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Abstract:
Swarm robotics is a natural candidate for monitoring large and complex environments. With
the aid of a human who is directly involved in monitoring and search using a teleoperated
robot, swarms of autonomous robots can solve problems related to navigation and changing
objectives. In this context, understanding the role of nonverbal interactions have the potential
to enable rapid and bidirectional communication between humans and robots. Quantifying such
interactions however, requires a repeatable and engaging experimental setup that can track
human action and cognition. This paper describes a desktop virtual reality testbed designed
specifically to quantify human actions, perception, and cognitive load in real time during a
monitoring mission. Motivated by recent deployment of underwater robots to monitor invasive
species, the testbed is designed to mimic an underwater environment within the Great Lakes
with five species of fish whose appearance, locomotion, and behavior are modeled based on
videos from the field. Brain activity and pupillometry data are recorded synchronously in real
time to aid in the measurement of cognitive load of the human operator. To quantify human
perception, empirical data of visual acuity from the literature is used to model virtual object
recognition. The capabilities of the testbed are evaluated in terms of frame rate achieved as
a function of number of fish and robots in the environment, and demonstrated through two
examples highlighting possible uses in human-swarm interaction studies.

Keywords: Human-swarm interaction, fish collective behavior, EEG, pupillometry, cognitive
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1. INTRODUCTION

Swarm robotics has applications in search and rescue,
environmental monitoring, and surveillance (Bashyal and
Venayagamoorthy (2008); Liu et al. (2019); Penders et al.
(2011)). Despite these applications, owing to the complex-
ity of monitoring possibly dynamic targets in a large and
unstructured environment, an autonomous swarm alone
may not constitute the most efficient monitoring strategy.
Adding a human to the robot swarm has the potential
to significantly increase the capability of the combined
human-robot swarm. A human operator can for example
influence the robot swarm by steering it in a specific direc-
tion, separating the swarm into subgroups, or by having
the swarm exclusively monitor a particular region (Kolling
et al. (2016), Dias et al. (2021)).

In human-swarm interaction (HSI), a human operator can
interact with the swarm (Kolling et al. (2016)) indirectly
by changing the environmental factors, or directly by
steering one or more leader robots. With respect to direct
control, depending on the application, the human may
steer the swarm through an overhead interface (McLurkin
et al. (2006)) or via a first person view (FPV) (Coucke
et al. (2020)). Compared to an overhead interface, an FPV
allows humans to directly investigate the environment and

contribute in terms of improved detection and localiza-
tion (Recchiuto et al. (2016); Chen et al. (2008)). With
recent deployments of AUVs and drones for visual recog-
nition of wildlife (Dawson and Allison (2021); Corcoran
et al. (2021)), teleoperating a robot within an autonomous
swarm may be the most relevant strategy to monitor dy-
namic targets. In this context, robot swarms that respond
nonverbally to human cognition and perception in a direct
HSI setup are expected to perform better than those oper-
ating under fixed autonomy (Hussein and Abbass (2018);
Saunderson and Nejat (2019)).

This work enables cognitively and perceptually sensitive
control strategies in direct HSI through: (i) the design
of an experimental setup whereby a swarm can react to
human cognitive load, (ii) quantifying human perception
of the swarm to identify salient cues that are important in
nonverbal interactions, and (iii) design and analysis of a
realistic underwater virtual environment (VE) for swarm
robot deployments. These contributions are realized in
form of an experimental setup that integrates synchronous
data streams of human cognitive load using electroen-
cephalography (EEG) data, and gaze using eye tracking
data, with control input. The use of virtual reality (VR)
allows us to (a) overcome the challenges associated with



implementing large robot swarms and (b) create immersive
environments that can mirror real-world setups.

To ground our approach in a real application that can
elicit a variety of human responses in a monitoring task,
we designed the VE inspired by the problem of monitoring
aquatic invasive species (Wick et al. (2020)). The VE seeks
to replicate underwater scenes within the Great Lakes
(Larson and Schaetzl (2001)) with fish species that are
native and invasive to the region. A mathematical model
of collective behavior (Couzin et al. (2002)) is adapted
for each fish species to match their natural behavior as
observed in videos.

We present two examples demonstrating the capability of
the experimental setup. First, to show the capability of
designing swarm interaction strategies that can respond
to human workload and movement, we demonstrate a
proportional control strategy where the swarm follows the
human controlled robot as a function of their cognitive
load. Second, to show the capability of quantifying swarm
perception, we use visual object recognition to identify a
recognizable subset of the swarm.

This paper is organized as follows: Section 2 provides a
background of the collective behavior model, cognitive
load, and visual acuity. Section 3 presents models of fish
appearance, locomotion, and behavior developed using
observations from real data. Section 4 describes our ap-
proach to building an empirical model of visual acuity for
a desktop VR setup. Section 5 evaluates the performance
of the VE and presents the two examples demonstrating
the capabilities of the experimental setup. We conclude in
Section 6 with a summary of the work.

2. BACKGROUND

In this section, we review the mathematical model of col-
lective behavior used to animate the fish and robots within
our VE, measures of cognitive load, and an empirical
model of human visual acuity.

2.1 Zonal model of collective behavior

The zonal model by Couzin et al. (2002) encodes motion of
an agent within a collective in the form of three rules: (i)
maintain a minimum distance (zor) from other agents to
avoid collisions, (ii) orient in the same direction as those
agents that are beyond zor but within a distance (zoo),
and (iii) gravitate towards agents that are beyond zoo but
less than zoa distance away. Other models of collective
behavior include the boids (Reynolds (1987)) and the two-
dimensional self-propelled particle model (Vicsek et al.
(1995)). We select the zonal model for its predominant
use to explain natural collective behavior as well as for
simulating robot swarms (Tiwari et al. (2017)).

Within the zonal model, the position and velocity of i-th
agent at time t is given by ri(t) ∈ R3 and vi(t) ∈ R3

respectively. The velocity of the i−th agent is updated as,

vi(t+ δt) =

{︃
−sidi,zor(t) if zori ̸= ∅

0.5si (vi,zoo(t) + di,zoa(t)) otherwise,
(1)

where,di,zor =
∑︁

j
ri−rj
|ri−rj | , vi,zoo =

∑︁
j

vj

|vj | , and di,zoa =

−di,zor; i and j represent focal agent and neighboring
agent respectively (i ̸= j) and δt denotes the simulation
time step in seconds; si ∈ R denotes constant speed. Model
parameters zoo, zor, and zoa, can be varied to produce
different types of behavior (Couzin et al. (2002)). For
example, a high value of zoo produces schooling behavior
so that the agents move in the same direction; a relatively
small value of zoo with a high zoa produces swarming
behavior that looks like shoaling among fish.

2.2 Measuring cognitive load

Cognitive load is defined as a multi-dimensional construct
that captures the amount of mental burden a human
experiences as they accomplish a task (Paas et al. (2003)).
Cognitive overload, when the task at hand reaches mental
capacity, can affect performance (Jaeggi et al. (2007)).
Cognitive load can be measured in a variety of ways
including directly from EEG or pupillometry data, or
indirectly from secondary task performance or workload
survey responses (Sweller et al. (2011)). Within EEG data,
cognitive load typically manifests in terms of synchroniza-
tion and desynchronization within the α (7.5 - 12.5 Hz) and
θ (4 - 7.5 Hz) frequency bands, are indicative of cognitive
and memory performance (Anderson et al. (2011)).

Specifically, one measure of cognitive load is calculated
in terms of energy shift at mean frequencies in both α
and θ bands (Klimesch (1999)). The mean frequencies are
calculated as a weighted mean of frequencies as (Klimesch
(1999); Anderson et al. (2011))

f(ω) =

∑︁n−1
i=0 Iifi∑︁n−1
i=0 Ii

, (2)

where n is the number of bins in a frequency band ω, fi is
the frequency in bin i and Ii is the corresponding energy
density. Cognitive load for a particular channel (location
on the scalp) is then calculated as (Anderson et al. (2011))

L(t) = ∆I(α)∆f(α)−∆I(θ)∆f(θ), (3)

where, ∆I(ω) refers to the difference in energy density in
the ω frequency band. The net cognitive load is a weighted
sum of cognitive load of all channels.

2.3 Visual acuity

Human ability to perceive and recognize objects within the
field of view varies with the distance of objects from the
point of fixation of gaze. If the field of view is visualized
as a cone projecting outward from a single point on the
retina, the cone emanating at an angle 2.5◦ from the center
of gaze corresponds to the fovea.

Anstis (1974) conducted an experiment involving identi-
fication of letters and found that beyond the foveal re-
gion the tendency to resolve objects in high detail (and
therefore identify them) tends to decrease with distance
from the fixation point. In particular, he found a linear
relationship between the angle subtended by a just re-
solvable object and its retinal eccentricity, defined as the
angle subtended by the line joining the gaze fixation point



Fig. 1. Fish assets created for the virtual environment: (a)
Lake whitefish, (b) Eurasian ruffe, (c) Yellow perch,
(d) Round goby, (e) Common carp.

and object location (Read et al. (2009)). The reciprocal of
the angle subtended by a resolvable object is called visual
acuity. We utilize visual acuity to quantify the perception
of the robot swarm by a human.

3. MODELING FISH APPEARANCE, LOCOMOTION,
AND BEHAVIOR

This section describes the methods used to replicate ap-
pearance, locomotion, and behavior of various fish species
within the VE. We populated the environment with five
different species found in the Great Lakes. These include
round goby (Neogobius melanostomus), lake whitefish
(Coregonus clupeaformis), eurasian ruffe (Gymnocephalus
cernua), yellow perch (Perca flavescens), and common
carp (Cyprinus carpio).

3.1 Fish appearance and locomotion

Fish appearance was modeled to match the pictures in the
aquatic species database from the US Geological Survey
(USGS) (USGS (2022)). To create replicas, fish profiles
were created from the lateral views. Specifically, lateral
views were imported into Blender 1 modeling software as
images, and vertices were placed to capture lateral profile,
to match the fish silhouette (Fig. 1).

With respect to fish locomotion, we note that all the fish
species that we modeled demonstrate carangiform motion,
so that the fish body bent near the caudal regions during
swimming (Winter (2007)). Accordingly, an animation was
created in Blender by inserting two connected armatures
within the fish body so that they joined near the caudal re-
gion. We then assigned two extreme positions correspond-
ing to the tail beating locomotion and let the software
interpolate to create a smooth tail beating motion.

Fish behavior was characterized on the basis of phenotypi-
cal observations from literature (Kováč (1998)) and videos
available online. Videos were used because experimental
studies in the literature were conducted in a laboratory
environment, and therefore may not accurately represent
fish behavior in the wild. A total of twenty-five videos,
five per fish species, were used to conduct a detailed
behavioral analysis. Videos were selected so that they: (i)
were obtained from the field, (ii) had fish in view for at
least 30 seconds, and (iii) did not contain environmental
modification to lure fish (e.g. baits) or human activity
of setting up cameras. Longer videos were cut to retain
ninety seconds of continuous fish behavior. Fish in these
1 http://www.blender.org/

videos were found to predominantly exhibit the following
behaviors: (a) foraging, which involves searching for food
as a group or independently (Cézilly (2008)) (b) shoaling,
where the fish stayed but not necessarily moving in the
same direction (Blakeslee and McRobert (2009)), and (c)
schooling, where fish swam together in the same direction
(Kasumyan and Pavlov (2018)).

Behaviors were encoded using the Behavioral observation
research interactive software (BORIS) (Friard and Gamba
(2016)). The frequency of each of the three behaviors
was calculated across all five videos. Table 1 lists the
percentage of time each species of fish was seen performing
the three behaviors across all five videos. In particular
common carp was found to forage most of the time,
whereas eurasian ruffe and yellow perch exhibited shoaling
more than 65% of the time. Lake whitefish was found to
school most of the time. Round goby fish was seen in
groups of two or three moving in a distinct stop and go
pattern. All five fish were observed near the lake floor with
common carp and round goby observed nearest the bottom
of the lake. These same fish species were also observed in
fewest numbers compared to other species.

3.2 Model of fish behavior

Motion of individual fish was simulated using model (1)
albeit with different values of zor, zoo and zoa to qual-
itatively match the density and behavior as observed in
the video analysis (Table 1). Inter-species interaction was
limited to repulsion only so that fish from different species
avoided collisions but did not align their motion or get
attracted to each other. While schooling and shoaling
behaviors for a fish species were simulated by varying the
value of zoo between 0.48 – 1.872 virtual world units,
foraging behavior was modeled for Common carp accord-
ing to the model described next. Different behaviors were
switched randomly every 90 seconds to match the fre-
quency recorded in behavioral analysis. Round goby was
simulated with large values of zor and zoa and to keep
them apart yet within observing distance.

3.3 Foraging

To simulate foraging exhibited by common carp, we intro-
duced an external stimulus to act as food particles. The
food particles are generated in the form of nf clusters
at random locations rp ∈ R3, p = 1, . . . , nf at the start
of simulation. We simulated foraging as an increased ten-
dency by the fish to go towards the food source. This was
accomplished by setting the strength of attraction to all
food sources as

fi(t) =
∑︂
p=1

nf Cp(t)(r
p − ri(t))

|rp − ri(t)|
e−|rp−ri(t)|, (4)

where Cp(t) denotes the concentration of the food source.
Equation (4) models the attraction to a food source in pro-
portion to the concentration and decreases exponentially
with distance to the food source. To model reduction of
food due to consumption, the concentration decreases with
presence of fish in the vicinity as

Cp(t) = Cp(t)e

(︁
−0.2Np(t)t

)︁
, (5)



Table 1. Fish size, number, location and behaviors (foraging, schooling, and shoaling) as observed
from video analysis. Round goby was never observed performing any of these behaviors. The

corresponding parameters for the zonal model are also listed.

Fish Size (m) Number Behavior (%) Model Parameters

Foraging, Schooling, Shoaling zor, zoo, zoa (school) zor, zoo, zoa (shoal) gu, gd
Common Carp 0.78 1-5 63, 13, 24 0.02 ,0.01, 0.1 0.06, 0.03, 0.31 0.1, 0.05

Eurasian Ruffe 0.2 50-100 0, 30, 70 0.008, 0.48, 0.50 0.016, 0.008, 0.08 0.1, 0.02

Yellow Perch 0.25 50 0, 32, 68 0.01 ,0.6, 0.63 0.02, 0.01, 0.1 0.1, 0.02

Round Goby 0.125 1-3 - 0.5, 0.7, 0.71 0.5, 0.7, 0.71 0.1, 0.02

Lake Whitefish 0.51 5-15 0, 71, 29 0.02, 1.22, 1.28 0.04, 0.02, 0.2 0.1, 0.02

where Np(t) is the number of fish that are within 1 m of
the food source p. The tendency to forage is balanced with
instantaneous velocity using a parameter α as

vi(t+ δt) = αvi(t) + (1− α)fi(t), (6)

where the value of α = 0.3 to avoid fish colliding with each
other as they forage.

3.4 Maintaining depth

Because each fish species was found to swim near the
bottom of the lake, the zonal model (1) was updated to
ensure that simulated fish maintained depth. Specifically,
the vertical component of velocity vl(t), identified as vly,
was updated as

vly(t) =

{︃
gld|vly(t)| if rly(t) > rlymax

−glu|vly(t)| if rly(t) < rlymin,
(7)

where gld and glu are species-specific parameters (Table 1)
that control the rate at which a fish returns to an assigned
depth region and rlymin = 1 m for Round goby, Common

Carp and 3 m for other species and rlymax = 3 m for Round
goby, Common Carp and 6 m for other species.

4. VIRTUAL OBJECT RECOGNITION

In order to faithfully quantify swarm perception, we sought
to determine the number of robots that the operator
can see. This value may not be the same as the actual
number of robots in the visible range and could depend on
the ability to resolve an object in the human eye. More
importantly, quantifying swarm perception can enable
control strategies to emphasize certain features of the
swarm such as cohesion and number of subgroups.

Accordingly, we fit a quadratic function from Anstis (1974)
data to obtain the relationship for recognizable object as

ψ ≥ 0.0008ϕ2 + 0.0234ϕ+ 0.123, (8)

where ψ is the angle subtended by the object on the eye,
ϕ is the retinal eccentricity and 1/ψ is the visual acuity.
Although (8) uses the same data as in (Anstis (1974)),
this nonlinear relationship can account for large retinal
eccentricities in viewing objects within the field of view,
and provides a basis for isolating members of a swarm
based on whether or not they can be perceived.

To determine if the object is recognizable we first calcu-
lated ψ for virtual object on a viewer’s eye, by finding the
dimension at the object as it is displayed on screen, and
then calculating the angle subtended by that image on the

Fig. 2. (a) Projection of a virtual object on the virtual
camera, and (b) angle subtended on the display.

eye (Fig. 2). We calculated size of the object image on the
screen using a perspective projection model so that given
the vertical dimension lo of an object in the virtual world,
and distance dor of the object from the first person camera
view of user controlled robot, both in virtual world units,
the size of the object on screen is lscr = lo

dor

frov
wchip

wscr,

where frov is the focal length of the camera mounted on
the user controlled robot, wchip is the width of camera
sensor, and wscr is the width of the screen; all variables
are measured in virtual world units except the screen width
which is measured in mm.

With the screen dscr mm away from the participant, the
angle ψo subtended by an object of size lscr is given by

ψo = 2 tan−1
(︂

lscr
2dscr

)︂
. The retinal eccentricity of an object

located uscr pixels away from the fixation point is then

calculated as ϕo = 2 tan−1
(︂

uscrkscr

2dscr

)︂
, where kscr is a

scaling factor equal to the ratio between the width of the
display in mm to the wide resolution in pixels. Objects
that subtend an angle ψo at a retinal eccentricity ϕo and
satisfy the equation (8) are considered recognizable.

5. DEMONSTRATION OF CAPABILITIES

In this section we evaluate the performance of the VE in
terms of refresh rate as a function of number of dynamic
agents, and present two examples demonstrating the ca-
pability of the setup in utilizing and analyzing nonverbal
interactions between a human and a robot swarm.

5.1 Experimental setup

The experimental setup consisted of a desktop computer
with 16 GB memory, a 2.9 GHz i7 processor, an Nvidia
GTX 1060 graphics card, a 1920 × 1080 pixel, 600 × 334
mm display, an EEG headset (Emotiv Epoc X, Emotiv
Inc.) and an eye tracking device (Pupil Core, Pupil Labs



inc.). The EEG headset has 14 channels, with electrodes
positioned according to the international 10-20 system
with a sampling rate of 128 Hz. The eye tracking device can
track gaze and pupil dilation at 200Hz with a resolution
of 192 × 192 pixels per eye.

5.2 Virtual environment to mimic a lake

Fig. 3. Average ± standard deviation of fps as a function
of total number of agents (fish and robot). Inset
shows a scene from the experimental setup with yellow
perch and autonomous robots (see video at https://
youtu.be/hCDTo5kRNxE)

The virtual environment created in Unity software is a
1000 × 1000 × 50 m underwater region, authored to match
the bottom of the Great Lakes region (Figure 3a). The
environment is divided into five regions one for each species
of fish, and features two kinds of submerged plants, chara
and pondweed, found in the lake Michigan.

A swarm of autonomous underwater robots including one
human operated robot are initialized near the center of
the domain at the beginning of the simulation. All robots
are designed after the BlueroboticsTM remotely operated
vehicle in terms of dimensions (0.25 × 0.45 × 0.65 m) and
can move in six degrees of freedom. While these dynamics
do not accurately capture those of an underwater robot,
it serves to highlight the goal of this work, which is to
capture cognitive and behavioral features of direct human
swarm interaction. The human controlled robot can be
maneuvered independently to move forward, yaw, and
pitch using a keyboard.

Similar to fish, the motion of autonomous robots are
modeled to swarm according to the zonal model, zoo =
4 m, zor = 5 m and zoa = 8 m at a constant depth.
With respect to the human controlled robot, the velocity
of autonomous robots in (1) is updated with a gain
kadi,zoa(t) so that a high value of ka would result in
following-type behavior. Although the virtual fish are
repelled by the robots if they come close, robots are only
repelled by each other to avoid collisions.

5.3 Rendering Performance

To measure performance with increase of complexity in
the scene we varied the total number of fish and robots

and measured the frame rendering rate. In particular,
we increased the total number of fish and robots from
a baseline value of 50 agents (38 fish and 12 robots) to
300 agents (260 fish and 40 robots). During this time,
the human controlled robot was maneuvered to move in
circles. In each scenario, we recorded the frame rate for
35 seconds. Although the frame rate can be locked during
actual experiments, we measure the performance of our
setup in terms of unlocked frame rate to capture the lower
bounds with respect to different environments.

Figure 3b shows the average number of frames per second
(fps) as a function of total number of mobile interacting
agents (robots and fish). For comparison, human percep-
tion of quality of video drops significantly as the frame
rate goes below 15 fps (Ou et al. (2008)). For a virtual
environment requiring human interaction, Claypool and
Claypool (2007) contend that frame rate significantly im-
pacts playability, with frame rates higher than 30 fps not
contributing significantly towards increased playability.

The large standard deviations in frame rate is likely
because of mismatched timing of incoming EEG and
pupillometry data stream as frame renderer waits for new
data sample to arrive. This issue can partially be addressed
by locking the rendering rate to refresh rate of the screen.

5.4 Example I: Closing the loop on human cognitive load

In this example, we show the system capability in modu-
lating swarm autonomy with respect to human cognitive
load measured from raw EEG data. While a meaningful
response to cognitive load must be such that the operator
feels aided and not annoyed (Chen and Barnes (2014)),
here we demonstrate a simple proportional control strat-
egy to demonstrate closing the loop. The environment con-
sisted of 11 robots including the human teleoperated robot.
The number of fish for each species were 70 yellow perch
and eurasian ruffe, 7 common carp, 10 lake whitefish and
5 round goby. These fish were placed at random locations
within the environment so that the experimenter did not
know where to look.

Cognitive load was calculated as Lavg(t) = 1/8
∑︁8

i=1 Li(t)
where, Li(t) is cognitive load of ith channel located in the
frontal part of the scalp. Baseline cognitive load was calcu-
lated using EEG data recorded during the first 60 seconds
when the experimenter simply looked at the screen without
navigating the robot. As the environment is explored, each
swarm robot member is able to measure human cognitive
load with additive noise as L̂(t) = Lw(t) + ηc, where

Lw(t) =
1
N

∑︁t
τ=t−w Lavg(τ) is the average cognitive load

over a window of past w = 1 seconds and N is the number
of samples captured over the window and ηc ∼ N(0, 0.01).
In an underwater environment, such observations could be
relayed by using light emitting diodes (LEDs) (Berlinger
et al. (2021)) or acoustic communication. The cognitive
load within a certain range is then used to proportionally
update the attraction gain as

ka =

⎧⎪⎨⎪⎩
klow if L̂(t) < 0

kcl(L̂(t) + 1) if 0 < L̂(t) < Lmax

khigh if L̂(t) > Lmax

(9)

https://youtu.be/hCDTo5kRNxE
https://youtu.be/hCDTo5kRNxE


Fig. 4. (a) Swarm reaction to human cognitive load in
terms of average distance to the human controlled
robot; envelope denotes standard deviation. Regions
of interest are highlighted with the swarm moving
away (10–30 s) in response to low cognitive load and
moving closer (55–80 s) as the cognitive load gets
higher, (b) Three-dimensional trajectories of the hu-
man operator with three (out of eleven) autonomous
robots (dashed lines) for the first 130 seconds.

where klow = 1, khigh = 5, kcl = 3, and Lmax = 1.61 set
on the basis of maximum cognitive load observed in an
interpretation task (Anderson et al. (2011)).

Figure 4b shows sample trajectories of robots in response
to human cognitive load. Times during which the robot
swarm responded to human cognitive load by moving to-
wards or away from it are highlighted. Although measuring
cognitive load using EEG is difficult in real world setups
due to movement artifacts that may manifest in the data
stream, here it provides the basis for identifying cognitively
responsive HSI strategies.

5.5 Example II: perception of the robot swarm by human

This example was designed to show that swarm perception
depends on gaze location and distance. The experimenter’s
calibrated gaze is used to identify retinal eccentricity and
the angle subtended by robots that are in view for two
minutes as they explore the virtual environment.

Figure 5 compares the total number of robots (out of 51
robots) in the view with the those that are recognizable
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Fig. 5. Comparison of the number robots on screen and
the number of robots perceived by human.

based on equation (8). We note that the recognizable
portion of the swarm is nearly always less than the total
number of robots in view. In light of this result, it is
possible that a subset of the robot swarm may exhibit a
collective behavior different from the one that is perceived
by the human operator.

6. CONCLUSION

In this paper we describe the design of an experimental
testbed where a human’s cognitive load and perception
are tracked as they interact with a robot swarm in an
underwater monitoring mission. To achieve high levels
of immersiveness and ease of realizing robot swarms, an
underwater VE was designed and populated with replicas
of five fish species whose appearance and behavior was
modeled to match their real counterpart. Performance of
the VE was evaluated in terms of frame rate achieved as
a function of swarm size. The capability of the setup in
terms of testing cognitively responsive HSI strategies were
then demonstrated through two examples carried out using
the experimental setup. This setup will be used in future
studies to evaluate the performance of mixed initiative
strategies in HSI that respond to human cognitive load
and swarm perception.
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