A Thick, Sheared Zone at the Base of an Oceanic Plate:

The Lithosphere-Asthenosphere Boundary of the Subducting Nazca Plate in Colombia
as Revealed through P-to-S Receiver Functions

Limit Carbonate Melt

Limit Silicate Melt

410 km Discontinuity

Schematic slab model (after Slab2) through southern Colombia with key depths.
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Are Plates Coupled to the Asthenosphere?
No!

VSV (km 571)
Lithosphere dipping ~15°

Yes! 5
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Figure from
Sees LAB as thin (~¥10 km) channel of melt, strongly

Sees LAB as thick (>10 km) zone marked by differences
sheared, allowing for separate motion. in anisotropy, in part produced by joint motion.



Testing These Models at Subduction Zones

410 km Discontinuity

Slab after Slab2 (Hayes et al., 2018), melt limit from Stagno et al. (2013), Dasgupta et al. (2013), Kawamoto (2004)
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* Decoupled Models:
* Melt solidifies by ~250 or ~330
km
e Strongly Coupled Models:
* Anisotropy contrast should
shift in transition zone
* Ductile mechanisms change
~250 km

* Receiver functions sensitive to a
seismic discontinuity’s abruptness,
and P-to-S RFs detect anisotropy
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All frequency bands sensitive to sharp boundaries of a channel.
1.2 Hz band only sensitive to <10 km gradient boundaries.
0.24 Hz band most sensitive to 10-30 km gradient boundaries.

40 km Gradients
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Anisotropy effects are complicated!
But as the slab dips in a known direction, departures
from dipping layer patterns must be due to anisotropy.



Nazca Slab in Colombia is an Excellent Test Case

Broadband seismic network
stretching from coast to back-arc

84°W 80°W 76°W 72°W 68°W
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Regional and Global tomography
shows continuous slab from trench
through mantle transition zone

Convergent
Plate Boundary

Nazca/Cocos
Plate Boundary

' Cryptic

Young Oceanic Plate Endmember
, Plate Boundary

Nazca Absolute

Contrasting anisotropy in Plate Motion

lithosphere and in asthenosphere
likely

Plate age simplified from
Lonsdale, 2005; Slab2 slab
depth from Hayes et al.,
2018; plate motion from

Gripp and Gordon, 2002.
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GCUF: Volcanic Arc

* Slab LAB on 0.24 Hz Band, but may be
complicated by artifacts?

* Energy on 0.24 Hz Band not
significantly present ~4 seconds
beyond expected LAB depth

* Transverse difficult to interpret, but
not a match for simple dipping model
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FLO2: Mid-Upper Mantle

e Supra-slab, immediately sub-slab
arrivals on 0.24 Hz Band

 Weak downdip radial, strong
transverse expected from prior RF

modeling™ of steep (~40°) interface

* Uniformly negative transverse not
explainable by dipping layer alone

*Eckhardt and Rabbel, 2011
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MACC: Mantle

* Negative arrival in 0.24 Hz Band at

expected LAB in Radial, including
otherwise quiet North/South

* Positive arrival on up-dip, down-dip in
0.24 Hz Band near ~55 seconds should
be clear of 410 or 660 interference

* Transverse somewhat noisy

ransition Zone
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410 km Discontinuity

There is no evidence for a melt rich channel beneath the young Nazca Slab.
The Nazca Slab’s LAB signal is consistently with a pair of signals 4-5 seconds
apart, a spatial separation of 40 to 50 km, both may weaken ~550 km depth.
This is likely caused by anisotropic contrasts bounding a sheared, coupled zone.
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