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ABSTRACT
Visual analysis in field science experiments often involves classifying objects on
experimental images and videos. In this context, developing a reliable and indepen-
dently validated estimate of mental workload during object classification can enable
cognitively responsive task allocation. The goal of this study is to quantify the cog-
nitive load perceived by humans from electroencephalography (EEG) data during an
underwater object classification task that was inspired from citizen science studies.
During the task, participants were asked to identify one of three possible invasive
fish species in short videos of a virtual underwater environment. The virtual en-
vironment was modeled to vary fish behavior and environmental factors that are
known to be critical in classification. A contextually-relevant secondary task was
designed to provide independent validation of cognitive load measures. Several es-
tablished measures of cognitive load were compared across different weightings on
the scalp positions, and the measure that strongly associated with reaction time and
a secondary task accuracy was selected for further analysis. Our results show that
cognitive load calculated using the difference in power of α frequencies best corre-
lates with reaction time and secondary task accuracy. When fit to the environmental
factors, cognitive load calculated using this approach was high when the environ-
ment was turbid and the fish moved at high speeds. Results from this study have
applications in cognitively-responsive human computer interaction and in developing
shared control strategies in human robot interaction.
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1. Introduction

Humans perform visual recognition and classification of objects at all times
(Riesenhuber & Poggio, 2000; Logothetis & Sheinberg, 1996). Depending on the object
to be identified, the classification task can be easy, as we do almost every minute for
common place scenarios, or specialized, requiring domain knowledge, as in the case of
recognition of lesions in surgical applications (Ariji et al., 2019) and identification of
humans in search and rescue (Rodin et al., 2018). Compared to static objects, classify-
ing moving objects poses further challenges associated with localization, segmentation,
intra-object variation, and a dynamic background (Zhang, Li, Yuan, & Xiang, 2007).
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A common application of moving object classification in citizen science involves
processing and tagging large amounts of field video data to identify plants and animals
of interest (Starr et al., 2014; Wick et al., 2020; Langenkämper, Simon-Lledó, Hosking,
Jones, & Nattkemper, 2019; Laut, Henry, Nov, & Porfiri, 2013; Suzuki-Ohno et al.,
2022). With advances in robotic monitoring, the amount of such data has increased
by orders of magnitude over the past decade (King, George, Buckle, Novak, & Fulton,
2018; Mallet & Pelletier, 2014) creating a need for intelligent allocation of human
resources that can optimize the performance of the classification task over a large
group of volunteers (Trouille, Lintott, & Fortson, 2019). Object classification, where
multiple objects exist in the same field video is especially hard, and entails dealing
with difficult lighting conditions, dynamic environments, and speed and proximity of
the objects in question (Salman et al., 2016).

In this context, a better understanding of the mental workload associated with
object classification can (a) allow smart assignment of responsibilities within a citizen
science project (Palermo, Laut, Nov, Cappa, & Porfiri, 2017) where classification tasks
are distributed among volunteers in relation to the imposed cognitive demands and (b)
enable online control sharing strategies within remotely operated monitoring robots
that can weigh autonomous actions against those of a remote operator based on mental
burden experienced by the operator.

The mental burden experienced by a human while undertaking a task is often quan-
tified in terms of cognitive load (Klauer & Zhao, 2004; Paas, Tuovinen, Tabbers, &
Van Gerven, 2003). Cognitive load can be measured indirectly based on performance
in a contextually related secondary task (J. R. Anderson, Reder, & Lebiere, 1996;
Engle, 2002; Sweller, 1988), task completion time (Braver et al., 1997), and responses
to workload related questionnaires (Brünken, Seufert, & Paas, 2010). Compared to
indirect measures, direct measurement of cognitive load using electroencephalogra-
phy (EEG) offers the potential to realize real-time responsive systems. With respect
to EEG, measures of cognitive load are generally functions of spectral powers of the
frequencies that lie within the 4–15 Hz range, with select frequency bands called α
(9.5–11.5) and θ (4–9.5) that have been shown to be closely associated with working
memory (Klimesch, 1999).

Despite its popularity, there is not a single measure of cognitive load based on EEG
data that works for all applications. The different measures include the theta-alpha-
ratio (TAR) (Trammell, MacRae, Davis, Bergstedt, & Anderson, 2017), difference in
α power (Klimesch, 1999), difference in α and θ powers (E. W. Anderson et al., 2011),
and features such as entropy, energy and standard deviation extracted from wavelet
coefficients (Zarjam, Epps, & Lovell, 2015). The different measures likely highlight the
dependence of cognitive load measurement on the task at hand. For example, cognitive
load during tasks that involve visualization and pattern recognition has been quantified
using α power shifts (E. W. Anderson et al., 2011), whereas TAR has been used in
markers for Alzheimer’s disease (Schmidt et al., 2013). Expectedly, there is a lack of
consensus regarding which measure would serve to best quantify cognitive load during
a task (Kiiski et al., 2020). Furthermore, when computing cognitive load using spectral
shifts, additional variables include (E. W. Anderson et al., 2011): (a) sites on the scalp,
(b) weights given to each site, and (c) the type of baseline or reference measurement;
baseline, for example, may be recorded once at the beginning of the experiment for all
trials (Bales & Kong, 2022) or prior to every trial (Antonenko, Paas, Grabner, & van
Gog, 2010).

To address this large parameter space as well as identify a reliable measure of cogni-
tive load for object classification, we developed an experimental design that measures
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reaction time and includes a contextually related secondary task for validation. In
particular, the primary task involved moving object classification and the secondary
task involved counting the number of moving objects. To motivate object classifica-
tion in a citizen-science context (Wick et al., 2020), we designed our experiments after
fish species identification task created using virtual environments. We utilized virtual
environments instead of real-world videos as they enable systematic variation of envi-
ronmental properties. Specifically, based on real-world challenges (Wick et al., 2020),
we varied several variables in our virtual environment, namely fish speed and number,
turbidity within the environment, and the distance of the camera to the group of fish.

The contributions of this work are as follows: (i) we identify an independently
validated EEG-based measure of cognitive load during moving object classification
with an experimental protocol that involves maximizing the strength of association
against reaction time a contextually relevant secondary task, and (ii) we utilize the
measure of cognitive load to test the hypotheses that cognitive load will increase when
identifying objects that are moving at higher speeds, in larger numbers, are farther,
and in environments that are more turbid.

This paper is organized as follows: section 2 describes the experimental methods
including the modeling of the virtual environment and the fish behavior, experimental
setup and procedure, and data analysis towards determining an independently vali-
dated measure of cognitive load. Section 3 presents the experimental results describing
the responses to various questionnaires surveying mental workload and perception of
the underwater environment followed by identification of the measure of cognitive load
that best associates with reaction time and secondary task accuracy; the results of
generalized linear model fits of cognitive load to variations in virtual environment are
presented next. Section 4 concludes with a discussion of the results and applications
of this work.

2. Methods

2.1. Virtual Environment

Figure 1. Fish models used in the experiment. Yellow perch (a), eurassian ruffe (b), and round goby (c).
Fish size was not matched as two species were never shown together.

The virtual underwater environment consisted of a region designed to mimic a lake
bed within the Great Lakes with plants and uneven terrain. A static virtual camera was
set up to focus on a specific area within the environment. Three-dimensional virtual
replicas of fish found in Lake Michigan, namely round goby (Neogobius melanostomus),
eurasian ruffe (Gymnocephalus cernua), and yellow perch (Perca flavescens) were de-
signed to populate the environment, one species at a time. Out of these, yellow perch
is considered native to the Great lakes. The fish were modeled so that their outline
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matched the pictures from the US Geological Survey database website (USGS, 2022).
Specifically, lateral and longitudinal views of the fish were imported into the Blender
modeling software and a sculpting tool was used to match the contour and width of
the fish. Fish locomotion was further enhanced by animating the tail to mimic carangi-
form swimming (Tytell et al., 2010). Although the three fish species have different size
in nature, we built them to the same size in our environment to maintain the same
camera distance for all species. The virtual replicas were then colored according to the
dominant color of the species (Figure 1).

Groups of fish replicas moved according to a self-propelled particle model called the
zonal model often used to study collective behavior in animal groups (Couzin, Krause,
James, Ruxton, & Franks, 2002). This model simulates collective motion among a
group of agents by requiring that each agent moves according to three interaction
rules; these rules are encoded with respect to other agents that are present within
concentric zones centered around the focal agent. In particular, the model entails that
(i) agents maintain a minimum separation distance (zor) among themselves, (ii) agents
orient in the direction of other agents that are within zone of orientation (zoo) and
(iii) agents move towards other agents who are beyond the zoo but within a zone of
attraction (zoa). Accordingly, given the position ri(t) ∈ R3 of the i−th agent, the
velocity at time t is vi(t) ∈ R3 is updated as

vi(t+ δt) =

⎧⎨⎩ −s
(︂∑︁

j∈zori(t)
rj(t)−ri(t)
|rj(t)−ri(t)|

)︂
if zori(t) ̸= 0

0.5s
(︂∑︁

j∈zooi(t)
vj(t)
|vj(t)| +

∑︁
j∈zoai(t)

rj(t)−ri(t)
|rj(t)−ri(t)|

)︂
otherwise,

(1)

where s ∈ R is the speed of the agent, zori, zooi, and zoai denote the sets of agents
within agent i’s concentric zones, and δt = 1 s is the simulation time step.

2.2. Experimental Conditions

The experimental conditions consisted of varying behavioral and environmental pa-
rameters selected on the basis of challenges observed in underwater video classification
(Wick et al., 2020) (Fig. 2). These included (i) camera distance from fish (close and
far), (ii) water turbidity (low and high), (iii) fish speed (slow = 1 and fast = 1.5 body
length/s), and (iv) number of fish (8, 10 or 12). Camera distance was varied by placing
the virtual camera closer or farther from the fish group while taking care that a ma-
jority of the fish were visible on the screen; water turbidity was varied by adding high
to low intensity fog to the scene while making sure that fish were still visible under
high intensity condition; fish speed was varied by modifying the parameter s in (1);
and number of fish were varied by increasing the number of agents in the simulation.
Simulations were first performed in MATLAB (Mathworks inc.) and the trajectory
data was imported into Unity software to animate the fish replicas.

With three different fish species, there were 72 possible combinations of classification
tasks that could be presented to each participant. Eight sets of videos were preprepared
for every combination, with a random video picked per combination when requested for
the classification task. Each combination was presented twice, once as a primary task
where the participant had to identify the fish species, and then again accompanied by
a secondary task, where the participant had to identify the fish species, as well as count
the number of fish. The primary task served to provide a basis for measuring cognitive
load using EEG data and the secondary task served to provide an alternate measure of
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cognitive load in the form of accuracy of the estimate in counting the number of fish.
In this sense, including a secondary task for each combination would therefore result
in 144 classification tasks. Since presenting so many tasks could lead to unwanted
fatigue, each participant was presented with 24 randomly selected combinations out
of the 72 total possible combinations, once each for primary and secondary task for a
total of 48 classification tasks per participants.

Figure 2. A subset of the different experimental conditions shown to participants. Camera distance which

could be close and far (a, b), turbidity levels which could be high and low (c, d), and number of fish that
ranged between 8 and 12 (e, f).

2.3. Participants

A total of 22 participants (18 males and 4 females, aged 24.4 ± 4 years) were recruited
through flyers posted throughout the campus and email announcements. Exclusion
criteria included being below 18 years of age, having a history of seizures, or having
thick hair on scalp that could prevent obtaining a reliable connection with the EEG
headset. The experimental study was approved by the institutional review board under
protocol number HS21-0309.

2.4. Experimental Setup

The experimental setup consisted of a desktop computer with a wide-screen monitor
(3840 × 1080 pixels, 60 Hz refresh rate, LG) to present the virtual environment, and
a fourteen-channel EEG device (Emotiv Epoc X, Emotiv Inc.) running at 128Hz to
record brain activity. The electrodes on the EEG headset were positioned according
to the international 10-20 system. Within this system, the scalp is considered a hemi-
spherical shape; using the convention F, T, C, P and O for frontal, temporal, central,
parietal, and occipital parts of the brain, with odd numbers for left and even numbers
for the right part of the brain, an electrode location can be specified using a letter and
a number as X#; for example the notation F3 denotes a site located on the left-front
part of the scalp.
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The graphical user interface (GUI) for presenting videos of the virtual underwater
environment was created using windows presentation foundation in visual studio and
scripted in C#. The GUI displayed all the instructions, questionnaires, and playback
of the virtual underwater environment. A video camera (Hero 5, GoPro Inc.) facing
the participant was mounted on top of the monitor with a mirror mounted behind the
participant to record their responses. The camera and mirror served to independently
verify the synchronization of user responses to video data. A virtual serial link was
set up between the GUI and the EEG capture software (Emotiv Pro, Emotiv Inc.) to
mark the start and end of classification tasks during the experiment.

2.5. Experimental Procedure

Figure 3. Various screens seen by the participants. Participants were shown a baseline image for approxi-

mately eight seconds (a) prior to a fish species identification (b) or estimating the number of fish in addition

to identification (c).

On arrival, participants were assigned a random six-digit number to record all in-
formation anonymously. They were then asked to review and sign a consent form,
which listed the purpose of the study, potential risks, and the type of data that will
be collected (EEG, video, and survey responses).

The participants were then asked to put on the EEG headset using a reference image
describing how the electrodes should be arranged. Once a reliable electrode connection
was achieved, the EEG signal and video data was set to record. This was followed by
instructions on the screen, familiarization with the tasks, and object classification.

The instructions comprised showing real images of the three fish species to the
participants with a statement informing them that they should try and remember
their appearance and that they will be asked to identify virtual replicas of these fish
in subsequent trials.

During familiarization, participants were asked to identify the virtual replicas in
videos similar to the ones that would be used in classification. Specifically, participants
were asked to select one of multiple choices and were informed of the correct choice
upon submission. After three such familiarization videos, the classification task was
initiated by informing the participants to answer the one or two questions relating to
the number and types of fish on subsequent screens “as quickly as possible”.

Prior to every classification task a baseline EEG measurement was collected during
which participants were shown a plain blue image covering the screen with a message
saying “Please wait while we take baseline measurement” for approximately eight
seconds (Fig. 3a).

The classification task involved one of two types of tasks (Fig. 3b and c): identifying
the fish species (primary task) or identifying fish species as well as estimating the
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number of fish (primary and secondary task). The choices for estimating the number
of fish were given in the form of a range around the true value (6–8, 9–11, 12–14).
The combination of parameters such as fish species, number of fish, fish speed, camera
distance and turbidity, were kept the same between the two types of trials for each
participant, whereas the types of combinations and the order in which they appeared
was randomized between participants (see Fig. S1, supplementary document for a
distribution of parameter combination across all trials.).

After 24 trials, the participants were asked if they wish to take a break or continue
with the experiment. At the end of the experiment, participants were asked to enter
their preferred gender and their age. This was followed by requesting them to fill out
three surveys: (i) a NASA-TLX questionnaire that surveyed their mental workload
in response to the experiment as a whole (Cao, Chintamani, Pandya, & Ellis, 2009)
on a 0–20 scale, with higher values implying higher workload, pace of task, or higher
success; (ii) a fish familiarity questionnaire on a 0–6 scale asking how familiar they
were with the different fish species, with higher values implying greater familiarity;
and (iii) a virtual video questionnaire asking the participants to rate the realism of
the underwater virtual environment and their experience with virtual reality on a 0–6
scale with higher values indicating that virtual environment appeared very natural
and that they frequently experienced virtual reality.

2.6. Data Analysis

2.6.1. Preprocessing

EEG data was bandpass filtered to keep frequencies between 0.1 and 20 Hz followed
by rejection of trials where any of the frontal electrodes posted an absolute EEG am-
plitude above 1000 µV (Tong & Thankor, 2009). This resulted in 13% of the trials
rejected. (A sensitivity analysis of the results with respect to this threshold was per-
formed to ensure that the selected cognitive load measure did not change because of
the threshold.) We favored a simple threshold instead of independent component anal-
ysis for artifact removal (Urigüen & Garcia-Zapirain, 2015) to enable real-time and
unsupervised calculation of cognitive load in human-computer interaction applications.

Reaction times during a trial were calculated by placing markers within the EEG
data via a virtual serial port. Specifically, the reaction time was recorded as the time
between when the video was first shown for classification and when the participant
submitted their choice. For trials involving primary task only, this involved the time
taken to identify the fish species, whereas trials involving primary and secondary task,
the reaction time involved identifying the fish species as well as estimating their number
within a range.

2.6.2. Secondary task accuracy

Past studies have shown that secondary task performance, when the secondary task is
assigned within the same context as the primary task, will decrease with high cognitive
load (Sweller, 1988). In our context, this amounts to accuracy in estimating the number
of fish on the virtual underwater video. Accuracy in estimating the number of fish
during the secondary task was calculated based on participant responses that indicated
a range for the number of fish (e.g. 6–8, 9–11). Assuming that a response indicated that
all values within a range were equally probable, the error in estimating the number of
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fish was calculated as

Es =
1

3

∑︂
i

|Nf −Ni|, (2)

where Nf is the true number of fish shown on the screen and Ni are the three
values within a selected range, so that for example, if the participant selected 6–8,
Ni = {6, 7, 8}, and | · | denotes absolute value. In this measure, a higher value of Es

indicated lower accuracy.

2.6.3. Selecting an independently validated measure of cognitive load

The EEG-based measure of cognitive load for object classification was determined by
maximizing the combined strength of association with respect to primary task reac-
tion time and secondary task accuracy. Specifically, we calculated different measures
of cognitive load by varying the type of measurement (three types: TAR, reduction in
α power, and weighted difference of α and θ power), the temporal location of the base-
line measurement (two types: single baseline recorded prior to all trials or a different
baseline considered prior to each trial), and the weighting of the electrodes (thirteen
different combinations discussed next); these measures were then correlated with reac-
tion time and secondary task accuracy Es. The measure that maximized the product
of the R2 values with respect to the primary task reaction time and Es was selected
as cognitive load.

The three different types of measurements that were considered included the: (i)
TAR (Cabañero et al., 2019), (ii) reduction in α power band (α-diff) (Klimesch, 1999),
and (iii) difference in θ and α powers weighted by difference in mean frequency (θ−α-
diff) (E. W. Anderson et al., 2011). Out of these only the TAR measure used select
channels and did not require weighting; the latter two involved weighting individual
channels along the scalp.

The TAR measure of cognitive load for a particular trial t is defined as (Trammell
et al., 2017)

TAR(t) =
IFZ
t (θ)

IPZ
t (α)

≈ IF3
t (θ) + IF4

t (θ)

IP7
t (α) + IP8

t (α)
, (3)

where IFZ
t (θ), for example, denotes the spectral power within the θ band at the

FZ electrode. Since the FZ electrode was not available on our headset, the same was
approximated by adding the spectral power in F3 and F4 electrodes. The spectral
power was calculated using the fast-fourier transform (FFT). For all cognitive load
calculations we considered θ band frequencies to lie within 4–9.5 Hz and α frequencies
to lie within 9.5–11.5 Hz corresponding to young healthy adults (Klimesch, 1999).

The α-diff, or reduction in α power as a way to measure cognitive load is based on
the phenomena that α waves desynchronize with increasing mental load (Klimesch,
1999). Because desynchronization should lead to reduced power, cognitive load based
on reduction in α power for a channel k when comparing test to baseline measurements
and is determined as (Klimesch, 1999)

∆Ik(α) = Ikb (α)− Ikt (α), (4)
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where Ikb (α) denotes the power in the α band during a baseline task on the k−th
electrode, and subscript t denotes the same during a trial. The net cognitive load is
calculated as a weighted combination of reductions in individual channels in a 14-
channel headset as

Lα(t) =

14∑︂
k=1

wk∆Ik(α), (5)

where wk is the weighting for k-th electrode.
The θ − α-diff, or difference in α and θ powers weighted by the difference in mean

frequency is motivated by the observation that desynchronization in α frequencies may
be accompanied by synchronization of θ rhythms thus leading to an increase in power
of frequencies within the θ band (E. W. Anderson et al., 2011). The resulting measure
of cognitive load is weighted by the shift in mean frequency within a particular band.
The mean (or gravity) frequency of ω (θ or α) band at k-th electrode is calculated as
(E. W. Anderson et al., 2011)

f(ω)
k
=

∑︁n−1
i=0 Ik,i(ω)fk,i(ω)∑︁n−1

i=0 Ik,i(ω)
, (6)

where n, equal to one more than half the sample size, is the number of bins in individual
frequency bands, fk,i(ω) is the frequency in bin i and Ik,i(ω) is the energy density

computed in the bin i. The frequency shift of a wave band is ∆f(ω)
k
= ft(ω)

k−fb(ω)
k
,

where the subscripts t and b as before represent trial and baseline measurements. The
net cognitive load is then calculated as weighted combination of shift in energy density
over all the electrodes as

Lθ−α =

14∑︂
k=1

wk

(︂
∆Ik(θ)∆f(θ)

k −∆Ik(α)∆f(α)
k
)︂
, (7)

where wk is the weighting parameter for k-th electrode.

2.7. Weighting of cognitive load for each electrode

To explore the different electrode-weighting strategies, EEG data from various channels
was weighted according to a two dimensional Gaussian distribution centered on four
different locations on the scalp determined along the azimuth and latitude (Böcker,
van Avermaete, & van den Berg-Lenssen, 1994). The four selected locations were sym-
metrical across left and right hemisphere. For each location the Gaussian distribution
was varied in terms of three values of standard deviations (0.1, 0.5, 1.0) resulting in
a total of twelve different weighting combinations; a thirteenth combination corre-
sponded to uniform weighting in all electrodes. Because there is research suggesting
that the frontal cortex is associated with working memory (E. W. Anderson et al.,
2011; Braver et al., 1997), the weighting was only applied to frontal electrodes thus
ignoring temporal and parietal regions. Figure 4 shows the weighting combinations
evaluated as part of this study.
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Figure 4. Cognitive load from different channels were weighted according to thirteen different combinations
shown on topographic images of the scalp. Combinations I–XII corresponded to Gaussian distributions for

frontal electrodes centered at different locations on the scalp with increasing standard deviations. Combination

XIII corresponded to uniform weighting across all frontal electrodes.

2.8. Statistical analysis

Cognitive load from each measure for different weightings and baseline measurements
wherever possible was linearly correlated with z-scored values of primary task reaction
time and secondary task accuracy. For each correlation, an estimate of the slope, the
R2 value capturing the strength of association, and a p value denoting the significance
of fit were calculated. The measure of cognitive load that maximized the product of
the strength of association with reaction time and secondary task accuracy was then
used to model cognitive load and evaluate it as a function of experimental conditions.

The selected measure of cognitive load was then modeled as a generalized function
of turbidity of the environment (categorical with two levels), number of fish (categor-
ical with three levels), camera distance (categorical with two levels), and fish speed
(categorical with two levels), along with their combinations (Zuur & Ieno, 2016; Mc-
Cullagh & Nelder, 2019); fish species and participant number were treated as a random
intercept. All two-way interaction effects were tested so that a normally distributed
generalized linear model (GLM) with an identity link function was set up as

Cognitive load ∼Gaussian(µ)

µ =Turbidity + NumberFish + FishSpeed

+ CameraDistance + Turbidity ×NumberFish

+ Turbidity × FishSpeed + Turbidity × CameraDistance

+ . . .

+ FishSpeed× CameraDistance (8)
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Different GLM models were created and evaluated with increasing number of pre-
dictor variables (experimental conditions) to determine the best fit in terms of residual
error as well as the number of predictors. Only models with two-way interactions were
tested so that they could be interpreted easily. Each model was compared to a previous
model using with fewer number of predictors in terms of the deviance, and significance
of the deviance. Additionally, for each model, the corrected Aikaike Information Cri-
terion (AICc) was calculated to determine which models could be used for further
analysis. The model that was significantly different with respect to a comparison with
another having fewer predictors and had the lowest AICc was selected to analyze the
dependence of cognitive load on experimental conditions.

3. Results

3.1. Mental workload and quality of underwater environment

Table 1. Average response to post experiment questionnaires. Scale for each questionnaire is shown in paren-

theses.
NASA TLX questionnaire (0–20) Response
How mentally demanding was the task? 10.818 ± 6.231
How physically demanding was the task? 2.818 ± 3.647
How hurried or rushed was the pace of the task? 10.273 ± 6.017
How successful were you in accomplishing what you were asked to do? 11.182 ± 3.762
How hard did you have to work to accomplish your level of performance? 9.091 ± 4.975
How insecure discouraged irritated stressed and annoyed were you? 6.045 ± 5.296

Fish familiarity questionnaire (0–6)
How familiar are with Round Goby? 1.32 ±1.91
How familiar are with Yellow Perch? 1.91 ± 2.09
How familiar are with Eurasian Ruffe? 0.63 ± 1.29

Virtual video questionnaire (0–6)
How would you describe your past experience with virtual reality? 2.36± 1.94
How natural did you find the virtual environment? 2.45 ± 1.56

Table 1 shows the average responses to survey questions posed to participants after
the experiment. Participants found the classification tasks to be somewhat mentally
demanding, but not physically demanding. They felt that the pace of the tasks was
somewhat rushed and that they were generally successful in accomplishing the task.
Participants did not feel discouraged or stressed while performing the tasks.

Regarding fish familiarity, participants were generally unfamiliar with the fish. With
respect to the virtual environment, participants had less than average experience with
virtual reality and found the virtual underwater environment to be slightly less than
somewhat natural.

3.2. Independently validated measure of cognitive load

Cognitive load based on TAR did not correlate with secondary task accuracy (estimate
= 0.002, p = 0.96, R2 = 0) or reaction time (estimate = 0.023, p = 0.65, R2 = 0).

When the baseline for the first trial was considered as the baseline for all tasks (single
baseline for all trials), and cognitive load was calculated using θ−α−diff, none of the
thirteen weighting combinations were found to be significantly correlated with primary
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Figure 5. Cognitive load computed using α-diff as a linear function of z-scored reaction time (a) and secondary
task accuracy (b) for combination X.

task reaction time or secondary task accuracy (Table S1 in supplementary document).
On the other hand, when cognitive load was calculated using α−diff, combination I
maximized the strength of association and was positively correlated with primary task
reaction time (estimate= 0.679, p < 0.001, R2 = 0.071) but was not correlated with
secondary task accuracy (estimate= 0.027, p = 0.814, R2 = 0).

With baseline recorded prior to every trial, and cognitive load calculated using
θ − α−diff, again, combination X was found to be negatively correlated with primary
task reaction time (estimate= −0.080, p = 0.041, R2 = 0.009), but not with secondary
task accuracy (estimate = 0.033, p = 0.403, R2 = 0.001, Table S2 in supplementary
document). Contrastingly, when cognitive load was computed using α−diff, combi-
nation X maximized the strength of association and was positively correlated with
primary task reaction time (estimate= 0.786, p < 0.001, R2 = 0.0786) as well as with
secondary task accuracy albeit without significance with the latter (estimate= 0.202,
p = 0.118, R2 = 0.005). The sensitivity of this correlation to the threshold on absolute
EEG amplitude is shown in table S3 in supplementary document. Figure 5 shows the
linear fits for this combination and measure of cognitive load to reaction time and
secondary task accuracy.

3.3. Effect of environment and fish motion on cognitive load

Table 2 shows the GLMs fit to the cognitive load calculated using baseline recorded
prior to every trial, combination X and α−diff with increasing number of experimental
conditions (predictors). Each successive model is assigned a number and is compared
to another model with fewer predictors. In this respect, model 6 was found to be sta-
tistically significant based on its p−value being less than 0.05 and the lowest AICc
value. In particular, model 6, which tested interaction between Turbidity and Fish-
Speed had a significantly low deviance when compared to model 4, which tested main
effects only. Another model (model 9) tested interaction between NumberFish and
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Table 2. Generalized linear models with sequentially increasing number of predictors. Each model is compared

with respect to another with fewer number of predictors to calculate deviance and AICc.
Model # Model Compared to Df Residual Df Residual Deviance Deviance AICc p

0 1 479 3658.7 NA 2341.12 NA
1 Turbidity 0 1 478 3658 0.7 2343.06 0.77
2 Turbidity + NumberFish 1 2 476 3653.9 4.1 2346.59 0.76
3 Turbidity + NumberFish + FishSpeed 2 1 475 3653.4 0.5 2348.58 0.81
4 Turbidity + NumberFish + FishSpeed +

CameraDistance
3 1 474 3652.2 1.2 2350.49 0.69

5 FishSpeed + CameraDistance + Turbid-
ity*NumberFish

4 2 472 3626.6 25.6 2351.26 0.19

6 NumberFish + CameraDistance +
Turbidity + FishSpeed + Turbidity
* FishSpeed

4 1 471 3597.4 54.8 2348.35 0.04

7 Turbidity + CameraDistance + Num-
berFish + FishSpeed + Number-
Fish*FishSpeed

4 2 469 3591.8 60.4 2353.87 0.69

8 NumberFish + FishSpeed + Tur-
bidity + CamerDistance + Turbid-
ity*CameraDistance

4 1 468 3574.5 77.7 2350.36 0.14

9 Turbidity + FishSpeed + NumberFish +
CameraDistance+ NumberFish * Cam-
eraDistance

4 2 466 3529.6 122.6 2348.49 0.048

10 Turbidity + NumberFish + Fish-
Speed + CameraDistance + Fish-
Speed*CameraDistance

4 1 465 3511 141.2 2349.64 0.09

Table 3. Model that satisfied the criteria for being statistically significant and lowest AICc

Model 6
Predictors Estimate Standard Error p
Intercept 0.5429 0.33666 0.108
NumberFish10 0.18278 0.30999 0.556
NumberFish12 0.18678 0.30492 0.541
CameraDistance(Far) 0.09599 0.25276 0.704
Turbidity(High) -0.4497 0.36115 0.214
FishSpeed(Fast) -0.4603 0.35934 0.201
Turbidity(High):FishSpeed(High) 1.03165 0.50573 0.042

Figure 6. Interaction between Turbidity and FishSpeed for different NumberFish (a) and CameraDistance
(b).

CameraDistance also had significantly low deviance than model 4 but it had a slightly
higher AICc and a much larger deviance than model 6. Model 6 was ultimately selected
for detailed analysis.

Table 3 shows the GLM results for models 6, where we find the interaction between
Turbidity and FishSpeed to be significant. Figure 6a investigates this interaction with
respect to NumberFish and reveals that high Turbidity leads to higher cognitive load
when fish were moving faster for all group sizes. Figure 6b reveals the same effect
irrespective of the CameraDistance.
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4. Discussion

Measurement of cognitive load reliably in real time presents an opportunity to design
efficient human computer interaction strategies where the assigned tasks are respon-
sive to mental workload. Object classification is one such type of task that is often seen
in citizen science studies, where volunteers are asked to identify features of interest
in field videos, and this work allows interpreting human workload during such tasks.
While brain activity through EEG data has often been used as a non-invasive way to
measure real-time cognitive load, a single agreed-upon approach to determine which
measure to use is not available. In this study we design an experiment that included
recording the reaction time and performance in a contextually relevant secondary task
to independently validate a measure of cognitive load in moving object classification.
The experimental setup was designed to replicate a fish species identification task in
virtual underwater environment authored to systematically vary multiple environmen-
tal parameters. The measure of cognitive load that correlated with reaction time and
secondary task performance was then used to investigate dependence of cognitive load
on environmental parameters including turbidity, camera distance, fish speed, and fish
group size.

Given that the experiment was designed to be performed sitting at a computer
desk, it was not perceived as physically demanding, however, participants felt that the
classification tasks were moderately demanding in terms of mental effort and pace.
Because the NASA-TLX questionnaire was presented at the end of the experiment, it
lacked the granularity needed to make a real-time inference about mental workload.
At the same time, these responses indicate that the experiment design was adequate
in terms of number and type of classification tasks to be performed and did not pose
significant mental workload.

Majority of the participants were unfamiliar with the fish species or their impact
on the environment. In this context, the experiment served to increase their awareness
of the presence of these fish species in the Great lakes. Participants found the virtual
environment to be less than somewhat natural indicating that additional features must
be added for believability. While for this study, we kept the environment simplistic to
focus on the object classification task, additional features that could be added include
color patterns on the fish body, speed dependent tail movement, and a greater variety
of plants and aquatic organisms in the environment.

The measure of cognitive load that achieved the strongest association with primary
task reaction time and secondary task performance was calculated by considering
baseline recorded prior to each trial and strongly weighting the frontal electrodes FC5
and FC6. Baselining prior to every trial is likely required in situations where the
task difficulty changes nonlinearly with time. The location of electrodes that provided
the validated measure is supported by studies suggesting that prefrontal cortex in
humans brain play role in cognitive load (Nissim et al., 2017; Sweller, 1988). While
this measure significantly correlated with reaction time it failed to do so with secondary
task accuracy. It is likely that the effect of secondary task on mental workload was
diluted due to the relatively few number of fish which participants could also count
manually instead of estimating. Indeed, the experimenter had noted a few instances
where participants were seen counting the number of fish on the screen.

The α-diff measure of cognitive load was more robust as an estimate of cognitive load
compared to θ−α− diff. While the desynchronization in α power and synchronization
in θ power as the brain switches from rest to trial state is well accepted (Klimesch,
1999; Gómez-Ramı́rez, Freedman, Mateos, Perez Velazquez, & Valiante, 2017; Solomon
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et al., 2017), an accompanied increase in mean frequency is related to the speed of
processing information (Klimesch, 1999); this implies that depending on how the task
is handled, the change in mean frequency can lead to positive or negative cognitive
load, an aspect we observe in our calculations as well.

Within our object classification experiments, no single factor was found to be sig-
nificant enough to explain cognitive load; instead cognitive load was found to depend
on a combination of factors. The lack of main effects is likely because of the relatively
low resolution for some of the factors. For example, factors such as NumberFish had
similar values (8,10, and 12) to avoid guesswork during secondary task, and Cam-
eraDistance where the close distance was constrained by keeping a majority of the fish
group in sight.

The model that satisfied the selection criteria showed higher cognitive load as en-
vironmental factors made it more challenging to identify the fish species albeit with
some unexpected trends. For example, participants experienced higher cognitive load
with higher turbidity when fish were moving faster. On the other hand, cognitive load
dropped with higher turbidity when fish were moving slow. While it is possible that
because the fish are moving in three-dimensions, higher turbidity caused individual
fish to disappear more often leading to a higher mental effort in recognizing the fish
species, this does not explain the drop in cognitive load when fish move slowly. Instead,
it is likely that slower fish automatically maintained a tighter spatial group. At high
turbidity levels the resulting cohesive group could have been perceived at a stronger
contrast to the background making them easier to identify.

The study was limited in terms of the realism of the virtual environment and the
range of variables it could test. The environment is already being improved as part of
ongoing work where fish now have detailed color patterns on their body, species spe-
cific tail movement, and the virtual environment resembles the real counterpart to a
higher extent (Bhattacharya & Butail, 2022). A first-person mobile robot perspective
within the virtual environment provides a larger and more realistic range of environ-
mental variables to change within a task, enabling cognitively responsive human-robot
interaction strategies.

In conclusion, results from this study can be used in enhancing the human-computer
or robot interaction experience in classification tasks—an open problem in human-
machine interaction (Vinciarelli et al., 2015). The validated measure of cognitive load
can complement post-experiment surveys in human computer interaction and aid in
identification of instances of high cognitive load in long-drawn mentally intensive tasks.
With respect to invasive species classification that is common in citizen science, the
measure of cognitive load with commercial-grade EEG headset can provide an inter-
active interface that adapts task allocation to human cognitive load. Although not
performed, the measure can be classified in real-time enable cognitively responsive
applications. The dependence of cognitive load on turbidity in the environment and
object speed are expected and can form the first steps to differentiating tasks with
respect to mental workload. The study also has implications in citizen science and
invasive species identification by using the underwater virtual environment to test the
usability of different types of interfaces and tasks prior to actual deployment.
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