaches have been
suggested to address this issue, it remains an active area of research
(Jarrassé and Morel, 2011).

Surgical interventions to restore upper limb functionality
operate in a manner akin to inflexible exoskeletons. When dealing
with upper limb spasticity, surgical choices may involve the
fractional elongation and release of tendons or targeted neurotomies
to reduce the debilitating effects of spasticity. In severe cases,
bone surgery like wrist fusion may enhance joint alignment, which
could facilitate residual hand function, but this comes at the cost
of sacrificing the range of motion in the affected joint. In some
neurological conditions, such as brachial plexus injuries, surgery is
not able to restore full motor and sensory function equivalent to the
uninjured upper extremity. In total brachial plexus injuries, surgery
is targeted at restoring the key movements of elbow flexion and
shoulder abduction or external rotation—restoration of sensation
and motor function in the hand is not possible at that point.
Exoskeletons may, therefore, have a complementary role to surgery
in managing these patients.

Supportive exoskeletons have played a vital role in aiding
patients to manage and recuperate from neurotrauma. Cable
and spring-based mechanical exoskeletons have proven to be
beneficial in rehabilitation, but their size and complexity often
render them impractical in meeting patients’ needs (Arata et al.,
2013; In et al., 2015; Nycz et al., 2015; Kang et al., 2016; Nycz et al.,
2016; Yang et al., 2016; Jarrett and McDaid, 2017; Li et al., 2018).
The fabrication and maintenance of these systems are challenging
due to the requirement for custom parts to accommodate
the unique anatomy of each patient (Hussain et al., 2016;
Kang et al., 2016). Furthermore, the structures used are not
ergonomic, and rigid exoskeletons tend to become excessively
bulky.

The adoption of soft pneumatic actuators has revolutionized
the development of exoskeletons that meet patients’ requirements
for lightweight, pliable, and practical support (Andrikopoulos et al.,
2015; Al-Fahaam et al., 2016; Haghshenas-Jaryani et al., 2016; Al-
Fahaam et al., 2018; Cappello et al., 2018; Li et al., 2020; Lin et al.,
2020; Abd et al., 2021). However, the flexibility of these actuators

creates a challenge that necessitates the use of flexible sensor
technology capable of accommodating and compensating for
significant deformation (Yeo et al., 2016). By implementing effective
and adaptable sensor techniques, this challenge can be overcome
(Haghshenas-Jaryani et al., 2016; Abd et al., 2021).

Relearning tasks involves the restoration and retraining of
specific movements or skills. Soft robotic exoskeletons, utilizing the
properties of flexible materials and sensors, provide gentle support
and assistance to individuals in relearning and regaining theirmotor
abilities (Polygerinos et al., 2015). By monitoring and responding
to users’ movements, soft robotic exoskeletons can offer real-time
feedback and adjustments, making it easier for patients to grasp the
correct movement techniques (Deimel and Brock, 2016). Playing
the piano requires complex and highly skilled movements. For
individuals who have lost the ability to play due to neurotrauma,
soft robotic exoskeletons can serve as powerful assistive tools
(Hoang et al., 2021). The flexibility of soft materials and sensors
enables the exoskeletons to adapt to the shape and motion of
the hand, providing precise force and guidance to aid patients in
recovering the fine finger movements required for piano playing
(Takahashi et al., 2020). However, achieving precise force control
and adaptability requires the development of highly intelligent
algorithms to address motion planning issues (Wang and Chortos,
2022).

The objective of this study is to introduce a smart assistive
hand exoskeleton that comprises five soft pneumatic actuators, each
fitted with a 16-taxel flexible sensor at the fingertip (Figures 1A–C).
The design and fabrication process of the hand exoskeleton is
novel and could be customized to unique anatomy of different
patients. This completely soft design will improve user comfort
and result in a lightweight convenient exoskeleton. Furthermore,
the fabrication is significantly simpler than most designs as all the
actuators and sensors are combined into a single molding process.
As a demonstration of the exoskeleton’s capabilities to serve as an
intelligent assistant, it was employed to ‘feel’ the difference between
correct and incorrect versions of a song played on the piano.
The implementation of sensing systems within soft exoskeletons
has been done less frequently and in this case the sensors are
utilized to a much greater extent. Experiments were conducted
using the exoskeleton independently and while worn by a human
subject to show that one of the myriad possibilities of this new
device could be to aid relearning how to play the piano after
neurotrauma. The fingertip tactile sensor signals were employed to
train three different machine learning algorithms: RF, KNN, and
ANN.The accuracy of these algorithms was compared to classify the
correct and incorrect song variations with and without the human
subject.

2 Experimental methods

A soft robotic exoskeleton for the hand was designed to offer
active flexion and passive extension assistance to all five digits.
The exoskeleton was constructed using Dragon Skin-30 material,
which provides passive freedom for transverse movements along
the palmar plane for each finger. Additionally, flexible sensor arrays
comprising sixteen taxels were incorporated into each fingertip to
enable pattern recognition of piano-playing performance.
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FIGURE 1
(A) Soft actuator with sensor arrays; (B) CAD model for the new sensorized soft hand exoskeleton (i) top view, (ii) bottom view; (C) The new soft hand
exoskeleton (i) top view, (ii) bottom view.

2.1 Sixteen-channel flexible tactile sensor
fabrication

The flexible tactile sensor array employs two primary
piezoresistive elements: velostat and stainless-steel thread. Velostat
is a composite film made from polyethylene and carbon black.
The velostat changed conductivity when pressure was applied, so
also did the stainless-steel thread exhibit increased conductivity
upon the application of force. The application of pressure to the
velostat caused the distance between the carbon black particles to
decrease and increased their contact points, leading to changes in
conductivity across the affected area of the film (Dzedzickis et al.,
2020). Similarly, applying force to the stainless-steel thread increased
contact between the thread and the film and within the thread,
leading to enhanced conductivity (Choudhry et al., 2022). By
arranging the threads in a grid pattern that is connected to the
conductive film, it is possible to create a sensor array that measures
the pressure distribution across the grid’s surface.

The sensor was created by assembling seven layers, which
included an outer layer, an adhesive layer, longitudinal wires, a
conductive layer, transverse wires, another adhesive layer, and a
second outer layer. Plastic wrap was used for the outer layers (MRP

Corp, Philadelphia, PA), while the adhesive layer was made of 3 M
double-sided adhesive (3 M™Adhesive Transfer Tape 468MP,United
States). The wires were made of a stainless-steel yarn (Stainless
Thin Conductive Thread - 2 ply, Adafruit Industries LLC), and
the conductive layer was made of velostat, a pressure-sensitive
and conductive sheet (Velostat 1361, Adafruit Industries LLC). The
assembly process involved cutting rectangles out of the velostat to
match the sensor’s size and cutting the plastic wrap and adhesive
into a rectangle of 2 cm × 1.5 cm. To aid the assembly, wires were
placed in a 3D-printed holster tomaintain an even spacing of 0.2 cm
apart for the longitudinal wires and 0.3 cm apart for the transverse
wires. The wires were then lightly pressed onto one of the adhesive
layers, and the assembly was placed on top of the conductive layer.
The adhesive was trimmed to match the conductive layer’s size, and
the protective layer was removed to expose the other side of the
adhesive. The outer layer was wrapped around a finger and then
rolled onto the adhesive to prevent air pockets. This process was
repeated for the other side of the conductive layerwith the transverse
wires.The longitudinal wires were soldered and encapsulated in heat
shrink tubing separately, while all the wiring along the fingers was
encapsulated together in heat-shrink tubing together (Electriduct,
3.18 mm 3:1 Polyolefin Tubing). The soldering of the horizontal
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channels was performed after the Dragon Skin-30 cured to prevent
any unnecessary strain on the steel thread during fabrication. The
finished size of the sensor was 1.5 cm × 1 cm.

2.2 Designing the molds to cast the soft
exoskeleton

SolidWorks 2019 software was utilized to create molds for the
hand exoskeleton, taking into account measurements obtained from
prior anthropometric studies (Garrett, 1971). A second mold was
produced that allowed for an additional 0.3 cm of width and 0.4 cm
of thickness to accommodate the wiring of the sensor array; slots
were included for the wire conduits. To ensure proper placement
of the actuators, semi-cylindrical rods with a 0.35 cm cavity at one
end were designed and inserted into the molds. Caps were printed
to cover the openings of the fingers in the first mold, featuring an
opening for the rods to maintain their alignment. Both molds and
caps were printed using the Ultimaker S5 (Ultimaker, Netherlands)
and made of PLA (Overture, PLA, 2.85 mm filament). The rods
acted as placeholders for the air channels and were 3D printed using
the Ultimaker S5 and dissolvable PVA (Polymaker, PolyDissolve S1,
2.85 mm filament).

2.3 Fabricating the hand exoskeleton

The process began by inserting polyurethane tubing (1.59 mm
× 3.18 mm) through the mold’s holes and then into the stents
(Figure 2A). To make it easier to remove later, the stents were
wrapped with Teflon (Sklety, PTFE Pipe Sealant Tape). The stents
were positioned inside the caps such that their bottom edge aligned
with the base of each finger and ran parallel to themolding. Hot glue
was also used to temporarily secure the tubing and stents in place as
required. The mold was then filled with 120 g of hydrogel material
(Smooth-On, Dragon Skin-30) and allowed to be cured for 4 h
before cleaning any excess material. Before molding the outer layer
of Dragon Skin, each finger had a rectangular piece of fabric (100%
Blackout Grommet Banton Window Curtain Panel, S.L. Home
Fashions Inc.) placed over the flat base for reinforcement. Carbon
fiber tow (1K 3800 MPa 50/100 m Length Carbon Fiber Fibre Tow
Filament Yarn Thread Tape, AliExpress) was then wrapped in a
helical pattern around the silicone cast. The fiber was wrapped first
from the base of the finger to the tip and then from the tip to the
base, intersecting itself at the apex of the dorsal side and along the
palmar side (Figure 2B (ii)).

The end of each finger had the tactile sensor arrays installed
with all vertical wires already soldered in place. To provide greater
mobility during pre-mold placement and actuation, the wires for
each sensor were separated into two bundles (transverse and
longitudinal) and covered with heat shrink. Each tactile sensor
comprised eight wires that ran through the palm to a 40-pin
cable connector (Micro SATA wiring, IDE cable). The tubing
and wiring were placed in the slots in the mold and filled with
80 g of Dragon Skin, then left to cure for 4 hours (Figure 2C).
Once the curing was done, the horizontal wires of the sensors
were soldered to the corresponding wires of the 40-pin cable
connector.

FIGURE 2
Manufacturing Process: (A) (i) All printed components in CAD
assembly, cast made from mold 1, PVA stents, and tubing, (ii)
Complete stage 1 cast, shown after filling with Dragon Skin and sealing
shut; (B) (i) Result of stage 1 cast, (ii) Cast is equipped with
strain-limiting layers and pressure sensor arrays; (C) (i) Fully equipped
cast is lain in the stage 2 mold to encase the strain limiting layers and
sensors as part of the exoskeleton, (ii) Complete stage 2 cast, shown
after filling with Dragon Skin and sealing shut; (D) (i) Result of the stage
2 cast, (ii) PVA stents are dissolved, and stage 3 casting is done to seal
the pressure chambers.

In stage 3 of the molding process the excess rubber around each
finger was trimmed to a uniform length of 3 mm from the sensor
array’s edge (Figure 2D).The PVA stents were dissolved in water and
the Teflon was removed from the inside surface. Next, the end of
each finger was dipped in a cup filled with 10 g of Dragon Skin, and
after a 4-h curing period, the excess material was removed to leave a
Dragon Skin cap that completely sealed the pneumatic chambers.
The palm side of the hand containing the tubing was cut open,
leaving a layer of silicone rubber around the tubing, and a zip tie
(Outus Nylon Cable Ties) was fastened around the Dragon Skin at
the inlet of each finger actuator to ensure an airtight seal. Any gaps
were filled with Dragon Skin using an open molding process.

2.4 Soft actuator characterization

To evaluate the force response and hysteresis of the soft
actuators, three internal pressures were used for testing. The force
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of the fingertips (little, ring and middle finger) was measured
individually using a 2 kg load cell (LSP-2, Transducer Techniques,
Temecula, United States), and each test comprised 16 cycles, with
3 s of actuation followed by 7 s of rest. The 16 cycles were recorded
three times at pressures of 0.14, 0.21, and 0.28 MPa. The forces and
pressures obtained from these tests were used to plot the hysteresis
at each of the three pressures. The maximal force at pressures of
0.14, 0.21, and 0.28 MPa was obtained from the force-pressure
relationship for each finger.

2.5 System configuration for perception
and action

ATeensy 4.0 microcontroller and amultiplexer board were used
to sample the 16 taxels on each of the fingertips. The resistance
of each taxel was used in a non-inverting op-amp circuit and the
output voltage of the op-amp circuit was measured for each of the
16 taxels on every digit of the exoskeleton at 74 Hz. To cycle through
the 80 available taxels, the multiplexer (Sundaram et al., 2019) was
used, and the output voltage from the op-amp circuit was sampled
ten times per taxel and averaged by the Teensy. The data was then
published to a Robot Operating System (ROS) network from the
Teensy, and Simulink was linked to the same ROS network for
real-time data visualization and storage (Figure 3A).

Simulink was used to implement the 10 song variations by
controlling the valves of the four fingers. The control inputs for
the four valves were created with the Simulink signal builder block
and set as four separate digital outputs. These outputs were then
used as a 1 V input to a MOSFET (NTE2389), which controlled
the 24 V signals for the 5 Festo solenoid valves (MHE2-MS1H-3)
that were responsible for controlling the fingers. A single pressure
reservoir at 0.28 MPa was connected to all five valves, and the
open/closed state of the valves was determined by the 1 V outputs
from Simulink, which controlled the pressure applied within the
pneumatic actuators.

2.6 Exoskeleton to (Re)Learn playing the
piano

To assess the potential of using the smart hand exoskeleton
for rehabilitation purposes, we programmed it to play ten different
versions of the well-known tune “Mary Had a Little Lamb.” To
introduce variations in the performance, we created a pool of 12
different types of errors that could occur at the beginning or end of a
note, or due to timing errors that were either premature or delayed,
and that persisted for 0.1, 0.2, or 0.3 s. By combining these error
types, we generated 12 unique error scenarios that were included
in the different song variations. We created three groups of three
songs each based on the number of errors present: the first group
had 75% of the keys played with some type of error, the second
group had 50%, and the third group had 25%. Within each group,
we created three variations, each with errors on the same note but
with the error type randomly selected from the pool of options.
The ten different song variations consisted of the three groups of
three variations each, plus the correct song played with no errors
(Figure 3B).

The study included 20 repetitions of each of the ten song
variations in two settings: with the hand exoskeleton worn by
a human subject (25-year-old male, able-bodied) and with the
exoskeleton playing the songs independently (without a person).The
study was conducted with institutional review board oversight and
the human subject providedwritten informed consent in accordance
with the Declaration of Helsinki. The resulting datasets from the
200 song repetitions played were used to train three machine
learning classification algorithms (KNN, RF, ANN), which were
then evaluated based on their ability to distinguish between the
different song variations. This approach could potentially provide
real-time feedback to individuals recovering from a stroke or other
neurotrauma who are (re)learning to play a musical instrument.

2.7 Machine learning classification
methods

To design the machine learning problem, 10 different song
alterations were programmed for the hand to perform (Figure 3B).
For each song alteration, 20 repetitions were collected to perform
machine-learning tasks. The collected data were preprocessed and
labeled to train the RF, KNN, and ANN algorithms to separate
the data into 10 different classes corresponding to the 10 song
variations. The KNN algorithm was used to calculate the shortest
distance between a query and all the points in the features and
select the specified k number closest to the query and vote for the
most frequent class label (Zhang et al., 2017a). The RF algorithm
resembled a tree structure that can be trained separately to perform
the classification (Breiman, 2001). The decision trees were the main
components of this algorithm. In general, the more trees in the
forest the more robust the prediction which leads to higher reported
accuracy. The last algorithm was the ANN (Basu et al., 2010)
which was trained and evaluated using cross-entropy and confusion
matrices. A two-layer feed forward network with sigmoid hidden
and softmax output neurons was used to classify the collected data
into ten classes for the different song alteration classes. The network
was trained with scaled conjugate gradient back propagation.

To train the KNN and the RF classifiers, the collected datasets
were divided into two sets: the training dataset, which contains
80% of the data, and the testing dataset, which contains 20% of the
collected data. However, to train and test the ANN, the collected
data were divided into 3 categories: 70% for training, 15% for
validation, and 15% for testing. The training dataset was presented
to the network during training, and the network was adjusted
according to its error. The validation dataset was used to measure
network generalization and to halt training when generalization
stopped improving. The testing dataset did not affect training and
so provided an independent measure of network performance
during and after training. Training automatically stopped when
generalization stopped improving, as indicated by an increase in the
cross-entropy error of the validation samples.

To verify the accuracy of each algorithm, they were run ten
times for each song variation with a randomized selection of the
training and testing data. The mean and standard deviation of
the classification accuracy were calculated for each algorithm. A
two-factor analysis of variance (ANOVA) was performed. The first
independent variable was the classification algorithm (RF, KNN,
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FIGURE 3
Control system. (A) The control scheme for the exoskeleton and sensors; (B) The valve control signals of each finger for playing “Mary Had A Little
Lamb.” Illustrative examples are shown of the correct song and the song variations that had errors introduced.

ANN). The second independent variable was whether the hand
exoskeleton was worn by a person or used independently. The
classification accuracy of the machine learning algorithms was the
dependent variable. A p-value of 0.01 was assumed for statistical
significance.

3 Results

3.1 Performance of soft actuators

The response of each soft actuator was highly repeatable with
each of the three applied pressures (Figure 4). With an internal
pressure of 0.14 MPa, the average maximum fingertip force and
standard deviation were 0.72 ± 0.04 N. With an internal pressure of
0.21 MPa, the mean and standard deviation were 1.10 ± 0.05 N, and
at 0.28 MPa pressure, the mean and standard deviation were 1.47 ±
0.04 N (Figures 4A, C, E). Illustrative data of the sixteen taxels in a
fingertip (Figure 4D) show the response of the tactile sensor when
the finger was internally pressurized to repetitively apply forces to
the load cell (Figure 4D). The hysteresis of the actuators follows
a characteristic trend with each internal pressure (Figure 4E). The
maximal generated fingertip forces had a near linear correlation to
increasing pressure over the tested range (Figure 4F). A linearmodel
that was fit to these data had an R2 value of 0.993 for the little finger,
0.997 for the ring finger, and 0.999 for the middle finger.

3.2 Feeling the beat: classification
accuracy for piano playing

The soft robotic hand exoskeleton played the 10 song variations
independently and while being worn by a user. Figure 5A(i)

displays the hand operating independently to press the keyboard.
The independent data are shown first in Figure 5B, followed by
the user-worn data for comparison (Figure 5C). Figure 5B(ii) and
Figure 5C(ii) show two illustrative taxels from each finger for clarity.
The normalized response of all 16 taxels from the little finger in a
single keystroke is shown in Figure 5B(iii) and Figure 5C(iii) for the
independent and user-worn situations, respectively.

The ANN achieved the highest classification accuracy with
94.60%±1.26% for independent use and 97.13%±2.00%whenworn
by a person (Figures 6A, B). The RF had a classification accuracy
of 91.00% ± 2.11% for independent use and 94.77% ± 1.96% when
worn, while the KNN had the lowest classification accuracy with
83.30% ± 2.45% independently and 90.70% ± 1.48% when worn
(Figure 6C). Results from the two-factor ANOVA indicated that the
classification algorithms were significantly different from each other
(p < 0.01). There was a statistically significant difference in accuracy
between independent and worn usage (p < 0.01), and there was also
an interaction effect between the two independent variables (p <
0.01).

4 Discussion

We designed a novel soft exoskeleton using 3D printed PVA
stents and hydrogel casting to integrate 5 actuators into a single
wearable device that conforms to the user’s hand. The fabrication
process is new, and the form factor could be customized to the
unique anatomy of individual subjects with use of 3D scanning
technology or CT scans. We also developed a flexible tactile sensor
array that was embedded into each fingertip of the exoskeleton,
with each array containing 16 taxels. To our knowledge, all these
features have yet to be combined into a single hand exoskeleton. We
used artificial intelligence to ‘feel’ the difference between correct and
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FIGURE 4
(A) The hand exoskeleton was equipped with an internal pressure sensor and applied forces to the load cell; (B) Color map shows the spatial location of
the 16 taxels on the sensor of each finger; (C) Force measured by the load cell for the little finger at an internal pressure of 0.14 MPa; (D)
Corresponding taxel signals at the pressure of 0.14 MPa; (E) Force-pressure relationship using 16 actuation cycles of the little finger for three different
internal pressures; (F) the maximal generated fingertip forces correlated almost linearly to increasing pressure over the tested range.

incorrect versions of a song played on the piano as one illustrative
demonstration of the potential for the smart exoskeleton to be used
as a rehabilitation tool to improve hand dexterity.

Our approach to designing the hand exoskeleton involved
using 3D printing techniques to create a complete soft robot
that could be based on the patient’s needs. Zhao et al. (2016)
incorporated a 3D-printed rigid palm and wrist into a fiber-
reinforced soft prosthetic hand. Our complete soft palm and wrist
design approach could further improve the effectiveness of their
application. Furthermore, the use of 3D-printed PVA stents in our
new soft robotic hand provided an added advantage. Compared
to the fabric-based soft robotic glove developed by Cappello et al.
(2018) for individuals with upper limb paralysis following spinal
cord injury, our approach involved fewer fabricated layers, making
the process less complicated. The PVA stents can be easily dissolved
in water to aid in the removal of Teflon from the inside surface.
Additionally, we embedded the flexible sensor array during the
fabrication process to allow for tactile sensations, which could be
readily adjusted based on the user’s dimensions. Fras and Althoefer
(2018) proposed a soft pneumatic hand capable of passively adapting
to grasped objects due to its mechanical compliance. The inclusion
of sensors within a design such as this would aid in the control of the
device.

In the past, other soft robotic actuators have been used to play
the piano; however, ours is the only one that has demonstrated
the capability to ‘feel’ the difference between correct and incorrect

versions of the same song. Takahashi et al. (2020) developed a soft
hand exoskeleton that allowed pianists to move their fingers more
easily and quickly, without imposing as many limitations as possible
on their voluntary movements.The actuator also reduced variability
in the force of the keypresses even when the pianists were not
wearing gloves. However, our soft robotic hand actuator utilized
machine learning trained by tactile sensor arrays that could be
used to provide instructive feedback to users and useful data for
clinicians. This makes it an ideal tool to assist disabled individuals
in relearning how to play the piano correctly. This unique capability
is enabled by the novel design at the intersection of flexible tactile
sensors, soft actuators, and artificial intelligence that would be handy
when applied to many other tasks beyond musical instruments.
Hoang et al. (2021) utilized a random access pneumatic memory
device to regulate the soft robotic fingers that play the piano. This
approach helped to reduce the amount of hardware required to
control multiple independent actuators in pneumatic soft robots.
Wang et al. (2022) developed and produced a three-fingered soft-
rigid hybrid hand system with variable stiffness in each finger.Their
design enabled diverse compliant behaviors for pressing piano keys.
In comparison, our smart hand exoskeleton can expand their range
of applications by incorporating sensing technology and artificial
intelligence to characterize the interaction between the environment
and the robot.

The three classification algorithms we employed in this paper
had significantly different accuracies.The classification performance
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FIGURE 5
Exoskeleton playing the piano independently and while being worn. (A) (i) Actuation of each finger while playing a song. (ii) Color map of the tactile
sensor showing the locations of taxels on each finger; (B) (i) The exoskeleton as used independently, (ii) Two illustrative taxels for each finger are shown
while playing the song. (iii) The response of all the taxels for the little finger during a single keystroke; (C) (i) The exoskeleton was inserted into a glove
and worn by the human subject. (ii) Two illustrative taxels for each finger. (iii) The response of all the taxels for the little finger from a single keystroke.

of various algorithms can differ depending on the task, dataset,
and available resources. In this study, the classification accuracy
of the ANN surpassed that of the KNN and RF for several
reasons. First, ANNs possess many internal parameters (weights
and biases) within interconnected neurons and layers, granting
them the flexibility to fit highly complex datasets with superior
classification accuracy compared to other models like KNN and RF,
which may achieve lower accuracy in such cases (Breiman, 2001;
Zhang et al., 2017b). Additionally, ANNs can automatically learn
intricate feature representations from raw datasets (Bergen et al.,
2019). By learning hierarchical representations through multiple
layers, ANNs can capture complex patterns in the data, whereas
KNN and RF rely on simpler distance metrics that may struggle
to capture such complexities. ANNs excel in learning nonlinear
relationships between input features and output predictions,
enabling them to model intricate decision boundaries and capture
more intricate patterns. However, it is worth noting that the
performance of these algorithms depends on the specific task,
dataset characteristics, and hyperparameter tuning. In certain cases,
KNN or RF may be more suitable or outperform ANN, particularly
for small datasets or where interpretability is prioritized. Careful
consideration of the trade-offs and characteristics of each algorithm
is crucial when selecting the most appropriate one for a given
problem.

All three classification algorithms had higher accuracy when
the exoskeleton was worn compared to when used independently
(Figure 6C). This could potentially be caused by better pressure
distribution across the surface of the tactile sensor when it was worn.
When used independently, the rigid piano key made direct contact
with the taxels near the sensor tip, which inherently causes pressure
concentrations in localized areas. In contrast, when the sensor was
in contact with a human hand, the higher compliance was more
likely to distribute the pressure more evenly across the surface of
the tactile sensor to consistently activate more taxels. These likely
created a greater difference between activation and rest states that
wasmore recognizable by themachine learning algorithmswhen the
exoskeleton was worn by a person.

The successful detection of song errors can provide measurable
outcomes for patients in their rehabilitation programs.Although this
study’s application was for playing a song, the approach could be
applied to myriad tasks of daily life. Thus, the device could facilitate
intricate rehabilitation programs customized for each patient. The
current machine learning algorithm can successfully determine the
percentage error of a certain song as well as identify key presses that
are out of time. Clinicians could use the data to develop personalized
action plans to pinpoint patient weaknesses, which may present
themselves as sections of the song that are consistently played
erroneously and can be used to determine which motor functions
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FIGURE 6
(A) Illustrative confusion matrices for the ANN showed the accuracy
for classifying the 10 different song alterations during independent use
and (B) while user-worn; (C) Comparison of 3 classification algorithms
during independent use and with a human subject wearing the soft
robotic exoskeleton. The ANN had significantly higher accuracy than
the KNN and RF algorithms.

require improvement. As patients progress, more challenging songs
could be prescribed by the rehabilitation team in a game-like
progression to provide a customizable path to improvement.

Furthermore, the rehabilitation approach using smart
exoskeletons demonstrated in this study can be extended to a
wide range of injuries particularly if used in conjunction with
other devices designed for the elbow and shoulder (O’Neill et al.,
2017; Nassour et al., 2021). Additionally, a larger tactile sensor
could readily provide functionality for assessing progress towards
achieving a normal force pattern for shoulder and elbow
exoskeletons. Soft actuators offer the advantages of conformability,
ergonomics, and design versatility through 3D printing and casting
methods. Corresponding flexible sensing technologies are essential
for the use of soft exoskeleton technologies. The development and
implementation of new sensor arrays within these exoskeletons will
significantly expand their range of applications and improve their
effectiveness.

The effect of many different users’ biomechanics on the soft
exoskeleton’s response was not investigated in this paper, though
it will be added as an avenue of future investigation. In future
works, we have also considered numerous potential ways to
convey training feedback to the user. These include visual feedback
with a smartphone (Yin et al., 2021) and haptic feedback with a
wearable device like a smartwatch (Heng et al., 2022). We have also
considered adding vibrotactile feedback within future versions of
the smart exoskeleton that could vibrate to alert the users of errors
(Pan et al., 2018).

5 Conclusion

A new soft exoskeleton was designed with integrated tactile
sensor arrays that were used for the novel application of ‘feeling’ the
differences between correct and incorrect versions of a song played
on the piano. The RF, KNN, and ANN algorithms were trained by
data from the 80 taxels in the four fingertip tactile sensors that each
had 16 taxels. The ANN algorithm achieved the highest level of
accuracy, attaining a success rate of 97.13%±2.00%when testedwith
a human subject, and 94.60% ± 1.26% while used independently.
Furthermore, we introduced a new hand exoskeleton fabrication
technique that used 3D printed PVA stents and hydrogel casting
to incorporate 5 actuators into a complete wearable device. The
smart soft exoskeleton demonstrated high classification accuracy
and could be used in the future to guide disabled people on fully
customized rehabilitation programs.
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