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Abstract 

Hybrid quantum mechanical/molecular mechanical (QM/MM) methods allow simulations of 

chemical reactions in atomistic solvent and heterogeneous environments such as proteins. Herein 

the nuclear-electronic orbital (NEO) QM/MM approach is introduced to enable the quantization 

of specified nuclei, typically protons, in the QM region using a method such as NEO density 

functional theory (NEO-DFT). This approach includes proton delocalization, polarization, 

anharmonicity, and zero-point energy in geometry optimizations and dynamics. Expressions for 

the energies and analytical gradients associated with the NEO-QM/MM method, as well as the 

previously developed polarizable continuum model (NEO-PCM), are provided. Geometry 

optimizations of small organic molecules hydrogen bonded to water in either dielectric continuum 

solvent or explicit atomistic solvent illustrate that aqueous solvation can strengthen hydrogen-

bonding interactions for the systems studied, as indicated by shorter intermolecular distances at 

the hydrogen bond interface. We then performed a real-time direct dynamics simulation of a 

phenol molecule in explicit water using the NEO-QM/MM method. These developments and 

initial examples provide the foundation for future studies of nuclear-electronic quantum dynamics 

in complex chemical and biological environments.  
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Introduction 

The nuclear-electronic orbital (NEO) approach is a multicomponent quantum chemistry 

framework for studying coupled nuclear-electronic quantum effects.1-3 Nuclear quantum effects 

and non-Born-Oppenheimer effects are incorporated through the quantum mechanical treatment 

of select nuclei, typically protons, at the same level as the electrons. NEO methods can therefore 

be useful in many biological and chemical applications for which nuclear delocalization, hydrogen 

tunneling, and nonadiabatic effects are important.4-6 Inclusion of the solvent or protein 

environment in a computationally practical manner is important for describing such processes. 

A variety of ground and excited state wave function7-9 and density functional theory 

(DFT)10-13 methods have been developed within the NEO framework. Compared to their purely 

electronic counterparts, NEO methods allow for the inclusion of important nuclear quantum 

effects, such as hydrogen tunneling, zero-point energy, and quantized vibrational states, directly 

into quantum chemistry calculations and molecular dynamics (MD) simulations. The exploration 

of coupled nuclear-electronic dynamics is an especially promising direction within the NEO 

framework, as exemplified by the NEO real-time time-dependent density functional theory (RT-

TDDFT) method14 and NEO-Ehrenfest dynamics approach.15 Recently, implicit solvation effects 

have been included in NEO calculations16, 17 through the polarizable continuum model (PCM).18, 

19 This NEO-PCM approach has been applied to a variety of chemical systems and has been used 

to simulate the dynamics of an excited state intramolecular proton transfer reaction in solution.16  

In this paper, we build from these developments by implementing NEO-PCM analytical 

gradients, as well as introducing the NEO quantum mechanical/molecular mechanical 

(QM/MM)20, 21 approach for including an explicit solvent or other type of chemical environment. 

Various implicit and explicit solvation models, as well as QM/MM approaches, have been 
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developed and applied to chemical and biological systems.22-32 These approaches can be extended 

and generalized to the NEO framework to allow the description of quantized nuclei and non-Born-

Oppenheimer effects in chemical and biological environments. After implementing these methods, 

we use both the NEO-PCM and NEO-QM/MM approaches to optimize geometries of small 

organic molecules hydrogen bonded to water. These calculations allow us to investigate the impact 

of proton quantization and implicit or explicit solvation on the geometries of the hydrogen-bonded 

interfaces. We also perform a NEO-QM/MM MD simulation of phenol in water. These initial 

applications pave the way for future simulations that describe nuclear-electronic quantum 

dynamics in complex environments. 

 

Methods 

NEO-PCM 

Implicit solvation models such as PCM have been used extensively in quantum chemistry 

calculations and are frequently used to study spectroscopic phenomena.33-35 In implicit solvation, 

a solute molecule is placed within a molecular-shaped cavity constructed from interlocking atom-

centered spheres. The cavity surface serves as the boundary separating the solute and the 

continuum solvent regions, and the solvent polarization manifests as a charge density ( ) r  

evaluated on the surface of the cavity. In PCM, the charge density is represented over a set of Ntess 

tesserae centered on grid points with spatial coordinates ks . The surface charge per unit area is 

given as 

 ( )
tess ( )

( ) ; ,
N

k
k k k

k k

q

a
  =

s
r r s   (1) 
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where ( )kq s  is the apparent surface charge (ASC) and ka  is the surface area of the kth tessera. Here 

( ); ,k k k r s  is a weighting function that is typically unity or a Gaussian function with exponent 

k ,27, 36 as discussed further below. 

The charges ( )kq s  are obtained by solving the matrix equation  

 Kq = Rv  (2) 

at each self-consistent field step for Hartree-Fock (HF) or DFT calculations. Here, q  and v  are 

vectors containing the ASCs and the solute electrostatic potential, respectively, evaluated at 

tesserae grid points. The matrices K and R are defined according to the specific PCM formulation 

employed and are described in detail elsewhere.27, 32 In this paper, we focus on the conductor-like 

PCM (C-PCM)37 approach because of its computational efficiency, but the extension to various 

other PCM schemes is straighforward. 

For NEO-HF (or NEO-DFT) calculations, the nuclear-electronic wave function (or 

reference system) is represented as the product of an electronic and protonic Slater determinant 

e  and p  composed of electronic and protonic orbitals, respectively: 

 e p

NEO =    (3) 

 

For simplicity, throughout this paper we will refer to NEO  as a wave function, although it is 

rigorously the Kohn-Sham reference system for NEO-DFT. Solution of the mixed nuclear-

electronic time-independent Schrödinger equation requires that the coupled electronic and protonic 

Hartree-Fock-Roothaan or Kohn-Sham equations be solved self-consistently to obtain the spatial 

orbitals and NEO energy: 

 

e e e e e

p p p p p

=

=

F C S C ε

F C S C ε
   (4) 
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Here F , C , S , and ε  are the Fock or Kohn-Sham matrix, orbital coefficient matrix, overlap 

matrix, and orbital energy matrix, respectively, for electrons and protons with superscripts e and 

p, respectively. 

In this framework, implicit solvation effects can be incorporated through the inclusion of 

an additional term 
RV̂  into the Hamiltonian of the system: 

 
R

implicit NEO
ˆ ˆ ˆH H V= +  (5) 

Here 
NEOĤ  is the NEO gas-phase Hamiltonian, which includes the kinetic energies of the electrons 

and quantum nuclei (assumed to be protons for simplicity) and all Coulomb interactions among 

the electrons, quantum nuclei, and classical nuclei. 
RV̂  is the potential term that represents the 

density-dependent electrostatic interactions between the solute molecule and the implicit solvent. 

It is defined in terms of a summation over ASCs and an operator ˆ
kV  that generates the solute 

electrostatic potential on the surface of the molecular cavity: 

 
tess

Rˆ ˆ
N

k k

k

V q V=  (6) 

 

The solute electrostatic potential, which depends on the electronic and protonic densities, 

as well as the positions and charges of the classical nuclei, is evaluated at the surface tesserae 

positions. The ASCs obtained by solving Eq. (2) enter as additional one-electron (one-proton) 

solvation contributions to the electronic (protonic) NEO Fock or Kohn-Sham matrix elements: 

 

tess

tess

e,CPCM e

,

p,CPCM p

' ' ' ',

N

k k

k

N
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k
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where e

,kL
 and p

' ',kL 
 are the interaction integrals over basis functions and are defined below.38 

These additional terms augment the NEO gas-phase Fock matrices as follows: 

 

e,pol e e,CPCM

p,pol p p,CPCM

' ' ' ' ' '

F F F

F F F

  

     

= +

= +
  (8) 

 

Here the unprimed and primed indices are used to distinguish between electronic and protonic 

basis functions e

  and p

' , respectively. The NEO-PCM problem is solved self-consistently 

using the solvent polarized e,pol
F  and p,pol

F  matrices in Eq. (4) while using Eq. (2) to obtain the 

ASCs. 

Since the PCM integral equations are solved numerically over a finite set of grid points, 

the quality of the results and the density of grid points are directly linked. Furthermore, the choice 

of the type of surface discretization scheme is especially important for molecular geometry 

optimizations with PCM. As the molecular coordinates are updated after each step of the geometry 

optimization procedure, the cavity surface must frequently be regenerated, altering the number and 

positions of the surface grid points. This process can lead to a discontinuous potential energy 

surface as well as artifacts such as Coulomb singularities that occur when adjacent surface 

elements are allowed to get too close to each other. For NEO-PCM, we adopt the 

switching/Gaussian (SwiG) cavity discretization formalism to avoid some of these issues.  

The SwiG formalism involves spatially smeared surface charges, where each point charge 

is weighted by a spherical Gaussian function. Specifically, ( ); ,k k k r s  in Eq. (1) is a Gaussian 

function of the form  

 ( ) ( )
3/2

2
22; , expk

k k k k k


  



 
= − − 
 

r s r s  (9) 

where k  is an optimally chosen parameter for the kth tessera,39 and e

,kL
 and p

' ',kL 
 in Eq. (7) 

are defined as  
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  (10) 

For the simpler point charge description, ( ); ,k k k r s  is unity, and the quantity in square brackets 

is replaced by 1 k−r s . The SwiG approach was originally developed by York and Karplus39 and 

further refined by Lange and Herbert, who subsequently showed that this approach overcomes 

spurious oscillations during molecular geometry optimizations due to discontinuous gradients of 

the solute-solvent electrostatic interaction energy.32, 40-42 This approach avoids problems associated 

with Coulomb singularities and discontinuities in the potential energy landscape.   

We found that the SwiG approach yields smoother convergence for NEO-PCM geometry 

optimizations, as illustrated by our application to a water pentamer with all ten hydrogen nuclei 

treated quantum mechanically. These PCM calculations were performed with NEO-DFT using the 

6-31G electronic basis set43, an sp protonic basis set that consists of one s-type and one p-type 

basis function with exponent 4, the B3LYP44, 45 electron exchange-correlation functional, and the 

epc17-211, 12 electron-proton correlation functional. Figure 1 illustrates that the geometry 

optimization is more efficient for the SwiG scheme than for the variable tesserae number (VTN)46 

discretization scheme, which utilizes a point charge representation approach. Note that the spikes 

that appear for the VTN scheme in this example do not appear in all cases and often can be 

mitigated by altering the number of tesserae or starting at a different initial geometry. 
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Figure 1.  Geometry optimization of a water pentamer using the NEO-PCM method with a dielectric 

constant corresponding to water, showing the difference in energy at each optimization step relative to the 

energy of the minimized structure.  All ten hydrogen nuclei were treated quantum mechanically using NEO-

DFT.  

 

Iterative, self-consistent convergence of Eqs. (2) and (4) leads to the solvated nuclear-

electronic wave function and corresponding total energy of the solvated molecular system.  The 

total energy total

PCME  is the expectation value of the total Hamiltonian given in Eq. (5) with respect 

to the solvent polarized nuclear-electronic wave function NEO , subtracting the work required to 

create the set of polarization charges: 

 

total R

PCM NEO implicit NEO NEO NEO

T

NEO NEO NEO

1ˆ ˆ
2

1ˆ
2

E H V

H

=   −  

=   + v q

 (11) 

 

In the final expression, the first term is the NEO electronic energy computed as the expectation 

value of 
NEOĤ  with respect to the solvent polarized nuclear-electronic wave function, and 

T1

2
v q  

is the additional solvent polarization term corresponding to the solute-solvent electrostatic 

interaction energy.  
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 We implemented the PCM approach with NEO-HF and NEO-DFT in Q-Chem47 6.0.2. The 

energies for both the NEO-HF-PCM and NEO-DFT-PCM approaches were validated by 

comparison to an implementation in Chronus Quantum.48 We also derived the analytical gradients 

and validated our implementation in Q-Chem by comparison to numerical gradients, as given in 

the Supporting Information (SI).  

 In this work, we assume that each quantum proton is represented by a single basis function 

center for its electronic and protonic basis functions. In this case, the form of the gradients for the 

classical nuclei and the basis function centers is the same. As shown in the SI, the NEO-HF and 

NEO-DFT PCM energy gradients are analogous to the conventional electronic counterparts with 

additional terms associated with the quantum protons. In particular, the gradient of the first term 

in Eq. (11) includes additional terms associated with the protonic Fock (or Kohn-Sham) matrix, 

and the gradient of the second term, which is the solute-solvent electrostatic energy, includes an 

additional term accounting for the interaction between the induced surface charges and the 

quantum proton densities.  

NEO-QM/MM 

In addition, we developed a NEO-QM/MM approach to provide an atomistic description 

of the solvent or other chemical environment. In QM/MM approaches, the system is partitioned 

into QM and MM regions. Often the reactive part is treated quantum mechanically with a method 

such as DFT, and the environment is described by an MM force field. A variety of methods for 

treating the interactions between the QM and MM regions have been developed.49 Here we 

describe the coupling between the QM and MM regions with the electrostatic embedding scheme, 

where inclusion of the MM point charges into the NEO Hamiltonian enables the solvent to polarize 
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the charge density of the QM solute. The field of MM point charges acts as an external potential 

that is included during optimization of the NEO wave function: 

 
electrostatic

explicit NEO QM/MM
ˆ ˆ ˆH H H= +  (12) 

For the NEO-QM/MM approach, 
electrostatic

QM/MMĤ  is analogous to the operator used for QM/MM 

methods with conventional electronic structure but includes an additional term for the electrostatic 

interaction between the MM point charges ( mq ) and the QM protons: 

 
pe cMM MM MM

electrostatic

QM/MM e MM p MM c MM
' '

ˆ
NN NN N N

m m A m

i m i m A mi m i m A m

q q Z q
H = − + +

− − −
  

r r r r r r
 (13) 

 

Here MMN  is the number of MM point charges, and eN , 
pN , and cN  are the number of electrons, 

quantum protons, and classical nuclei, respectively, in the QM region. The spatial coordinates, r, 

are labeled with their respective superscripts. The MM point charges enter as additional one-

electron (one-proton) contributions to the electronic (protonic) NEO core Hamiltonian matrix 

elements: 
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' ' ' ' ' '

H H H
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The iterative self-consistent convergence of Eq. (4) using e,eff
H and p,eff

H  leads to the 

environmentally polarized nuclear-electronic wave function. Employing the additive QM/MM 

energy approach, the total NEO-QM/MM energy total

QM/MME  can be expressed as 
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total vdw bonded

QM/MM NEO explicit NEO QM/MM QM/MM MM
ˆE H E E E=   + + +   (16) 

 

The first term is the expectation value of the Hamiltonian in Eq. (12) with respect to the 

environmentally polarized nuclear-electronic wave function. vdw

QM/MME  denotes the van der Waals 

interactions between the QM and MM atoms,50 and MME  denotes the interactions within the MM 

region. bonded

QM/MME  denotes the interactions that arise in some QM/MM formulations if QM and MM 

atoms are directly bonded to each other, which can be treated in a variety of ways.51-53 

In addition to the QM/MM energy, we also implemented the analytical gradient of total

QM/MME  

with respect to both the QM and MM nuclei. These gradients are obtained by a straightforward 

extension of the conventional electronic structure QM/MM counterpart to yield a set of forces. The 

forces acting on the QM nuclei are obtained from the gradients of the first three terms of Eq. (16)

. The resulting NEO-QM/MM forces are analogous to the conventional electronic counterparts 

with additional terms associated with the protonic Fock (or Kohn-Sham) matrix. The forces on the 

MM nuclei involve gradients of the last three terms of Eq. (16), as well as the following term 

corresponding to the electrostatic interaction between the QM and MM regions: 

 MM MM( )m m mq=F E r  (17) 

Here MM

mF  is the force on the mth MM nucleus, and MM( )mE r  is the electric field at the mth MM atom 

due to the electronic and protonic densities, as well as the classical nuclei, in the QM region. The 

expression for the electric field is analogous to the conventional electronic counterpart with 

additional terms associated with the protonic densities. We implemented the NEO-QM/MM 

method in a developer version of Q-Chem 6.1.0 interfaced with the GROMACS54 4.6.5 software 

using a locally modified version of the INAQS55 interface. The analytical gradients for the NEO-
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HF and NEO-DFT QM/MM approach have been verified by comparison to numerical gradients, 

as given in the SI. 

 

Computational Details 

We performed geometry optimizations using both conventional DFT and NEO-DFT in the 

gas phase, implicit solvent, and explicit MM solvent. We also performed geometry optimizations 

and MD simulations for fully MM, conventional QM/MM, and NEO-QM/MM potentials. For the 

NEO-DFT calculations, the 6-31G(d,p) electronic basis set56 and the PB4-F2 protonic basis set,57 

as well as the B3LYP electronic exchange-correlation functional and the epc-17-2 electron-proton 

correlation functional, were used. The same electronic basis set and functional were used for the 

conventional DFT calculations. An energy convergence threshold of 81.0 10−  a.u. and a 

maximum gradient component criterion of 43.0 10−  Hartree/Bohr were utilized for all 

calculations performed entirely within Q-Chem, namely the gas phase and PCM calculations. For 

the PCM calculations, the cavity was constructed using interlocking spheres centered at the 

positions of each of the classical nuclei and, for the NEO calculations, the quantum proton basis 

function center positions. These cavity spheres were sized according to Bondi’s set of radii58 and 

scaled by a factor of 1.2. The molecular cavity was discretized according to the SwiG prescription 

utilizing a grid density of 302 surface elements per cavity sphere. 

For the QM/MM and fully MM energy calculations, the TIP3P59 water model and the 

OPLS-AA force field60-62 were used. This force field does not include van der Waals interactions 

for polar hydrogens, therefore allowing a consistent comparison between conventional QM/MM 

and NEO-QM/MM calculations. In future calculations utilizing force fields that include Lennard-

Jones parameters for hydrogen, the van der Waals interactions could be neglected for the quantized 

protons or could be included based on the expectation value of the quantized proton position 
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operator. Although TIP3P was parameterized as a rigid water model, we allowed the water to be 

flexible in order to use sufficiently tight convergence criteria for geometry optimizations. For the 

flexible water calculations, the corresponding OPLS-AA terms were used for the intramolecular 

angle bending and bond stretching water terms. The MD simulations were performed with both 

rigid and flexible water models, producing qualitatively similar results. For the rigid water 

calculations, the bond angles and lengths were constrained using the SETTLE63 algorithm. For all 

geometry optimizations involving molecular mechanics, namely the QM/MM and fully MM 

energy minimizations, the limited-memory Broyden-Fletcher-Goldfarb-Shanno quasi-Newtonian 

minimizer with a maximum force criterion of 15.0 kJ mol-1 nm-1 was used with GROMACS 

configured in double precision mode. Molecular structures visualized in this paper were created 

using VMD,64 and utilities provided through the MDAnalysis65 library were used to analyze 

GROMACS trajectory information. 

Results and Discussion 

To showcase the effects of aqueous solvation on equilibrium structures obtained within the 

NEO framework, we performed a series of molecular geometry optimizations for three hydrogen-

bonded complexes, each composed of a small organic molecule and its neighboring water 

molecule (Fig. 2). The organic molecule and hydrogen-bonded water were treated quantum 

mechanically with conventional DFT or NEO-DFT in a gas phase, implicit solvent, or explicit 

MM solvent environment (Fig. 3). For the NEO calculations, the hydrogen-bonding proton and 

the two protons on the water were treated quantum mechanically. The analogous calculations with 

only the hydrogen-bonding proton treated quantum mechanically are provided in the SI. 
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Figure 2. Three organic molecules acting as hydrogen-bond donors to an adjacent water molecule: 

(a) phenol, (b) imidazole, and (c) methanol. Three protons are treated quantum mechanically with 

NEO-DFT, as indicated by the three protonic densities depicted with purple mesh. 

 

For the QM/MM calculations, each of the organic molecules previously optimized in the 

gas phase using the MM force field was placed in its own simulation box that was then filled with 

water. For the phenol system, 4756 water molecules were added to a 629.54 nm3 volume cubic 

box. The other two systems were prepared similarly. Water was then equilibrated in the NVT and 

NPT ensembles (temperature of 300 K and pressure of 1 bar) for 2 ns each using the MM force 

field while keeping the organic molecule fixed and utilizing periodic boundary conditions. 

Following these steps, a droplet was created by retaining only the water molecules within 10 Å of 

any atom in the hydrogen-bonded complex. The resulting system composed of the organic 
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molecule in a water droplet was then energy minimized with the conventional DFT or NEO-DFT 

QM/MM approach. These energy minimizations were performed without periodic boundary 

conditions and including all non-bonded interactions (i.e., there were no cutoffs for the non-bonded 

interactions).  

 

 

Figure 3. Optimized geometries of the phenol molecule hydrogen bonded to water, where the 

hydrogen-bonded complex is treated at the NEO-DFT level and is embedded in (a) C-PCM water 

or (b) a droplet of explicit TIP3P water molecules. The proton densities of the three quantized 

protons are depicted with purple mesh. The ASCs in (a) are represented on a color scale where red 

indicates a negative charge and blue indicates a positive charge. The geometries of these systems 

were optimized with NEO-DFT-PCM and NEO-DFT-QM/MM for (a) and (b), respectively. 

 

We analyzed the hydrogen-bonding distances for the DFT and NEO-DFT calculations in 

the gas phase, implicit solvent, and explicit solvent environments. Table 1 provides the O O  (or 

O N ) distance between the oxygen (or nitrogen) atoms of the hydrogen-bonded molecule and 

water, the O H  distance between the oxygen atom of the water and the hydrogen atom of the 

molecule, and the H O−  (or H N− ) distance within the molecule. In the NEO-DFT calculations, 

the distances involving the quantum proton were computed from the expectation value of the 

proton position operator. 
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Table 1. Equilibrium Distances and Angles for Molecule and Hydrogen-Bonded Water Treated 

Quantum Mechanically in Various Environmentsa 

 Distance 

or Angle  
DFT 

NEO-

DFT 

DFT 

PCM 

NEO-DFT 

PCM 

DFT 

MM 

NEO-DFT 

MM 

Phenol 

H O−  0.98 1.00 0.99 1.02 0.99 1.02 

O H  1.83 1.77 1.73 1.65 1.71 1.61 

O O  2.80 2.77 2.72 2.67 2.68 2.61 

OHO  174.5 174.2 177.6 177.4 167.7 165.9 

Methanol 

H O−  0.97 0.99 0.98 1.00 0.99 1.01 

O H  1.91 1.85 1.82 1.75 1.77 1.69 

O O  2.86 2.83 2.80 2.76 2.72 2.68 

OHO  165.7 165.6 175.6 176.0 162.5 164.3 

Imidazole 

H N−  1.02 1.04 1.03 1.06 1.04 1.08 

O H  1.91 1.85 1.83 1.74 1.71 1.61 

O N  2.93 2.89 2.86 2.80 2.71 2.67 

OHN  176.1 176.0 178.4 179.9 160.0 166.0 

aThe molecule and hydrogen-bonded water are treated with DFT or NEO-DFT in the gas phase, 

C-PCM water, or MM water. Distances are given in Å for the hydrogen bond between the specified 

molecule and water in the molecule-water system, where O O  or ( O N ) indicates the 

distance between the water oxygen and molecule oxygen (or nitrogen) atoms, O H  indicates the 

distance between the molecule hydrogen and water oxygen atoms, and H O−  or ( H N− ) indicates 

the distance between the molecule hydrogen and its bonded oxygen (or nitrogen) atoms. The angle 

measured along the hydrogen bond is given in degrees. For the NEO calculations, the expectation 

value of the quantum proton coordinate was used to compute distances and angles. 

 

 

In all cases, introduction of solvent results in a decrease in the O O  (or O N ) and 

O H  distances, with a slightly greater decrease obtained with explicit solvation compared to 
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implicit solvation. These trends manifest for both conventional DFT and NEO-DFT approaches. 

Moreover, the O O  (or O N ) and O H  distances are observed to be slightly shorter when 

the hydrogen-bonded proton is quantized with the NEO approach, which we make note of in 

discussions below. The distances between the hydrogen-bonded proton and its bonded oxygen (or 

nitrogen), H O−  (or H N− ),  are slightly elongated due to solvation, consistent with previous 

findings.17 For the systems studied herein, the distance changes indicate that solvation can 

strengthen the hydrogen bond. Furthermore, we found that the hydrogen-bond angle is similar for 

both conventional DFT and NEO-DFT calculations. In particular, the angles obtained with explicit 

solvation are slightly less linear than those obtained with implicit solvation. A possible explanation 

for these differences is that the angle is modulated by the surrounding MM water molecules, which 

can form hydrogen bonds with the QM complex through electrostatic and van der Waals 

interactions. These interactions may also influence the quantum proton densities in the NEO-

QM/MM calculations. 

 

 

Figure 4. Representative configuration obtained from the NEO-QM/MM MD trajectory. The 

purple mesh depicts the quantized proton density. The hydrogen-bonded water molecule did not 

exchange on the timescale of the MD trajectories propagated. 
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To illustrate real-time dynamics, we also performed a short NEO-QM/MM MD simulation 

on the ground state potential energy surface of the phenol-water complex (Fig. 4). Starting from 

the optimized conventional DFT QM/MM geometry of the phenol-water droplet, initial velocities 

for the classical nuclei (i.e., all nuclei except the quantum proton) were assigned from a Maxwell-

Boltzmann distribution at 300 K. A conventional QM/MM MD trajectory under the 

microcanonical ensemble was propagated for 2 ps prior to beginning the 100 fs production 

trajectory using the fully MM, conventional QM/MM, and NEO-QM/MM approaches. These MD 

simulations were performed without periodic boundary conditions and including all non-bonded 

interactions. The rigid TIP3P water model was used for these MD simulations. To be consistent 

with the geometry optimizations, analogous MD simulations with flexible TIP3P water molecules 

were also performed, and the results are provided in the SI. The velocity Verlet algorithm was 

utilized to propagate the classical nuclear coordinates using a time step of 0.5 fs. At each time step 

during the NEO-QM/MM MD trajectory, the quantum proton basis function center position was 

variationally optimized using NEO-DFT.  
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Figure 5. Analysis of energy fluctuations and hydrogen-bonding distances and angles between a 

phenol molecule and the oxygen of the closest water molecule. Time evolution of (a) energy 

relative to average energy, (b) O O  distance between the phenol and hydrogen-bonded water 

oxygen atoms, (c) O H O  hydrogen-bond angle, and (d) O H  distance between the phenol 

hydrogen and water oxygen atoms. The phenol molecule was treated with an MM force field, 

conventional DFT, or NEO-DFT and was surrounded by 240 rigid TIP3P water molecules. Each 

trajectory started from the same initial coordinates and velocities to allow a direct comparison. For 

the NEO calculations, the proton basis function center was optimized at each time step, and the 

distances were computed using the expectation value of the quantum proton coordinate. The 

analogous figure with flexible TIP3P water is provided in Figure S1 of the SI. 

 

Analyses of the MD trajectories propagated with the fully MM, conventional QM/MM, 

and NEO-QM/MM approaches are given in Figure 5. We chose to start each trajectory from the 

same initial conditions to allow us to systematically compare the differences among the various 

levels of theory. As mentioned above, the system was equilibrated for only 2 ps with the 

conventional QM/MM approach. As a result, these trajectories are starting out of equilibrium. For 

the fully MM approach, the distances change significantly because the MM force field differs 
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substantially from the QM/MM potential. Figure 5a shows that energy is conserved well for all 

three trajectories.  

The trends in distances and angles shown in Figure 5 are consistent with those obtained 

from corresponding geometry optimizations. For the optimized geometries reported in Table 2, all 

water molecules were treated at the MM level using the flexible TIP3P water model, and the 

organic molecule was described at the MM level or at the QM level with conventional DFT or 

NEO-DFT. Consistent with our results in Table 1, which treated both the organic molecule and 

the hydrogen-bonded water molecule quantum mechanically, the intermolecular hydrogen-

bonding distances are shorter with NEO-DFT compared to conventional DFT. These results 

suggest a stronger hydrogen-bonding interaction for these systems when protons are quantized 

with NEO-DFT/epc17-2. However, such subtle differences in distances may depend on various 

factors, such as the electron-proton correlation functional and the proton basis set, and have not 

been validated experimentally or with other levels of theory for this system. As shown in previous 

studies using path integral molecular dynamics methods, the impact of proton quantization on 

hydrogen-bonding interactions is system dependent.66-68 Thus, this subtle effect of proton 

quantization on the hydrogen-bonding interaction in these systems should not be viewed as 

definitive. 

 An important observation to highlight is the absence of oscillations in the O H  distances 

for the NEO-QM/MM approach (blue line in Figure 5d). This behavior emerges because for the 

Born-Oppenheimer MD approach within the NEO framework, the quantum proton responds 

instantaneously to the classical nuclear positions, analogous to the instantaneous response of the 

electrons. For every time step in the NEO-QM/MM trajectory, the electronic and protonic densities 

are relaxed to the ground vibronic state by solving the Kohn-Sham equations (Eq. (4)), where the 
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Fock matrix depends on the external potential created by the classical nuclei in the QM region and 

the MM point charges. In order to capture the proton vibrations, the motion of the classical 

subsystem must be coupled with a dynamical treatment of the nuclear-electronic quantum 

subsystem. This can be accomplished using the real-time NEO time-dependent DFT approach with 

Ehrenfest dynamics.15, 69 Efforts in this direction are currently underway. 

 

Table 2. Equilibrium Distances and Angles for Molecule and Hydrogen-Bonded MM Water 

Obtained from Geometry Optimizationsa 

 
Distance 

and 

Angle  

Fully 

MM 

DFT 

MM 

NEO-

DFT 

MM 

Phenol 

O H  1.80 1.63 1.56 

O O  2.74 2.60 2.57 

OHO  165.4 168.2 169.1 

Methanol 

O H  1.88 1.72 1.64 

O O  2.77 2.66 2.62 

OHO  152.9 160.4 162.8 

Imidazole 

O H  1.63 1.57 1.48 

O N  2.68 2.61 2.56 

OHN  174.0 171.1 172.8 

aThe molecule is treated with MM, DFT, or NEO-DFT in an MM water environment. Distances 

are given in Å for the hydrogen bond between the specified molecule and water in the molecule-

water system, where O O  (or O N ) indicates the distance between the water oxygen and 

molecule oxygen (or nitrogen) atoms, and O H  indicates the distance between the molecule 

hydrogen and water oxygen atoms. The angle measured along the hydrogen bond is given in 

degrees. For the NEO calculations, the expectation value of the quantum proton coordinate was 

used to compute distances and angles. 

 

Conclusion 
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This manuscript presents the development and implementation of the NEO-QM/MM 

approach for quantizing specified nuclei in the QM region. In this approach, the QM region is 

treated with a NEO method such as NEO-HF or NEO-DFT, and the remainder of the system is 

treated with an MM force field. We compare this approach to an implementation of the NEO-PCM 

method, where the solvent environment is represented as a polarizable dielectric continuum. The 

expressions for the NEO-QM/MM and NEO-PCM energies and analytical nuclear gradients are 

provided. These analytical gradients enable geometry optimizations and MD simulations for 

molecules in solvent and, in the case of NEO-QM/MM, more complex heterogeneous 

environments. Our applications to hydrogen-bonded systems illustrate that aqueous solvation can 

strengthen hydrogen-bonding interactions, as indicated by the shortening of the intermolecular 

hydrogen bond distances for the systems studied. However, given the many competing factors 

influencing hydrogen-bonding interactions, this effect may be system dependent.70 The solvated 

equilibrium structures obtained with NEO-PCM or NEO-QM/MM can be used to compute pKa 

values22, 71-74 and solvation free energies75, 76 in a manner that includes proton delocalization and 

anharmonicity.  

We also show that the NEO-QM/MM method can be used to perform real-time direct 

dynamics simulations in complex environments. For these types of Born-Oppenheimer MD 

simulations, the quantum proton(s) as well as the electrons respond instantaneously to the classical 

nuclear motions. The proton quantum dynamics can be described more accurately by removing 

the Born-Oppenheimer separation between the quantum protons and the other nuclei. For this 

purpose, we can propagate the proton density as well as the classical nuclei on the electronic 

ground state using the Born-Oppenheimer real-time NEO-TDDFT Ehrenfest approach.77 This 

approach can also be used to describe processes occurring on excited electronic states by 
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propagating both the electronic and protonic densities with the original real-time NEO-TDDFT 

Ehrenfest approaches.14, 15 The developments presented herein serve as a stepping stone for 

simulating nuclear-electronic quantum dynamics in complex chemical and biological 

environments within the NEO framework, providing the infrastructure for studying a wide range 

of nonadiabatic condensed phase processes. 
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