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Abstract

Proton transfer and hydrogen tunneling play a pivotal role in many chemical and biolog-
ical processes. The nuclear-electronic orbital multistate density functional theory (NEO-
MSDEFT) approach was developed to describe hydrogen tunneling systems within the mul-
ticomponent NEO framework, where the transferring proton is quantized and treated with
molecular orbital techniques on the same level as the electrons. Herein, the NEO-MSDFT
framework is generalized to an arbitrary number of quantum protons to allow applica-
tions to systems involving the transfer and tunneling of multiple protons. The generalized
NEO-MSDFT approach is shown to produce delocalized, bilobal proton densities and ac-
curate tunneling splittings for fixed geometries of the formic acid dimer and asymmetric
substituted variants as well as the porphycene molecule. Investigation of a protonated
water chain highlights the applicability of this approach to proton relay systems. This
work provides the foundation for nuclear-electronic quantum dynamics simulations of a
wide range of multiple proton transfer processes.
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Hydrogen tunneling underlies many processes of chemical and biological interest. ' Numer-
ous methods have been developed to describe hydrogen tunneling systems, such as path integral
approaches® % and the multiconfigurational time-dependent Hartree method.”® In contrast to
these methods, the nuclear-electronic orbital (NEO) method accounts for nuclear quantum
effects and non-Born-Oppenheimer effects directly within quantum chemistry calculations by
quantizing certain nuclei, typically protons, and treating them with molecular orbital tech-
niques at the same level as the electrons. %! Nuclear delocalization, anharmonicity, zero-point
energy, and nuclear tunneling are inherently included in NEO calculations, and excited vibronic
states can be computed in a straightforward manner. The NEO method is therefore a natural
framework with which to describe hydrogen tunneling phenomena.

1013 and density functional theory

Many methods based on both wavefunction theory
(DFT) ! have been developed within the NEO framework. The NEO-DFT method in par-
ticular has been shown to be successful in describing hydrogen transfer phenomena. 2% The
success of NEO-DFT can be attributed to its effective balance between computational cost
and accuracy, driven by its inclusion of electron-proton correlation through recently developed
electron-proton correlation (epc) functionals. %1621 However, a challenge for NEO-DFT is the
description of hydrogen tunneling systems, where the hydrogen vibrational wavefunction delo-
calizes over the two wells of a double-well potential energy surface.??223 In NEO-DFT calcula-
tions, the protonic density tends to localize in one well of the double-well potential instead of
delocalizing over both wells. 11?425 This localization is mainly due to the lack of static electron-
proton correlation when the noninteracting reference system is described by a single product
of an electronic and protonic determinant, as well as insufficient electron-proton dynamical
correlation.

To address this challenge, the NEO multistate DFT (NEO-MSDFT) method was devel-
oped for describing hydrogen transfer and hydrogen tunneling systems within the NEO frame-
work.?% Motivated by the conventional electronic MSDFT method,?3° the NEO-MSDFT
method linearly combines localized NEO-DF'T states in a nonorthogonal configuration interac-
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tion scheme in order to capture the bilobal, delocalized vibronic states needed to describe



hydrogen tunneling. The NEO-MSDFT method has been shown to produce accurate hydrogen
tunneling splittings and proton densities for fixed molecular geometries involving one quantum
proton.?® Analytical gradients of the NEO-MSDFT energies were also derived for the one-proton
case, enabling geometry optimizations and minimum energy path calculations on NEO-MSDFT
vibronic surfaces.® The NEO-MSDFT method has also been combined with nonadiabatic dy-
namics methods such as Ehrenfest and surface hopping to describe the tunneling dynamics of
the intramolecular proton transfer reaction in malonaldehyde. 3*

Herein, we present the generalized NEO-MSDFT approach to enable the simulation of more

complex systems involving the transfer and tunneling of multiple quantum protons, such as
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proton relays, water chains, and hydrogen-bonding networks.“? After presenting the

theory underlying this approach, we demonstrate its ability to predict accurate tunneling split-
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tings and proton densities for the formic acid dimer and substituted variants, porphycene,
and a protonated water chain. In addition to predicting hydrogen tunneling splittings, the
NEO-MSDFT approach also offers a strategy for smoothly transitioning from one localized

NEO-DFT solution to another during NEO quantum dynamics simulations, 3*

circumventing
problems with local minima in orbital space while also allowing the proton to delocalize during
proton transfer processes.?° Thus, this work provides the foundation for future nuclear-electronic
quantum dynamics studies of systems in which multiple protons are transferring and, in some
cases, tunneling.

Consider a system with N transferring protons, where each proton is moving in a double-well
potential in the conventional Born-Oppenheimer picture. Quantizing each transferring proton
within the NEO framework leads to 2V diabatic NEO-DFT states. Each diabatic state has the
protonic density of each transferring proton localized in one of the two wells of its corresponding
double-well potential. For completeness, our derivation includes all possible combinations of
each transferring proton localized near either its donor or acceptor, but in practice, higher-
energy states can be excluded. The set of all diabatic NEO-DFT states is {|¥o), [¥1),...|¥,)},

where n = 2V — 1. Each diabatic state is the product of a Kohn-Sham electronic and protonic

determinant, with each determinant composed of electronic or protonic orbitals. For simplicity,



we assume closed-shell electronic and high-spin protonic configurations, but the extension to

open-shell electronic configurations is straightforward.

The adiabatic NEO-MSDFT states {|Uy), |¥1),...|V,)} are linear combinations of all dia-
batic NEO-DFT states:

Vo) = Dg|¥o) + DYTy) + -+ + Dy|¥,,)

Uy) = D(1)|‘i’o> + D%|‘I~’1> +oeee Di@n)

0, = Dy|Wo) + DY) + -+ + Di|0,,)

The coefficients in Eq. (1) are determined by solving the 2V x 2V matrix eigenvalue problem

HD = SDE.

(2)

The overlap matrix S contains the overlap between pairs of localized diabatic states
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The off-diagonal elements of the overlap matrix S;; for ¢,j € {0,1,...,n} are given by

Sij = Sji = <‘jl’\ifﬂ> = <det(Afj)>2 X det(AZ)

where the Af; and A}, matrices are given by

A5 = (Cf,)"8°(C5,)
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AL = (C1,)'$7(CE,).



The C§, (C7,) and C§, (C¥ ) matrices of Eq. (5) are the occupied blocks of the coefficient ma-
trices of the electronic (protonic) parts of diabatic NEO-DFT states |¥;) and |¥;), respectively,
and the S°® (SP) matrices are the overlap matrices of the electronic (protonic) basis functions.
Note that the electronic determinant in Eq. (4) is squared in the closed-shell treatment of
electrons.

The effective Hamiltonian H is given by

Ho Hopyr -+ Hon
H_ HlO Hll Ce Hln (6)
Hu Hy - Hu
The diagonal matrix elements Hy; for i € {0,1,...,n} are given by Hy = ENFO-DFT [pf, pf],

which is the NEO-DFT energy of diabatic state | ;). Note that ENFO-PFT 05, pP] is a functional
of the electronic and protonic densities, p§ and pf, of that diabatic state.

The off-diagonal matrix elements H;; for 4,5 € {0,1,...,n} can be approximated in a
manner analogous to MSDFT in conventional electronic structure?®2?4¢ and NEO-MSDFT

with a single transferring proton: 2

Hyj = Hji = (U;|Hxpo|¥;) + %Sij(Eforr + E5°)
= 8 (Euue + Tx[P5b¢] + Tr [P )
+ % Te[P5JPy;] + % Tr[P,JPPPY] (7)
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In Eq. (7), (U;|Hxgo|¥,) is the energy computed with the NEO Hamiltonian Hygo at the

NEO Hartree-Fock (NEO-HF) level with the NEO Kohn-Sham determinants. Note that Hyxgo

includes the kinetic energies of the electrons and quantum nuclei, as well as all the Coulomb



interactions between pairs of electrons, quantum nuclei, and classical nuclei. The correlation
energies £ and E;°" are defined as the difference between the NEO-DFT and NEO-HF

energies for states | ;) and |¥;), respectively:

eorr ENEO-DFT [pg, pp:| . ENEO-HF [pE}, pp}
i i (RN g v (8)
E](;orr — E]NEO-DFT [p§7 p?] . E]NEO-HF |::0(;'7 pi)}

In Eq. (7), h, J, and K represent the core Hamiltonian, Coulomb, and exchange terms, respec-
tively, for electrons (e) and protons (p). Euu is the classical nuclear repulsion energy, and Pf;

and P}; are the transition density matrices between states |T,) and |¥;) given by

-1
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The factor of two in the electronic transition density matrix arises in the case of a closed-shell
treatment of electrons.

26,3334 we account for the limitations of the epc functionals and the

As in our previous work,
resulting inaccuracies of the overlap between two localized NEO-DF'T states (\ilz|ﬁlj>, as well as
the approximate form of the off-diagonal Hamiltonian matrix elements, by applying a simple

correction function to the off-diagonal elements of the S matrix:

In most cases, the corrected overlap is greater than the uncorrected overlap, thus accounting
for the slight proton density over-localization observed with the epc functionals. The working
equations of the generalized NEO-MSDFT procedure with this corrected overlap are the same as
those given above, except all instances of S;; are replaced with S}, according to Eq. (10). For the
epcl7-2 electron-proton correlation functional, the v and § parameters were determined to be

a = 0.0604 and 8 = 0.492 based on fitting to the tunneling splittings for the FHF~ molecule at



different F—F distances.?% This overlap correction procedure with these parameters was tested
for an array of single quantum proton systems with widely varying character and geometry and
was shown to provide accurate tunneling splittings and proton densities in all cases.?® These
prior benchmarking studies suggest that the overlap correction procedure and its associated
parameters are both transferable and robust for the epcl17-2 functional with a single quantum
proton. As will be shown below, they are also transferable to systems with multiple quantum
protons, with the possibility that reparameterization could be warranted for some types of
systems. The NEO-MSDFT method with the overlap correction implemented was denoted as
NEO-MSDFT’ in the original paper, but for notational simplicity, we omit the prime for the
remainder of this paper. The results without the corrected overlap are provided in the SI.
Note that an alternative strategy would be to apply corrections to the epcl7-2 functional or to
develop new epc functionals specifically for NEO-MSDFT.

The NEO-MSDFT method captures both electron-electron and electron-proton static and
dynamical correlation: static correlation is included through the expansion of each NEO-
MSDEFT state in terms of localized NEO-DFT diabatic states, and dynamical correlation is in-
corporated through the epc and conventional electronic exchange-correlation functionals. Static
and dynamical correlation are not strictly separable, however, and therefore over-counting of
these correlation effects could potentially be an issue with certain density functionals. The pre-
vious success of NEO-MSDFT in producing accurate tunneling splittings and proton densities

6 as well as the results for multiple quantum proton cases

for single quantum proton cases,?
below, indicates that such over-counting effects are not a significant issue in the NEO-MSDFT
approach.

In NEO-MSDFT, two basis function centers are assigned for each transferring proton: one
center is localized near the proton donor, and another center is localized near the proton
acceptor. These centers are optimized variationally at the NEO-DFT level using the procedure
described in the SI. The 2¥ NEO-DFT diabatic states are obtained by choosing appropriately
localized initial densities and performing NEO-DFT self-consistent field calculations, thereby

producing the occupied coefficient matrices Cj, and C7, for each diabatic state |T;). These



coefficients are used to compute the matrix elements of the Hamiltonian and overlap matrices
of Egs. (6) and (3), respectively. Then Eq. (2) is solved to obtain the adiabatic NEO-MSDFT
states. As mentioned above, in practice fewer NEO-DFT diabatic states may be included in the
expansion. We implemented the generalized NEO-MSDFT method in a development version
of the Q-Chem 5.4 package. 4

We applied the generalized NEO-MSDFT approach to a series of geometries of the formic
acid dimer and the cyano and amino-substituted formic acid dimer variants, as well as por-
phycene. We also investigated a protonated water chain composed of four water molecules
to determine if NEO-MSDFT can properly capture the bilobal character of the excess proton
and to demonstrate the capability of NEO-MSDFT to treat proton relays and other systems
involving more than two transferring protons. For all NEO calculations, the B3LYP electronic
exchange-correlation functional®® and the epcl7-2 electron-proton correlation functional 516
were used. All NEO calculations used the PB5-G protonic basis set?® for the quantum nuclei,
with the exception that the PB4-D protonic basis set?® was used for the water chain. The
aug-cc-pVDZ and aug-cc-pV5Z electronic basis sets were used for the classical and quantum
nuclei, respectively, with the exception that the cc-pVDZ electronic basis was used for the
classical nuclei of porphycene.

We benchmarked the NEO-MSDFT method by comparing the calculated tunneling split-
tings to those computed with the Fourier Grid Hamiltonian (FGH) method,®! which is nu-
merically exact for electronically adiabatic systems. We performed both two-dimensional (2D)
FGH calculations, where each proton moves in one dimension along its proton transfer axis, and
four-dimensional (4D) FGH calculations, where each proton moves on a 2D grid in the plane
of the molecule. Here, the tunneling splitting, denoted as AFEy;, is defined as the energy differ-
ence between the first vibrationally excited state and the ground vibrational state. As shown
in the calculations below, the NEO-MSDFT method captures the symmetric ground state and
antisymmetric first excited vibrational state characteristic of symmetric or nearly symmetric
double-well systems. However, the NEO-MSDFT method does not provide meaningful higher

vibrational states because the diabatic basis used here does not include bending modes. In



principle, the diabatic basis could be expanded to include such modes, but for most purposes
the lowest two vibronic states are sufficient to describe hydrogen tunneling dynamics.

Our first generalized NEO-MSDFT calculations focus on the formic acid dimer and cyano-
and amino-substituted variants. The procedure for obtaining symmetric or nearly symmetric
geometries of these systems is discussed in the SI. The resulting geometries are shown in the
insets of Figures 1B, 1D, and 1F. The 2D proton potential energy surfaces, as well as one-
dimensional slices, for the formic acid dimer, cyano-substituted dimer, and amino-substituted
dimer at the equilibrium carbon-carbon distance of the formic acid dimer, which is 3.80 A, are
shown in Figure 1. The potentials were calculated by generating a two-dimensional grid for
each structure, where each of the transferring protons moved in one dimension along its proton
transfer axis connecting its donor and acceptor oxygen atoms. See the SI for more details about
these calculations.

For each 2D potential energy surface in Figure 1, the two minima correspond to the two trans
structures. In other words, one minimum corresponds to the top proton on its donor oxygen
and the bottom proton on its acceptor oxygen, and the other minimum corresponds to the top
proton on its acceptor oxygen and the bottom proton on its donor oxygen. When one proton is
at the origin, the slice along the other proton coordinate is a double-well potential energy curve
that is symmetric for the formic acid dimer and slightly asymmetric for the substituted formic
acid dimers (black curves in Figures 1B, 1D, and 1F). When one proton is either at a negative
or positive value, the double-well potential energy curve becomes significantly asymmetric (blue
and red curves in Figures 1B, 1D, and 1F).

Seven different geometries were studied for each of the three formic acid dimer systems. For
the unsubstituted formic acid dimer, the first geometry was the averaged equilibrium structure
depicted in Figure 1B, three of the geometries were generated by moving the two rigid monomers
of this structure closer together by increments of 0.02 A, and another three were generated by
moving the two rigid monomers of this structure further apart by increments of 0.02 A. For
the two substituted formic acid dimers, the seven geometries were generated in an analogous

manner. Thus, each of the seven different geometries for each of the three formic acid dimer
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Figure 1. Potential energies computed at a carbon-carbon distance of 3.80 A for (A, B) the
formic acid dimer, (C, D) the cyano-substituted formic acid dimer, and (E, F) the amino-
substituted formic acid dimer. The two-dimensional proton potential energy surfaces (A, C, E)
are plotted as a function of the two proton coordinates, each corresponding to a one-dimensional
grid spanning the associated oxygen-oxygen axis. The origin of each proton coordinate corre-
sponds to the midpoint between the oxygen atoms, and the energies are computed relative to
the minimum energy for each system. Relative energies in kcal /mol are provided on each con-
tour line. The one-dimensional proton potential energy curves (B, D, F) correspond to slices
of the two-dimensional surfaces along proton 1 coordinate with the proton 2 coordinate fixed
to a position of —0.375 A (red), 0 A (black), and +0.375 A (blue). The corresponding colored
dashed lines of (A, C, E) indicate these one-dimensional slices on the two-dimensional potential
energy surfaces.
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systems has a different distance between its two carbon atoms, denoted as Rcc. The tunneling
splittings were computed with the 2D FGH method for all 21 geometries and with the 4D
FGH method for 9 geometries (i.e., 3 per system). We found that the 4D FGH splittings were
consistently ~ 75% of the 2D FGH splittings. Therefore, we used the 4D FGH splittings as
the benchmark, scaling the splittings that were only computed with the 2D FGH method. All

computed 2D and 4D FGH splittings are provided in the SI in Table S1.
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Figure 2. Visual representation of the generalized NEO-MSDFT procedure for the case of
the unsubstituted formic acid dimer. Four possible NEO-DFT diabatic states (left) are linearly
combined to produce the adiabatic NEO-MSDFT states, where only the ground and first excited
vibronic states (right) are meaningful. In practice, only the trans NEO-DFT diabatic states
(top left) were used to compute the tunneling splittings for these systems.

The four possible diabatic states for the formic acid dimer, as well as the adiabatic ground
and excited NEO-MSDFT states, are shown in Figure 2. The tunneling splitting for each
geometry was calculated with NEO-MSDFT using the two diabatic states corresponding to the
trans positions of the transferring protons. The two diabatic states corresponding to the cis
positions of the transferring protons were not included because they are much higher in energy,
as indicated by the potential energy surfaces, which do not exhibit minima corresponding to
cis structures (Figure 1). Calculations that include the cis diabatic states are discussed in the
SI. A comparison of the NEO-MSDFT tunneling splittings and those calculated with the FGH
reference method is provided in Figure 3 and Table 1. The tunneling splittings calculated with

NEO-MSDFT are in good agreement with the benchmark FGH results for all R¢c tested for
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all three dimer systems.

Table 1. Tunneling Splittings (in cm™!) of the Three Formic Acid Dimer Systems at Varying
Carbon-Carbon Distances, Rcc, Calculated with FGH and NEO-MSDFT ¢

| Substituent || Roc (A) | FGH NEO-MSDFT |

3.74 46.64 49.33
3.76 23.36 27.29
3.78 11.37 14.64
None 3.80 5.16 7.48
3.82 2.31 3.50
3.84 0.99 1.36
3.86 0.41 0.31
3.74 68.23 50.90
3.76 34.47 27.21
3.78 16.75 14.41
CN 3.80 7.47 7.41
3.82 3.32 3.45
3.84 1.39 1.33
3.86 0.56 0.30
3.74 62.15 53.00
3.76 31.40 28.84
3.78 15.35 15.37
NH, 3.80 6.94 8.05
3.82 3.10 3.82
3.84 1.31 1.53
3.86 0.54 0.40

@ The substituent is only added to one monomer in the
dimer. The NEO-MSDFT calculations include only the
two trans states. The FGH results are 4D for all geome-
tries where Rcc is 3.74, 3.80, and 3.86 A, and scaled
2D for all other distances.

To further investigate the NEO-MSDFT results, we analyzed the proton densities. Figure 3
shows the ground state NEO-MSDF'T proton densities for one of the protons along the line con-
necting the proton basis function centers for select dimer geometries. (Note that the two protons
are equivalent in these systems.) All calculated proton densities exhibit their anticipated sym-
metry. The unsubstituted formic acid dimer system has a completely symmetric ground and
first excited state proton density for all Roc, whereas the cyano and amino-substituted dimer

structures have ground and first excited state proton densities with an asymmetry that can be

explained by the electron-donating and electron-withdrawing effects of the substituents. The
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Figure 3. Tunneling splittings and ground state proton densities of (A, B) the formic acid
dimer, (C, D) the cyano-substituted formic acid dimer, and (E, F') the amino-substituted formic
acid dimer at varying Rcc. The NEO-MSDFT calculations were performed with two diabatic
states, and the reference results are 4D FGH or scaled 2D FGH calculations. The insets of (A,
C, E) depict the ground state NEO-MSDFT proton densities in cyan. The tunneling splittings
are also provided in Table 1. In (B, D, F), the proton densities are plotted along the line
connecting the proton basis function centers for one of the protons with Rec = 3.74 A (green),

Rec = 3.80 A (orange), and Roc = 3.86 A (blue).
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cyano group is electron withdrawing and the amino group is electron donating, corresponding
to a larger proton density on the left and right sides, respectively (Figures 3C and 3E). All
proton densities also exhibit their expected nodal character. The ground state densities do not
exhibit any nodes, whereas the first exited state densities exhibit nodes at a proton coordinate
of zero (Figure S1). This is directly analogous to the symmetric ground state and antisymmetric
first excited state wavefunctions characteristic of double-well systems. All proton densities also
followed the expected trend with increasing Rcc, where the peaks of each density shift further
away from each other as the rigid monomers move further apart.

We now turn our attention toward the larger porphycene system. Porphycene is distinct from
the formic acid dimer in that the double proton transfer is mediated by the aromatic structure
of the macrocycle. The structure of porphycene is shown in Figure 4, and the procedure for
obtaining this geometry is discussed in the SI. The two-dimensional proton potential energy
surfaces and one-dimensional slices for porphycene are shown in Figures 4A and 4B, respectively.
In contrast to the formic acid dimer, these surfaces exhibit distinct minima at the cis geometries
as well as the trans geometries. Thus, we included all four diabatic states in the NEO-MSDFT
calculations. The resulting ground and first excited state proton vibrational wavefunctions and
densities are shown in Figures 4C and Figure 4D, respectively. As observed for the formic acid
dimer, the ground state wavefunction is symmetric, and the first excited state wavefunction
is antisymmetric. Moreover, the ground state density has some amplitude in the classically
forbidden region (i.e., at a proton coordinate of zero), whereas the first excited state has a node
at this coordinate. The tunneling splitting for porphycene was found to be 37.63 cm ™! and 44.84
cm ™! using the (unscaled) 2D FGH method and the NEO-MSDFT method, respectively. This
agreement is remarkable considering that the calculations did not involve any free parameters.

As a final application, we show that the generalized NEO-MSDFT procedure can capture
the proton density associated with a proton relay system. A protonated water chain composed
of four water molecules was optimized with conventional DF'T for fixed O—O distances of 2.70
A between neighboring oxygens while constraining the central proton to be equidistant from

its two neighboring oxygen atoms. See the SI for further details about how this geometry was
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Figure 4. (A) Two-dimensional proton potential energy surface as a function of the two
proton coordinates, each corresponding to a one-dimensional grid spanning the line connecting
the proton positions optimized at the conventional DFT level for the two trans structures, with
the origin at the midpoint between them. Relative energies in kcal/mol are provided on each
contour line. (B) One-dimensional proton potential energy curves corresponding to slices of the
two-dimensional surface along proton 1 coordinate with proton 2 coordinate fixed to a position
of —0.375 A (red), 0 A (black), and +0.375 A (blue). The corresponding colored dashed lines of
(A) indicate these one-dimensional slices on the two-dimensional potential energy surface. (C)
Ground state (left) and first excited state (right) NEO-MSDFT proton densities. To visualize
the phase of the corresponding proton vibrational wavefunction, the positive and negative
phases are shown in cyan and purple, respectively. (D) Ground state (green) and first excited
state (orange) proton densities computed with NEO-MSDFT along one of the proton transfer
coordinates.
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generated. This water chain can be viewed as a snapshot during the Grotthuss mechanism
of proton transport down the chain,®® where the proton is delocalized between the middle
two oxygens in this snapshot. From the conventional Born-Oppenheimer perspective, each of
the three transferring protons is moving in a double-well potential: the two outer transferring
protons move in highly asymmetric double-well potentials, whereas the central transferring
proton moves in a nearly symmetric double-well potential.

We performed an eight-state NEO-MSDF'T calculation on this system with all nine protons
quantized. Only the three transferring protons were represented by two basis function centers
rather than a single basis function center. A description for how the basis function center
positions were determined is provided in the SI. The eight possible diabatic states associated
with the three transferring protons were included in the NEO-MSDFT calculation, producing
the ground state proton density shown in Figure 5B. For comparison, a single-reference NEO-
DFT calculation was performed using the same geometry and the same positions of the basis

function centers, and its proton density is shown in Figure 5A.

By

b‘x o r

Figure 5. A protonated water chain composed of four water molecules, where all nine protons
are quantized with the NEO approach. The ground state proton densities calculated using (A)
NEO-DFT and (B) NEO-MSDFT are shown in cyan. Bonds are drawn between the localized
quantum protons and the closest oxygen for visual clarity. NEO-MSDFT is able to capture
the bilobal character of the central proton density, whereas NEO-DFT cannot capture this
tunneling behavior.

A

The NEO-MSDFT method is able to capture the bilobal density of the central proton while
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also predicting that the two outer transferring protons remain localized near their respective
oxygen atoms. In contrast, the single-reference NEO-DFT calculation incorrectly predicts the
central proton to be localized near one of its neighboring oxygen atoms. Thus, the NEO-
MSDEFT method is able to describe the tunneling character of the excess central proton while
appropriately weighting all eight diabatic states such that the outer transferring protons remain
localized.

This work presents a generalized NEO-MSDFT approach for treating systems with mul-
tiple quantum protons that are transferring and possibly tunneling. In this approach, NEO-
DFT diabatic states, corresponding to each proton localized near its donor or acceptor, are
linearly combined to produce NEO-MSDFT adiabatic states. The ground and first excited
NEO-MSDFT vibronic states are able to capture the approximately symmetric and antisym-
metric characteristics of proton wavefunctions for tunneling systems. This approach provides
accurate tunneling splittings for the formic acid dimer, as well as the asymmetric cyano- and
amino-substituted formic acid dimers, for a range of distances between the monomers. It also
predicts a reasonably accurate tunneling splitting for porphycene. redThe application to a pro-
tonated water chain with nine quantum protons illustrates that NEO-MSDFT can describe a
combination of localized and delocalized, bilobal proton densities within a single system. Note
that the tunneling splittings computed herein are not directly comparable to experimentally
measured splittings because they were computed at fixed geometries and do not include cou-
pling to other vibrational modes of the molecule. The generalized NEO-MSDFT method can
be combined with vibronic coupling theory®® to include this coupling and with nonadiabatic
dynamics methods to describe tunneling dynamics.3*

In addition to providing an accurate description of hydrogen tunneling, the NEO-MSDFT
approach also allows smooth transitioning between localized NEO-DFT solutions while accu-
rately describing proton delocalization and avoiding complications of local minima in orbital
space. In other words, this approach can describe both asymmetric systems, in which the proton
density is localized, and symmetric or nearly symmetric systems, in which the proton density

is delocalized and possibly bilobal. When coupled to a hybrid quantum mechanical /molecular

17



mechanical approach,® the generalized NEO-MSDFT approach will enable quantum dynamics
simulations of many types of multiple proton transfer processes, such as extended proton relay

systems and complex mechanisms in enzymatic active sites.

Supporting Information

Details on calculating the NEO-MSDFT proton density; excited state proton densities of formic
acid dimer systems; additional tunneling splitting results for formic acid dimer systems; de-
tails about procedures for geometry optimizations and determination of basis function center
positions; computational details about FGH calculations; Cartesian coordinates of molecular

geometries.
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