
Improving the Robustness of Point Convolution on k-Nearest Neighbor

Neighborhoods with a Viewpoint-Invariant Coordinate Transform

Xingyi Li, Wenxuan Wu, Xiaoli Z. Fern, and Li Fuxin

School of Electrical Engineering and Computer Science, Oregon State University

{lixin, wuwen, xfern, lif}@oregonstate.edu

Abstract

Recently, there is significant interest in performing con-

volution over irregularly sampled point clouds. Point

clouds are very different from raster images, in that one

cannot have a regular sampling grid on point clouds, which

makes robustness under irregular neighborhoods an impor-

tant issue. Especially, the k-nearest neighbor (kNN) neigh-

borhood presents challenges for generalization because the

location of the neighbors can be very different between

training and testing times. In order to improve the robust-

ness to different neighborhood samplings, this paper pro-

poses a novel viewpoint-invariant coordinate transform as

the input to the weight-generating function for point con-

volution, in addition to the regular 3D coordinates. This

allows us to feed the network with non-invariant, scale-

invariant and scale+rotation-invariant coordinates simul-

taneously, so that the network can learn which to include

in the convolution function automatically. Empirically, we

demonstrate that this effectively improves the performance

of point cloud convolutions on the SemanticKITTI and

ScanNet datasets, as well as the robustness to significant

test-time downsampling, which can substantially change the

distance of neighbors in a kNN neighborhood. Experimen-

tally, among pure point-based approaches, we achieve com-

parable semantic segmentation performance with a compa-

rable point-based convolution framework KPConv on Se-

manticKITTI and ScanNet, yet is significantly more efficient

by virtue of using a kNN neighborhood instead of an ϵ-ball.

1. Introduction

Convolutional neural networks (CNNs) have redefined

the state-of-the-art for almost every task in computer vi-

sion. In order to transfer such successes from 2D images

to the 3D world, there is a significant body of work aiming

to develop the convolution operation on 3D point clouds.

This is essential to many applications such as autonomous

driving and virtual/augmented reality.

One mainstream definition of convolution on point

clouds involves discretizing a continuous convolution func-

tion on a neighborhood defined by input points[50, 22, 65,

18, 64, 73]. In many point cloud convolution frameworks, a

multi-layer perceptron (MLP) is used to learn the convolu-

tion weights on each point implicitly. Such an operation is

permutation-invariant and translation-invariant, but the ini-

tial formulations were memory-intensive due to the need to

compute all the convolution weights for all points and all

their neighbors. [66] proposed PointConv which decoupled

the MLP into two pieces where computations can be shared

among multiple convolution kernels, hence greatly reduc-

ing the memory requirement and allowing deep CNNs to be

built on point clouds. It has one of the best performances

as a pure point-based convolutional network in 3D point

clouds and can match 2D CNN performance on CIFAR-10

if the image is treated as a (regular) point cloud.

However, so far the best performance in 3D point cloud

segmentation benchmarks has still been obtained by fusion

algorithms [62] that jointly use point cloud networks with

sparse 3D convolution approaches [14, 6], which discretizes

the point cloud onto a 3D grid. In principle, both point

convolutions and sparse 3D convolutions are convolutions,

hence they should have similar behavior and should not re-

quire the fusion that complicates the network structure and

slows down the inference speed. Hence, we set out to ex-

plore the reason underlying the seemingly worse general-

ization power of the point cloud convolution networks and

seek ways to improve it.

One culprit we have identified is the choice of neighbor-

hood in point cloud convolutions. Networks based on point

clouds introduce a new complication on the neighborhoods

used in convolution. In 2D images, we are accustomed to

having fixed-size neighborhoods such as 3 × 3 or 5 × 5.

PointConv and other point-based networks instead adopt k-

nearest neighbors (kNN), which could be significantly more

irregular (Fig. 1(a)) and may potentially make it harder for

point cloud networks to generalize from training neighbor-

hoods to testing neighborhoods since those could be irregu-

lar in very different manners. Usually, point cloud networks

1287

Figure 1. (a) kNN in point clouds; The neighborhood might be very irregular; (b) Epsilon-ball neighborhood controls the distance of

neighbors; (c) Neighbor search time comparison between kNN and ϵ-ball in a deep network. Both implemented using nanoflann with

the default KPConv model architecture on SemanticKITTI. ϵ-ball neighbor search is 2− 4 times slower than kNN (Best Viewed in Color)

augment the data by randomly jittering point locations, but

such jittering only provides local generalization to differ-

ent neighborhood sizes. Such a simple shortcut is, however,

unlikely to suffice for point clouds as each kNN neighbor-

hood may be significantly different from others in terms of

scale. Indeed, even in 2D images practitioners usually rely

on re-scaling of all the images to the same scale to avoid

this generalization issue.

Another common approach that is adopted in the state-

of-the-art KPConv [56] is to use an ϵ-ball, which ensures

that neighboring points do not have too large distances

(Fig. 1(b)). However, ϵ-ball is computationally significantly

slower than kNN, posing a significant burden to the train-

ing and testing time of these networks (Fig. 1(c)). Besides,

the resulting uneven number of neighbors (some points may

have less neighbors, even 0) may introduce further wastes

in computation time and memory (e.g. significant amount

of zero-padding to ensure vectorized computations).

For the kNN neighborhood to perform well, it would

be important to build some invariance over the selection of

neighborhoods so that it generalizes from training neighbor-

hoods to testing. Since PointConv is an MLP on the point

coordinates, one interesting idea is to directly build those

invariances through coordinate transforms. In this paper,

we introduce a novel viewpoint-invariant (VI) descriptor on

the 3D coordinates by exploiting angles between the surface

normal and an invariant orthonormal bases. However, one

needs to note that real-life data is seldom fully invariant to

rotation/scales, e.g. the scale of the object can be an indi-

cator of many classification categories such as refrigerator

or cars, and the placement on ground might be salient fea-

tures for the network. Our results show that the combina-

tion of this viewpoint-invariant coordinate transform with

the original 3D coordinates tend to yield significantly im-

proved results from convolution on the kNN neighborhood,

so that it becomes comparable to the ϵ-ball based KPConv,

the state-of-the-art in point cloud-based convolutional net-

works. This would lead to significant efficiency gains for

the application of point-based networks.

Our VI-transform contains dimensions that are invariant

to scale changes, which enables the network to generalize

to neighborhoods of different scale. Such generalization

can lead to significant performance improvements when the

point cloud is heavily downsampled during testing time,

since that would make the radius of the kNN neighborhood

significantly different from training time and pose a chal-

lenge to non-invariant convolution functions.

Furthermore, experiments show that with the VI trans-

form smaller models suffer substantially less performance

loss, paving the way for smaller models with greater effi-

ciency and robustness to be deployed in practice. Although

we have not fully closed the gap between point cloud con-

volution approaches and sparse volumetric ones, we believe

this research is a useful step towards better understanding

the implications of convolutions in irregular neighborhoods.

2. Related Work

Volumetric and Projection-based Approaches A direct

extension from convolution in 2D raster images to 3D is

to compute convolution on volumetric grids [68, 39, 45,

63]. In densely sampled point clouds, sparse volumetric

convolutions[6, 14] currently work better than point-based

approaches. However, point cloud convolution have poten-

tially much wider use cases when the sampling density is

very low or uneven. They also can be used in convolutions

higher than 3-dimensional, such as 4D or 6D cost volume

convolutions [67] where discretized convolutions are hard

to be applied to. Some other approaches that project point

clouds onto multi-view 2D images [53, 43, 34] or lattice

space [52] may suffer from the same issue. Currently, the

best approaches on LIDAR fuse a point-based head and a

volumetric head [38, 49], which showed that both types of

approaches have their own benefits. Especially, volumetric

approaches often cannot obtain enough details e.g. on thin

parts and object boundaries. Improving the point-based net-

work could potentially improve fusion performance as well.

Point-based Approaches PointNet [42] first attempted to

directly work on point clouds, and PointNet++ [44] im-

proved it by adding a hierarchical structure. Other studies

1288

also attempted to utilize hierarchical architectures to aggre-

gate information from neighbor points with MLPs [28, 35].

Other point-based methods include [31] [59] [15] [25] [79]

[71] [58] [74] use different ideas to improve over PointNet

[42] and achieved better performances.

Generally, convolutional approaches on point clouds per-

formed better than the approaches listed above. [50, 22, 65,

18, 64, 73] proposed to learn discretizations of continuous

convolutional filters. [22] utilized a side network to gener-

ate weights for 2D convolutional kernels. [50] generalized

it to 3D point clouds, and [64] proposed an efficient ap-

proximation which corresponds to depthwise convolution.

EdgeConv [65] encodes pairwise features between a neigh-

bor point and the center point through MLPs. [18] takes

densities into account. Pointwise CNN [20] located kernel

weights for predefined voxel bins, so it was not flexible.

SpiderCNN [73] proposed a polynomial weight function,

which we experiment with in this paper. However, they did

not utilize regularization to control the smoothness. The

main contribution in PointConv [66] is an efficient variant

that does not explicitly generate weight functions, but im-

plicitly so, which removed the memory requirement to store

the weights, allowing for scaling up to the ªmodernº deep

network size, e.g. dozens of layers with hundreds of fil-

ters per layer. It is also the only paper showing results on

CIFAR-10 matching those of a 2D CNN.

The main competitive point-based convolutional ap-

proach to PointConv is KPConv [56]. In KPConv, convo-

lution weights are generated as kernel functions between

each point and anchor points, points in the 3D space that

are pre-specified as parameters for each layer separately.

KPConv enjoys nice performance due to the smooth and

well-regularized kernel formulation, but it introduces sig-

nificantly more parameters in the specification of anchor

points and their ϵ-ball neighborhoods are computationally

costly. We show that with the proposed VI coordinate trans-

form, PointConv with kNN is competitive with KPConv in

terms of performance while being faster due to the usage

of the kNN neighborhood. Similar to KPConv, PCNN [1]

also assign anchor points with kernel weights, but it does

not take neighbor points into account for convolution.

Scale and rotation invariance in convolution Building

rotation and scale invariance into recognition systems has

been a long-standing goal for computer vision. A standard

approach has been data augmentation [51, 16, 57, 27, 5, 17],

where the training set is augmented by including objects

with random rescaling or rotations. Other studies attempted

to integrate deep CNNs with side-networks [33, 80, 61, 72,

76, 24] or attention modules [60, 48]. [82] convolved the

input with several rotated versions of the same CNN filter

before feeding to the pooling layer. Some techniques pro-

posed to learn transformations directly [21, 32] on the input

or intermediate outputs from convolutional layers in a deep

network [11, 46]. There has also been interest in group-

theoretical approaches[7, 3, 9]. Most of these work either

include significant computational overhead, or only adapts

to one type of invariance. [8, 78, 8, 54, 70, 41] aim to tackle

the rotation invariance, but their experiments require SO(3)

augmentation during training, which could be costly if the

training dataset is large.

On point clouds, viewpoint-invariant point descriptors

have been proposed for recognition and relocalization [47,

13] before deep learning. In deep learning, [78, 36, 23, 29]

approached rotation invariance. [36, 23, 29] proposed to

extract rotation invariant features for each neighborhood.

[62, 75] build a spatial transformer side network (STN) to

learn global transformations on input point clouds. [36] uti-

lized the centroid of the neighborhood, which is sensitive

to the number of neighbors. [29] relied on the intersection

between the ϵ-ball and line extended from origin to the cen-

ter point, which is sensitive to the radius. [23] performed

principal component analysis (PCA) on a set of local neigh-

bor points to establish the local frame. Instead of focusing

solely on invariance, our work is the first to utilize an invari-

ant coordinate transform to study the robustness of convo-

lution operations in non-invariant tasks and show tangible

improvements. In experiments we compare against some of

these invariant approaches and show that they fail short of

improving the performance in non-invariant tasks.

3. Methodology

3.1. Background: Convolution on Point Clouds

A point cloud can be denoted as a set of points P =
{p1, p2, ..., pn}, where each point pi contains a position

vector (e.g. if 3D, then (x, y, z) ∈ R3) as well as a fea-

ture vector (RGB color, surface normal, etc.). A line of

work including PointConv generalizes the convolution op-

eration to point clouds based on discretizations of contin-

uous 3D convolutions [50, 18, 65, 66]. For a center point

pxyz = (x, y, z), its PointConv is defined by:

PConv(S,W,F)xyz =
∑

(δx,δy,δz)∈G

S(δx, δy, δz)

W(δx, δy, δz)F(x+ δx, y + δy, z + δz)

(1)

where (δx, δy, δz) denote the coordinate offsets for a point

in pxyz’s local neighborhood G, usually located by kNN

or an ϵ-ball N = {(δx, δy, δz)|∥δx + δy + δz∥
2 ≤ ϵ}.

F(x+δx, y+δy, z+δz) represents the feature of the neigh-

bor point, and W(δx, δy, δz) generates the weights for con-

volution and is approximated implicitly by an MLP, called

WeightNet in [66]. Finally, S(δx, δy, δz) represents the in-

verse local density to balance the impact of non-uniform

sampling of the point clouds.

The novelty of PointConv over previous continuous con-

volution lies in its efficient computation of W (δx, δy, δz) by

1289

re-writing it as the output of an MLP:

W(δx, δy, δz) = W2g(W1(δx, δy, δz)) (2)

where W1 is a perceptron network with 1 − 2 layers with

a vector output, g is an activation function (e.g. ReLU) and

W2 is a matrix of weights of a final linear layer. Because

g(W1(δx, δy, δz)) is shared across all filters, and W2 is in-

dependent of (δx, δy, δz) we can re-write convolution as:

PConv(S,W,F)xyz = W2

∑

(δx,δy ,δz)∈G

S(δx, δy, δz)

g(W1(δx, δy, δz))F(x+ δx, y + δy, z + δz)

(3)

In this equivalent formulation, the summation can be com-

puted only once for all the different filters in one layer as

they only differ in the final W2. This has yielded significant

speed and memory savings in the network and allowed a

deep network of dozens of layers to be built from PointConv

layers similar to 2D convolutions. For stride-2 convolu-

tion/pooling, one can just subsample the point clouds [44].

The formulation eq. (3) also allows computing output [66]

on (x, y, z) with no features with a neighborhood that does

not contain itself. Hence, classification and semantic seg-

mentation tasks can be solved directly with PointConv net-

works. It is also straightforward to incorporate other com-

monly used 2D convolution operations, e.g. residual con-

nections. Dilated convolution can be implemented by first

sampling a larger kNN neighborhood, and then subsam-

pling from the neighborhood.

3.2. kNN vs ϵ-ball neighborhoods

The neighborhood G in PointConv is usually defined by

kNN. Fig. 1 (a) illustrates the potential robustness issue for

the kNN neighborhood. Namely, the equivalent receptive

field for a sparse point cloud is much larger than the one for

a densely distributed point cloud. If trained only on dense

(high resolution) point clouds, the learned weight function

may not generalize well to much larger (unseen) receptive

fields when dealing with sparse point clouds during testing.

An ϵ-ball based neighborhood [56] on the other hand

would be robust to different sampling rates (Fig. 1(b)).

For a point pi, denote Nϵ(pi) = {pj ∈ P |d(pi, pj) <
ϵ} as its ϵ-ball neighborhood. To ease the computation

burden, we (randomly) select at most K neighbors from

Nϵ(pi). The actual chosen neighbors from Nϵ(pi) are de-

noted as Cϵ(pi,K). Compared with kNN, the ϵ-ball neigh-

borhood constrains the maximal distance of the neighbors

w.r.t. the center point. Since different ϵ-balls may con-

tain different number of neighbors, we replace the normal-

izer S(δx, δy, δz) in equation (4) from the main paper with
1

|Cϵ(pi,K)| . Note that the flexibility of the PointConv frame-

work allows for variable number of neighbors in each neigh-

borhood. However, the ϵ-ball neighborhood search is sig-

nificantly slower than kNN because of the need to explore

more nodes on the kDTree. With the state-of-the-art imple-

mentation nanoflann our tests on SemanticKITTI with

the default KPConv network structure show that the neigh-

borhood search for ϵ-ball is consistently 2− 4 times slower

than the corresponding kNN search (Fig. 1(c)), greatly in-

creasing training and testing times.

3.3. A Viewpoint-Invariant Coordinate Transform

PointConv relies on the (x, y, z) coordinates to compute

the weights, which are sensitive to the rotation of the ob-

ject as well as the sampling rate of the point clouds. In

this subsection we describe a viewpoint-invariant coordi-

nate transform which may serve as better inputs to the

weight-generating function in PointConv. Our coordinate

transform is defined in 3D based on the idea that the surface

normal vector and the vector from one point to another can

span an orthonormal basis of the 3D space that is invari-

ant to rotations, and then angles computed between the sur-

face normal and this basis can be utilized as scale-invariant

features as well. Computing surface normal (usually with

PCA from a neighborhood) is a standard operation utilized

in many previous point cloud networks (e.g. [44]). But

our way of using it to build a viewpoint-invariant coordi-

nate transform is novel.

Suppose we have a center point pµ with surface normal

n̂µ, for each point pα with surface normal n̂α, we develop

its viewpoint-invariant (VI) coordinate transform w.r.t. pµ
as an 8-dimensional vector. We first denote r⃗αµ = pα−pµ, as

the difference between pα and pµ. Using the Gram-Schmidt

process from {n̂µ, r⃗
α
µ}, we generate an orthonormal basis

{r̂, v̂, ŵ} where:

r̂ =
r⃗αµ

||r⃗αµ ||
, v̂ =

n̂µ − (r̂⊤n̂µ)r̂
√

1− (r̂⊤n̂µ)2
, ŵ =

r̂ × v̂

∥r̂ × v̂∥
(4)

where × denotes outer product, as illustrated in Fig. 2. Note

that this basis is seldom degenerate, because it is unlikely

for n̂µ and r⃗αµ to be collinear in 3D surface point clouds.

With a global rotation of the scene, the basis and normal

vectors are identically rotated. hence the angles between

n̂µ, r⃗αµ and n̂α remain the same. We also compute the pro-

jection lengths of n̂α and n̂µ onto the orthonormal bases.

Hence, our viewpoint-invariant descriptor provides a com-

plete characterization of the vectors n̂µ, r⃗αµ and n̂α. For-

mally, for each point pα in the neighborhood of pµ, we ex-

tract the following rotation-invariant coordinate transform:

βα
µ = [n̂α · n̂µ,

r̂α · n̂µ

∥r̂α∥
,
r̂α · n̂α

∥r̂α∥
, n̂α · v̂α, n̂α · ŵα,

r⃗αµ · n̂µ, r⃗
α
µ · (n̂α × n̂µ), ||r⃗

α
µ ||]

(5)

where × represents the cross product. We name it as the
viewpoint-invariant (VI) descriptor, where the first 5 dimen-

sions are both scale and rotation invariant as they are angles

between normalized vectors, and the last 3 dimensions are

1290

rotation invariant only. We believe that generating the con-

volutional weights with this viewpoint-invariant descriptor

will improve robustness to different scale and rotations be-

tween neighborhoods in training and the test set.

Note that the weight-generating network in PointConv

is an MLP, which in principle has universal approximation

properties to be able to approximate any nonlinear function

of (δx, δy, δz), hence it is a fair argument that with enough

data it is possible that the network could learn a fixed trans-

formation in W1 that is as effective or more so than eq. (5).

However, first it is not clear what amount of data would be

needed for this to happen, and second deep networks could

easily overfit to less robust descriptors since they would

only be seeing the training set and not understanding the

generalization problem enough. In our experiments on cur-

rent datasets, we have always observed significant improve-

ments of the VI transform over the regular approach of in-

putting (δx, δy, δz) to W1.

Figure 2. For a given local center point pµ and pα ∈ Nϵ(pµ) for

a pair of points, a set of viewpoint-agnostic basis (r⃗, w⃗, v⃗) can be

generated from r⃗αµ and nµ with the Gram-Schmidt process, and

viewpoint-invariant features such as the angles between n⃗µ and v⃗

can be extracted from them

The VI descriptor can either be used standalone or con-

catenated with the conventional (δx, δy, δz) representation

(we use the shorthand VI+XYZ for the contatenated ver-

sion) as the input to the weight-generating function W (·) in

eq.(3). When concatenated, it creates room for the learning

algorithm to automatically select from rotation-invariant,

scale and rotation-invariant, and non-invariant (δx, δy, δz)
convolution weights. In real-life segmentation scenarios,

not all kernels should be scale or rotation invariant. For ex-

ample, usually a bicyclist would be above a bicycle, instead

of below it. Such relationship would only be captured with

the non-invariant features instead of rotation-invariant ones.

Hence it would be important for the network to have the

flexibility to choose. Empirically, we have observed signif-

icant performance improvements by this concatenation of

different levels of invariance.

The additional computational cost of using the VI de-

scriptor is small. It only affects the first layer in the Weight-

Net of PointConv computation. With an output dimension-

ality of 8 or 16, this only adds negligible cost to the network.

Yet the better generalization it provides is fascinating. We

adopt the estimate normals function in the Open3D

library [81] with radius = 0.1 and maximal neighbors of 30.

For 100K points, it takes about 0.0782 seconds on CPU for

the computation, which is less than 1/3 of the time of the

forward pass of the network. The hardware we used include

a single RTX 2080Ti, and a AMD 3600 CPU.

3.4. Complete Rotation-Invariance

VI-PointConv achieves rotation invariance on the

weights. However, for a completely rotation-invariant

network, one needs both rotation-invariant convolutional

weights and rotation-invariant features. The convention-

ally used (x, y, z) feature is not invariant. In order to ob-

tain complete invariance from the network, we propose to

utilize the rotation-invariant principle curvatures as features

when complete invariance is needed. To be more specific,

we compute the principle curvatures (k1 and k2), the Gaus-

sian curvature (G), and the mean curvature (H) based on

[40]. The final feature input vector is [k1, k2, G,H].

Method SO3/SO3 none/SO3

PointNet(with T-Net) [42] 79.9 -

PointNet++ [44] 80.6 -

DGCNN(with T-Net) [65] 84.4 -

RS-CNN [37] 82.6 -

SpiderCNN(with T-Net) [73] 78.7 -

RIConv [78] 86.4 -

SphericalCNN [8] 86.9 -

SRI-Net [54] 87.0 -

Triangle-Net [70] 86.7 -

SPH-Net [41] 87.6 -

RTN+DGCNN [12] 86.5 -

ClusterNet [4] 87.1 -

PointConv [66] - 61.0

VI-PointConv (ours) - 88.2

Table 1. Comparison on ModelNet40 with Data SO(3) for 3D point

cloud classification. SO3/SO3 indicates the model is trained &

tested with SO(3) rotations, and none/SO3 indicate the model is

trained without SO3 augmentations & tested with SO(3) rotations.

4. Experiments

4.1. ModelNet40

We first experiment on the ModelNet40 dataset with the

main goal to show the capability of VI-PointConv to pro-

duce rotation-invariant convolutions in SO(3) on the Mod-

elNet40 [69] dataset. Here we utilize the curvatures as input

features for complete invariance.

1291

Figure 3. Examples of semantic segmentation results of ScanNet dataset. The images from left to right are the ground truth segmentation,

the prediction from PointConv, and the prediction from VI-PointConv. (Best viewed in color)

To evaluate the performance in SO(3), we randomly ro-

tate each point cloud with any arbitrary angle and perform

the experiments five times independently and use the mean

results as the final results. 1024 points are used as input for

all the methods. Our framework is fully rotation-invariant

hence do not need any rotation augmentation during train-

ing, where all the baselines require rotation augmentation at

training time. In Table 1, VI-PointConv outperforms other

baselines significantly, without requiring additional training

time augmentations.

4.2. ScanNet

We conduct 3D semantic scene segmentation on the

ScanNet v2 [10] dataset. We use the official split with

1, 201 scenes for training and 312 for validation. We imple-

mented the state-of-the-art 16-layer PointConv architecture

that achieved 66.6% on the ScanNet testing set, provided by

the authors [66]. Results are reported on the ScanNet val-

idation set as the benchmark organizers do not allow abla-

tion studies on the testing set. More details on experimental

setup is provided in the supplementary material.

To study the robustness to scales and neighborhood

size, we subsampled at testing time each validation point

cloud from the original 100k points to substantially less

Ð {60k, 40k, 20k, 10k}. This is equivalent to downsam-

pling the image in the 2D space as it increases the size of

kNN neighborhoods with a fixed K. (Note that 2D regular

CNNs would usually not work with such aggressive test-

1292

MLP input σ 100k 60k 40k 20k 10k

VI+XYZ ReLU 70.1 64.4 63.0 57.6 45.4

VI ReLU 63.3 60.7 59.7 55.0 44.7

VI SeLU 63.7 61.5 57.7 53.1 40.2

surface normal ReLU 60.2 57.5 56.8 54.8 50.9

+ XYZ

surface normal ReLU 53.1 50.6 50.2 47.6 43.3

XYZ-Only ReLU 61.7 58.7 53.4 34.6 17.8

VI(first layer only) ReLU 63.1 60.5 57.8 45.8 28.2

Table 2. Performance results (mIoU,%) on the ScanNet valida-

tion dataset with a 16-layer PointConv network. The first column

shows the configurations being tested, the σ column shows the ac-

tivation function, 100k, . . . , 10k refers to the number of subsam-

pled points. The default number of neighbors is 8. It can be seen

that VI+XYZ significantly outperforms all other variants, includ-

ing surface normal + (δx, δy, δz) which contains the same amount

of information. Besides, the VI input alone outperforms surface

normals and (δx, δy, δz) inputs.

MLP input NBR 100k 60k 40k 20k 10k
VI kNN 63.3 60.7 59.7 55.0 44.7
VI ϵ-ball 61.6 58.6 58.0 52.3 40.6

XYZ kNN 61.7 58.7 53.4 34.6 17.8
XYZ ϵ-ball 48.9 43.3 39.7 30.6 20.7

Table 3. mIOU results on a 16-layer PointConv network on

the ScanNet dataset, NBR stands for neighboorhood type.

100k, . . . , 10k refer to the number of subsampled points. It can

be seen that kNN outperforms ϵ-ball in both cases.

MLP input NBR 100k 60k 40k 20k 10k
VI+XYZ kNN 64.5 61.3 60.6 57.3 51.2

VI kNN 61.0 58.8 57.5 50.8 39.4
XYZ kNN 55.3 53.3 47.0 30.7 16.1

VI ϵ-ball 59.2 57.5 55.1 44.8 31.1
[77] kNN 53.0 48.6 44.4 31.4 16.2
[29] ϵ-ball 44.8 43.0 39.3 26.5 17.7

Table 4. mIoU results on a 4-layer PointConv network on the Scan-

Net dataset, NBR stands for neighboorhood type. 100k, . . . , 10k
refer to the number of subsampled points at test time

Method mIoU(%) (test) mIoU(%) (val)

PointNet++ [44] 33.9 -

SPLATNet [52] 39.3 -

TangentConv [55] 40.9 -

PointCNN [31] 45.8 -

PointASNL [74] 63.0 63.5

PointConv [66] 66.6 61.0

KPConv [56] 68.4 69.2

VI-PointConv (ours) 67.6 71.2

Table 5. Semantic Segmentation results for point-based ap-

proaches on the ScanNet test set

time downsampling[30]). Also, each sub-sampled point

cloud is further rotated with 4 different predefined angles

around z-axis Ð {0◦, 90◦, 180◦, 270◦}. Such operations

could significantly change both local scales and rotations.

We also evaluate the performance when the rotation aug-

mentation is not applied during training. We found perfor-

mance variation between different rotation angles to be less

than 1% (see supplementary), hence the mIoUs averaged

from all angles are reported.

Validation Set Performance Several different result tables

are shown. In Table 2, we evaluate the 16-layer PointConv

model among different variants VI+XYZ, VI only, XYZ-

only (input only the delta coordinates (δx, δy, δz) to the

W (·) function as in eq. (1)), as well as surface normal and

surface normal + XYZ. For the last two settings, we directly

input surface normals as additional input dimensions to the

W (·) function in eq. (1), which contains the same informa-

tion content as VI, but without the invariance.

The results showed that the proposed VI descriptor sig-

nificantly improved the performance as well as robustness.

Especially, it is significantly more robust to test-time down-

sampling than the (δx, δy, δz) coordinates as input. For ex-

ample, at 20k testing points (reflecting 5x downsampling

from the training), the VI descriptors still maintain a 57.6%
accuracy while the performance of the (δx, δy, δz) coor-

dinates version dropped to 34.6%, marking a relative im-

provement of 66.4%. The improvement of VI over surface

normals is also very significant ± an mIOU improvement of

8%−10%, which indicates that VI is a better representation

of local geometry than the commonly used surface normal.

To further explore the potentials of the VI descriptor, we

replace (δx, δy, δz) with the VI descriptor for the first layer

only and report the performance at the last row. Compared

with the second last row, the VI descriptor significantly im-

proves the performance as well as the robustness. However,

if we compare the last row and the second row (where VI

descriptors are applied to each layer), the robustness (e.g. at

10K points) dropped significantly, which indicates that in-

putting VI descriptor in latter layers helps significantly on

robustness.

Finally, when we combined the VI coordinates with

(δx, δy, δz) inputs, it generated the best performance of all

± 71.2% on the original validation set, and better on almost

all subsampled scenarios. This shows that a combination

of scale-invariant, rotation-invariant and non-invariant co-

ordinates is beneficial, potentially offering the network the

flexibility to choose the invariance it requires.

Table 3 shows a comparison between kNN and ϵ-
ball with PointConv. Interestingly, adopting ϵ-ball with

(δx, δy, δz) actually decreased the performance signifi-

cantly. With VI, the performance decrease is less severe but

still exists. We are not sure about the reason ϵ-ball would

not work on 3D point cloud with PointConv, but we suspect

that PointConv might be more sensitive to having the same

number of neighbors in each neighborhood, in order for the

learned weight functions to be comparable with each other.

1293

Method m
Io

U
s(

%
)

ro
ad

si
d

ew
al

k

p
ar

k
in

g

o
th

er
-g

ro
u

n
d

b
u

il
d

in
g

ca
r

tr
u

ck

b
ic

y
cl

e

m
o

to
rc

y
cl

e

o
th

er
-v

eh
ic

le

v
eg

et
at

io
n

tr
u

n
k

te
rr

ai
n

p
er

so
n

b
ic

y
cl

is
t

m
o

to
rc

y
cl

is
t

fe
n

ce

p
o

le

tr
af

fi
c-

si
g

n

PointNet[42] 14.6 61.6 35.7 15.8 1.4 41.4 46.3 0.1 1.3 0.3 0.8 31.0 4.6 17.6 0.2 0.2 0.0 12.9 2.4 3.7

SPG[26] 17.4 45.0 28.5 0.6 0.6 64.3 49.3 0.1 0.2 0.2 0.8 48.9 27.2 24.6 0.3 2.7 0.1 20.8 15.9 0.8

SPLATNet[52] 18.4 64.6 39.1 0.4 0.0 58.3 58.2 0.0 0.0 0.0 0.0 71.1 9.9 19.3 0.0 0.0 0.0 23.1 5.6 0.0

PointNet++[44] 20.1 72.0 41.8 18.7 5.6 62.3 53.7 0.9 1.9 0.2 0.2 46.5 13.8 30.0 0.9 1.0 0.0 16.9 6.0 8.9

TangentConv[55] 40.9 83.9 63.9 33.4 15.4 83.4 90.8 15.2 2.7 16.5 12.1 79.5 49.3 58.1 23.0 28.4 8.1 49.0 35.8 28.5

PointConv[66] 53.0 86.2 68.6 57.7 16.0 89.9 94.2 30.2 29.5 33.9 30.5 78.9 60.8 63.7 48.8 45.7 20.4 59.9 53.4 38.6

RandLA-Net[19] 53.9 90.7 73.7 60.3 20.4 86.9 94.2 40.1 26.0 25.8 38.9 81.4 61.3 66.8 49.2 48.2 7.2 56.3 49.2 47.7

KPConv[56] 58.8 88.8 72.7 61.3 31.6 90.5 96.0 33.4 30.2 42.5 44.3 84.8 69.2 69.1 61.5 61.6 11.8 64.2 56.5 47.4

VI-PointConv (ours) 59.6 88.8 72.5 63.5 32.7 91.4 95.9 41.8 38.6 35.0 45.7 83.9 68.0 66.9 51.2 50.1 27.6 66.6 57.4 54.8

Table 6. Semantic Scene Segmentation results for point-based approaches on the SemanticKITTI test set

In Table 4, we showed the result of a simpler 4-layer

model (see supplementary for more details). It can be seen

that VI with kNN still significantly outperform (δx, δy, δz).
Especially, VI + XYZ in this 4-layer model has reached per-

formances quite close to that of the 16-layer one, especially

at more significant test-time downsampling rates such as

40k, 20k and 10k points. On 10k points, the 4-layer model

even outperforms the 16-layer model, showing the potential

of deploying such lightweight models in practice if the need

arises. In addition, we also compared against the rotation in-

variant descriptors from [29, 77]. The results were demon-

strated at the last two rows which showed that our VI coor-

dinates significantly outperform those rotation-invariant de-

scriptors in real-life data. In Fig. 3 we showed some qual-

itative results comparing PointConv and VI-PointConv. It

can be seen that with VI-PointConv a lot more regions that

are uncertain under PointConv are now segmented correctly,

which drove the significant improvement.

Test Set Performance On the test set, we achieved compa-

rable mIoU with KPConv [56], the state-of-the-art among

point-based approaches (Table 5). However, our framework

significantly outperforms KPConv [56] on the validation

set. Note that the kNN used in PointConv is still signifi-

cantly more efficient than the ϵ-ball in KPConv (see the sup-

plementary for more details). Besides, it is not possible to

apply VI to KPConv, because the anchor points they choose

are likely to not lie on surfaces and do not have surface nor-

mals attached with them. Hence we argue VI-PointConv

provided more flexibility than KPConv.

4.3. SemanticKITTI

We also evaluate the semantic segmentation performance

on SemanticKITTI [2] (single scan), which consists of

43, 552 point clouds sampled from 22 sequences in driving

scenes. Each point cloud contains 10 − 13k points, col-

lected by a single Velodyne HDL-64E laser scanner, span-

ning up to 160×160×20 meters in 3D space. The officially

training set includes 19, 130 scans (sequences 00 − 07 and

09− 10), and there are 4, 071 scans (sequence 08) for vali-

dation. For each 3D point, only (x, y, z) coordinate is given

without any color information. It is a challenging dataset

because faraway points are sparser in LIDAR scans. We

adopt the exact same 16-layer architecture as in ScanNet.

The mini-batch size of 16. The initial learning rate is 10−3,

and it is decayed by half every 6 epochs. We do not inte-

grate with any subsampling preprocessing. As reported in

Table 6, we achieve the state-of-the-art semantic segmenta-

tion performance among point-based baselines, improving

by 0.8% over KPConv and 6.6% over standard PointConv.

5. Conclusion

In this paper, we propose a novel viewpoint-invariant

transformation for 3D point coordinates, as the input to

the weight generation network for PointConv. This coor-

dinate transformation allows us to line up rotation, scale-

invariant as well as noninvariant descriptors for the relative

coordinates so that the network could learn to choose the

amount of invariance it needs in generating the convolution

function. Experiments have shown that this could signifi-

cantly improve the performance of PointConv, bringing it

up to be comparable with ϵ-ball neighborhood based KP-

Conv, as well as being more robust to different kNN neigh-

borhoods, test-time downsampling of the point cloud and

a substantially smaller model. Our approach adds minimal

computational cost to PointConv and we believe there are

many applications that can benefit from it. In the future,

we would like to further explore its application in problems

where viewpoint-invariance is extremely important, such as

relocalization problems in Simultaneous Localization and

Mapping (SLAM).

Acknowledgments

This work is partially supported by the National Science

Foundation grants CBET-1920945, IIS-1751402 and IIS-

1911232.

1294

References

[1] Matan Atzmon, Haggai Maron, and Yaron Lipman. Point

convolutional neural networks by extension operators. in-

ternational conference on computer graphics and interactive

techniques, 2018.

[2] J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke,

C. Stachniss, and J. Gall. SemanticKITTI: A Dataset for Se-

mantic Scene Understanding of LiDAR Sequences. In Proc.

of the IEEE/CVF International Conf. on Computer Vision

(ICCV), 2019.

[3] Arunkumar Byravan and Dieter Fox. Se3-nets: Learning

rigid body motion using deep neural networks. In Interna-

tional Conference on Robot and Automation, 2017.

[4] Chao Chen, Guanbin Li, Ruijia Xu, Tianshui Chen, Meng

Wang, and Liang Lin. Clusternet: Deep hierarchical clus-

ter network with rigorously rotation-invariant representation

for point cloud analysis. In 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages

4989±4997, 2019.

[5] Gong Cheng, Peicheng Zhou, and Junwei Han. Rifd-cnn:

Rotation-invariant and fisher discriminative convolutional

neural networks for object detection. In The IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2016.

[6] Christopher Choy, JunYoung Gwak, and Silvio Savarese. 4d

spatio-temporal convnets: Minkowski convolutional neural

networks. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, pages 3075±3084,

2019.

[7] Taco Cohen and Max Welling. Group equivariant convolu-

tional networks. In International Conference on Machine

Learning, pages 2990±2999, 2016.

[8] Taco S Cohen, Mario Geiger, Jonas KÈohler, and Max

Welling. Spherical cnns. arXiv preprint arXiv:1801.10130,

2018.

[9] Taco S Cohen and Max Welling. Steerable cnns. In ICLR,

2017.

[10] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Nieûner. Scannet:

Richly-annotated 3d reconstructions of indoor scenes. In

Proc. Computer Vision and Pattern Recognition (CVPR),

IEEE, 2017.

[11] Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong

Zhang, Han Hu, and Yichen Wei. Deformable convolutional

networks. In ICCV, 2017.

[12] Shuang Deng, Bo Liu, Qiulei Dong, and Zhanyi Hu. Rota-

tion transformation network: Learning view-invariant point

cloud for classification and segmentation. In 2021 IEEE

International Conference on Multimedia and Expo (ICME),

pages 1±6, 2021.

[13] Bertram Drost, Markus Ulrich, Nassir Navab, and Slobodan

Ilic. Model globally, match locally: Efficient and robust 3d

object recognition. In CVPR, pages 998±1005. IEEE Com-

puter Society, 2010.

[14] Benjamin Graham, Martin Engelcke, and Laurens van der

Maaten. 3d semantic segmentation with submanifold sparse

convolutional networks. CVPR, 2018.

[15] Fabian Groh, Patrick Wieschollek, and Hendrik P. A. Lensch.

Flex-convolution (million-scale point-cloud learning beyond

grid-worlds). In Asian Conference on Computer Vision

(ACCV), Dezember 2018.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Spatial pyramid pooling in deep convolutional networks for

visual recognition. In ECCV. 2014.

[17] João F. Henriques and Andrea Vedaldi. Warped convolu-

tions: Efficient invariance to spatial transformations. In Pro-

ceedings of the International Conference on Machine Learn-

ing (ICML), 2017.

[18] P. Hermosilla, T. Ritschel, P-P Vazquez, A. Vinacua, and

T. Ropinski. Monte carlo convolution for learning on non-

uniformly sampled point clouds. ACM Transactions on

Graphics (Proceedings of SIGGRAPH Asia 2018), 37(6),

2018.

[19] Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan

Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham.

Randla-net: Efficient semantic segmentation of large-scale

point clouds. Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2020.

[20] Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Point-

wise convolutional neural networks. In Computer Vision and

Pattern Recognition (CVPR), 2018.

[21] Max Jaderberg, Karen Simonyan, Andrew Zisserman, et al.

Spatial transformer networks. In NIPS, pages 2017±2025,

2015.

[22] Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V

Gool. Dynamic filter networks. In D. D. Lee, M. Sugiyama,

U. V. Luxburg, I. Guyon, and R. Garnett, editors, Advances

in Neural Information Processing Systems 29, pages 667±

675. Curran Associates, Inc., 2016.

[23] Park Jaeyoo Kim, Seohyun and Bohyoung Han. Rotation-

invariant local-to-global representation learning for 3d point

cloud. In Advances in Neural Information Processing Sys-

tems, 2020.

[24] Yonghyun Kim, Bong-Nam Kang, and Daijin Kim. San:

Learning relationship between convolutional features for

multi-scale object detection. In ECCV, 2018.

[25] Artem Komarichev, Zichun Zhong, and Jing Hua. A-cnn:

Annularly convolutional neural networks on point clouds.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2019.

[26] L. Landrieu and M. Simonovsky. Large-scale point cloud

semantic segmentation with superpoint graphs. In 2018

IEEE/CVF Conference on Computer Vision and Pattern

Recognition, pages 4558±4567, 2018.

[27] Dmitry Laptev, Nikolay Savinov, Joachim M Buhmann, and

Marc Pollefeys. Ti-pooling: transformation-invariant pool-

ing for feature learning in convolutional neural networks.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, pages 289±297, 2016.

[28] Jiaxin Li, Ben M. Chen, and Gim Hee Lee. So-net: Self-

organizing network for point cloud analysis. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2018.

1295

[29] Xianzhi Li, Ruihui Li, Guangyong Chen, Chi-Wing Fu,

Daniel Cohen-Or, and Pheng-Ann Heng. A rotation-

invariant framework for deep point cloud analysis. IEEE

transactions on visualization and computer graphics, PP,

2021.

[30] Xingyi Li, Zhongang Qi, Xiaoli Z. Fern, and Fuxin Li.

Scalenet - improve cnns through recursively rescaling ob-

jects. In The Thirty-Fourth AAAI Conference on Artificial

Intelligence, AAAI 2020, The Thirty-Second Innovative Ap-

plications of Artificial Intelligence Conference, IAAI 2020,

The Tenth AAAI Symposium on Educational Advances in Ar-

tificial Intelligence, EAAI 2020, New York, NY, USA, Febru-

ary 7-12, 2020, pages 11426±11433. AAAI Press, 2020.

[31] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di,

and Baoquan Chen. Pointcnn: Convolution on x-transformed

points. In S. Bengio, H. Wallach, H. Larochelle, K. Grau-

man, N. Cesa-Bianchi, and R. Garnett, editors, Advances in

Neural Information Processing Systems 31, pages 820±830.

Curran Associates, Inc., 2018.

[32] Chen-Hsuan Lin and Simon Lucey. Inverse compositional

spatial transformer networks. In CVPR, 2017.

[33] Tsung-Yi Lin, Piotr Dollar, Ross Girshick, Kaiming He,

Bharath Hariharan, and Serge Belongie. Feature pyramid

networks for object detection. In CVPR, 2017.

[34] Yiqun Lin, Zizheng Yan, Haibin Huang, Dong Du, Ligang

Liu, Shuguang Cui, and Xiaoguang Han. Fpconv: Learning

local flattening for point convolution. In IEEE/CVF Confer-

ence on Computer Vision and Pattern Recognition (CVPR),

June 2020.

[35] Xinhai Liu, Zhizhong Han, Yu-Shen Liu, and Matthias

Zwicker. Point2sequence: Learning the shape representa-

tion of 3d point clouds with an attention-based sequence to

sequence network. In Thirty-Third AAAI Conference on Ar-

tificial Intelligence, 2019.

[36] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis. In IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 8895±8904, 2019.

[37] Yongcheng Liu, Bin Fan, Shiming Xiang, and Chunhong

Pan. Relation-shape convolutional neural network for point

cloud analysis (cvpr 2019 oral best paper finalist). 06 2019.

[38] Zhijian Liu, Haotian Tang, Yujun Lin, and Song Han. Point-

voxel cnn for efficient 3d deep learning. arXiv preprint

arXiv:1907.03739, 2019.

[39] Daniel Maturana and Sebastian Scherer. Voxnet: A 3d con-

volutional neural network for real-time object recognition.

In 2015 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS), pages 922±928. IEEE, 2015.

[40] Mark Meyer, Mathieu Desbrun, Peter SchrÈoder, and Alan H

Barr. Discrete differential-geometry operators for triangu-

lated 2-manifolds. In Visualization and mathematics III,

pages 35±57. Springer, 2003.

[41] Adrien Poulenard, Marie-Julie Rakotosaona, Yann Ponty,

and Maks Ovsjanikov. Effective rotation-invariant point cnn

with spherical harmonics kernels. In 2019 International

Conference on 3D Vision (3DV), pages 47±56, 2019.

[42] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification

and segmentation. arXiv preprint arXiv:1612.00593, 2016.

[43] Charles Ruizhongtai Qi, Hao Su, Matthias Nieûner, Angela

Dai, Mengyuan Yan, and Leonidas Guibas. Volumetric and

multi-view cnns for object classification on 3d data. In Proc.

Computer Vision and Pattern Recognition (CVPR), IEEE,

2016.

[44] Charles R Qi, Li Yi, Hao Su, and Leonidas J Guibas. Point-

net++: Deep hierarchical feature learning on point sets in a

metric space. arXiv preprint arXiv:1706.02413, 2017.

[45] Gernot Riegler, Ali Osman Ulusoy, and Andreas Geiger.

Octnet: Learning deep 3d representations at high resolutions.

In Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition, 2017.

[46] Sara Sabour, Nicholas Frosst, and Geoffrey E Hinton. Dy-

namic routing between capsules. In NIPS. 2017.

[47] Rahul Sawhney, Fuxin Li, Henrik I. Christensen, and Charles

L. Isbell Jr. Purely geometric scene association and retrieval -

A case for macro scale 3d geometry. CoRR, abs/1808.01343,

2018.

[48] Shikhar Sharma, Ryan Kiros, and Ruslan Salakhutdinov. Ac-

tion recognition using visual attention. In NIPS Time Series

Workshop. 2015.

[49] Shaoshuai Shi, Chaoxu Guo, Li Jiang, Zhe Wang, Jianping

Shi, Xiaogang Wang, and Hongsheng Li. Pv-rcnn: Point-

voxel feature set abstraction for 3d object detection. In Pro-

ceedings of the IEEE/CVF Conference on Computer Vision

and Pattern Recognition, pages 10529±10538, 2020.

[50] M. Simonovsky and N. Komodakis. Dynamic edge-

conditioned filters in convolutional neural networks on

graphs. In 2017 IEEE Conference on Computer Vision and

Pattern Recognition (CVPR), pages 29±38, 2017.

[51] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. In ICLR,

2015.

[52] Hang Su, Varun Jampani, Deqing Sun, Subhransu Maji,

Evangelos Kalogerakis, Ming-Hsuan Yang, and Jan Kautz.

SPLATNet: Sparse lattice networks for point cloud process-

ing. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, pages 2530±2539, 2018.

[53] Hang Su, Subhransu Maji, Evangelos Kalogerakis, and

Erik G. Learned-Miller. Multi-view convolutional neural

networks for 3d shape recognition. In Proc. ICCV, 2015.

[54] Xiao Sun, Zhouhui Lian, and Jianguo Xiao. Srinet: Learn-

ing strictly rotation-invariant representations for point cloud

classification and segmentation. In Proceedings of the 27th

ACM International Conference on Multimedia, pages 980±

988, 2019.

[55] Maxim Tatarchenko*, Jaesik Park*, Vladlen Koltun, and

Qian-Yi Zhou. Tangent convolutions for dense prediction

in 3D. CVPR, 2018.

[56] Hugues Thomas, Charles R. Qi, Jean-Emmanuel Deschaud,

Beatriz Marcotegui, FrancËois Goulette, and Leonidas J.

Guibas. Kpconv: Flexible and deformable convolution for

point clouds. Proceedings of the IEEE International Confer-

ence on Computer Vision, 2019.

1296

[57] David A van Dyk and Xiao-Li Meng. The art of data aug-

mentation. Journal of Computational and Graphical Statis-

tics, 10(1):1±50, 2001.

[58] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-

reit, Llion Jones, Aidan N Gomez, è ukasz Kaiser, and Il-

lia Polosukhin. Attention is all you need. In I. Guyon,

U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vish-

wanathan, and R. Garnett, editors, Advances in Neural In-

formation Processing Systems 30, pages 5998±6008. Curran

Associates, Inc., 2017.

[59] Nitika Verma, Edmond Boyer, and Jakob Verbeek. FeaStNet:

Feature-Steered Graph Convolutions for 3D Shape Analy-

sis. In CVPR - IEEE Conference on Computer Vision & Pat-

tern Recognition, pages 2598±2606, Salt Lake City, United

States, June 2018. IEEE.

[60] Fei Wang, Mengqing Jiang, Chen Qian, Shuo Yang, Cheng

Li, Honggang Zhang, Xiaogang Wang, and Xiaoou Tang.

Residual attention network for image classification. In

CVPR, 2017.

[61] Hao Wang, Qilong Wang, Mingqi Gao, Peihua Li, and Wang-

meng Zuo. Multi-scale location-aware kernel representation

for object detection. In CVPR, 2018.

[62] Jiayun Wang, Rudrasis Chakraborty, and Stella X. Yu. Spa-

tial transformer for 3d points. CoRR, abs/1906.10887, 2019.

[63] Peng-Shuai Wang, Yang Liu, Yu-Xiao Guo, Chun-Yu Sun,

and Xin Tong. O-CNN: Octree-based Convolutional Neu-

ral Networks for 3D Shape Analysis. ACM Transactions on

Graphics (SIGGRAPH), 36(4), 2017.

[64] Shenlong Wang, Simon Suo, Wei-Chiu Ma, Andrei

Pokrovsky, and Raquel Urtasun. Deep parametric continu-

ous convolutional neural networks. In The IEEE Conference

on Computer Vision and Pattern Recognition (CVPR), June

2018.

[65] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E. Sarma,

Michael M. Bronstein, and Justin M. Solomon. Dynamic

graph cnn for learning on point clouds. ACM Transactions

on Graphics (TOG), 2019.

[66] Wenxuan Wu, Zhongang Qi, and Li Fuxin. Pointconv: Deep

convolutional networks on 3d point clouds. In The IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), June 2019.

[67] Wenxuan Wu, Zhi Yuan Wang, Zhuwen Li, Wei Liu, and Li

Fuxin. Pointpwc-net: Cost volume on point clouds for (self-)

supervised scene flow estimation. In European Conference

on Computer Vision, pages 88±107. Springer, 2020.

[68] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

Proceedings of the IEEE conference on computer vision and

pattern recognition, pages 1912±1920, 2015.

[69] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes.

In 2015 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 1912±1920, 2015.

[70] Chenxi Xiao and Juan Wachs. Triangle-net: Towards ro-

bustness in point cloud learning. In Proceedings of the

IEEE/CVF Winter Conference on Applications of Computer

Vision, pages 826±835, 2021.

[71] Saining Xie, Sainan Liu, Zeyu Chen, and Zhuowen Tu. At-

tentional shapecontextnet for point cloud recognition. In

Proceedings of the IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), June 2018.

[72] Hongyu Xu, Xutao Lv, Xiaoyu Wang, Zhou Ren, Navaneeth

Bodla, and Rama Chellappa. Deep regionlets for object de-

tection. In ECCV, 2018.

[73] Yifan Xu, Tianqi Fan, Mingye Xu, Long Zeng, and Yu Qiao.

Spidercnn: Deep learning on point sets with parameterized

convolutional filters. In The European Conference on Com-

puter Vision (ECCV), September 2018.

[74] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and

Shuguang Cui. Pointasnl: Robust point clouds process-

ing using nonlocal neural networks with adaptive sampling.

In IEEE/CVF Conference on Computer Vision and Pattern

Recognition (CVPR), June 2020.

[75] Wentao Yuan, David Held, Christoph Mertz, and Martial

Hebert. Iterative transformer network for 3d point cloud.

arXiv preprint arXiv:1811.11209, 2018.

[76] Rui Zhang, Sheng Tang, Yongdong Zhang, Jintao Li, and

Shuicheng Yan. Scale-adaptive convolutions for scene pars-

ing. ICCV, 2017.

[77] Zhiyuan Zhang, Binh-Son Hua, David Rosen, and Sai-Kit

Yeung. Rotation invariant convolutions for 3d point clouds

deep learning. pages 204±213, 09 2019.

[78] Zhiyuan Zhang, Binh-Son Hua, David W. Rosen, and Sai-Kit

Yeung. Rotation invariant convolutions for 3d point clouds

deep learning. In 2019 International Conference on 3D Vi-

sion (3DV), pages 204±213, 2019.

[79] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia.

PointWeb: Enhancing local neighborhood features for point

cloud processing. In CVPR, 2019.

[80] Peng Zhou, Bingbing Ni, Cong Geng, Jianguo Hu, and Yi

Xu. Scale-transferrable object detection. In CVPR, June

2018.

[81] Qian-Yi Zhou, Jaesik Park, and Vladlen Koltun. Open3D: A

modern library for 3D data processing. arXiv:1801.09847,

2018.

[82] Yanzhao Zhou, Qixiang Ye, Qiang Qiu, and Jianbin Jiao.

Oriented response networks. In CVPR, 2017.

1297

