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Abstract

Proton transfer and hydrogen tunneling play a pivotal role in many chemical and biolog-
ical processes. The nuclear-electronic orbital multistate density functional theory (NEO-
MSDFT) approach was developed to describe hydrogen tunneling systems within the mul-
ticomponent NEO framework, where the transferring proton is quantized and treated with
molecular orbital techniques on the same level as the electrons. Herein, the NEO-MSDFT
framework is generalized to an arbitrary number of quantum protons to allow applica-
tions to systems involving the transfer and tunneling of multiple protons. The generalized
NEO-MSDFT approach is shown to produce delocalized, bilobal proton densities and ac-
curate tunneling splittings for fixed geometries of the formic acid dimer and asymmetric
substituted variants as well as the porphycene molecule. Investigation of a protonated
water chain highlights the applicability of this approach to proton relay systems. This
work provides the foundation for nuclear-electronic quantum dynamics simulations of a
wide range of multiple proton transfer processes.
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Hydrogen tunneling underlies many processes of chemical and biological interest. 1–3 Numer-

ous methods have been developed to describe hydrogen tunneling systems, such as path integral

approaches3–6 and the multiconfigurational time-dependent Hartree method. 7–9 In contrast to

these methods, the nuclear-electronic orbital (NEO) method accounts for nuclear quantum

effects and non-Born-Oppenheimer effects directly within quantum chemistry calculations by

quantizing certain nuclei, typically protons, and treating them with molecular orbital tech-

niques at the same level as the electrons.10,11 Nuclear delocalization, anharmonicity, zero-point

energy, and nuclear tunneling are inherently included in NEO calculations, and excited vibronic

states can be computed in a straightforward manner. The NEO method is therefore a natural

framework with which to describe hydrogen tunneling phenomena.

Many methods based on both wavefunction theory10–13 and density functional theory

(DFT)14–17 have been developed within the NEO framework. The NEO-DFT method in par-

ticular has been shown to be successful in describing hydrogen transfer phenomena. 18–20 The

success of NEO-DFT can be attributed to its effective balance between computational cost

and accuracy, driven by its inclusion of electron-proton correlation through recently developed

electron-proton correlation (epc) functionals. 15,16,21 However, a challenge for NEO-DFT is the

description of hydrogen tunneling systems, where the hydrogen vibrational wavefunction delo-

calizes over the two wells of a double-well potential energy surface. 9,22,23 In NEO-DFT calcula-

tions, the protonic density tends to localize in one well of the double-well potential instead of

delocalizing over both wells.11,24,25 This localization is mainly due to the lack of static electron-

proton correlation when the noninteracting reference system is described by a single product

of an electronic and protonic determinant, as well as insufficient electron-proton dynamical

correlation.

To address this challenge, the NEO multistate DFT (NEO-MSDFT) method was devel-

oped for describing hydrogen transfer and hydrogen tunneling systems within the NEO frame-

work.26 Motivated by the conventional electronic MSDFT method, 27–30 the NEO-MSDFT

method linearly combines localized NEO-DFT states in a nonorthogonal configuration interac-

tion scheme31,32 in order to capture the bilobal, delocalized vibronic states needed to describe
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hydrogen tunneling. The NEO-MSDFT method has been shown to produce accurate hydrogen

tunneling splittings and proton densities for fixed molecular geometries involving one quantum

proton.26 Analytical gradients of the NEO-MSDFT energies were also derived for the one-proton

case, enabling geometry optimizations and minimum energy path calculations on NEO-MSDFT

vibronic surfaces.33 The NEO-MSDFT method has also been combined with nonadiabatic dy-

namics methods such as Ehrenfest and surface hopping to describe the tunneling dynamics of

the intramolecular proton transfer reaction in malonaldehyde. 34

Herein, we present the generalized NEO-MSDFT approach to enable the simulation of more

complex systems involving the transfer and tunneling of multiple quantum protons, such as

proton relays,35,36 water chains,37–39 and hydrogen-bonding networks.40 After presenting the

theory underlying this approach, we demonstrate its ability to predict accurate tunneling split-

tings and proton densities for the formic acid dimer 41–45 and substituted variants, porphycene,5

and a protonated water chain. In addition to predicting hydrogen tunneling splittings, the

NEO-MSDFT approach also offers a strategy for smoothly transitioning from one localized

NEO-DFT solution to another during NEO quantum dynamics simulations, 34 circumventing

problems with local minima in orbital space while also allowing the proton to delocalize during

proton transfer processes.20 Thus, this work provides the foundation for future nuclear-electronic

quantum dynamics studies of systems in which multiple protons are transferring and, in some

cases, tunneling.

Consider a system with N transferring protons, where each proton is moving in a double-well

potential in the conventional Born-Oppenheimer picture. Quantizing each transferring proton

within the NEO framework leads to 2N diabatic NEO-DFT states. Each diabatic state has the

protonic density of each transferring proton localized in one of the two wells of its corresponding

double-well potential. For completeness, our derivation includes all possible combinations of

each transferring proton localized near either its donor or acceptor, but in practice, higher-

energy states can be excluded. The set of all diabatic NEO-DFT states is {|Ψ̃0⟩, |Ψ̃1⟩, . . . |Ψ̃n⟩},

where n = 2N − 1. Each diabatic state is the product of a Kohn-Sham electronic and protonic

determinant, with each determinant composed of electronic or protonic orbitals. For simplicity,
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we assume closed-shell electronic and high-spin protonic configurations, but the extension to

open-shell electronic configurations is straightforward.

The adiabatic NEO-MSDFT states {|Ψ0⟩, |Ψ1⟩, . . . |Ψn⟩} are linear combinations of all dia-

batic NEO-DFT states:

|Ψ0⟩ = D0
0|Ψ̃0⟩+D0

1|Ψ̃1⟩+ · · ·+D0
n|Ψ̃n⟩

|Ψ1⟩ = D1
0|Ψ̃0⟩+D1

1|Ψ̃1⟩+ · · ·+D1
n|Ψ̃n⟩

...
...

...

|Ψn⟩ = Dn
0 |Ψ̃0⟩+Dn

1 |Ψ̃1⟩+ · · ·+Dn
n|Ψ̃n⟩

(1)

The coefficients in Eq. (1) are determined by solving the 2N × 2N matrix eigenvalue problem

HD = SDE. (2)

The overlap matrix S contains the overlap between pairs of localized diabatic states

S =



S00 S01 · · · S0n

S10 S11 · · · S1n

...
... . . . ...

Sn0 Sn1 · · · Snn


=



1 ⟨Ψ̃0|Ψ̃1⟩ · · · ⟨Ψ̃0|Ψ̃n⟩

⟨Ψ̃1|Ψ̃0⟩ 1 · · · ⟨Ψ̃1|Ψ̃n⟩
...

... . . . ...

⟨Ψ̃n|Ψ̃0⟩ ⟨Ψ̃n|Ψ̃1⟩ · · · 1


(3)

The off-diagonal elements of the overlap matrix Sij for i, j ∈ {0, 1, . . . , n} are given by

Sij = Sji = ⟨Ψ̃i|Ψ̃j⟩ =
(
det

(
Ae

ij

))2

× det
(
Ap

ij

)
(4)

where the Ae
ij and Ap

ij matrices are given by

Ae
ij = (Ce

i,o)
TSe(Ce

j,o)

Ap
ij = (Cp

i,o)
TSp(Cp

j,o).

(5)
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The Ce
i,o (Cp

i,o) and Ce
j,o (Cp

j,o) matrices of Eq. (5) are the occupied blocks of the coefficient ma-

trices of the electronic (protonic) parts of diabatic NEO-DFT states |Ψ̃i⟩ and |Ψ̃j⟩, respectively,

and the Se (Sp) matrices are the overlap matrices of the electronic (protonic) basis functions.

Note that the electronic determinant in Eq. (4) is squared in the closed-shell treatment of

electrons.

The effective Hamiltonian H is given by

H =



H00 H01 · · · H0n

H10 H11 · · · H1n

...
... . . . ...

Hn0 Hn1 · · · Hnn


(6)

The diagonal matrix elements Hii for i ∈ {0, 1, . . . , n} are given by Hii = ENEO-DFT
i

[
ρe
i , ρ

p
i

]
,

which is the NEO-DFT energy of diabatic state |Ψ̃i⟩. Note that ENEO-DFT
i

[
ρe
i , ρ

p
i

]
is a functional

of the electronic and protonic densities, ρe
i and ρp

i , of that diabatic state.

The off-diagonal matrix elements Hij for i, j ∈ {0, 1, . . . , n} can be approximated in a

manner analogous to MSDFT in conventional electronic structure 28,29,46 and NEO-MSDFT

with a single transferring proton:26

Hij = Hji = ⟨Ψ̃i|ĤNEO|Ψ̃j⟩+
1

2
Sij(E

corr
i + Ecorr

j )

= Sij

(
Enuc + Tr

[
Pe

ijh
e]+ Tr

[
Pp

ijh
p]

+
1

2
Tr

[
Pe

ijJ
eePe

ij

]
+

1

2
Tr

[
Pp

ijJ
ppPp

ij

]
− Tr

[
Pe

ijJ
epPp

ij

]
− 1

4
Tr

[
Pe

ijK
eePe

ij

]
− 1

2
Tr

[
Pp

ijK
ppPp

ij

])
+

1

2
Sij(E

corr
i + Ecorr

j ).

(7)

In Eq. (7), ⟨Ψ̃i|ĤNEO|Ψ̃j⟩ is the energy computed with the NEO Hamiltonian ĤNEO at the

NEO Hartree-Fock (NEO-HF) level with the NEO Kohn-Sham determinants. Note that ĤNEO

includes the kinetic energies of the electrons and quantum nuclei, as well as all the Coulomb
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interactions between pairs of electrons, quantum nuclei, and classical nuclei. The correlation

energies Ecorr
i and Ecorr

j are defined as the difference between the NEO-DFT and NEO-HF

energies for states |Ψ̃i⟩ and |Ψ̃j⟩, respectively:

Ecorr
i = ENEO-DFT

i

[
ρe
i , ρ

p
i

]
− ENEO-HF

i

[
ρe
i , ρ

p
i

]
Ecorr

j = ENEO-DFT
j

[
ρe
j, ρ

p
j

]
− ENEO-HF

j

[
ρe
j, ρ

p
j

] (8)

In Eq. (7), h, J, and K represent the core Hamiltonian, Coulomb, and exchange terms, respec-

tively, for electrons (e) and protons (p). Enuc is the classical nuclear repulsion energy, and Pe
ij

and Pp
ij are the transition density matrices between states |Ψ̃i⟩ and |Ψ̃j⟩ given by

Pe
ij = 2Ce

i,o

[
(Ae

ij)
T
]−1

(Ce
j,o)

T

Pp
ij = Cp

i,o

[
(Ap

ij)
T
]−1

(Cp
j,o)

T
(9)

The factor of two in the electronic transition density matrix arises in the case of a closed-shell

treatment of electrons.

As in our previous work,26,33,34 we account for the limitations of the epc functionals and the

resulting inaccuracies of the overlap between two localized NEO-DFT states ⟨Ψ̃i|Ψ̃j⟩, as well as

the approximate form of the off-diagonal Hamiltonian matrix elements, by applying a simple

correction function to the off-diagonal elements of the S matrix:

S ′
ij = α(Sij)

β. (10)

In most cases, the corrected overlap is greater than the uncorrected overlap, thus accounting

for the slight proton density over-localization observed with the epc functionals. The working

equations of the generalized NEO-MSDFT procedure with this corrected overlap are the same as

those given above, except all instances of Sij are replaced with S ′
ij according to Eq. (10). For the

epc17-2 electron-proton correlation functional, the α and β parameters were determined to be

α = 0.0604 and β = 0.492 based on fitting to the tunneling splittings for the FHF− molecule at
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different F−F distances.26 This overlap correction procedure with these parameters was tested

for an array of single quantum proton systems with widely varying character and geometry and

was shown to provide accurate tunneling splittings and proton densities in all cases. 26 These

prior benchmarking studies suggest that the overlap correction procedure and its associated

parameters are both transferable and robust for the epc17-2 functional with a single quantum

proton. As will be shown below, they are also transferable to systems with multiple quantum

protons, with the possibility that reparameterization could be warranted for some types of

systems. The NEO-MSDFT method with the overlap correction implemented was denoted as

NEO-MSDFT′ in the original paper, but for notational simplicity, we omit the prime for the

remainder of this paper. The results without the corrected overlap are provided in the SI.

Note that an alternative strategy would be to apply corrections to the epc17-2 functional or to

develop new epc functionals specifically for NEO-MSDFT.

The NEO-MSDFT method captures both electron-electron and electron-proton static and

dynamical correlation: static correlation is included through the expansion of each NEO-

MSDFT state in terms of localized NEO-DFT diabatic states, and dynamical correlation is in-

corporated through the epc and conventional electronic exchange-correlation functionals. Static

and dynamical correlation are not strictly separable, however, and therefore over-counting of

these correlation effects could potentially be an issue with certain density functionals. The pre-

vious success of NEO-MSDFT in producing accurate tunneling splittings and proton densities

for single quantum proton cases,26 as well as the results for multiple quantum proton cases

below, indicates that such over-counting effects are not a significant issue in the NEO-MSDFT

approach.

In NEO-MSDFT, two basis function centers are assigned for each transferring proton: one

center is localized near the proton donor, and another center is localized near the proton

acceptor. These centers are optimized variationally at the NEO-DFT level using the procedure

described in the SI. The 2N NEO-DFT diabatic states are obtained by choosing appropriately

localized initial densities and performing NEO-DFT self-consistent field calculations, thereby

producing the occupied coefficient matrices Ce
i,o and Cp

i,o for each diabatic state |Ψ̃i⟩. These
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coefficients are used to compute the matrix elements of the Hamiltonian and overlap matrices

of Eqs. (6) and (3), respectively. Then Eq. (2) is solved to obtain the adiabatic NEO-MSDFT

states. As mentioned above, in practice fewer NEO-DFT diabatic states may be included in the

expansion. We implemented the generalized NEO-MSDFT method in a development version

of the Q-Chem 5.4 package.47

We applied the generalized NEO-MSDFT approach to a series of geometries of the formic

acid dimer and the cyano and amino-substituted formic acid dimer variants, as well as por-

phycene. We also investigated a protonated water chain composed of four water molecules

to determine if NEO-MSDFT can properly capture the bilobal character of the excess proton

and to demonstrate the capability of NEO-MSDFT to treat proton relays and other systems

involving more than two transferring protons. For all NEO calculations, the B3LYP electronic

exchange-correlation functional48 and the epc17-2 electron-proton correlation functional 15,16

were used. All NEO calculations used the PB5-G protonic basis set 49 for the quantum nuclei,

with the exception that the PB4-D protonic basis set 49 was used for the water chain. The

aug-cc-pVDZ and aug-cc-pV5Z50 electronic basis sets were used for the classical and quantum

nuclei, respectively, with the exception that the cc-pVDZ electronic basis was used for the

classical nuclei of porphycene.

We benchmarked the NEO-MSDFT method by comparing the calculated tunneling split-

tings to those computed with the Fourier Grid Hamiltonian (FGH) method, 51 which is nu-

merically exact for electronically adiabatic systems. We performed both two-dimensional (2D)

FGH calculations, where each proton moves in one dimension along its proton transfer axis, and

four-dimensional (4D) FGH calculations, where each proton moves on a 2D grid in the plane

of the molecule. Here, the tunneling splitting, denoted as ∆E01, is defined as the energy differ-

ence between the first vibrationally excited state and the ground vibrational state. As shown

in the calculations below, the NEO-MSDFT method captures the symmetric ground state and

antisymmetric first excited vibrational state characteristic of symmetric or nearly symmetric

double-well systems. However, the NEO-MSDFT method does not provide meaningful higher

vibrational states because the diabatic basis used here does not include bending modes. In
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principle, the diabatic basis could be expanded to include such modes, but for most purposes

the lowest two vibronic states are sufficient to describe hydrogen tunneling dynamics.

Our first generalized NEO-MSDFT calculations focus on the formic acid dimer and cyano-

and amino-substituted variants. The procedure for obtaining symmetric or nearly symmetric

geometries of these systems is discussed in the SI. The resulting geometries are shown in the

insets of Figures 1B, 1D, and 1F. The 2D proton potential energy surfaces, as well as one-

dimensional slices, for the formic acid dimer, cyano-substituted dimer, and amino-substituted

dimer at the equilibrium carbon-carbon distance of the formic acid dimer, which is 3.80 Å, are

shown in Figure 1. The potentials were calculated by generating a two-dimensional grid for

each structure, where each of the transferring protons moved in one dimension along its proton

transfer axis connecting its donor and acceptor oxygen atoms. See the SI for more details about

these calculations.

For each 2D potential energy surface in Figure 1, the two minima correspond to the two trans

structures. In other words, one minimum corresponds to the top proton on its donor oxygen

and the bottom proton on its acceptor oxygen, and the other minimum corresponds to the top

proton on its acceptor oxygen and the bottom proton on its donor oxygen. When one proton is

at the origin, the slice along the other proton coordinate is a double-well potential energy curve

that is symmetric for the formic acid dimer and slightly asymmetric for the substituted formic

acid dimers (black curves in Figures 1B, 1D, and 1F). When one proton is either at a negative

or positive value, the double-well potential energy curve becomes significantly asymmetric (blue

and red curves in Figures 1B, 1D, and 1F).

Seven different geometries were studied for each of the three formic acid dimer systems. For

the unsubstituted formic acid dimer, the first geometry was the averaged equilibrium structure

depicted in Figure 1B, three of the geometries were generated by moving the two rigid monomers

of this structure closer together by increments of 0.02 Å, and another three were generated by

moving the two rigid monomers of this structure further apart by increments of 0.02 Å. For

the two substituted formic acid dimers, the seven geometries were generated in an analogous

manner. Thus, each of the seven different geometries for each of the three formic acid dimer
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Figure 1. Potential energies computed at a carbon-carbon distance of 3.80 Å for (A, B) the
formic acid dimer, (C, D) the cyano-substituted formic acid dimer, and (E, F) the amino-
substituted formic acid dimer. The two-dimensional proton potential energy surfaces (A, C, E)
are plotted as a function of the two proton coordinates, each corresponding to a one-dimensional
grid spanning the associated oxygen-oxygen axis. The origin of each proton coordinate corre-
sponds to the midpoint between the oxygen atoms, and the energies are computed relative to
the minimum energy for each system. Relative energies in kcal/mol are provided on each con-
tour line. The one-dimensional proton potential energy curves (B, D, F) correspond to slices
of the two-dimensional surfaces along proton 1 coordinate with the proton 2 coordinate fixed
to a position of −0.375 Å (red), 0 Å (black), and +0.375 Å (blue). The corresponding colored
dashed lines of (A, C, E) indicate these one-dimensional slices on the two-dimensional potential
energy surfaces.
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systems has a different distance between its two carbon atoms, denoted as RCC. The tunneling

splittings were computed with the 2D FGH method for all 21 geometries and with the 4D

FGH method for 9 geometries (i.e., 3 per system). We found that the 4D FGH splittings were

consistently ∼ 75% of the 2D FGH splittings. Therefore, we used the 4D FGH splittings as

the benchmark, scaling the splittings that were only computed with the 2D FGH method. All

computed 2D and 4D FGH splittings are provided in the SI in Table S1.

Figure 2. Visual representation of the generalized NEO-MSDFT procedure for the case of
the unsubstituted formic acid dimer. Four possible NEO-DFT diabatic states (left) are linearly
combined to produce the adiabatic NEO-MSDFT states, where only the ground and first excited
vibronic states (right) are meaningful. In practice, only the trans NEO-DFT diabatic states
(top left) were used to compute the tunneling splittings for these systems.

The four possible diabatic states for the formic acid dimer, as well as the adiabatic ground

and excited NEO-MSDFT states, are shown in Figure 2. The tunneling splitting for each

geometry was calculated with NEO-MSDFT using the two diabatic states corresponding to the

trans positions of the transferring protons. The two diabatic states corresponding to the cis

positions of the transferring protons were not included because they are much higher in energy,

as indicated by the potential energy surfaces, which do not exhibit minima corresponding to

cis structures (Figure 1). Calculations that include the cis diabatic states are discussed in the

SI. A comparison of the NEO-MSDFT tunneling splittings and those calculated with the FGH

reference method is provided in Figure 3 and Table 1. The tunneling splittings calculated with

NEO-MSDFT are in good agreement with the benchmark FGH results for all RCC tested for
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all three dimer systems.

Table 1. Tunneling Splittings (in cm−1) of the Three Formic Acid Dimer Systems at Varying
Carbon-Carbon Distances, RCC, Calculated with FGH and NEO-MSDFT a

Substituent RCC (Å) FGH NEO-MSDFT

None

3.74 46.64 49.33
3.76 23.36 27.29
3.78 11.37 14.64
3.80 5.16 7.48
3.82 2.31 3.50
3.84 0.99 1.36
3.86 0.41 0.31

CN

3.74 68.23 50.90
3.76 34.47 27.21
3.78 16.75 14.41
3.80 7.47 7.41
3.82 3.32 3.45
3.84 1.39 1.33
3.86 0.56 0.30

NH2

3.74 62.15 53.00
3.76 31.40 28.84
3.78 15.35 15.37
3.80 6.94 8.05
3.82 3.10 3.82
3.84 1.31 1.53
3.86 0.54 0.40

a The substituent is only added to one monomer in the
dimer. The NEO-MSDFT calculations include only the
two trans states. The FGH results are 4D for all geome-
tries where RCC is 3.74, 3.80, and 3.86 Å, and scaled
2D for all other distances.

To further investigate the NEO-MSDFT results, we analyzed the proton densities. Figure 3

shows the ground state NEO-MSDFT proton densities for one of the protons along the line con-

necting the proton basis function centers for select dimer geometries. (Note that the two protons

are equivalent in these systems.) All calculated proton densities exhibit their anticipated sym-

metry. The unsubstituted formic acid dimer system has a completely symmetric ground and

first excited state proton density for all RCC, whereas the cyano and amino-substituted dimer

structures have ground and first excited state proton densities with an asymmetry that can be

explained by the electron-donating and electron-withdrawing effects of the substituents. The
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Figure 3. Tunneling splittings and ground state proton densities of (A, B) the formic acid
dimer, (C, D) the cyano-substituted formic acid dimer, and (E, F) the amino-substituted formic
acid dimer at varying RCC. The NEO-MSDFT calculations were performed with two diabatic
states, and the reference results are 4D FGH or scaled 2D FGH calculations. The insets of (A,
C, E) depict the ground state NEO-MSDFT proton densities in cyan. The tunneling splittings
are also provided in Table 1. In (B, D, F), the proton densities are plotted along the line
connecting the proton basis function centers for one of the protons with RCC = 3.74 Å (green),
RCC = 3.80 Å (orange), and RCC = 3.86 Å (blue).
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cyano group is electron withdrawing and the amino group is electron donating, corresponding

to a larger proton density on the left and right sides, respectively (Figures 3C and 3E). All

proton densities also exhibit their expected nodal character. The ground state densities do not

exhibit any nodes, whereas the first exited state densities exhibit nodes at a proton coordinate

of zero (Figure S1). This is directly analogous to the symmetric ground state and antisymmetric

first excited state wavefunctions characteristic of double-well systems. All proton densities also

followed the expected trend with increasing RCC, where the peaks of each density shift further

away from each other as the rigid monomers move further apart.

We now turn our attention toward the larger porphycene system. Porphycene is distinct from

the formic acid dimer in that the double proton transfer is mediated by the aromatic structure

of the macrocycle. The structure of porphycene is shown in Figure 4, and the procedure for

obtaining this geometry is discussed in the SI. The two-dimensional proton potential energy

surfaces and one-dimensional slices for porphycene are shown in Figures 4A and 4B, respectively.

In contrast to the formic acid dimer, these surfaces exhibit distinct minima at the cis geometries

as well as the trans geometries. Thus, we included all four diabatic states in the NEO-MSDFT

calculations. The resulting ground and first excited state proton vibrational wavefunctions and

densities are shown in Figures 4C and Figure 4D, respectively. As observed for the formic acid

dimer, the ground state wavefunction is symmetric, and the first excited state wavefunction

is antisymmetric. Moreover, the ground state density has some amplitude in the classically

forbidden region (i.e., at a proton coordinate of zero), whereas the first excited state has a node

at this coordinate. The tunneling splitting for porphycene was found to be 37.63 cm−1 and 44.84

cm−1 using the (unscaled) 2D FGH method and the NEO-MSDFT method, respectively. This

agreement is remarkable considering that the calculations did not involve any free parameters.

As a final application, we show that the generalized NEO-MSDFT procedure can capture

the proton density associated with a proton relay system. A protonated water chain composed

of four water molecules was optimized with conventional DFT for fixed O−O distances of 2.70

Å between neighboring oxygens while constraining the central proton to be equidistant from

its two neighboring oxygen atoms. See the SI for further details about how this geometry was
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Figure 4. (A) Two-dimensional proton potential energy surface as a function of the two
proton coordinates, each corresponding to a one-dimensional grid spanning the line connecting
the proton positions optimized at the conventional DFT level for the two trans structures, with
the origin at the midpoint between them. Relative energies in kcal/mol are provided on each
contour line. (B) One-dimensional proton potential energy curves corresponding to slices of the
two-dimensional surface along proton 1 coordinate with proton 2 coordinate fixed to a position
of −0.375 Å (red), 0 Å (black), and +0.375 Å (blue). The corresponding colored dashed lines of
(A) indicate these one-dimensional slices on the two-dimensional potential energy surface. (C)
Ground state (left) and first excited state (right) NEO-MSDFT proton densities. To visualize
the phase of the corresponding proton vibrational wavefunction, the positive and negative
phases are shown in cyan and purple, respectively. (D) Ground state (green) and first excited
state (orange) proton densities computed with NEO-MSDFT along one of the proton transfer
coordinates.
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generated. This water chain can be viewed as a snapshot during the Grotthuss mechanism

of proton transport down the chain,52 where the proton is delocalized between the middle

two oxygens in this snapshot. From the conventional Born-Oppenheimer perspective, each of

the three transferring protons is moving in a double-well potential: the two outer transferring

protons move in highly asymmetric double-well potentials, whereas the central transferring

proton moves in a nearly symmetric double-well potential.

We performed an eight-state NEO-MSDFT calculation on this system with all nine protons

quantized. Only the three transferring protons were represented by two basis function centers

rather than a single basis function center. A description for how the basis function center

positions were determined is provided in the SI. The eight possible diabatic states associated

with the three transferring protons were included in the NEO-MSDFT calculation, producing

the ground state proton density shown in Figure 5B. For comparison, a single-reference NEO-

DFT calculation was performed using the same geometry and the same positions of the basis

function centers, and its proton density is shown in Figure 5A.

Figure 5. A protonated water chain composed of four water molecules, where all nine protons
are quantized with the NEO approach. The ground state proton densities calculated using (A)
NEO-DFT and (B) NEO-MSDFT are shown in cyan. Bonds are drawn between the localized
quantum protons and the closest oxygen for visual clarity. NEO-MSDFT is able to capture
the bilobal character of the central proton density, whereas NEO-DFT cannot capture this
tunneling behavior.

The NEO-MSDFT method is able to capture the bilobal density of the central proton while
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also predicting that the two outer transferring protons remain localized near their respective

oxygen atoms. In contrast, the single-reference NEO-DFT calculation incorrectly predicts the

central proton to be localized near one of its neighboring oxygen atoms. Thus, the NEO-

MSDFT method is able to describe the tunneling character of the excess central proton while

appropriately weighting all eight diabatic states such that the outer transferring protons remain

localized.

This work presents a generalized NEO-MSDFT approach for treating systems with mul-

tiple quantum protons that are transferring and possibly tunneling. In this approach, NEO-

DFT diabatic states, corresponding to each proton localized near its donor or acceptor, are

linearly combined to produce NEO-MSDFT adiabatic states. The ground and first excited

NEO-MSDFT vibronic states are able to capture the approximately symmetric and antisym-

metric characteristics of proton wavefunctions for tunneling systems. This approach provides

accurate tunneling splittings for the formic acid dimer, as well as the asymmetric cyano- and

amino-substituted formic acid dimers, for a range of distances between the monomers. It also

predicts a reasonably accurate tunneling splitting for porphycene. redThe application to a pro-

tonated water chain with nine quantum protons illustrates that NEO-MSDFT can describe a

combination of localized and delocalized, bilobal proton densities within a single system. Note

that the tunneling splittings computed herein are not directly comparable to experimentally

measured splittings because they were computed at fixed geometries and do not include cou-

pling to other vibrational modes of the molecule. The generalized NEO-MSDFT method can

be combined with vibronic coupling theory53 to include this coupling and with nonadiabatic

dynamics methods to describe tunneling dynamics. 34

In addition to providing an accurate description of hydrogen tunneling, the NEO-MSDFT

approach also allows smooth transitioning between localized NEO-DFT solutions while accu-

rately describing proton delocalization and avoiding complications of local minima in orbital

space. In other words, this approach can describe both asymmetric systems, in which the proton

density is localized, and symmetric or nearly symmetric systems, in which the proton density

is delocalized and possibly bilobal. When coupled to a hybrid quantum mechanical/molecular
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mechanical approach,54 the generalized NEO-MSDFT approach will enable quantum dynamics

simulations of many types of multiple proton transfer processes, such as extended proton relay

systems and complex mechanisms in enzymatic active sites.

Supporting Information

Details on calculating the NEO-MSDFT proton density; excited state proton densities of formic

acid dimer systems; additional tunneling splitting results for formic acid dimer systems; de-

tails about procedures for geometry optimizations and determination of basis function center

positions; computational details about FGH calculations; Cartesian coordinates of molecular

geometries.
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