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Abstract
Hybrid quantum mechanical/molecular mechanical (QM/MM) methods allow simulations of
chemical reactions in atomistic solvent and heterogeneous environments such as proteins. Herein
the nuclear-electronic orbital (NEO) QM/MM approach is introduced to enable the quantization
of specified nuclei, typically protons, in the QM region using a method such as NEO density
functional theory (NEO-DFT). This approach includes proton delocalization, polarization,
anharmonicity, and zero-point energy in geometry optimizations and dynamics. Expressions for
the energies and analytical gradients associated with the NEO-QM/MM method, as well as the
previously developed polarizable continuum model (NEO-PCM), are provided. Geometry
optimizations of small organic molecules hydrogen bonded to water in either dielectric continuum
solvent or explicit atomistic solvent illustrate that aqueous solvation can strengthen hydrogen-
bonding interactions for the systems studied, as indicated by shorter intermolecular distances at
the hydrogen bond interface. We then performed a real-time direct dynamics simulation of a
phenol molecule in explicit water using the NEO-QM/MM method. These developments and
initial examples provide the foundation for future studies of nuclear-electronic quantum dynamics

in complex chemical and biological environments.
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Introduction

The nuclear-electronic orbital (NEO) approach is a multicomponent quantum chemistry
framework for studying coupled nuclear-electronic quantum effects.' Nuclear quantum effects
and non-Born-Oppenheimer effects are incorporated through the quantum mechanical treatment
of select nuclei, typically protons, at the same level as the electrons. NEO methods can therefore
be useful in many biological and chemical applications for which nuclear delocalization, hydrogen
tunneling, and nonadiabatic effects are important.*® Inclusion of the solvent or protein
environment in a computationally practical manner is important for describing such processes.

A variety of ground and excited state wave function’” and density functional theory
(DFT)!13 methods have been developed within the NEO framework. Compared to their purely
electronic counterparts, NEO methods allow for the inclusion of important nuclear quantum
effects, such as hydrogen tunneling, zero-point energy, and quantized vibrational states, directly
into quantum chemistry calculations and molecular dynamics (MD) simulations. The exploration
of coupled nuclear-electronic dynamics is an especially promising direction within the NEO
framework, as exemplified by the NEO real-time time-dependent density functional theory (RT-
TDDFT) method!* and NEO-Ehrenfest dynamics approach.!®> Recently, implicit solvation effects
have been included in NEO calculations'® 7 through the polarizable continuum model (PCM).'*
19 This NEO-PCM approach has been applied to a variety of chemical systems and has been used
to simulate the dynamics of an excited state intramolecular proton transfer reaction in solution.'

In this paper, we build from these developments by implementing NEO-PCM analytical
gradients, as well as introducing the NEO quantum mechanical/molecular mechanical
(QM/MM)?% 2! approach for including an explicit solvent or other type of chemical environment.

Various implicit and explicit solvation models, as well as QM/MM approaches, have been



developed and applied to chemical and biological systems.??*> These approaches can be extended
and generalized to the NEO framework to allow the description of quantized nuclei and non-Born-
Oppenheimer effects in chemical and biological environments. After implementing these methods,
we use both the NEO-PCM and NEO-QM/MM approaches to optimize geometries of small
organic molecules hydrogen bonded to water. These calculations allow us to investigate the impact
of proton quantization and implicit or explicit solvation on the geometries of the hydrogen-bonded
interfaces. We also perform a NEO-QM/MM MD simulation of phenol in water. These initial
applications pave the way for future simulations that describe nuclear-electronic quantum

dynamics in complex environments.

Methods

NEO-PCM

Implicit solvation models such as PCM have been used extensively in quantum chemistry
calculations and are frequently used to study spectroscopic phenomena.**-** In implicit solvation,
a solute molecule is placed within a molecular-shaped cavity constructed from interlocking atom-
centered spheres. The cavity surface serves as the boundary separating the solute and the
continuum solvent regions, and the solvent polarization manifests as a charge density o(r)
evaluated on the surface of the cavity. In PCM, the charge density is represented over a set of Ntess

tesserae centered on grid points with spatial coordinates 8, . The surface charge per unit area is

given as

G(r):fq(Sk)@(r;sk’gk) (1
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where ¢(s,) is the apparent surface charge (ASC) and @, is the surface area of the k™ tessera. Here

&, (r;s N k) is a weighting function that is typically unity or a Gaussian function with exponent
¢, "3 as discussed further below.

The charges ¢(s,) are obtained by solving the matrix equation
Kq=Rv (2)
at each self-consistent field step for Hartree-Fock (HF) or DFT calculations. Here, q and v are

vectors containing the ASCs and the solute electrostatic potential, respectively, evaluated at
tesserae grid points. The matrices K and R are defined according to the specific PCM formulation
employed and are described in detail elsewhere.?”- 32 In this paper, we focus on the conductor-like
PCM (C-PCM)*’ approach because of its computational efficiency, but the extension to various
other PCM schemes is straighforward.

For NEO-HF (or NEO-DFT) calculations, the nuclear-electronic wave function (or
reference system) is represented as the product of an electronic and protonic Slater determinant
®° and PP composed of electronic and protonic orbitals, respectively:

W po = DD 3)
For simplicity, throughout this paper we will refer to ¥y, as a wave function, although it is

rigorously the Kohn-Sham reference system for NEO-DFT. Solution of the mixed nuclear-
electronic time-independent Schrodinger equation requires that the coupled electronic and protonic
Hartree-Fock-Roothaan or Kohn-Sham equations be solved self-consistently to obtain the spatial
orbitals and NEO energy:

F°C* =S°C’¢*
F°CP = SPCPgP
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Here F, C, S, and ¢ are the Fock or Kohn-Sham matrix, orbital coefficient matrix, overlap
matrix, and orbital energy matrix, respectively, for electrons and protons with superscripts e and
p, respectively.

In this framework, implicit solvation effects can be incorporated through the inclusion of

an additional term V" into the Hamiltonian of the system:

2 2 5R
implicit — Hygo +V (5
Here [:INEO is the NEO gas-phase Hamiltonian, which includes the kinetic energies of the electrons

and quantum nuclei (assumed to be protons for simplicity) and all Coulomb interactions among

~

the electrons, quantum nuclei, and classical nuclei. VR is the potential term that represents the

density-dependent electrostatic interactions between the solute molecule and the implicit solvent.
It is defined in terms of a summation over ASCs and an operator I}k that generates the solute

electrostatic potential on the surface of the molecular cavity:
rt=2a (6)

The solute electrostatic potential, which depends on the electronic and protonic densities,
as well as the positions and charges of the classical nuclei, is evaluated at the surface tesserae
positions. The ASCs obtained by solving Eq. (2) enter as additional one-electron (one-proton)

solvation contributions to the electronic (protonic) NEO Fock or Kohn-Sham matrix elements:

N(ess

e,CPCM _ e
Fyv - Z qk L,uv,k
k
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where I, and I}, are the interaction integrals over basis functions and are defined below.3®

These additional terms augment the NEO gas-phase Fock matrices as follows:

epol __ pre e,CPCM
Fm=F,+F, ®)
p,pol __ p p,CPCM
FPPY =FP  +FPS

Here the unprimed and primed indices are used to distinguish between electronic and protonic

basis functions ¢ and ¢, respectively. The NEO-PCM problem is solved self-consistently

using the solvent polarized F** and F™™' matrices in Eq. (4) while using Eq. (2) to obtain the
ASCs.

Since the PCM integral equations are solved numerically over a finite set of grid points,
the quality of the results and the density of grid points are directly linked. Furthermore, the choice
of the type of surface discretization scheme is especially important for molecular geometry
optimizations with PCM. As the molecular coordinates are updated after each step of the geometry
optimization procedure, the cavity surface must frequently be regenerated, altering the number and
positions of the surface grid points. This process can lead to a discontinuous potential energy
surface as well as artifacts such as Coulomb singularities that occur when adjacent surface
elements are allowed to get too close to each other. For NEO-PCM, we adopt the
switching/Gaussian (SwiG) cavity discretization formalism to avoid some of these issues.

The SwiG formalism involves spatially smeared surface charges, where each point charge

is weighted by a spherical Gaussian function. Specifically, ¢, (r; .G, k) in Eq. (1) is a Gaussian

function of the form

2

¢k(r;ska§k):[7kj exp(—(,f|r—sk|2) )

where £, is an optimally chosen parameter for the £ tessera,* and L, ad L, inEq (7)

are defined as
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For the simpler point charge description, ¢, (r; S,,¢, k) is unity, and the quantity in square brackets

is replaced by 1/ |r —-S k| . The SwiG approach was originally developed by York and Karplus*® and

further refined by Lange and Herbert, who subsequently showed that this approach overcomes
spurious oscillations during molecular geometry optimizations due to discontinuous gradients of
the solute-solvent electrostatic interaction energy.>*4°-4? This approach avoids problems associated
with Coulomb singularities and discontinuities in the potential energy landscape.

We found that the SwiG approach yields smoother convergence for NEO-PCM geometry
optimizations, as illustrated by our application to a water pentamer with all ten hydrogen nuclei
treated quantum mechanically. These PCM calculations were performed with NEO-DFT using the

t43

6-31G electronic basis set™, an sp protonic basis set that consists of one s-type and one p-type

basis function with exponent 4, the B3LYP** %

electron exchange-correlation functional, and the
epcl7-2!1 12 electron-proton correlation functional. Figure 1 illustrates that the geometry
optimization is more efficient for the SwiG scheme than for the variable tesserae number (VTN)*
discretization scheme, which utilizes a point charge representation approach. Note that the spikes

that appear for the VIN scheme in this example do not appear in all cases and often can be

mitigated by altering the number of tesserae or starting at a different initial geometry.
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Figure 1. Geometry optimization of a water pentamer using the NEO-PCM method with a dielectric
constant corresponding to water, showing the difference in energy at each optimization step relative to the
energy of the minimized structure. All ten hydrogen nuclei were treated quantum mechanically using NEO-
DFT.

Iterative, self-consistent convergence of Eqs. (2) and (4) leads to the solvated nuclear-
electronic wave function and corresponding total energy of the solvated molecular system. The

total energy E o is the expectation value of the total Hamiltonian given in Eq. (5) with respect

to the solvent polarized nuclear-electronic wave function Wy , subtracting the work required to
create the set of polarization charges:
i pr

implicit

ota 1
EI[’Ctl\}[ = <\PNEO \PNEO> _5<\PNEO IIINEO>

(11)
H

NEO

1
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In the final expression, the first term is the NEO electronic energy computed as the expectation

value of H

: : 1
\eo With respect to the solvent polarized nuclear-electronic wave function, and 5 viq

is the additional solvent polarization term corresponding to the solute-solvent electrostatic

interaction energy.



We implemented the PCM approach with NEO-HF and NEO-DFT in Q-Chem?*’ 6.0.2. The
energies for both the NEO-HF-PCM and NEO-DFT-PCM approaches were validated by
comparison to an implementation in Chronus Quantum.*® We also derived the analytical gradients
and validated our implementation in Q-Chem by comparison to numerical gradients, as given in
the Supporting Information (SI).

In this work, we assume that each quantum proton is represented by a single basis function
center for its electronic and protonic basis functions. In this case, the form of the gradients for the
classical nuclei and the basis function centers is the same. As shown in the SI, the NEO-HF and
NEO-DFT PCM energy gradients are analogous to the conventional electronic counterparts with
additional terms associated with the quantum protons. In particular, the gradient of the first term
in Eq. (11) includes additional terms associated with the protonic Fock (or Kohn-Sham) matrix,
and the gradient of the second term, which is the solute-solvent electrostatic energy, includes an
additional term accounting for the interaction between the induced surface charges and the
quantum proton densities.

NEO-QOM/MM

In addition, we developed a NEO-QM/MM approach to provide an atomistic description
of the solvent or other chemical environment. In QM/MM approaches, the system is partitioned
into QM and MM regions. Often the reactive part is treated quantum mechanically with a method
such as DFT, and the environment is described by an MM force field. A variety of methods for
treating the interactions between the QM and MM regions have been developed.** Here we
describe the coupling between the QM and MM regions with the electrostatic embedding scheme,

where inclusion of the MM point charges into the NEO Hamiltonian enables the solvent to polarize



the charge density of the QM solute. The field of MM point charges acts as an external potential

that is included during optimization of the NEO wave function:

2 2 electrostatic
explicit H ot H QM/tIr\/H\;It (12)
For the NEO-QM/MM approach, H, gﬁ;ﬁ;ffnc is analogous to the operator used for QM/MM

methods with conventional electronic structure but includes an additional term for the electrostatic
interaction between the MM point charges (¢,, ) and the QM protons:

N, N N, N, Ne, N
Helectrostatlc _ oy N q—m + E MEM % (13)
QM/MM MM Z Z PP MM MM
o m A m m

c
m i rA

Here N,,, is the number of MM point charges, and N, , N, ,and N, are the number of electrons,

quantum protons, and classical nuclei, respectively, in the QM region. The spatial coordinates, r
are labeled with their respective superscripts. The MM point charges enter as additional one-
electron (one-proton) contributions to the electronic (protonic) NEO core Hamiltonian matrix

elements:

H;’jff — He + He,electrostatic

HP,Eff _ Hp + )2 electrostatic (14)
uvt u'v'
N,
He,electrostatlc d e e* f qm e e
uv - rl ¢/" o MM‘ ¢V l’l
m - rm
(15)
Ny

Hs = [dilgl (i) Z‘ ] ol (r/)

The iterative self-consistent convergence of Eq. (4) using H**"and H™" leads to the
environmentally polarized nuclear-electronic wave function. Employing the additive QM/MM

energy approach, the total NEO-QM/MM energy E  can be expressed as

QM/MM

10
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explicit

total vdw bonded
EQM/MM = <1PNEO \PNEO > + EQM/MM + EQM/MM + EMM (1 6)

The first term is the expectation value of the Hamiltonian in Eq. (12) with respect to the

environmentally polarized nuclear-electronic wave function. Egyy,, denotes the van der Waals

interactions between the QM and MM atoms,>® and E,,, denotes the interactions within the MM

region. E™% denotes the interactions that arise in some QM/MM formulations if QM and MM
g QM/MM

atoms are directly bonded to each other, which can be treated in a variety of ways.>!">

In addition to the QM/MM energy, we also implemented the analytical gradient of E(‘;:‘}M

with respect to both the QM and MM nuclei. These gradients are obtained by a straightforward
extension of the conventional electronic structure QM/MM counterpart to yield a set of forces. The
forces acting on the QM nuclei are obtained from the gradients of the first three terms of Eq. (16)
. The resulting NEO-QM/MM forces are analogous to the conventional electronic counterparts
with additional terms associated with the protonic Fock (or Kohn-Sham) matrix. The forces on the
MM nuclei involve gradients of the last three terms of Eq. (16), as well as the following term
corresponding to the electrostatic interaction between the QM and MM regions:

B =g, E™) (17)
Here FM is the force on the m™ MM nucleus, and E(r™) is the electric field at the m™ MM atom

due to the electronic and protonic densities, as well as the classical nuclei, in the QM region. The
expression for the electric field is analogous to the conventional electronic counterpart with
additional terms associated with the protonic densities. We implemented the NEO-QM/MM
method in a developer version of Q-Chem 6.1.0 interfaced with the GROMACS>* 4.6.5 software

using a locally modified version of the INAQS™’ interface. The analytical gradients for the NEO-
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HF and NEO-DFT QM/MM approach have been verified by comparison to numerical gradients,

as given in the SI.

Computational Details

We performed geometry optimizations using both conventional DFT and NEO-DFT in the
gas phase, implicit solvent, and explicit MM solvent. We also performed geometry optimizations
and MD simulations for fully MM, conventional QM/MM, and NEO-QM/MM potentials. For the
NEO-DFT calculations, the 6-31G(d,p) electronic basis set>® and the PB4-F2 protonic basis set,’
as well as the B3LYP electronic exchange-correlation functional and the epc-17-2 electron-proton
correlation functional, were used. The same electronic basis set and functional were used for the
conventional DFT calculations. An energy convergence threshold of 1.0x10™® a.u. and a
maximum gradient component criterion of 3.0x10™* Hartree/Bohr were utilized for all
calculations performed entirely within Q-Chem, namely the gas phase and PCM calculations. For
the PCM calculations, the cavity was constructed using interlocking spheres centered at the
positions of each of the classical nuclei and, for the NEO calculations, the quantum proton basis
function center positions. These cavity spheres were sized according to Bondi’s set of radii®® and
scaled by a factor of 1.2. The molecular cavity was discretized according to the SwiG prescription
utilizing a grid density of 302 surface elements per cavity sphere.

For the QM/MM and fully MM energy calculations, the TIP3P* water model and the
OPLS-AA force field®*-%? were used. This force field does not include van der Waals interactions
for polar hydrogens, therefore allowing a consistent comparison between conventional QM/MM
and NEO-QM/MM calculations. In future calculations utilizing force fields that include Lennard-
Jones parameters for hydrogen, the van der Waals interactions could be neglected for the quantized

protons or could be included based on the expectation value of the quantized proton position
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operator. Although TIP3P was parameterized as a rigid water model, we allowed the water to be
flexible in order to use sufficiently tight convergence criteria for geometry optimizations. For the
flexible water calculations, the corresponding OPLS-AA terms were used for the intramolecular
angle bending and bond stretching water terms. The MD simulations were performed with both
rigid and flexible water models, producing qualitatively similar results. For the rigid water
calculations, the bond angles and lengths were constrained using the SETTLE®? algorithm. For all
geometry optimizations involving molecular mechanics, namely the QM/MM and fully MM
energy minimizations, the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian
minimizer with a maximum force criterion of 15.0 kJ mol! nm™! was used with GROMACS
configured in double precision mode. Molecular structures visualized in this paper were created
using VMD,* and utilities provided through the MDAnalysis® library were used to analyze

GROMACS trajectory information.
Results and Discussion

To showcase the effects of aqueous solvation on equilibrium structures obtained within the
NEO framework, we performed a series of molecular geometry optimizations for three hydrogen-
bonded complexes, each composed of a small organic molecule and its neighboring water
molecule (Fig. 2). The organic molecule and hydrogen-bonded water were treated quantum
mechanically with conventional DFT or NEO-DFT in a gas phase, implicit solvent, or explicit
MM solvent environment (Fig. 3). For the NEO calculations, the hydrogen-bonding proton and
the two protons on the water were treated quantum mechanically. The analogous calculations with

only the hydrogen-bonding proton treated quantum mechanically are provided in the SI.
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Figure 2. Three organic molecules acting as hydrogen-bond donors to an adjacent water molecule:
(a) phenol, (b) imidazole, and (c) methanol. Three protons are treated quantum mechanically with
NEO-DFT, as indicated by the three protonic densities depicted with purple mesh.

For the QM/MM calculations, each of the organic molecules previously optimized in the
gas phase using the MM force field was placed in its own simulation box that was then filled with
water. For the phenol system, 4756 water molecules were added to a 629.54 nm?® volume cubic
box. The other two systems were prepared similarly. Water was then equilibrated in the NVT and
NPT ensembles (temperature of 300 K and pressure of 1 bar) for 2 ns each using the MM force
field while keeping the organic molecule fixed and utilizing periodic boundary conditions.
Following these steps, a droplet was created by retaining only the water molecules within 10 A of

any atom in the hydrogen-bonded complex. The resulting system composed of the organic
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molecule in a water droplet was then energy minimized with the conventional DFT or NEO-DFT
QM/MM approach. These energy minimizations were performed without periodic boundary

conditions and including all non-bonded interactions (i.e., there were no cutoffs for the non-bonded

interactions).
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Figure 3. Optimized geometries of the phenol molecule hydrogen bonded to water, where the
hydrogen-bonded complex is treated at the NEO-DFT level and is embedded in (a) C-PCM water
or (b) a droplet of explicit TIP3P water molecules. The proton densities of the three quantized
protons are depicted with purple mesh. The ASCs in (a) are represented on a color scale where red
indicates a negative charge and blue indicates a positive charge. The geometries of these systems
were optimized with NEO-DFT-PCM and NEO-DFT-QM/MM for (a) and (b), respectively.

We analyzed the hydrogen-bonding distances for the DFT and NEO-DFT calculations in
the gas phase, implicit solvent, and explicit solvent environments. Table 1 provides the O---O (or
O---N) distance between the oxygen (or nitrogen) atoms of the hydrogen-bonded molecule and
water, the O---H distance between the oxygen atom of the water and the hydrogen atom of the
molecule, and the H—O (or H—N) distance within the molecule. In the NEO-DFT calculations,
the distances involving the quantum proton were computed from the expectation value of the

proton position operator.
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Table 1. Equilibrium Distances and Angles for Molecule and Hydrogen-Bonded Water Treated
Quantum Mechanically in Various Environments®

Distance DFT NEO- | DFT | NEO-DFT | DFT | NEO-DFT
or Angle DFT | PCM PCM MM MM
H-0O 0.98 1.00 0.99 1.02 0.99 1.02
O.---H 1.83 1.77 1.73 1.65 1.71 1.61
Phenol
0---0 2.80 2.77 2.72 2.67 2.68 2.61
Z0HO | 1745 | 1742 | 177.6 177.4 167.7 165.9
H-0O 0.97 0.99 0.98 1.00 0.99 1.01
O.---H 1.91 1.85 1.82 1.75 1.77 1.69
Methanol
0O---0 2.86 2.83 2.80 2.76 2.72 2.68
Z0HO | 165.7 | 165.6 | 175.6 176.0 162.5 164.3
H-N 1.02 1.04 1.03 1.06 1.04 1.08
O---H 1.91 1.85 1.83 1.74 1.71 1.61
Imidazole
O---N | 293 2.89 2.86 2.80 2.71 2.67
Z0OHN | 176.1 | 176.0 | 178.4 179.9 160.0 166.0

“The molecule and hydrogen-bonded water are treated with DFT or NEO-DFT in the gas phase,
C-PCM water, or MM water. Distances are given in A for the hydrogen bond between the specified
molecule and water in the molecule-water system, where O---O or ( O---N) indicates the
distance between the water oxygen and molecule oxygen (or nitrogen) atoms, O---H indicates the
distance between the molecule hydrogen and water oxygen atoms, and H—O or (H—N) indicates
the distance between the molecule hydrogen and its bonded oxygen (or nitrogen) atoms. The angle
measured along the hydrogen bond is given in degrees. For the NEO calculations, the expectation
value of the quantum proton coordinate was used to compute distances and angles.

In all cases, introduction of solvent results in a decrease in the O---O (or O---N) and

O---H distances, with a slightly greater decrease obtained with explicit solvation compared to
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implicit solvation. These trends manifest for both conventional DFT and NEO-DFT approaches.
Moreover, the O---O (or O---N)and O---H distances are observed to be slightly shorter when
the hydrogen-bonded proton is quantized with the NEO approach, which we make note of in
discussions below. The distances between the hydrogen-bonded proton and its bonded oxygen (or
nitrogen), H-O (or H-N), are slightly elongated due to solvation, consistent with previous
findings.!” For the systems studied herein, the distance changes indicate that solvation can
strengthen the hydrogen bond. Furthermore, we found that the hydrogen-bond angle is similar for
both conventional DFT and NEO-DFT calculations. In particular, the angles obtained with explicit
solvation are slightly less linear than those obtained with implicit solvation. A possible explanation
for these differences is that the angle is modulated by the surrounding MM water molecules, which
can form hydrogen bonds with the QM complex through electrostatic and van der Waals
interactions. These interactions may also influence the quantum proton densities in the NEO-

QM/MM calculations.

4_“ r
7 \ A \ \m="

Figure 4. Representative configuration obtained from the NEO-QM/MM MD trajectory. The
purple mesh depicts the quantized proton density. The hydrogen-bonded water molecule did not
exchange on the timescale of the MD trajectories propagated.
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To illustrate real-time dynamics, we also performed a short NEO-QM/MM MD simulation
on the ground state potential energy surface of the phenol-water complex (Fig. 4). Starting from
the optimized conventional DFT QM/MM geometry of the phenol-water droplet, initial velocities
for the classical nuclei (i.e., all nuclei except the quantum proton) were assigned from a Maxwell-
Boltzmann distribution at 300 K. A conventional QM/MM MD trajectory under the
microcanonical ensemble was propagated for 2 ps prior to beginning the 100 fs production
trajectory using the fully MM, conventional QM/MM, and NEO-QM/MM approaches. These MD
simulations were performed without periodic boundary conditions and including all non-bonded
interactions. The rigid TIP3P water model was used for these MD simulations. To be consistent
with the geometry optimizations, analogous MD simulations with flexible TIP3P water molecules
were also performed, and the results are provided in the SI. The velocity Verlet algorithm was
utilized to propagate the classical nuclear coordinates using a time step of 0.5 fs. At each time step
during the NEO-QM/MM MD trajectory, the quantum proton basis function center position was

variationally optimized using NEO-DFT.

18
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Figure 5. Analysis of energy fluctuations and hydrogen-bonding distances and angles between a
phenol molecule and the oxygen of the closest water molecule. Time evolution of (a) energy
relative to average energy, (b) O---O distance between the phenol and hydrogen-bonded water
oxygen atoms, (¢) O---H—O hydrogen-bond angle, and (d) O---H distance between the phenol
hydrogen and water oxygen atoms. The phenol molecule was treated with an MM force field,
conventional DFT, or NEO-DFT and was surrounded by 240 rigid TIP3P water molecules. Each
trajectory started from the same initial coordinates and velocities to allow a direct comparison. For
the NEO calculations, the proton basis function center was optimized at each time step, and the
distances were computed using the expectation value of the quantum proton coordinate. The
analogous figure with flexible TIP3P water is provided in Figure S1 of the SI.

Analyses of the MD trajectories propagated with the fully MM, conventional QM/MM,
and NEO-QM/MM approaches are given in Figure 5. We chose to start each trajectory from the
same initial conditions to allow us to systematically compare the differences among the various
levels of theory. As mentioned above, the system was equilibrated for only 2 ps with the
conventional QM/MM approach. As a result, these trajectories are starting out of equilibrium. For

the fully MM approach, the distances change significantly because the MM force field differs
19



substantially from the QM/MM potential. Figure 5a shows that energy is conserved well for all
three trajectories.

The trends in distances and angles shown in Figure 5 are consistent with those obtained
from corresponding geometry optimizations. For the optimized geometries reported in Table 2, all
water molecules were treated at the MM level using the flexible TIP3P water model, and the
organic molecule was described at the MM level or at the QM level with conventional DFT or
NEO-DFT. Consistent with our results in Table 1, which treated both the organic molecule and
the hydrogen-bonded water molecule quantum mechanically, the intermolecular hydrogen-
bonding distances are shorter with NEO-DFT compared to conventional DFT. These results
suggest a stronger hydrogen-bonding interaction for these systems when protons are quantized
with NEO-DFT/epc17-2. However, such subtle differences in distances may depend on various
factors, such as the electron-proton correlation functional and the proton basis set, and have not
been validated experimentally or with other levels of theory for this system. As shown in previous
studies using path integral molecular dynamics methods, the impact of proton quantization on
hydrogen-bonding interactions is system dependent.®®® Thus, this subtle effect of proton
quantization on the hydrogen-bonding interaction in these systems should not be viewed as
definitive.

An important observation to highlight is the absence of oscillations in the O---H distances
for the NEO-QM/MM approach (blue line in Figure 5d). This behavior emerges because for the
Born-Oppenheimer MD approach within the NEO framework, the quantum proton responds
instantaneously to the classical nuclear positions, analogous to the instantaneous response of the
electrons. For every time step in the NEO-QM/MM trajectory, the electronic and protonic densities

are relaxed to the ground vibronic state by solving the Kohn-Sham equations (Eq. (4)), where the
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Fock matrix depends on the external potential created by the classical nuclei in the QM region and
the MM point charges. In order to capture the proton vibrations, the motion of the classical
subsystem must be coupled with a dynamical treatment of the nuclear-electronic quantum
subsystem. This can be accomplished using the real-time NEO time-dependent DFT approach with

Ehrenfest dynamics.'> ¢ Efforts in this direction are currently underway.

Table 2. Equilibrium Distances and Angles for Molecule and Hydrogen-Bonded MM Water
Obtained from Geometry Optimizations®

Distance Fully | DFT NEO-
and MM | MM DFT
Angle MM

O---H | 1.80 | 1.63 | 1.56

Phenol O0---O | 2.74 | 2.60 | 2.57

Z0OHO |165.4 | 168.2 | 169.1

O---H | 1.88 | 1.72 | 1.64

Methanol | O---O | 2.77 | 2.66 | 2.62

Z0OHO | 1529 |160.4 | 162.8

O---H | 1.63 | 1.57 | 1.48

Imidazole | O---N | 2.68 | 2.61 | 2.56

Z0OHN | 174.0 | 171.1 | 172.8

“The molecule is treated with MM, DFT, or NEO-DFT in an MM water environment. Distances
are given in A for the hydrogen bond between the specified molecule and water in the molecule-
water system, where O---O (or O---N) indicates the distance between the water oxygen and
molecule oxygen (or nitrogen) atoms, and O---H indicates the distance between the molecule
hydrogen and water oxygen atoms. The angle measured along the hydrogen bond is given in
degrees. For the NEO calculations, the expectation value of the quantum proton coordinate was
used to compute distances and angles.

Conclusion
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This manuscript presents the development and implementation of the NEO-QM/MM
approach for quantizing specified nuclei in the QM region. In this approach, the QM region is
treated with a NEO method such as NEO-HF or NEO-DFT, and the remainder of the system is
treated with an MM force field. We compare this approach to an implementation of the NEO-PCM
method, where the solvent environment is represented as a polarizable dielectric continuum. The
expressions for the NEO-QM/MM and NEO-PCM energies and analytical nuclear gradients are
provided. These analytical gradients enable geometry optimizations and MD simulations for
molecules in solvent and, in the case of NEO-QM/MM, more complex heterogeneous
environments. Our applications to hydrogen-bonded systems illustrate that aqueous solvation can
strengthen hydrogen-bonding interactions, as indicated by the shortening of the intermolecular
hydrogen bond distances for the systems studied. However, given the many competing factors
influencing hydrogen-bonding interactions, this effect may be system dependent.”® The solvated

equilibrium structures obtained with NEO-PCM or NEO-QM/MM can be used to compute pKa

22,71-74 75,76 ;

values and solvation free energies in a manner that includes proton delocalization and
anharmonicity.

We also show that the NEO-QM/MM method can be used to perform real-time direct
dynamics simulations in complex environments. For these types of Born-Oppenheimer MD
simulations, the quantum proton(s) as well as the electrons respond instantaneously to the classical
nuclear motions. The proton quantum dynamics can be described more accurately by removing
the Born-Oppenheimer separation between the quantum protons and the other nuclei. For this
purpose, we can propagate the proton density as well as the classical nuclei on the electronic

ground state using the Born-Oppenheimer real-time NEO-TDDFT Ehrenfest approach.”’ This

approach can also be used to describe processes occurring on excited electronic states by
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propagating both the electronic and protonic densities with the original real-time NEO-TDDFT
Ehrenfest approaches.'* !> The developments presented herein serve as a stepping stone for
simulating nuclear-electronic quantum dynamics in complex chemical and biological
environments within the NEO framework, providing the infrastructure for studying a wide range

of nonadiabatic condensed phase processes.

Supporting Information

Analytical gradient expressions for NEO-PCM and NEO-QM/MM; validation of analytical
gradients; single quantum proton geometry optimization results; flexible water MD trajectories;

tests for proton basis function center optimization; sample user inputs for Q-Chem and INAQS.
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