arXiv:2211.17211v2 [cs.CC] 20 Dec 2022

On Disperser /Lifting Properties of the Index and
Inner-Product Functions®

Paul Beame' Sajin Korotht
University of Washington University of Victoria
beame@cs.washington.edu skoroth@uvic.ca
December 21, 2022
Abstract

Query-to-communication lifting theorems, which connect the query complexity of a
Boolean function to the communication complexity of an associated ‘lifted” function obtained
by composing the function with many copies of another function known as a gadget, have
been instrumental in resolving many open questions in computational complexity. A number
of important complexity questions could be resolved if we could make substantial improve-
ments in the input size required for lifting with the Index function, which is a universal gadget
for lifting, from its current near-linear size down to polylogarithmic in the number of inputs
N of the original function or, ideally, constant. The near-linear size bound was recently shown
by Lovett, Meka, Mertz, Pitassi and Zhang [20] using a recent breakthrough improvement on
the Sunflower Lemma to show that a certain graph associated with an Index function of that
size is a disperser. They also stated a conjecture about the Index function that is essential for
further improvements in the size required for lifting with Index using current techniques. In
this paper we prove the following;

e The conjecture of Lovett et al. is false when the size of the Index gadget is less than loga-
rithmic in N.

® The same limitation applies to the Inner-Product function. More precisely, the Inner-
Product function, which is known to satisfy the disperser property at size O(log N), also
does not have this property when its size is less than log N.

¢ Notwithstanding the above, we prove a lifting theorem that applies to Index gadgets
of any size at least 4 and yields lower bounds for a restricted class of communication
protocols in which one of the players is limited to sending parities of its inputs.

¢ Using a modification of the same idea with improved lifting parameters we derive a
strong lifting theorem from decision tree size to parity decision tree size. We use this,
in turn, to derive a general lifting theorem in proof complexity from tree-resolution size
to tree-like Res() refutation size, which yields many new exponential lower bounds on
such proofs.
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1 Introduction

In recent years, a substantial number of long-standing problems [5, 9, 19, 11, 23] have been re-
solved using the method of lifting. Lifting results take a gadget function g and show that any
function f : {0,1} — {0,1} that is hard to compute by decision trees can be modified to a new
function F = f o ¢ that is hard for a more powerful computational model, typically that of 2-
party communication complexity, in which case ¢ : X x Y — {0,1} and the inputs for F for the
two players are partitioned into x € XN and y € YN.

A particularly natural and important choice of gadget ¢ is the Index gadget IND,, : [m] x {0,1}"
given by IND,, (x, y) = yx. The Index gadget is universal for all gadgets g : X x Y — {0,1} where
|X| = |Y| = m via the simple reduction where y is replaced by the string (¢(x,y))xex. Since IND,,
has a 2-party protocol of cost log, m + 1, the communication complexity of f o INDY is at most
O(C(f)logm), where C¥(f) is the decision tree complexity of f. Another important gadget g is
the Inner-Product function IP; : {0,1}" x {0,1}” = {0,1} given by IP,(x,y) = x - y mod 2.

An important limitation on the quality of lower bounds that can be proven by lifting with a
gadget ¢ : X xY — {0,1} comes from the fact that the input size for F grows by a factor of
log, | X| +log, |Y| bits from that of f. This limits the lower bounds on the lifted function F com-
pared to the input size of F. The original lifting theorems of [21] and [17] used Index gadgets
with m a large polynomial in N. Subsequently, [5, 25] proved a lifting theorem for Inner-Product
gadgets with b = clog, N for some constant c > 5. Later, [5] improved c to almost 2. The first
lifting theorem for randomized computation was proved by [13] again for Index but for m an even
larger polynomial in N and later again, by [4], for Inner-Product for b a larger constant multiple
of log, N than for deterministic lifting.

A key question asked in a precursor paper to these lifting theorems [10] is whether lifting is pos-
sible with a sub-logarithmic or even constant-size Inner-Product gadget. Smaller gadgets imply
sharper lifting results and more general classes of functions for which lifting may be used to prove
lower bounds. Proving such lifting theorems would imply breakthrough results in other areas.
For example, proving lifting theorems with constant-size gadgets would give us a near-complete
understanding of communication complexity of lifted search problems and would imply break-
through results in associated areas like proof complexity and circuit complexity'. Even improving
the gadget size for Index to poly-logarithmic in N would improve the best known monotone cir-
cuit size lower bounds [14] from 22(""*) to 220" In the dream range of constant size, by the
universality of Index, if there is any lifting theorem for any constant-size gadget, there would be
one for constant-size Index gadgets.

Recent work by Lovett, Meka, Mertz, Pitassi and Zhang [20] used a new bound for the Sun-
flower Lemma [1] to improve the size of the Index gadget that can be used in deterministic lifting
results to O(Nlog N). They also identified a conjecture regarding entropy deficiency and the dis-
perser property of the Index gadget that is essential for further reductions in gadget size using

n this paper we focus on the setting of query-to-communication lifting where the query complexity of f is lifted to
the communication complexity of F using the gadget g. There are other lifting theorems (see [24]) which lift analytical
parameters of the function f to the communication complexity of F. In these settings, lifting theorems with constant-
size gadgets are known [24] but for many interesting applications of lifting, there is a significant gap between analytical
parameters of f like approximate-degree (used in [24]) and the query complexity of f. Thus, such lifting theorems with
constant-size gadgets are not enough to give the results alluded to above.



current techniques.

Before stating the conjecture of Lovett, Meka, Mertz, Pitassi and Zhang [20] we give an outline of
the meta-technique for proving query to communication lifting theorems, known as the simulation
theorem framework.

The lifting paradigm

The general paradigm for proving a query-to-communication lifting theorem is a step-by-step
simulation argument that begins with a communication protocol IT for f o ¢V on inputs in XV x
YN and derives a decision tree T computing f on inputs z € {0, 1}N.

Beginning at the root of IT and with T a single root node, the simulation proceeds to follow a
path in IT maintaining sets of inputs X C XN and ) C YN consistent with the current node u in
protocol I'l. (The exact procedure for choosing the path and the sets X and ) varies.)

At any point in time when X’ x ) has revealed too much about the value of z; = g(x;,y;) for
some i, the simulation at the current leaf node v of T queries z; and adds the children v" and v to
T, one for each outcome. The simulation then splits into cases depending on whether the 0 or 1
out-edge from v is being followed. There may be multiple i for which this may need to be done at
the same time.

The simulations maintain several invariants at each corresponding pair of nodes u in IT and v
in T that occur in this simulation. In particular, if X and ) are associated with this pair of nodes
and I C [N] is the set of input indices queried on the path in T to v and z; is the assignment that
takes T to the node v then we require

g(X,Y) =z (Consistency)
¢y, ) = {0,1} NI (Disperser /Extensibility)

The consistency property is obviously required for correctness. The disperser property is required
because the simulation cannot predict what query indices will be needed for T in the future. Over-
all, in order to yield a good complexity bound, the argument also has to bound the length of the
path to v in T, which is the size of the set I, as a function of the length of the path from the root to
uin I

In order to maintain these properties, the simulations also maintain some “nice” structure on
the sets X and ). The most common notions of nice structure are small entropy deficiency of the in-
duced distributions on the unqueried coordinates [N] \ I or high min-entropy rate (equivalently the
block min-entropy)?. The min-entropy rate is the minimum ratio of the min-entropy of the induced
distributions on any subset of unqueried blocks compared to the maximum possible entropy on
those blocks.

There are other "nice” properties that were used in the past. For example, one of the first lifting
theorems by Raz and McKenzie [21] used a combinatorial notion of niceness defined as average-
degrees in a layered graph corresponding to X'. This property was also used in the later reproving
of the result by [12], and the result on extending deterministic lifting theorems to a larger class of

2Many existing results for the Index gadget use bounds on the min-entropy rate on the XN side and entropy defi-
ciency on the YN side.



gadgets including Inner Product by [25, 5]°. All of the results using this combinatorial property
crucially depend on a transformation in layered graphs from average degree to minimum degree
known as the “thickness lemma” to prove the disperser property of the gadget. It is a folklore
result that such average-degree to min-degree transformations do not work for Index gadgets of
linear size. Thus, using “average-degree” as the nice property cannot yield lifting theorems with
sublinear-size Index gadgets using existing techniques.

The LMMPZ conjecture on entropy deficiency and disperser properties of IND

The conjecture of Lovett et al. [20] is a necessary condition for small entropy deficiency to be
sufficient for lifting with the Index function. To motivate the parameters of the conjecture we first
note how entropy deficiency relates to the numbers of bits of communication sent in the protocol
IT:

In the course of following a path in I to a node u, each bit communicated may split the set
of consistent inputs in either XV or YN by a factor of 2, which increases the entropy deficiency
by 1. If good min-entropy rate is also required, additional pruning must be done, which further
increases the entropy deficiency. Therefore, the best one can do in terms of maintaining small
entropy deficiency is to maintain a bound A on entropy deficiency for X and Y that is proportional
to the number of bits sent in I. Bounding the length of the path in the decision in terms of the
number of bits sent means that |I| should not be too large as a function of A. This led Lovett et al.
to formulate the following conjecture on the disperser properties of Index as a first step towards
obtaining lifting theorems for small gadget sizes:

Conjecture 1.1 ([20, Conjecture 11]). There exists c, such that for all large enough m the following holds:
Let X, be distributions on [m]N, ({0, 1}m)N, respectively, each with entropy deficiency at most A. Then
INDXY (X, ) contains a sub-cube of co-dimension at most cA. That is, there exists I C [N], |I| < cA, and
v € {0,1} such that for all z € {0,1}" with z; =  we have

i Ny[INDﬁ (x,y) =z] > 0. (1)
Remark: Note that the condition Equation (1) is somewhat weaker than the combination of the
consistency and disperser conditions in the above lifting paradigm. The lifting paradigm would
correspond to additionally requiring that the (x,y) pair in Equation (1) come from some X’ C X
and )’ C Y such that INDL, (X”,)") = v. Here, one could satisfy Equation (1) using pairs (x,y)
and (x/,y') with IND!, (x,y) = IND., (¥, /) = v but IND/, (x,v/) # 1.

The results in [20] prove the conjecture for m = O(NlogN), in fact the stronger version with
separate consistency and disperser properties required for lifting; previously it was only known
when m > NZ2. Based on a related statement about p-biased (X, )) proved in the Robust Sun-
flower Theorem from [1], the authors [20] also suggest that it is hopeful to prove the conjecture
when m = poly(log N) using techniques from their work and [1].

3[5] uses it slightly differently from the application of the property for the Index gadget.



Our results

We disprove the LMMPZ conjecture when m is log, N — w(1), even when X" and ) are also as-
sumed to have extremely high min-entropy rate. In our counterexample the distribution for X is
uniform on [m]N and so has full entropy and maximum possible min-entropy rate. The distribu-
tion on ) is also uniform so we view both X and ) as subsets of [m]"N and ({0,1}")N respectively.

Though the parameter A governing the entropy deficiency in the conjecture is universally quan-
tified, the failure of the conjecture occurs over a very wide range of values of A. In fact, when
m < (1 —a)log, N, we prove a much larger gap and show that |I| must be Q)(N*) independent of
A for Equation (1) to hold.

Theorem 1.2. For any A > 1 and m with 2™ < N/(KA) for K > 1 there is a set Y C ({0,1}")N
of entropy deficiency at most A and min-entropy rate at least 1 — 1/m such that for every I C [N] with
|I| < (K —1)A, the set INDﬁ\I([m]N, Y) does not contain the all-0 string.

Since X = [m]N has no deficiency (and min-entropy rate 1) we immediately derive the follow-
ing:

Corollary 1.3. Conjecture 1.1 is false when m < log,(N/A) — w(1). Moreover, for all A, when m <
(1 —a)log, N, for any set I, |1| must be Q(N*) for Equation (1) to hold.

Furthermore, an analogous property applies to the Inner-Product function:

Theorem 1.4. For b < log,(N/(KA)) for K > 1, there is a set ) C ({0, 13N of entropy deficiency
at most A and min-entropy rate more than 1 — 1/b for every I C [N] with |I| < (K —1)A, the set

IP?\I(({O, 1}b)N, Y) does not contain the all-1 string.

Therefore, though lifting theorems, both deterministic and randomized, have already been
proven for Inner-Product gadgets on clog, n bits using only properties of small entropy-deficiency
and high min-entropy rate [4], using these properties we can at best reduce the Inner-Product gad-
get size in such lifting theorems by at most a constant factor since lifting for Inner-Product gadgets
with significantly fewer than log, n bits are impossible using those properties.

The proof idea for these theorems is quite simple and relies on the fact that for such small values
of m, it is likely that a uniformly random string y will have many blocks i where y; = 0" and hence
cannot have 1 output values in any of those coordinates.

Despite this setback, the dream of lifting theorems for constant-size gadgets remains. Our sec-
ond main result is that, though we can rule out the disperser properties of Conjecture 1.1 for IND,,
with sub-logarithmic m, there is an interesting class of protocols, one in which Bob’s messages are
constrained to be parity functions of his input string y, in which we can prove a deterministic
lifting theorem using IND,,, gadget for constant size m.

Since Alice is unrestricted and Bob is restricted, we call such protocols semi-structured pro-
tocols. We obtain a lifting theorem for semi-structured protocols showing that the decision tree
height is asymptotically at most a 1/ log m fraction of the complexity of the communication pro-
tocol for the lifted function with INDY. As is typical for deterministic lifting theorems, this works
both for functions and for search problems. For protocols in which both Alice and Bob only send



parities of their inputs, we obtain an even stronger simulation that applies to the size of the deci-
sion tree produced in terms of the number of leaves (size) of the communication protocol for the
lifted function.

In particular a modification of this idea gives us a generic theorem that lifts decision tree lower
bounds of height t or size s for any explicit function f on n inputs to a corresponding lower bound
for parity decision trees of height Q)(t) or size Q)(s) for an explicit function f' on O(n) inputs.

The latter also yields new lower bounds for tree-like proofs in the Res(®) proof system in-
troduced by Itsykson and Sokolov [16, 17] who proved tight exponential lower bounds for the
pigeonhole principle as well as exponential lower bounds for a very restricted kind of lifted for-
mula based on Tseitin formulas from [2]. (This system is also known as ResLin, because of its
relationship to the ResLin proof system of Raz and Tzameret [22].) Huynh and Nordstrom [15]
gave lifting theorems for a variety of other proof systems using constant-size Index gadgets (in-
deed with m = 3) but these only yield good bounds for a restricted class of formulas whose search
problems have high “critical block sensitivity”. Here we obtain exponential lower bounds for a
substantially broader class of formulas. In particular, for any of the vast class of k-CNF formu-
las ¢ for which exponential tree-resolution lower bounds are known, we obtain lifted O(k)-CNF
formulas ¢’ with a constant factor increase in number of variables (and a constant factor increase
in number of clauses if k is constant) requiring tree-like Res(®) refutations of exponential size
(indeed at least the tree-like resolution refutation size for ¢).

Related Work Independently of our work, Chattopadhyay, Mande, Sanyal, and Sherif [6] have
obtained closely related lifting results for parity decision tree size and the size of tree-like Res (&)
proofs. Their lifting theorem works not only for lifting with Index gadgets but, more generally,
for lifting with a class of gadgets that includes Inner-Product and other simple gadgets. Their
methods and ours have considerable similarity, particularly in the use of row-reduction as a key
component.

2 Preliminaries

Notation: For a set of vectors (or a distribution X') on UN and I C [N], we use X to denote the
projection of X onto the coordinates in I. For a function / on U, we let ! (X") denote the set of all
possible vectors of outputs of h! on AJ; if this set is a singleton w we abuse notation and simply
define the value to be w.

Information theory: We use several definitions for forms of entropy:

Definition 2.1. The entropy deficiency (sometimes simply deficiency) of a distribution X on a uni-
verse U, Doo(X), is log, |U| — Ha(X'). For a subset V C U, the deficiency of V is that of the uniform
distribution on V. In particular, for example, the deficiency of a set of inputs J C ({0,1}™)N of Bob
satisfies

ey _ 1Yl
2 <)_W.



Definition 2.2. The min-entropy of a distribution X on U, He(X'), is
in | 1/P .
min log, (1/ Pr(x))

For a distribution X on a set UN, the min-entropy rate of X is the maximum T such that for every
J € [N], He (X)) > 7|]|log, |U| or, equivalently, such that for all ay € U/,
Pr [x; = aj] < [u| "V
x~X
We use the following fundamental fact about the effect of conditioning on the min-entropy of a
random variable.

Fact2.3. Let X be a random variable and let E be an event. Then Heo(X | E) > Heo(X) —log,(1/ Pr[E]).

Probability: We will use the following nice bound on the median of any binomial distribution.

Proposition 2.4 ([18]). The median of a binomial distribution B(n, p) lies between |np| and [np].

Linear algebra: We use row-reduced form to represent matrices in our simulation theorems.

Definition 2.5 (Row-reduced matrices). A matrix M with r rows is said to be row reduced if it contains
an v X r identity submatrix.

Parity decision trees and Res(®) refutations: A parity decision tree over a set of Boolean variables
Z defining a space {0, 1}Z of Boolean vectors is a rooted binary tree in which each internal node
is labeled by a parity of variables from Z with out-edges labeled 0 and 1 respectively. Each leaf is
labeled by an output value. Such a decision tree computes a function on {0, 1}Z.

For a function or relation f on Boolean inputs, let C%(f) and size’!(f) be the minimal height
and size, respectively of any decision tree computing f and let C*¥(f) and size®¥)(f) be the
corresponding measures for parity decision trees.

Before defining the proof system Res(&) and its relationship to parity decision trees, we first
review the resolution proof system and its relationship to ordinary decision trees.

A resolution (Res) refutation of an unsatisfiable CNF formula ¢ on variables Z is a sequence of
clauses ending in the empty clause L in which each clause is either a clause of ¢, or follows from
two prior clauses using the inference rule

AVz, BVZ
AV B
for some variable z; € Z; we say that this step resolves on variable z;.

This sequence yields a directed acyclic graph (dag) of in-degree 2 each of whose nodes is labeled
by a clause on the variables in Z, with sources labeled by clauses of ¢ and sink labeled by _L. The
resolution refutation is tree-like if this associated dag is a tree and the associated refutation is called
a tree-resolution refutation of ¢. For an unsatisfiable CNF formula ¢, let treeges(¢) be the minimum
size of any tree-resolution refutation of ¢. Further, let widthg.(¢) denote the minimum over
all resolution refutations of ¢ of the length of the longest clause in the refutation. We have the
following result of Ben-Sasson and Wigderson [3].



Proposition 2.6. For any CNF formula ¢ with clause-size at most k, treeg,s(¢) > 2Widthre(¢) =k

Every unsatisfiable CNF formula ¢ yields an associated total search problem Search, which
takes as input an assignment z € {0, 1}Z and produces the name of a clause that is falsified by z.

Proposition 2.7. Given any unsatisfiable formula ¢, minimal tree-resolution refutations of ¢ and decision
trees solving Searchy, are isomorphic. This isomorphism identifies nodes that resolve on a variable z; with
those that branch on variable z;.

Each node in a decision tree naturally corresponds to the sub-cube of the input set {0, 1}Z given
by the constraints on the path to the node from the root. Similarly, any clause C can be identified
with a sub-cube of {0,1}* consisting of the set of all inputs falsified by C. We say that a clause C is
a weakening of a clause A iff there is some clause B such that C = AV B; alternatively this is equiv-
alent to saying that the sub-cube corresponding to C is contained in the sub-cube corresponding
A. With this correspondence, the isomorphism in the above proposition means that the sub-cube
for each node in the decision tree corresponds to a weakening of the clause at the isomorphic node
in the tree-resolution refutation.

A Res() refutation of an unsatisfiable CNF formula ¢ in variables Z is a sequence of affine
subspaces of F4 ending in the subspace F5 such that each subspace in the list is either the sub-
cube corresponding to a clause of ¢ or follows from two prior subspaces A and B via the inference

rule:
A, B

C

(Alternatively, one can replace each subspace by an expression for its dual, namely a disjunction
of parity equations over [F,, each of which is the negation of one of a set of linear equations defining
the affine subspace. Therefore, each line is a clause over parities and the subspace is the set of
inputs that falsifies it. In this way, the single inference rule generalizes the weakening rule of
resolution and generalizes resolving on a single literal to resolving on a parity of variables; it is
not hard to see that the subspace C must be contained entirely in A or in B unless there is a unique
linear constraint defining A whose negation is a defining equation for B. This representation is not
unique since there may be many different choices of defining equations for an affine subspace, but
we assume that the proof is representation independent. As noted by Isykson and Sokolov [16, 17],
the semantic view of Res(@) refutations we have presented is a standard proof system in the sense
of Cook and Reckhow [7] since inference is explicitly verifiable in polynomial time.)

As with resolution refutations, we can define the dag of indegree (at most) 2 associated with a
Res(®) refutation and let tree-Res(@) be the proof system consisting of Res(&) refutations whose
associated dag is a tree. For an unsatisfiable CNF formula ¢, let treeg,(q)(¢) be the minimum
size of any tree-Res(&) refutation of ¢. Using the analogous ideas to the isomorphism between
decision trees and minimal tree-resolution proofs, Itsykson and Sokolov proved the following
correspondence:

if CC AUB.

Proposition 2.8. [16, 17] Given any unsatisfiable formula ¢, minimal tree-Res(&®) refutations of ¢ and
parity decision trees solving Searchy, are isomorphic. This isomorphism identifies nodes that resolve on a
parity function ®g(z) with those that branch on ®g(z).



Lifting CNF formulas with IND,,: There are a few options for how to do this. Since we will use
this when m = 2¢ is a constant, we choose a simple option that has N/ Boolean variables x;, for
j€40,...,£ =1} and i € [N] and Nm Boolean variables y;; for j € {0,...,m —1} and i € [N].
As usual, the interpretation we have for IND% isthatz; =iy, | x,-

Given a k-CNF formula ¢ in N variables Z = {zj,...,zy}, we define an (¢ + 1)k-CNF formula
@ o INDY on the x;j and y; variables as follows: Each clause (ZZ1 Vo zf:) of ¢ is replaced by

m* clauses of length (¢ + 1)k, one for each tuple (jV),...,j*)), which expresses the statement
that if the / bits x; ., encode value j;, those of x;, , encode j», ... and those of x; . encode j, then
y?f, AV yf: j, must be true. With this definition, each clause of ¢ o INDY corresponds to a unique

clause of ¢. Moreover, a falsified clause of ¢ o INDY on one of its input vectors yields a falsifying
assignment to the corresponding clause of ¢ under the vector of z values given by INDY.

3 On the insufficiency of low deficiency and high min-entropy rate

In this section we prove Theorems 1.2 and 1.4.

Let K be any function of N with K > 1 for all N and assume that 2" < N/(KA). We will
construct a specific distribution Y, with deficiency bounded by A and min-entropy rate at least
1 —1/m, such that for any I C [N] with |I| < (K —1)A, IND,LT]\I([M]N,JJ) does not contain the
all-1 string.

We establish this simply by showing that for all (x,y) € [m]N x ), INDY(x,y) has Hamming
weight more than (K — 1)A. Thus any projection of IND(X,Y) onto N — |[I| > N — (K—1)A
coordinates will contain at least one 1, and would therefore miss the all-0 string.

To this end, we will construct ) as the uniform distribution on a subset S C ({0,1}")N with the
following properties :

1. Every y € Shas atleast k > (K — 1)A blocks that are equal to 1.
2. |S| > 2mN-A
3. The min-entropy on any subset of b < N blocks is at least (m — 1)b.

The second property ensures that the deficiency of ) is at most A and the first property guarantees
that every output has at least k 1-bits no matter what the input x is. The third property is simply
that the min-entropy rate is at least (1 — 1/m).

The essence of the proof idea applies in the case that A = 1; the general case is a simple extension
of that special case:

Counterexample when A = 1: We derive a counterexample in this case by choosing k = |K] >
K — 1 and setting S to be the set of all inputs in ({0,1}")N that have at least k blocks of the form
1™:1.e., all-1 blocks.

The key observation that makes this work is the following:

Observation 3.1. For y chosen uniformly at random from ({0,1}™)N, the number of all-1 blocks in y is
distributed according to the binomial distribution B(N,1/2™).



In particular, since A = 1 this means that the expected number of all-1 blocks in y chosen
uniformly from ({0,1}")N is N/2™ > K. By applying a bound on the median of binomial distri-
butions, we obtain the following;:

Lemma 3.2. For 2" < N/K, at least 1/2 of all strings in ({0,1}")N have more than K — 1 all-1 blocks.

Proof. By Observation 3.1, the number of all-1 blocks is given by the binomial distribution
B(N,1/2™). By Proposition 2.4, the median of this distribution is at least [ N/2" | > |K| > K—1.
The claim follows since the binomial is integer-valued. O

Lemma 3.2 shows that ) is a uniform distribution with deficiency at most 1, which means that
the projection on any b blocks has min-entropy at least mb — 1 and hence ) has min-entropy rate
atleast1 —1/m.

Counterexample for A > 1 buto(N): For this we assume without loss of generality that A is an
integer and N = N'A for some integer N’ since rounding can add only A — 1 extra coordinates.

Since 2" < N/(KA), we have 2" < N’/K. This means that we can use the counterexample
distribution )’ for the case A = 1 on N’ coordinates. We define ) to the direct product of A
independent copies of the distribution )’ on disjoint coordinates.

By construction, ) has deficiency at most A; it also has min-entropy rate at least that of each
Y’ which is 1 — 1/m since it is a product over disjoint coordinates. Also by construction, every
y in the support of ) has more than (K — 1)A all-1 blocks which means that no set I of at most
(K — 1)A coordinates cannot cover all of the all-1 blocks of y, which would be necessary to have

the all-0 string in iND ([mN, V).

Extending the counterexamples to other gadgets We note that the above result also disproves
a similar conjecture for any 2-party gadget ¢ : X x Y — {0,1} whose communication matrix
has a row or column that has a constant value. For example, the Inner-Product gadget on IP}, :
{0, 1}h x {0, 1}b has this property for the row or column of its communication matrix indexed by
0. That s, (x,0) = 0 forall x € {0,1}". It is easy to see that the above analysis works to disprove
the analogous conjecture for Inner-Product under the same conditions, though in this case, the
output vector that would be missed is the all-1 vector.

4 Lifting theorem for semi-structured protocols

Since Conjecture 1.1 is false for m = (1 — o(1)) log N, without modification, existing techniques
cannot reduce the gadget size below this threshold. However, this does not rule out other ap-
proaches to proving lifting theorems with very small gadgets, even for constant-size ones. Are
such theorems with constant-sized gadgets possible at all?

As a first step towards answering this question, in this section we prove a (deterministic) lifting
theorem with constant-size Index gadgets for a restricted family of communication protocols.

The restricted family that we consider are deterministic communication protocols in which Alice
is unrestricted, but Bob is only allowed to communicate parities of his input bits. Since Alice is
unrestricted and Bob is restricted, we call such protocols semi-structured or (*, @ )-protocols.



For a Boolean function F : X x Y — {0, 1}, we use C*¥(F) to denote the deterministic communi-
cation complexity of F by such protocols. Similarly, for a relation (search problem) R C X x Y x W
we use C*¥(R) to denote the deterministic communication complexity of such protocols solving
R, that is, when Alice receives x € X and Bob receives y € Z, the protocol outputs some w € W
with (x,y,w) € R or outputs _L if no such w exists.

Theorem 4.1 (Lifting theorem for semi-structured protocols). Let m > 4 be an integer. For every
f:{0,1}" = {0,1},
1
C*¥(f o INDY) > ECdt(f) log, m.

Furthermore for every R C ZN x W,
C*®(Ro INDN) > %C"”(R) log, m.

Let IT be a (x, @)-protocol for R o INDY of complexity C**®(R). Without loss of generality we
can assume that C*®(R) < N(log,m + 1). Following the lifting theorem paradigm we prove
Theorem 4.1 by showing how to produce a decision tree T for R of height at most that of I1 by
simulating I1.

4.1 High level overview and invariants

Since Bob is only allowed to communicate parity equations, we will follow the lifting paradigm
and maintain the set ) as an affine subspace over ]F[ZN] “["] We will also maintain the property that
the codimension 4 of ) is at most the total number of bits communicated during the protocol.
Atevery point in our simulation we will maintain a set Dy C [N] x [m] of dependent coordinates.
All other coordinates in [N] x [m] will be free. We maintain )’ of codimension d as the set of a

solutions of a system £ of d affine equations over I, in row-reduced form
M-y =D,

such that M (up to permutation of rows) is a d x d identity submatrix on the columns Dy that
we have designated as dependent coordinates. It is immediate from this set-up that we have the
properties:

(A) |Dy| = codim(}).

(B) For every total assignment to the free coordinates, there is a unique assignment to Dy that
extends it to an element of ).

Bob’s communication of some parity function @ ; jcs y;; of his input can add at most one new
affine equation to £, depending on whether or not the value of that parity function is already fixed
on ). There is no change to £ if and only if the parity is in span(€), the F, span of the parities
defining &.

As in the general lifting paradigm, we maintain a set I C [N] of fixed indices* on which there
is a single fixed output for IND,IW (X,)). In addition to the above, we also maintain the following
invariants.

%As in the discussion so far, to keep notions separate we will use the term “indices” to refer to elements of [N] and
“coordinates” to refer to elements of [N] x [m].
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(O) For all indices that are not fixed, elements of X only point to free coordinates; that is, for every
i € [N]\ I, and every x € X we have (i, x;) ¢ Dy.

(D) X has min-entropy rate at least T = 1/2 on [N] \ .

Maintaining (C) is quite easy: Whenever we identify a new dependent coordinate (7,j) € [N] x
[m] in ), we simply update X’ by removing all x € X with x; = j.

We maintain (D) using the methods of Go6s, Pitassi, and Watson (GPW) to restore the min-
entropy rate whenever it falls too low. Since the affine structure of ) allows for a precise definition
of dependent coordinates, our lifting theorem differs from the GPW-style lifting theorems in its
parameters and philosophy®. These differences allow us to overcome the dependence between m
and N in such theorems.

4.2 The Simulation Algorithm

As we discussed in our high-level overview, we maintain ) as an affine subspace of ({0,1}")N
defined by a set of linearly independent equations £ in a row-reduced form that contain an identity
matrix on the set Dy of dependent coordinates. We need to be able to update this as new affine
equations are added, either because of communication by Bob or because we have added some i
to the set I of fixed indices.

For this, we define a helper function row-reduce(&, Dy, e) that takes as input

¢ aset of row-reduced equations &,
¢ aset Dy of coordinates for its dependent variables, and
* anew affine equation e linearly independent of £,

and uses Gaussian elimination to return a pair (£, (i, j)) where £’ is equivalent to £ U {e}, (i,]) ¢
Dy and &' is row-reduced, as witnessed by the columns of Dy U {(i,j) }. We note that when a new
equation is introduced while adding i to the set of fixed indices, the new equation e will be of a
particularly simple form, namely y;; = b where (i,j) ¢ Dy by our maintenance of invariant (C),
in which case the new dependent coordinate returned will be (i, ).

We follow a variant of the simulation algorithm of GPW[12], with a few modifications to identify
and exclude dependent coordinates in ). The algorithm uses a sub-routine RestoreMinEntropy-
RateAndQuery (see Algorithm 2). This is essentially density restoration from GPW and makes
sure that X has min-entropy rate at least T = 1/2 by adding fixed indices to I, adding queries to
the decision tree and fixing some coordinate y; ,, to the query answer for z,,. Note that GPW style
lifting only uses this procedure to restore min-entropy rate at a node where Alice speaks, but we
also may need this when Bob speaks because we reduce X by removing pointers to dependent
coordinates. Another difference in our version of density-restoration is that we only chose the
tirst part in the partition (as we are doing deterministic lifting opposed to the randomized lifting

in [13]).

5GPW never makes queries based on Bob’s communication, but we do!
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1 Algorithm: Query;(z)
Data: z € {0,1}", X = [m]N, Y = ({0,1})N, £ = @, Dy = @, ] = &, p = *", protocol I
for R o INDﬁ , v=root of I'l.

Result: element of R(z).
2 while v is not a leaf do

[N B N

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
2

=)}

end

o

end

end
end

Let vg, v1 be the children of v following communication 0 and 1 respectively
if Bob speaks at v then

Let the parity function at v be @ ; ;s Vi

if ©(;j)esyij € span(€) then

v < vy, for the unique b such that ©; jjcs y;; = b forally € Y

else

// Half of ) goes to vg, half to v;; we choose the smaller subtree.
Choose b € {0,1} with subtree rooted at v; no larger than one rooted at v;_,.

Y {y €V | Dujes¥ij= b}

(&,(i*,j) ) < row-reduce(&, Dy, Dijes Yij="b)

add (i*,j*) to Dy

X — X |y 27 // Note: if i* €] then x;+ # j* already.
U < Uy

end

f Alice speaks at v and partitions X into X° U X! then
Letb € {0,1} be such that | X?| > 1-|X|

X Xb

U < Uy

if min-entropy-rate(X) < T =1/2 then
‘ RestoreMinEntropyRateAndQuery(X, z)

return label of v

Algorithm 1: Simulation algorithm
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[y

Algorithm: RestoreMinEntropyRateAndQuery(&’, z)

Data: X C [m]N,z € {0,1}".

Result: Updates X to restore min-entropy rate to T = 1/2 by fixing coordinates via
queries to z.

Let I’ C [N] \ I be a maximal set on on which & has min-entropy rate < 7 = 1/2

Let ap € [m]" be such that Pryc y[xy = ap] > m~ 7!

X—{xeX|xp=ayp}

Query all coordinates in I’ and let zj be the query answers

Y {y EV Y1, = ZI’}
foreach i € I' do
p(i) < z
(&,(i%,j*) ) < row-reduce(E, Dy, y;., = p(i)) // Note: i*=i, j*=u;
10 | add (i,«;) to Dy
11 end
12 [« Ul

=) g = W N

o o

Algorithm 2: Procedure RestoreMinEntropyRateAndQuery

4.3 Analysis of the simulation algorithm

We first argue that X and ) are never empty during the run of our simulation algorithm. Thus,
when the algorithm reaches a leaf node of IT we can output a correct answer. To do so we observe
the following invariants on our simulation algorithm (algorithm 1).

Lemma 4.2 (Invariants of the Simulation Algorithm (algorithm 1)). At the beginning of every itera-
tion of the while loop in Algorithm 1, the following properties hold:

a. p defines the path in the decision tree T that is the outcome of the queries and fixed(p) = I.
b. Y is the set of inputs satisfying £ which is row-reduced on Dy.
c. Foranyx € X,and any i & 1, (i, x;) is a free coordinate of Y; that is (i, x;) ¢ Dy.

d. For every total assignment to the free coordinates ([N] x [m]) \ Dy, there is a unique assignment to
Dy, that extends it to an element of Y.

e. X has min-entropy rate at least T on [N] \ I

Proof. All but the last of the conditions of Lemma 4.2 easily can be seen to hold by inspection of
Algorithms 1 and 2. The last follows by the argument of GPW and follows from the maximality
of the set I’ in Algorithm 2. It is easy to see that if X has non-zero min-entropy rate, then X’ is
non-empty. Moreover, since every element of X points only to free coordinates in blocks outside
of I and the min-entropy on each block is large, Y must have many free coordinates outside of
I. O

We bound the number of queries |I| by using a potential function equal to the deficiency of
XN\ 1- Let A be the number of bits spoken by Alice, and B be the number of bits spoken by Bob
in I1. We analyze the change in Do (X)) due to updates of A" and I:
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e line 13 in Algorithm 1: removing x;» = j* from X for newly dependent (i*, j*):
By Lemma 4.2(e), we know that X has min-entropy rate at least T = 1/2. Thus, Pry.y[xj =
7] <1/m™ < 1/2since m > 4 and T = 1/2. Consequently, Pry..x[xi # j*] > 1/2. So, by
Fact 2.3, Hoo (X' |1, 2j) > Hoo(X') — 1. Therefore, the change in Deo( Xy, 1) is at most 1. This
step is executed at most B times. (Note: For larger m we could maintain sharper bounds, but
it seems that we don’t need to do so.)

e line 19 in Algorithm 1: choosing the more frequent bit of Alice to send:
This increases Doo( |\ ) by at most 1. This step is executed A times.

e line4 and line 10 in Algorithm 2: querying and fixing coordinates I’ maximal for min-
entropy loss:
First, line 4 increases Do (Ay\ ;) by at most T - |I'| - log, m as shown the proof of Lemma 3.5
in [13]. Second, line 10 decreases Do ( Xy 1) by precisely |I’| - log, m since it adds |I’| blocks
to I. The net total of these changes is that Deo(X|y)\ ;) decreases by atleast (1 —7) - |I'| - log, m
in this case.

Putting these together yields:
Doo(X[N]\[) <A+B—-(1-1)-|I| log,m.

Since Deo(Xy}\1) > 0 we must have

Since T = 1/2, A + B > 0.5|1|log, m and hence C*®(R o IND}) > A + B > 0.5 C*(R) log, m. [

We can strengthen the above in the case that each of Alice’s bits, like Bob’s bits, either is irrel-
evant or splits X" exactly in half. Then, as with our simulation of Bob’s bits, we choose to follow
the side with the smaller protocol subtree. We see that the paths followed in the protocol IT are of
total length (in bits that matter to the simulation) at most the logarithm of the size of I1.

In particular, this applies if m is a power of 2 so that each x; is represented by a series of bits,
Alice’s bits are also parities, and we replace line 13 by constraining one bit of x;« that isn’t already
constrained to be different from the corresponding bit of j*. We write L¥®(R) for the number of
leaves (i.e., the size) of a protocol I1 for R in which both Alice and Bob only send parities, which
we call parity communication. Using this obtain the following:

Theorem 4.3. C%(R) is O(log, (L¥®(R o INDY)))

4.4 Parity decision trees and Res(®) proofs

We can use the same ideas with small modifications to give a generic method for producing lower
bounds for parity decision trees from those for ordinary decision trees.

Theorem 4.4. For any sufficiently large m that is a power of 2 and any function f : {0,1}N — {0,1},
CU(f o INDY) > C¥(f) and sizel (f o INDY) > 2¢"() > size(f).
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Proof. We follow the ideas of the proof of Theorem 4.3 with a small modification that combines
the steps for Bob and for Alice as follows: We maintain A" as an affine subspace as before and we
maintain a set Dy C [N] x [m] of coordinates as before (though Y itself is not maintained), but
now the equations that we maintain involving these coordinates depend on the bits of the x; also.
At each parity that is not already implied, we row-reduce to remove the variables in Dy,.

If a coordinate (i*, j*) in ) remains, we choose it as the new dependent coordinate and complete
the row-reduction. We then apply the portion of the simulation designated as Bob’s simulation in
order to ensure that x;+ does not point to j*. If no such coordinate remains, then this becomes a
constraint on X and we apply the portion associated with Alice.

In either case, we add one defining equation for X" for each bit that is sent that is not already
implied, so the deficiency of X is precisely this number. The same analysis shows that C%(f)
is O(log,, (size (f o INDY))) and hence O(C#(f o INDY)/ logm). By choosing m a sufficiently
large constant, we obtain that C%(f) < log,(sizel (f o IND})) and hence size™(f) < 20" <
size? (f o INDY) and C#(f) < C#(f o INDY). O

We can use this (in the form for relations, which we could easily have stated above) to show that
we can convert each k&-CNF ¢ to an O(k)-CNF ¢ o INDY that requires tree-like Res(@) refutations
for ¢ o INDY that are at least linear in the size of tree-like resolution refutations for ¢.

Corollary 4.5. For any sufficiently large integer £, m = 2°, and any unsatisfiable k-CNF formula with
M clauses on N Boolean variables, ¢ o INDY is a k(¢ + 1)-CNF formula with M’ = m*M clauses on
N'" = N({ + m) variables that requires treep,q(q)(¢ © INDY) > treep,s(¢) > 2widthre(@)—k

Proof. By Proposition 2.8, for any minimal tree-Res(@) refutation of ¢ o INDY there is an isomor-
phic parity decision tree solving the search problem Search goINDY - USINg the form of Theorem 4.4
for relations we can convert a parity communication protocol for Search oINDY into one of at most
the same size that solves the search problem Search,, since each correct output of Search oINDY

yields the name of a violated clause of ¢ o IND} that corresponds to a unique clause of ¢ and can
be output by the ordinary decision tree. The final result follows using the equivalence of decision
trees for Search, and tree-resolution refutations of ¢ from Proposition 2.7 and the tree-size/width
relationship from Proposition 2.6. g

We note that Itsykson and Kojevnikov [16, 17] previously used a much more specialized lifting
theorem from [?] for the specific case of Tseitin formulas to give tree-like Res(®) lower bounds.
Our new simple method is much more general and yields a large class of hard formulas. We also
note that Huynh and Nordstrom [15] gave lifting theorems for a variety of other proof systems
using constant-size index gadgets (indeed with m = 3) but these only yield good bounds for a
restricted class of formulas whose search problems have high “critical block sensitivity”.

5 Summary and future directions

Our results show that the Index (or Inner-Product) gadget is not a good disperser for low min-
entropy deficiency rectangles X x ) when m is much smaller than log N. Thus to reduce the
gadget size beyond logarithmic using current techniques we need to consider other properties
on the rectangle X x ) maintained during the simulation that can ensure that Index is a good
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disperser. Our counterexample to the conjecture of Lovett et al. [20] suggests the following natural
property for X', Y in addition to having low entropy deficiency:

e Except for a small subset of blocks | of size O(A), every block of every y in ) is “almost”
balanced in terms of the number of zeroes and ones. That is, for any i € [N] \ ] and for any
y €Y, |y'|1 = m — |y'|1, where |y’|; denotes the number of ones in the i-th block of v.

Note that our counterexample is avoided by Y satisfying this property; indeed this property is
violated in the extreme by our counterexample as every y in the set ) we construct has w(A)
blocks that are maximally unbalanced.

The standard simulation paradigm allows considerable flexibility in choosing which subset to
focus on in the rectangle of inputs associated with each node of the communication protocol.
Maintaining something like the property above is easy to do and it is plausible that this or related
properties will indeed be sufficient to yield general lifting theorems with very small Index gadgets.

Although our counterexample ruled out improving the gadget size to constant for Index in
deterministic lifting theorems using current techniques, we were able to prove a lifting theorem
with constant-sized gadgets for the restricted class of protocols where Bob is restricted to sending
parities. A natural extension of this direction is to consider semi-structured protocols where Bob
is restricted to sending other interesting functions of his input bits. A natural class of restricted
functions are threshold functions. The ideas used in our lifting theorem do not work in this case.
As illustrated by the application of our semi-structured lifting theorem to Res(@) lower bounds,
such restricted lifting theorems may have immediate applications in proof complexity. They may
also be a natural avenue for developing new tools and techniques that could potentially help in
proving general lifting theorems with constant sized gadgets.
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