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MAKING AN H-FREE GRAPH k-COLORABLE

JACOB FOX∗, ZOE HIMWICH†, AND NITYA MANI‡

Abstract. We study the following question: how few edges can we delete from any H-free graph
on n vertices in order to make the resulting graph k-colorable? It turns out that various classical
problems in extremal graph theory are special cases of this question. For H any fixed odd cycle,
we determine the answer up to a constant factor when n is sufficiently large. We also prove an
upper bound when H is a fixed clique that we conjecture is tight up to a constant factor, and prove
upper bounds for more general families of graphs. We apply our results to get a new bound on the
maximum cut of graphs with a forbidden odd cycle in terms of the number of edges.

1. Introduction

All graphs we consider are finite, undirected and simple, unless otherwise specified. A graph
is H-free if it does not contain H as a subgraph. For a collection H of graphs, a graph is H-free
if it does not contain any graph in H as a subgraph. The girth of a graph is the length of the
shortest cycle, and it is infinite if the graph is a forest. The chromatic number χ(G) of a graph G
is the minimum number of colors needed to properly color the vertices of the graph so that no two
adjacent vertices receive the same color.

A famous result of Erdős [19] states that there are graphs of arbitrarily large girth and chromatic
number. While these graphs are locally sparse, they cannot be properly colored with few colors.
We study here a slightly different local-global problem in graphs with a similar flavor: how resilient
to being k-colorable can a graph be given a local constraint like a forbidden subgraph?

Precisely, for a graph G and a positive integer k, how few edges, which we denote by h(G, k),
can we delete from G in order to make the remaining subgraph k-colorable? For a graph G and
positive integers n and k, let h(n, k,H) be the maximum of h(G, k) over all n-vertex graphs G
which are H-free, that is, which do not contain H as a subgraph. We define h(n, k,H) analogously
for H a family of forbidden subgraphs. Determining or estimating h(n, k,H) is a very challenging
problem. Special cases of this problem include several famous problems in extremal graph theory.
For example, the case k = 1 is the classical Turán problem on the maximum number of edges an
H-free graph on n vertices can have.

A longstanding conjecture of Erdős (he wrote in 1975 [23] that it was already old) would solve
the case where H is a triangle and k = 2. This conjecture states that every triangle-free graph on
n vertices can be made bipartite by deleting at most n2/25 edges. If true, this conjectured bound
is the best possible. This can be seen by considering a balanced blow-up of a cycle on five vertices.
While there are many papers on this problem, the best known upper bound [28] is a little better
than n2/18. Solving another conjecture of Erdős, Sudakov [45] showed that any K4-free graph on n
vertices can be made bipartite by removing at most n2/9 edges. That is, h(n, 2,K4) ≤ n2/9. This
bound is tight, which can be seen by considering a balanced blow-up of a triangle. He deduced as
a corollary that, if H is a fixed graph with χ(H) = 4, then h(n, 2,H) ≤ (1 + o(1))n2/9. Sudakov
further conjectured for r > 4 that the balanced complete (r − 1)-partite graph on n vertices is
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2 JACOB FOX∗, ZOE HIMWICH†, AND NITYA MANI‡

the furthest from being bipartite over all Kr-free graphs, which would determine h(n, 2,Kr) for
r > 3. It was recently announced [38] that Hu, Lidický, Martins-Lopez, Norin, and Volec verified
the case r = 6 of Sudakov’s conjecture and further proved the corresponding upper bound for all
H of chromatic number 6.

The other extreme is determining the minimum k for which h(n, k,H) is zero. This is the same
as determining the maximum possible chromatic number that an H-free graph on n vertices can
have. This problem is very old (see [19]), and closely related to estimating the Ramsey number
r(H,Ks). If r(H,Ks) > n and k ≤ n/s, then there is an H-free graph G on n vertices which does
not contain an independent set of order s. In particular, in any k-coloring of the vertices, one of the
color classes has at least n/k ≥ s vertices and must contain an edge, implying h(n, k,H) > 0. On
the other hand, if H is connected, k ≥ (n/s) · log2(2n), and n > r(H,Ks), then by greedily picking
out largest independent sets, one can properly k-color any H-free graph on n vertices. This bound
on the number of colors can be deduced from the fact that the minimum possible independence
number of an H-free graph on n vertices is a monotonically increasing and subadditive function of
n.

In this paper, we will be primarily interested in the intermediate case, when |H| ≪ k ≪ n.
Throughout the article, we use the notation Θx, Ωx, Ox, and ox to indicate that the implicit
constant factors may depend on x.

Note that for any graph G on n vertices we have the simple bound h(G, k) ≤ h(Kn, k) ≤
(n
2

)

/k ≤
n2/(2k) by considering a random k-partition of V (G). Thus, we will be primarily interested in
understanding how much of an improvement we can give over this straightforward bound for H-
free graphs.

The following theorem gives an upper bound on h(n, k,H) when H is a clique on r vertices.

Theorem 1.1. For each integer r ≥ 3 there is cr such that for all positive integers n, k we have

h(n, k,Kr) ≤ cr
n2

k(r−1)/(r−2)
.

We conjecture that Theorem 1.1 is sharp up to the constant factor cr for n sufficiently large in
terms of k, and prove this for r = 3.

For fixed odd cycles and n sufficiently large in k, we determine this function up to a constant
factor. We first show an upper bound on h(G, k) for graphs G of large odd girth.

Theorem 1.2. For each positive integer r there is cr such that the following holds. Let Hr =
{C3, C5, . . . C2r+1} be the set of odd cycles of length at most 2r + 1. Then,

h(n, k,Hr) < cr
n2

kr+1
.

From this result on graphs of large odd girth, we can deduce a similar result for graphs with a
single forbidden odd cycle.

Theorem 1.3. For positive integers n ≥ k ≥ 1, and r ≥ 1, we have h(n, k,C2r+1) = h(n, k,Hr) +

Or(n
3/2), where Hr is the family of odd cycles of length at most 2r + 1. In particular,

h(n, k,C2r+1) = Or

(

n2

kr+1

)

.

In the other direction, we prove the following lower bound which shows that Theorem 1.3 is
tight up to the constant factor in r for n sufficiently large in terms of k. The proof leverages a
construction of Alon and Kahale [8] of a family of pseudorandom graphs of large odd girth.

Theorem 1.4. For each positive integer r there is αr > 0 such that the following holds. For each

positive integer k, for each sufficiently large positive integer n, there is a graph G on n vertices with

odd girth larger than 2r + 1 and with h(G, k) ≥ αrn
2/kr+1.
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In the case H is a triangle, we determine up to a constant factor how large n has to be for the
above to hold using a result about a semi-random variant of the triangle-free process [10,33].

The wheel Wℓ is the graph on ℓ + 1 vertices consisting of an ℓ-cycle and an additional vertex
adjacent to all of the vertices of the ℓ-cycle. For even wheels (when ℓ is even), we prove that
h(n, k,Wℓ) is asymptotically the same as h(n, k,K3). Combining the methods used in the proofs
of Theorems 1.1 and 1.2, we prove the following upper bound for odd wheels, which we conjecture
is tight up to the constant factor which depends on the length of the wheel.

Theorem 1.5. For each positive integer r there is cr such that if n ≥ k ≥ 2, then

h(n, k,W2r+1) ≤ cr
n2

k2−1/(r+1)
.

More broadly, we use the graph removal lemma in Section 4.1 to prove the following result, which
shows that if H has a subgraph H ′ for which H has a homomorphism to H ′, then h(n, k,H) and
h(n, k,H ′) are close.

Theorem 1.6. If a graph H has a subgraph H ′ such that there exists a homomorphism from H to

H ′, then

h(n, k,H ′) ≤ h(n, k,H) ≤ h(n, k,H ′) + o(n2).

The maximum cut of a graph G, denoted by Max-Cut(G), is the maximum number of a bipartite
subgraph. This well-studied graph parameter to the main focus of this paper through the identity
Max-Cut(G) = e(G) − h(G, 2), where e(G) is the number of edges of G. It is a simple exercise to
show that every graph G with m edges has Max-Cut(G) ≥ m/2. Edwards [17,18] proved that this
bound can be improved to

Max-Cut(G) ≥ m

2
+

−1 +
√
8m+ 1

8
,

which is sharp if m =
(k
2

)

for some positive integer k, as shown by taking G = Kk. Further results
for intermediate values of m were established in [3, 7, 11].

There has been a lot of research on improving the lower order term in the Edwards bound for
graphs with a fixed forbidden subgraph. Alon, Krivelevich, and Sudakov [4] showed that for H fixed

and m significantly large, every H-free graph G with m edges satisfies Max-Cut(G) ≥ m
2 +m1/2+ǫ

for some ǫ = ǫ(H) > 0, and they conjectured that 1/2 in the exponent can be replaced by 3/4.
A case of particular interest is when H is a cycle. Solving a problem of Erdős, Alon [3] proved

that every triangle-free graph G with m edges satisfies Max-Cut(G) ≥ m
2 + cm4/5 for some positive

constant c, and this is tight up to the constant factor c. More generally, Alon et al. [9] conjectured

that for all k ≥ 3, every Ck-free graph G with m edges satisfies Max-Cut(G) ≥ m
2 +Ωk(m

(k+1)/(k+2)).
They verified their conjecture for k even, and showed that the conjectured bound is tight for
k ∈ {4, 6, 10}.1 Alon, Bollobás, Krivelevich, and Sudakov [4] observed that for odd k, a well-
known construction of Alon [2, 7] gives a pseudorandom graph G with odd-girth greater than k,

m edges, and Max-Cut(G) = m
2 + Ok(m

(k+1)/(k+2)). This construction shows that if the Alon-
Krivelevich-Sudakov conjecture is true, then the bound it gives is best possible for odd k. Recently,
Zeng and Hou [47] proved that for fixed odd k, every Ck-free graph G with m edges satisfies

Max-Cut(G) ≥ m
2 +m(k+1)/(k+3)+o(1). Using Theorem 1.3 and some additional tools, we prove the

following result giving an improved bound.

Theorem 1.7. If k ≥ 3 is odd and G = (V,E) is a Ck-free graph with m edges, then

Max-Cut(G) ≥ m

2
+ Ωk(m

(k+5)/(k+7)).

1While [47] attributes this conjecture to [9], what is actually conjectured in [9] is that for even k the conjectured
bound is tight.



4 JACOB FOX∗, ZOE HIMWICH†, AND NITYA MANI‡

Organization. We begin in Section 2.1 by developing tools that allow us to conclude some
incidental results such as Proposition 2.4, a strengthening of Mantel’s theorem, and also give a
foundation to prove Theorem 1.1 and Theorem 1.5. In Section 2.2, we give an upper bound on
h(n, k,Kr), the number of edges that must be removed from an arbitrary Kr-free graph on n
vertices to guarantee the resulting subgraph is k-partite.

Subsequently in Section 3, we give upper bounds on h(n, k,H) for H = {C3, . . . C2r+1} and use
this bound on graphs of large odd girth to obtain an upper bound on h(n, k,C2r+1). Using a
generalization of Alon’s construction of a family of pseudorandom graphs of large odd girth, we
show that our bound is tight up to a constant factor depending on r. In Section 4, we leverage the
above bounds to obtain associated bounds on h(n, k,H) for more other forbidden subgraphs H.

We apply our results to the problem of bounding the Max-k-Cut of a graph, the size of the largest
k-partite subgraph of a graph, noticing that h(G, k) = e(G) − Max-k-Cut(G). We first give some
simple lemmas to translate between bounds on maximum k-cuts and maximum l-cuts for l < k
in Section 5. This enables us in Section 6 to prove Theorem 1.7 giving a new lower bound on
Max-Cut(G) for graphs with a forbidden odd cycle. Finally, we conclude in Section 7 with some
unresolved open questions.

2. Cutting Graphs using Neighborhoods

For a graph G and vertex subset U ⊂ V (G), let G[U ] denote the induced subgraph of G with
vertex set U . We let e(G) denote the number of edges of G, and e(U) = e(G[U ]) denote the number
of edges with both vertices in U . For a vertex v of G, the neighborhood N(v) is the set of vertices
of G adjacent to v. The degree of v, which is |N(v)|, is denoted d(v).

In this section, we study the following extremal problem in graph theory.

Question 2.1. Given a graphG, how many edges ofG can we cover by the union of k neighborhoods
of vertices of G?

In understanding Question 2.1, we will build up a series of tools that will be useful in our
subsequent analysis of h(n, k,H) when H is a clique or an odd wheel. The methods we describe
below are also of independent interest. In Section 2.1 we include a few applications of this analysis
beyond our study of how far graphs are from k-colorable.

2.1. Covering edges with the union of neighborhoods. We tackle Question 2.1, denoting the
relevant value u(G, k), which is defined formally below.

Definition 2.2. For a graphG and positive integer k, let u(G, k) be the maximum of e
(

⋃k
i=1 N(vi)

)

over all choices of vertices v1, . . . , vk of G.

We would like to understand how few edges can we leave uncovered by the union of k neighbor-
hoods of vertices of a graph on n vertices.

Definition 2.3. Let m(n, k) be the minimum of e(G) − u(G, k) over all graphs G on n vertices.
That is, m(n, k) is the minimum r such that, for every graph G on n vertices, there are k vertices
v1, . . . , vk such that at most r edges are not contained in the induced subgraphG[N(v1)∪· · ·∪N(vk)]
whose vertex set is the union of the neighborhoods of v1, . . . vk.

As an aside, we first observe that m(n, 1) = ⌊n2

4 ⌋. This is a strengthening of Mantel’s theorem,

that every triangle-free graph on n vertices has at most ⌊n2

4 ⌋ edges, as it is easy to see that
u(G, 1) = 0 if and only if G is triangle-free.

Proposition 2.4. Every graph G on n vertices has a vertex whose neighborhood contains all but

at most ⌊n2

4 ⌋ edges of G, and this bound is sharp. That is, m(n, 1) = ⌊n2

4 ⌋.
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Proof. The balanced complete bipartite graph on n vertices realizes m(n, 1) ≥ ⌊n2

4 ⌋.
If m(n, 1) > ⌊n2

4 ⌋, then it would be realized by a graph G on n vertices and m = n2

4 + t edges
with t positive. A result of Moon and Moser (c.f. [40]) states that any graph on n vertices and m
edges has at least

m(4m− n2)

3n
=

(

n2

4
+ t

)

4t

3n
=

tn

3
+

4t2

3n

triangles. Hence, a random vertex of G is in expectation at least

3

n
·
(

tn

3
+

4t2

3n

)

> t

triangles, and hence there is a vertex v of G where e(N(v)) > t. The number of edges of G not in

the neighborhood of v is an integer which is less than m− t = n2

4 , and hence m(n, 1) ≤ ⌊n2

4 ⌋. �

The following result yields a lower bound on u(G, k) by considering a random choice of k vertices.

Lemma 2.5. If G = (V,E) is a graph on n vertices and k is a positive integer, then

(2.1) e(G) − u(G, k) ≤
∑

u∈V

d(u)

(

1− d(u)

n

)k

−
∑

{u,w}∈E

(

1− |N(u) ∪N(w)|
n

)k

.

Proof. Pick k vertices v1, ..., vk ∈ V uniformly at random with repetition. Let U =
⋃k

i=1 N(vi).
An edge (u,w) of G is not in G[U ] if and only if v1, . . . , vk are in V \N(u) or V \ N(w). By the
inclusion-exclusion principle, the probability that not both u and w are in U is

(2.2)

(

1− d(u)

n

)k

+

(

1− d(w)

n

)k

−
(

1− |N(u) ∪N(w)|
n

)k

.

Splitting up the sum and then summing the first two terms over vertices of G, we find that the
expected value of e(G) − e(U) is at most the right hand side of (2.1). Hence, there is a choice
of v1, . . . , vk such that e(G) − e(U) (and hence e(G) − u(G, k)) is at most the right hand side of
(2.1). �

We have no idea what the exact or asymptotic value of m(n, k) is for any fixed k ≥ 2. We

will prove in general (using Lemma 2.5) that m(n, k) ≤ n2

ek , which, for k sufficiently large and n
sufficiently large in terms of k, is within 20% of the lower bound that comes from considering an
appropriate Erdős-Renyi random graph G(n, p) with p = c/k. To see this, pick c > 0 to maximize
ce−c − c

2e
−2c. Note that a simple union bound shows that almost surely all of the linear-sized

induced subgraphs of G(n, p) have edge density (1 + o(1))p. This implies that the union of the
neighborhood of any k vertices has size (1 + o(1))

(

1− (1− p)k
)

n and the induced subgraph will
have edge density (1 + o(1))p. Thus

m(n, k) ≥ (1 + ok(1))
(

ce−c − c

2
e−2c

) n2

k
,

for n sufficiently large as a function of k, and with the ok(1) term tending to 0 as k → ∞.

Corollary 2.6. We have m(n, k) ≤ n2

ek . That is, for every graph G on n vertices, there are k
vertices of G such that the induced subgraph on the union of the neighborhoods of these k vertices

contains all but at most n2

ek edges of G.

Proof. By Lemma 2.5, for any graph G on n vertices, we have e(G) − u(G, k) is at most

(2.3)
∑

u∈V

d(u)

(

1− d(u)

n

)k

,
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since the second sum in (2.1) is non-negative. The function f(x) = x(1− x
n)

k has derivative f ′(x) =
(

1− (k+1)x
n

)

(1 − x
n)

k−1, which is non-negative for x ≤ n
k+1 and is non-positive if n

k+1 < x ≤ n.

Thus, f(x) for x ≤ n is maximized at x = n
k+1 . Hence, for x ≤ n we have

f(x) ≤ f

(

n

k + 1

)

=
1

k + 1

(

1− 1

k + 1

)k

n =
1

k

(

1− 1

k + 1

)k+1

n ≤ n

ek
.

Applying this with x = d(u) in (2.3) gives the desired inequality. �

Lemma 2.7. If a graph G = (V,E) has disjoint vertex subsets U1, . . . , Ur, then there is a partition

of V = W1 ⊔ · · · ⊔Wr with Ui ⊂ Wi for 1 ≤ i ≤ r and the number
∑r

i=1 e(Wi)− e(Ui) of edges that

are in a G[Wi] but not G[Ui] is at most (e(G)− e(U1 ∪ · · · ∪ Ur)) /r.

Proof. Let X = U1 ∪ · · · ∪ Ur. For each vertex v ∈ V \X, randomly add v to one of the r sets Ui.
This gives a random partition of V into r sets. Let Wi denote the part which is a superset of Ui.
Each edge with not both of its vertices in X has a probability 1/r that both of its vertices end up
in the same part of the random partition. Hence, by linearity of expectation, the expected number
of edges of G with not both its vertices in X that end up in the same part of the random partition
is (e(G)− e(X))/r. So there is such a partition with at most (e(G)− e(X))/r edges with not both
its vertices in X and which lie in the same part. �

We remark that the above probabilistic proof of Lemma 2.7 can be made deterministic by greedily
assigning the vertices to the part that it has the fewest edges to.

Lemma 2.8. If G = (V,E) is a graph with disjoint vertex subsets V1, . . . , Vt and s is a positive

integer, then

h(G, st) ≤ 1

st
(e(G) − e(V1 ∪ · · · ∪ Vt)) +

t
∑

i=1

h(G[Vi], s).

Proof. For each 1 ≤ i ≤ t, there is a partition Vi = Ui1 ⊔ · · · ⊔ Uis so that we can make each of the
s vertex subsets Uij independent sets by removing at most h(G[Vi], s) total edges. By Lemma 2.7,
we can grow the st disjoint subsets {Uij} for 1 ≤ i ≤ t and 1 ≤ j ≤ s into a partition of V with st

parts which adds at most 1
st(e(G) − e(V1 ∪ · · · ∪ Vt)) edges that are internal to the parts. Deleting

these additional edges, we obtain a vertex partition of G into st parts from which we deleted at
most 1

st (e(G) − e(V1 ∪ · · · ∪ Vt)) +
∑t

i=1 h(G[Vi], s) edges in order to make it st-partite. �

We primarily focus on the case where we take disjoint vertex subsets V1, . . . , Vk such that each
Vi is contained in the neighborhood of some vertex vi. This yields a bound on e(G)− e(V1 ∪ · · ·Vk)
and an associated bound on h(G, k).

Corollary 2.9. If G = (V,E) is a graph on n vertices and k is a positive integer, there are disjoint

vertex subsets V1, . . . , Vk such that each Vi ⊂ N(vi) for some vertex vi ∈ V and the number of edges

of G not in G[V1 ∪ · · · ∪ Vk] is at most n2

ek .

Proof. Apply Lemma 2.6 to obtain vertices v1, . . . , vk ∈ V such that for U =
⋃k

i=1N(vi), e(G) −
e(U) ≤ n2/(ek). Define V1 = N(v1) and, for i ≥ 2, define Vi = N(vi) \

⋃

j<iN(vj), so Vi ⊂ N(vi).
The sets V1, . . . , Vk are disjoint and satisfy V1 ∪ · · · ∪ Vk = U , so the corollary clearly follows. �

Via Corollary 2.9 and Lemma 2.8, we have the following immediate corollary.

Corollary 2.10. If G = (V,E) is a graph on n vertices and s and t are positive integers, then

there are disjoint vertex subsets V1, . . . , Vt such that each Vi is contained in the neighborhood of

some vertex vi and

h(G, st) ≤ n2

es2t2
+

t
∑

i=1

h(G[Vi], s).
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2.2. Kr-Free Graphs. The above results are helpful tools to bound h(n, k,H) for a variety of
families of forbidden subgraphs H. Here, we consider the case H = Kr with r ≥ 3. As a first
application, Corollary 2.10 immediately enables us to give an upper bound on h(n, k,K3).

Proposition 2.11. Any triangle-free graph on n vertices can be made k-partite for k ≤ n by

deleting at most n2/ek2 edges, so h(n, k,K3) ≤ n2

ek2
.

Proof. Let G be a triangle-free graph on n vertices. Applying Corollary 2.10 with t = k and s = 1
implies that we can find vertices v1, . . . vk and disjoint vertex subsets V1, . . . , Vk with Vi ⊂ N(vi)
such that

h(G, k) ≤ n2

ek2
+

k
∑

i=1

h(G[Vi], 1).

SinceG is triangle-free, N(vi) is an independent set and thus so is Vi, which implies that h(G[Vi], 1) =

0. Therefore, h(G, k) ≤ n2

ek2
. Since this holds for all triangle-free graphs G on n vertices, we obtain

the desired bound on h(n, k,K3). �

It is helpful in further applications if the Vi are not much larger than their average size. This
can be obtained by furthering partitioning the large sets Vi obtained in Corollary 2.9.

Corollary 2.12. If G = (V,E) is a graph on n vertices and t ≤ n is a positive integer, then there

are disjoint vertex subsets U1, . . . , U2t such that each Uj satisfies |Uj | ≤ n
t and is contained in the

neighborhood of some vertex uj , and e(G)− e(U1 ∪ · · · ∪ U2t) ≤ n2

et .

Proof. By Corollary 2.9, there are vertex subsets V1, . . . , Vt, each a subset of a vertex neighborhood,
where V1∪ · · · ∪Vt contains all but at most n2/et edges of G. Arbitrarily partition each Vi into sets
Uj of size ⌊n/t⌋, including if needed one set of size less than ⌊n/t⌋. Thus, we obtain a sets Uj of
size ⌊n/t⌋ and b sets Uj of size strictly smaller than ⌊n/t⌋, where b ≤ t. If a < t, then a+ b < 2t.
Otherwise, a ≥ t, and t of these sets of size ⌊n/t⌋ together have t⌊n/t⌋ > n − t elements, so less
than t elements are not in these t sets. The remaining a+ b− t sets each have at least one element,
so a+ b− t < t or equivalently a+ b < 2t. We can add additional empty sets to make 2t total sets
Uj , each of size at most n/t, and with Uj ⊂ Vi ⊂ N(vi) for some i.

�

For a graph H and vertex v, let Hv denote the induced subgraph of H formed by deleting v. We
prove the following recursive upper bound on h(n, k,H).

Lemma 2.13. If s, t, n are positive integers, H is a graph, and v is a vertex of H so that Hv has

no isolated vertices, then

h(n, 2st,H) ≤ 2t · h(n/t, s,Hv) +
n2

2est2
.

Proof. Let G be an H-free graph on n vertices. By Corollary 2.12, there are 2t disjoint vertex
subsets U1, . . . U2t such that each Ui satisfies |Ui| ≤ n

t and is contained in the neighborhood of some
vertex ui. Further, we can pick the Ui so that the number of edges of G not in G[U1 ∪ · · · ∪ U2t]

is at most n2

et . As G is H-free, then for all ui ∈ V (G), the induced subgraph G[N(ui)] is Hv-
free for any vertex v ∈ H. Thus, for each i, G[Ui] can be made s-partite by removing at most
h(|Ui|, s,Hv) ≤ h(n/t, s,Hv) edges in G[Ui].

For 1 ≤ i ≤ 2t, we label the s independent sets (after removing edges as above) which partition
Ui as Wi1, . . . Wis. By Lemma 2.7, we can then grow {Wij}1≤i≤2t,1≤j≤s to a partition of V (G) by

adding at most 1
2st (e(G)− e(U1 ∪ · · · ∪ U2t)) ≤ 1

2st · n
2

et = n2

2est2
edges internal to the parts. Deleting

these edges, we obtain the upper bound

h(n, 2st,H) ≤ 2t · h(n/t, s,Hv) +
n2

2est2
.
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�

Applying Lemma 2.13 and induction on r, we can bound the number of edges to remove from
a Kr-free graph G on n vertices so that the resulting subgraph is k-colorable. We first establish a
bound on h(n, k,Kr) when k is a perfect (r − 2)nd power of an even integer.

Lemma 2.14. For positive integers n, k, and r ≥ 3 so that k = tr−2 for t even, we have

h(n, k,Kr) ≤ αr ·
n2

k(r−1)/(r−2)
,

where αr =
5·4r−3−2

3e .

Proof. The proof is by induction on r. We proved the base case r = 3 in Proposition 2.11. Let
s = k/t = tr−3. By the inductive hypothesis, we know that for all positive integers n0,

h(n0, s,Kr−1) ≤ αr−1 ·
n2
0

s(r−2)/(r−3)
.

Note that the induced subgraph formed by deleting a vertex of Kr is Kr−1. By Lemma 2.13 (with
parameter t/2 instead of t) and the above inequality (with n0 = 2n/t), we have

h(n, k,Kr) ≤
2n2

est2
+ t · h

(

2n

t
, s,Kr−1

)

≤ 2n2

est2
+ tαr−1

(2n/t)2

s(r−2)/(r−3)
= αr ·

n2

k(r−1)/(r−2)
,

where the equality uses αr =
2
e + 4αr−1. This completes the proof. �

Lemma 2.14 establishes Theorem 1.1 when k is a perfect (r− 2)nd power of an even integer. The
following result is Theorem 1.1 with an explicit constant factor.

Theorem 2.15. For positive integers n, k, and r ≥ 3, we have

h(n, k,Kr) ≤
5

3
· 4r−3 · n2

k(r−1)/(r−2)
.

Proof. Proposition 2.11 handles the case r = 3, so we may assume r ≥ 4. Recall that any graph
on n vertices can be made k-partite by removing at most n2/(2k) edges. Thus, if k ≤ (2r)r−2, as
4r−3 ≥ r ≥ 1

2k
1/(r−2), we have the desired inequality. We therefore suppose that k > (2r)r−2.

Let ℓ be the largest even perfect (r − 2)-power which is at most k, so ℓ =
(

2
⌊

k1/(r−2)

2

⌋)r−2
. By

monotonicity and ℓ ≤ k, we have h(n, k,Kr) ≤ h (n, ℓ,Kr). Applying Lemma 2.14,

h(n, ℓ,Kr) ≤ αr
n2

ℓ(r−1)/(r−2)
, where αr =

5 · 4r−3 − 2

3e
.

Since k > (2r)r−2, it follows that k ≤
(

2(r+1)
2r

)r−2
ℓ =

(

1 + 1
r

)r−2
ℓ. It follows that

k(r−1)/(r−2) ≤
(

1 +
1

r

)r−1

ℓ(r−1)/(r−2) ≤ eℓ(r−1)/(r−2).

Substituting, we obtain

h(n, k,Kr) ≤
5

3
· 4r−3 · n2

k(r−1)/(r−2)
.

�

3. Odd Cycle-Free Graphs

In this section we study how few edges we can remove from any graph on n vertices with a fixed
forbidden odd cycle to make it k-colorable.
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3.1. Upper bounds for odd cycles. We begin by tackling a simpler problem, bounding how far
a graph of large odd girth is from being k-colorable. That is, we first consider h(n, k,H) where H
is the family of odd cycles of length at most 2r + 1. We later show that this number is close to
h(n, k,C2r+1).

We prove that graphs of large odd girth contain an independent set B with relatively many edges
incident to B. We repeatedly apply this to pull out k disjoint independent sets B1, ..., Bk such that
the remaining induced subgraph contains relatively few edges. By Lemma 2.7, we can grow these
k independent sets into a k-partition of the vertex set so that few edges are internal to the parts.

The following definitions will be helpful.

Definition 3.1. Given a graph G = (V,E) and a vertex v ∈ V , the ith neighborhood of v, denoted
by Ni(v), is the set of vertices in V of distance exactly i from v.

For example, N0(v) = {v}, N1(v) = N(v), and N2(v) is the set of vertices in V \({v} ∪ N(v))
that have a neighbor in N(v). For a vertex subset T , let N(T ) denote the set of vertices in V \ T
adjacent to at least one vertex in T . For a graph G and vertex subsets S and T , let e(S, T ) be the
number of pairs in S × T that are edges of G.

Definition 3.2. For a graph G = (V,E) and S ⊂ V , let D(S) = e(S, V ) be the sum of the degrees
of vertices in S.

Note that D(S) counts the edges contained in S twice and the edges with exactly one endpoint
in S once. It is a useful measure of the number of edges that contain a vertex in S.

We first show that for any graph G = (V,E) of large odd girth and any subset S ⊂ V , there is an
independent set B ⊂ S with poor edge expansion into S. Removing such B and its neighborhood
and iteratively applying the argument will give an independent set A (the union of the B’s) with
comparatively large D(A). In the following lemmas, we take a graph G = (V,E) on n vertices, r a
positive integer, and a fixed S ⊂ V . We let

x :=

( |S|n
D(S)

)1/r

.

Lemma 3.3. Let G = (V,E) be a graph of odd girth larger than 2r + 1 and S ⊂ V . There exists

an independent set B ⊂ S such that

D(B) ≥ D(N(B) ∩ S)

x+ 1
.

Proof. Pick v ∈ V, u ∈ S uniformly at random, so

Prob(u ∈ N1(v)) =
Eu∈S[d(u)]

n
.

If u ∈ N1(v) ∩ S, then it contributes d(u) to D(N1(v) ∩ S). Therefore,

Ev[D(N1(v) ∩ S)] = Ev

[

∑

u∈S

d(u) Prob(u ∈ N1(v))

]

=
∑

u∈S

Ev

[

d(u) · d(u)
n

]

=
∑

u∈S

d(u)2

n
.

Hence, by picking v ∈ V such that D(N1(v) ∩ S) is maximized,

D(N1(v) ∩ S) ≥
∑

u∈S

d(u)2

n

(∗)

≥
(
∑

u∈S d(u)
)2

n|S| =
D(S)2

n|S| ,

where (∗) follows by the Cauchy-Schwarz inequality. Let Ni = Ni(v) ∩ S. Note N1, ..., Nr are
all independent sets. Indeed, if some Ni for 1 ≤ i ≤ r contained an edge e = (v1, v2), then

v → · · · → v1
e→ v2 → · · · → v is an odd walk of length 2i + 1 and thus contains an odd cycle of

length at most 2r + 1. This contradicts G having odd girth larger than 2r + 1.
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We next study the growth of D(Ni). If D(N2) < xD(N1), then

D(N(N1) ∩ S) ≤ |N1|+D(N2) < |N1|+ xD(N1) ≤ (x+ 1)D(N1),

which implies that

D(N1) >
D(N(N1) ∩ S)

x+ 1
,

so we can take B = N1 to satisfy the lemma. Else, for i = 2, ..., r − 1, if D(Nj) ≥ xD(Nj−1), for
all 2 ≤ j < i, and D(Ni) < xD(Ni−1), we similarly find that

D(N(Ni) ∩ S) ≤ D(Ni−1) +D(Ni+1) <
D(Ni)

x
+ xD(Ni),

and hence

D(Ni) >
D(N(Ni) ∩ S)

x+ 1/x
≥ D(N(Ni) ∩ S)

x+ 1
,

so we can take B = Ni to satisfy the lemma. If none of N1, . . . , Nr−1 satisfy the conditions of the
lemma statement as a subset B ⊂ S, then

D(Nr) ≥ xr−1D(S)2

|S|n =
D(S)

x
.

This implies that we can pick B = Nr = Nr(v) ∩ S to satisfy the lemma. �

We can use this lemma to establish a more helpful result in the same direction.

Lemma 3.4. Let G = (V,E) be a graph of odd girth larger than 2r + 1 and S ⊂ V . There exists

an independent set A ⊂ S such that D(A) ≥ D(S)/8x.

Proof. We use Lemma 3.3 to pull out independent sets one at a time. By deleting their neighbor-
hoods and repeating, we construct a large independent set A which is the union of these independent
sets and show that A has the desired properties.

Let V1 = V and S1 = S. We apply Lemma 3.3 to obtain an independent set B1 ⊂ S1 such that

D(B1) ≥
D(N(B1) ∩ S1)

x1 + 1
, x1 =

( |S1|n
D(S1)

)1/r

.

We repeatedly apply Lemma 3.3 to G[Vi] and Si, letting

Vi = Vi−1\(Bi−1 ∪N(Bi−1)), Si = Si−1 ∩ Vi.

At each iteration, we obtain an independent set Bi ⊂ Si such that

D(Bi) ≥
D(N(Bi) ∩ Si)

xi + 1
, xi =

( |Si|n
D(Si)

)1/r

.

By construction, by step i we have deleted Bi−1 and its neighbor set N(Bi−1), so
⋃

j<iBj is

an independent set. We continue the construction described above as long as D(Si) ≥ D(S)/2.
Suppose we construct s independent sets in total through this process. Then D(Ss) < D(S)/2, but
D(Si) ≥ D(S)/2 for i < s. Let A =

⋃s
i=1Bi be the resulting large independent set. We can bound

xi =

( |Si|n
D(Si)

)1/r

≤
( |S|n
D(Si)

)1/r

≤
( |S|n
D(S)/2

)1/r

≤ 21/rx.

From above, we have

D(Bi) ≥
D(N(Bi) ∩ Si)

xi + 1

(∗)

≥ D(N(Bi) ∩ Si) +D(Bi)

xi + 2
≥ D(N(Bi) ∩ Si) +D(Bi)

2x+ 2
.
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where (∗) follows since D(Bi) ≥ D(Bi)/1 and if x ≥ a/b, c/d then x ≥ (a+ c)/(b+ d). This allows
us to bound D(A) as

(3.1) D(A) =
s

∑

i=1

D(Bi) ≥
s

∑

i=1

D(N(Bi) ∩ Si) +D(Bi)

2x+ 2
=

D(A) +D(N(A) ∩ S)

2x+ 2
,

where the last equality follows since A is the union of the disjoint sets B1, . . . , Bs, N(A) ∩ S is the
union of the disjoint sets N(B1) ∩ S1, . . . , N(Bs) ∩ Ss, and D is additive on the union of disjoint
sets. Further,

D(S) = D(A) +D(N(A) ∩ S) +D(S\(A ∪N(A)))

= D(A) +D(N(A) ∩ S) +D(Ss),

and, as D(Ss) < D(S)/2,

(3.2) D(A) +D(N(A) ∩ S) ≥ D(S)

2
.

Combining (3.1) and (3.2) gives the desired bound: D(A) ≥ D(S)/(4x + 4) ≥ D(S)/8x. �

We next use this lemma to obtain an upper bound on h(G, k) for graphs G with no short odd
cycles.

Proof of Theorem 1.2. We iteratively apply Lemma 3.4 to obtain k disjoint independent sets which
are each incident to many edges. Let S1 = V , and let A1 be a subset of S1 with the properties
guaranteed by Lemma 3.4. Proceed for k iterations, letting Si = V \⋃i−1

j=1Aj , to obtain Ai ⊂ Si

per Lemma 3.4 with large D(Ai). By construction, Sk+1 = V \⋃k
i=1Ai, the sets A1, ..., Ak are

independent, and for each Ai,

D(Ai) ≥
D(Si)

8xi
, xi =

(

n|Si|
D(Si)

)
1
r

.

By Lemma 2.7, we can assign each v ∈ Sk+1 to one of the Ai and can make the graph k-partite
by deleting the at most D(Sk+1)/k edges in parts.

By construction, we have the recursive upper bound

D(Si+1) = D(Si)−D(Ai) ≤
(

1− 1

8xi

)

D(Si).

Let δi :=
D(Si)
n2 . Since |Si| ≤ n, the above relation yields the recursive inequality

(3.3) δi+1 ≤ δi

(

1− 1

8
δ
1/r
i

)

.

Inequality (3.3) implies that if δl > ε/2 for some ε > 0, then

δl+1 − δl <
−δl
8

(ε

2

)1/r
.

If δi ≤ ε ≤ 1 and δj > ε/2 for j > i, then

δj − δi =

j
∑

l=i

(δl+1 − δl) <

j
∑

l=i

−δl
8

(ε

2

)1/r
<

(i− j)δi
16

(ε

2

)1/r
.

Thus, for j − i ≥ 8 (2/ε)1/r ,

δj − δi ≤
−8 (2/ε)1/r δi

16

(ε

2

)1/r
=

−δi
2

,
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which yields δj ≤ δi/2 ≤ ε/2.

Note that δ1 ≤ 1. Let

u =

⌊

r log2

(

k ln 2

32r

)⌋

− 1.

We show that δk+1 ≤ 1/2u. If u < 0, then we have δk+1 ≤ δ1 ≤ 1 ≤ 1/2u. So we can suppose that
u ≥ 0. Using the above bound on the decay of δi, letting ε = 2−i for i = 0, 1, ..., u− 1, we note that

δj ≤ 1/2u for j := 8
∑u−1

i=0

⌈

(

2
2−i

)1/r
⌉

, since

j = 8

u−1
∑

i=0

⌈

(

2

2−i

)1/r
⌉

= 16

u−1
∑

i=0

(

21/r
)i+1

= 16 · 21/r ·

(

2(u+1)/r
− 1

21/r − 1

)

(∗)
<

32(2(u+1)/r)

(ln 2)/r
≤

32r
(

ln 2
32r

· k
)

ln 2
< k + 1,

where (∗) follows since ex ≥ 1 + x for all x (so 21/r − 1 = eln 2/r − 1 > ln 2/r). For this choice of u
we have that

δk+1 ≤
1

2u
≤ 21−⌊r log2( ln 2

8r
k)⌋ ≤ 4

(

k ln 2

8r

)−r

=
4
(

8r
ln 2

)r

kr
.

This gives the desired bound on h(G, k) with cr = 4 (8r/ ln 2)r:

h(G, k) ≤ D(Sk+1)

k
≤ δk+1n

2

k
≤ crn

2

kr+1
<

4 (12r)r n2

kr+1
.

�

Theorem 1.2 gives a bound on h(G, k) when G has odd girth larger than 2r + 1, which, as we
show in the next subsection, is tight up to a factor depending only on r. Our goal is to understand
a less constrained family of graphs, those with a single fixed forbidden odd cycle. To do this, the
following lemma shows that if a graph has a forbidden odd cycle C2r+1, then we can delete a small
number of edges to get rid of the next shorter odd cycles.

Lemma 3.5. If a graph G = (V,E) on n vertices is C2r+1-free, then G can be made to have odd

girth larger than 2r + 1 by removing Or(n
3/2) edges.

Proof. For each odd integer 1 < ℓ < 2r + 1, fix a maximal collection Cℓ of edge-disjoint copies of
Cℓ in G. Suppose we have tℓ such copies. To remove all copies of Cℓ from G, we must delete at
least tℓ edges (at least one edge in each edge-disjoint Cℓ). If we delete all ℓtℓ edges in these cycles,
the resulting graph is Cℓ-free. Thus, the minimum number of edges to delete to make the graph
Cℓ-free is within a factor ℓ of the size of any maximal collection of edge-disjoint copies of Cℓ.

Consider a random subset U ⊂ V formed by including each element with probability p = 1/ℓ
independently of the other vertices. Call an edge of a cycle in Cℓ special if both of its vertices are
in U and no other vertex of the cycle is in U . The probability that a given edge of a cycle in Cℓ is
special is p2(1−p)ℓ−2 > 1/(eℓ2). Hence, by linearity of expectation, the expected number of special
edges is at least ℓtℓ/(eℓ

2) = tℓ/(eℓ). So we can fix a subset U with at least tℓ/(eℓ) special edges.
Let 2d := 2r + 3 − ℓ, so d ∈ [2, r] is an integer as ℓ is odd. As the graph G is C2r+1-free, there

is no cycle of length 2d of special edges. Indeed, suppose there is a cycle C ′ of length 2d of special
edges, and let e be an edge of this cycle. Edge e is by definition in a cycle C ′′ of length ℓ with none
of its other vertices in U . So gluing together C ′ and C ′′ and deleting the common edge e, we obtain
a cycle of length (2r + 3− ℓ) + ℓ− 2 = 2r + 1, contradicting the assumption that G is C2r+1-free.

Recall that the extremal number ex(n,H) is the maximum number of edges an H-free graph on
n vertices can have. So the number of special edges is at most

ex(|U |, C2d) ≤ ex(n,C2d) ≤ 8(d − 1)n1+1/d,
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where the last bound is due to Verstraëte [46]2. Hence, tℓ/(eℓ) ≤ 8(d − 1)n1+1/d, or equivalently,

ℓtℓ ≤ ℓ2e8(d − 1)n1+1/d. So the number of edges we can delete from G to make the resulting
subgraph have odd girth larger than 2r + 1 is at most

∑

3≤ℓ≤2r−1, ℓ odd

ℓtℓ ≤
r

∑

d=2

ℓ2e8(d − 1)n1+1/d ≤
r

∑

d=2

32er2dn1+1/d ≤ 100r4n3/2.

�

From Lemma 3.5 and Theorem 1.2, we immediately obtain Theorem 1.3.
We remark that Conlon, Fox, Sudakov, and Zhao [16] recently improved the bound in Lemma

3.5 for r = 2 to o(n3/2).

3.2. Lower bounds for odd cycles. In this subsection, we give a construction which shows that
Theorem 1.3 is tight for sufficiently large n to within a factor only depending on the length of the
forbidden odd cycle. The construction is based on a construction of Alon [2] (see the discussions
in [8] and [37]) of a rather dense pseudorandom graph of large odd girth.

Definition 3.6. An (n, d, λ)-graph is a d-regular graph G on n vertices such that the second largest
in absolute value eigenvalue has magnitude at most λ.

To discuss the properties of this construction, we first recall the expander mixing lemma, a
classical result in spectral graph theory. An early version is due to Alon and Chung [5].

Lemma 3.7 (Expander Mixing Lemma). If G = (V,E) is an (n, d, λ)-graph and A,B ⊂ V , then
∣

∣

∣

∣

e(A,B)− d

n
|A||B|

∣

∣

∣

∣

≤ λ
√

|A||B|.

Note that if a graph G on n ≤ n′ vertices is H-free and no graph in H has isolated vertices, by
adding n′−n dummy vertices we can obtain a graph G′ on n′ vertices, where h(n′, k,H) ≥ h(G, k).
Since this holds for all such G on n vertices, we have the following observation, which will be
relevant to our future discussion of blow-ups of a fixed graph.

Proposition 3.8. Given a family of graphs H, if no graph in H has isolated vertices and n′ ≥ n,
then

h(n′, k,H) ≥ h(n, k,H).

The results which follow proceed towards the goal of showing that h(n, k,C2r+1) = Ωr(n
2/kr+1).

We first note that for arbitrary G = (V,E), we can compute h(G[t], k) in terms of h(G, k), where
G[t] is the t-blow-up of G, the graph on t|V | vertices given by the lexicographic product of G with
an empty graph on t vertices.

Lemma 3.9. Let G[t] be the t-blow-up of G = (V,E). Then,

h(G[t], k) = t2h(G, k).

Proof. By taking the blow-up of any vertex partition of G into k parts, we see that

h(G[t], k) ≤ t2h(G, k).

To complete the proof, we next show the reverse inequality. Consider a vertex partition P of G[t]
into k parts. Consider a copy of G in G[t] with exactly one vertex in each of the |V | parts of order t.
Each such copy has at least h(G, k) of its edges inside parts of P . The number of such copies of G

is t|V | and each edge of G[t] is in exactly t|V |−2 such copies of G. Thus, at least h(G, k)t|V |/t|V |−2 =
t2h(G, k) edges of G must be inside parts of P . Hence, h(G[t], k) ≥ t2h(G, k). �

2There is a long history of bounding the extremal number of even cycles, including by Erdős [20], Bondy and
Simonovits [13], and most recently improvements by Pikhurkho [40] and further by Bukh and Jiang [14].
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It will be helpful to introduce the following definition.

Definition 3.10. A family H of graphs is closed under homomorphism if for any H ∈ H and graph
homomorphism φ : H → H ′, graph H ′ is in H.

We want to establish a result similar to Lemma 3.8 for t-blow-ups.

Lemma 3.11. If H is closed under homomorphism and t is a positive integer, then

h(tn, k,H) ≥ t2h(n, k,H).

Proof. Consider a graph G on n vertices which is H-free. Its t-blow-up G[t] is also H-free. Hence,
h(G[t], k) ≤ h(tn, k,H). Furthermore, by Lemma 3.9, we see that h(G[t], k) = t2h(G, k) and
therefore t2h(G, k) ≤ h(tn, k,H) holds for any H-free graph G. By taking the maximum over the
left hand side of this inequality, we obtain the desired inequality. �

We use the following result, extending Alon’s construction of a pseudorandom triangle-free graph
which is as dense as possible to one of large odd girth [8, 37].

Lemma 3.12 (§3, [8]). For each positive integer r there is cr such that the following holds. For

every integer a ≥ 2 and N = 2(2r+1)a, there is an (N, d, λ)-graph G of odd girth larger than 2r + 1

such that d ≥ 1
8N

2/(2r+1) and λ ≤ cr
√
d.

We use this lemma to get a lower bound on h(n, k,H) with H = {C3, C5, . . . , C2r+1}.
Proof of Theorem 1.4. Let a = ⌈log2(2crk)⌉, where cr is chosen as in Lemma 3.12, and N =

2(2r+1)a. By Lemma 3.12, there is a (N, d, λ)-graph H with d ≥ 1
8N

2/(2r+1) and λ ≤ cr
√
d. For

n ≥ N , let t = ⌊n/N⌋ and let n0 = Nt, so n0 ≤ n. Let G = H[t] be the balanced t-blow up of H,
so |V (G)| = n0. Since H has odd girth larger than 2r+1, G also has odd girth larger than 2r+1.
Let H = {C3, C5, . . . , C2r+1}. By Proposition 3.8 and Lemma 3.9, we have

h(n, k,H) ≥ h(n0, k,H) ≥ h(G, k) = h(H[t], k) = t2h(H, k).

We give a lower bound on h(H, k) which implies the desired lower bound on h(n, k,H). Consider

a k-partition V (H) = V1 ⊔ · · · ⊔ Vk that minimizes
∑k

i=1 e(Vi), which is the minimum number of
edges to delete from H to obtain a k-colorable subgraph. By Lemma 3.7, we have

2

k
∑

i=1

e(Vi) =

k
∑

i=1

e(Vi, Vi) ≥
k

∑

i=1

(

d

N
|Vi|2 − λ|Vi|

)

=
d

N

k
∑

i=1

|Vi|2 − λN
(∗)

≥ dN

k
− λN

(∗∗)

≥ dN

2k

≥ Ωr

(

N2/kr+1
)

.

Here (∗) follows by convexity of f(x) = x2 and (∗∗) follows from λ ≤ cr
√
d ≤ d

2k , which in turn

follows from N ≥ (2crk)
2r+1 and d ≥ 1

8N
2/(2r+1). Hence, h(n, k,H) ≥ t2h(H, k) = Ωr

(

n2/kr+1
)

,
which completes the proof. �

We can strengthen Theorem 1.4 when H is a triangle. Guo and Warnke [33] show the existence
of triangle-free graphs with discrepancy like random graphs by using a semi-random variant of the
triangle-free process (studied in [10]).

Theorem 3.13 (Theorem 4, [33]). There exist β0,D0 > 0 such that for all γ, δ ∈ (0, 1], β ∈ (0, β0)

and C ≥ D0/(δ
2
√
Bγ), the following holds for all n ≥ n0(γ, δ, β, C) with ρ :=

√

β log n/n: for any

n-vertex graph G′, there exists a triangle-free subgraph G ⊂ G′ on the same vertex set such that

eG(A,B) = (1± δ)ρeG′(A,B)

for all vertex-sets A,B ⊂ V (G′) with |A| = |B| = ⌈C
√
n log n⌉ and e′G(A,B) ≥ γ|A||B|.

This yields an improved lower bound on h(n, k,C3).
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Proposition 3.14. There exists an absolute constant c such that for all n ≥ ck2 log k, there exists

a triangle-free graph Γ on n vertices with h(Γ, k) = Ω(n2/k2).

Proof. We apply Theorem 3.13 with G′ = KN , γ = 1, and δ = 1/2. This yields a triangle-free
graph G ⊂ KN such that for A ⊂ V with |A| = ⌈C

√
N logN⌉, we have that

eG(A) ≥
1

2

√

β log n/N · |A|2,

i.e. G resembles a random graph with edge probability Θ(
√

logN/N ) and α(G) ≤ 2⌈C
√
N logN⌉.

We choose N = ck2 log k for sufficiently large absolute constant c. Any k-partition of G as above

has relatively dense parts. Precisely, we have at least 1
4

√

β logN/N · N2

k edges internal to any
k-partition. Then, taking a balanced blowup of G (in which each part has either ⌊n/N⌋ or ⌈n/N⌉
vertices) gives by Lemma 3.9 a triangle-free graph Γ on n vertices with h(Γ, k) = Ω(n2/k2). �

Note that Proposition 3.14 is essentially best possible. This follows from the construction of
Kim [35], refined by Fiz Pontiveros, Griffiths and Morris [41] of triangle-free graphs on at most
(4 + o(1))k2 log k vertices with chromatic number at most k.

4. Applications to Other Forbidden Subgraphs

So far, we have only proved bounds on h(n, k,H) when H is an odd cycle or clique. In this
section, we obtain bounds for a broader class of graphs H. In particular, we prove that if H ′ is a
subgraph of a fixed graph H, and H has a homomorphism to H ′, then h(n, k,H) is within o(n2)
of h(n, k,H ′).

4.1. Graph Homomorphisms. To obtain these results, we use the graph removal lemma, which
first appeared in [6, 31]. It extends the triangle removal lemma of Ruzsa and Szemerédi (see the
survey [15] for details).

Theorem 4.1 (Graph removal lemma). For any graph H on h vertices and any ε > 0, there exists

δ > 0 such that any graph on n vertices that contains at most δnh copies of H can be made H-free

by removing at most εn2 edges.

Recall that a homomorphism from a graph H to a graph H ′ is a (not necessarily injective) map
ρ : V (H) → V (H ′) that maps edges of H to edges of H ′. We also use the following lemma of Erdős.

Lemma 4.2 ( [21]). For δ > 0, r ≥ 2, t ≥ 1, and sufficiently large n, every r-uniform hypergraph

Γ on n vertices with at least δnr edges contains a complete r-partite, r-uniform subhypergraph with

parts of order t.

Theorem 4.3. Suppose H and H′ are fixed finite families of graphs such that for each H ′ ∈ H′,

there is some H ∈ H such that H has a homomorphism to H ′. If k is a fixed positive integer, then

h(n, k,H) ≤ h(n, k,H′) + o(n2).

Proof. Let H ′ be a graph in H′ and H be some graph in H for which H ′ has a homomorphism to
H. Let r denote the number of vertices of H ′, and t denote the number of vertices of H. Label
the vertices of H ′ as {1, . . . , r}. Fix any ε > 0 and let δ > 0 be as in the graph removal lemma for
H ′. Let G be an H-free graph on n vertices. Consider the r-uniform r-partite hypergraph X with
parts V1, . . . , Vr with each Vi a copy of V (G), and (v1, v2, . . . , vr) ∈ V1 × V2 × · · · × Vr is an edge of
X if there is a copy of H ′ with vi a copy of i for i ∈ {1, . . . , r}.

If there are at least δnr copies of H ′ in G, then X contains at least δnr = δt−r|V (X)|r edges. As
we may assume n is sufficiently large, Lemma 4.2 implies that X contains a copy of the complete r-
partite r-uniform hypergraph with parts of order t. As H has a homomorphism to H ′, we can then
find a copy of H with vertices among the vertices of the copy of the complete r-partite r-uniform
hypergraph with parts of order t, contradicting that G is H-free.
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So we may suppose G has less than δnr copies of H ′. By the graph removal lemma applied to
H ′, we can remove εn2 edges from G to make it H ′-free. We can do this edge removal for each
H ′ ∈ H′ to make the graph H′-free. We can then remove an additional h(n, k,H′) edges to make
it k-partite. We have thus obtained the desired upper bound on h(n, k,H). �

We have the following immediate corollary by taking H and H′ to each consist of a single graph.

Corollary 4.4. If H and H ′ are fixed graphs for which H has a homomorphism to H ′ and k is a

fixed positive integer, then h(n, k,H) ≤ h(n, k,H ′) + o(n2).

In the special case that H is not bipartite, H and k are fixed, and H ′ is a subgraph of H, we get
that these parameters are asymptotically equal, as in Theorem 1.6.

Proof of Theorem 1.6. The upper bound follows from Corollary 4.4. As H ′ is a subgraph of H,
then any H ′-free graph is also H-free, and hence h(n, k,H) ≤ h(n, k,H ′). �

Remark 4.5. Note that Theorem 1.6 immediately implies a weaker version of Theorem 1.3, namely
that for H′ = {C3, C5, . . . C2r−1, C2r+1},

h(n, k,C2r+1) = h(n, k,H′) + or(n
2).

As another example, let K2,2,2 be the complete tripartite graph on six vertices with two vertices
in each part. From Theorems 4.3 and 1.6, we have

h(n, k,K3) ≤ h(n, k,K2,2,2) ≤ h(n, k,K3) + o(n2).

Consequently, although we don’t know for any fixed k ≥ 2 the asymptotic value of h(n, k,K3) or
h(n, k,K2,2,2), we know that they are asymptotically the same.

4.2. Forbidding a wheel. Recall that the wheel Wl is the graph of l + 1 vertices consisting of
an l-cycle and an additional vertex adjacent to all of the vertices of the l-cycle. The above results
on graph homomorphisms allow us to bound how many edges we need to delete to make a Wl-free
graph on n vertices k-colorable. We first get an asymptotic answer for even wheels Wl (when l
is even). Since the wheel Wl has a triangle, and with l even is 3-colorable, we have the following
corollary of Corollary 1.6 and Theorems 1.1 and 1.4.

Proposition 4.6. Fix integers r ≥ 2, k ≥ 1. Then, h(n, k,K3) ≤ h(n, k,W2r) ≤ h(n, k,K3)+o(n2).
In particular, for n sufficiently large, we have h(n, k,W2r) = Θ(n2/k2).

We suspect h(n, k,Wl) depends significantly on the parity of l, and this is related to odd wheels
not being 3-colorable. The following proposition makes an initial observation for odd wheels.

Proposition 4.7. There are positive constants c1, c2 > 0 such that the following holds. For fixed

positive integers r, k and every sufficiently large positive integer n, we have

c1
n2

k2
≤ h(n, k,W2r+1) ≤ c2

n2

k3/2
.

Proof. AsK3 is a subgraph ofW2r+1, which in turn is a subgraph ofK2r+2, we have h(n, k,W2r+1) ≥
h(n, k,K3) ≥ c1

n2

k2
for a positive constant c1, where the last bound is from Theorem 1.4 when r = 1.

For the upper bound, we observe that W2r+1 is 4-colorable as C2r+1 is 3-colorable, and hence W2r+1

has a homomorphism to K4. It follows from Theorems 4.3 and 1.1 and n is sufficiently larger that

h(n, k,W2r+1) ≤ h(n, k,K4) + o(n2) ≤ c2
n2

k3/2
. �

Note that the lower and upper bounds are rather far apart, and the above result does not give
an indication of which of the two bounds h(n, k,W2r+1) is closer to. We obtain Theorem 1.5
by a careful analysis that combines the methods used to give upper bounds on h(n, k,Kr) and
h(n, k,C2r+1). This gives a much better upper bound on h(n, k,W2r+1) which we conjecture to be
tight up to a constant factor depending only on r.
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Proof of Theorem 1.5. Let ℓ be the largest integer at most k which is twice a perfect (r+1)-power.

We have k ≤ 2r+2ℓ. Let s = (ℓ/2)1/(r+1) and t = ℓ/(2s), so s and t are integers and ℓ = 2st.
Let H = W2r+1 and v be the vertex of the wheel W2r+1 of degree 2r + 1, so Hv = C2r+1. By
Lemma 2.13 and Theorem 1.3, we have

h(n, k,W2r+1) ≤
2n2

est2
+ t · h

(

2n

t
, s, C2r+1

)

≤ 2n2

est2
+ t · βr ·

(2n/t)2

sr+1

=

(

2

e
+ 4βr

)

n2

(ℓ/2)2−1/(r+1)

≤ 22r+6

(

2

e
+ 4βr

)

n2

k2−1/(r+1)
,

where βr only depends on r. Letting cr = 22r+6
(

2
e + 4βr

)

completes the proof. �

5. From Max-k-Cuts to Max-l-Cuts

Note that h(G, k) and Max-k-Cut(G) are related through the identity

h(G, k) = e(G)−Max-k-Cut(G).

Consequently, the results proved in the previous section on h(n, k,C2r+1) yield bounds onMax-Cut(G)
for C2r+1-free graphs G, and on Max-l-Cut(G) for l > 2. We can also relate Max-l-Cut(G) to h(G, k)
for l < k.

Definition 5.1. For G = (V,E), let

dl(G) =
Max-l-Cut(G)

|E| ,

be the fraction of edges of G that can cross an optimal l-cut of G.

In particular, for a graph G on m edges, we have that d2(G)m = Max-Cut(G). We can bound
dl(G) in terms of dk(G) for k ≥ l.

Proposition 5.2. For G = (V,E) and positive integers l ≤ k, dl(G) ≥ dl(Kk)dk(G).

Proof. For G = (V,E) with |V | = n, |E| = m, fix a k-partition V = V1⊔· · ·⊔Vk with Max-k-Cut(G)
edges between parts. Choose a random, equitable partition of the set {1, . . . , k} into l parts
S1, . . . , Sl (so each part has size either ⌊k/l⌋ or ⌈k/l⌉). Let Wi =

⋃

j∈Si
Vj for i = 1, . . . , l. Then

V = W1 ⊔ · · · ⊔Wl is an l-partition of V .
We count the expected fraction of edges internal to the l-cut V = W1⊔ · · · ⊔Wl. Any edge e ∈ E

internal to some Vj will remain internal in the l-cut, and a fraction 1 − dk(G) of the edges are of
this form. All other edges e ∈ E have endpoints in Vj1 , Vj2 for j1 6= j2. The probability that e
is internal in the l-cut is the probability that Vj1 , Vj2 ∈ Wi for some single part of the l-partition,
which is 1− dl(Kk). Thus, the expected fraction of edges internal to the l-cut W1, . . . ,Wl is

(1− dl(Kk))dk(G) + (1− dk(G)) = 1− dl(Kk)dk(G).

This gives the desired bound. �

By considering a uniformly random partition of a graph G, we have the bound

Max-l-Cut(G) ≥ l − 1

l
· e(G).
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Definition 5.3. The surplus of the Max-l-Cut of a graph G is given by

π(l, G) := Max-l-Cut(G)−
(

1− 1

l

)

e(G).

The surplus of a graph G is the surplus of the Max-2-Cut of G.

The surplus measures how much larger the Max-l-Cut is above the random bound. We are often
interested in how large can we show the surplus is for graphs with certain properties. We recall a
standard method for giving a lower bound on the Max-l-Cut(G) in terms of the Max-l-Cut of smaller
induced subgraphs of G.

Lemma 5.4. Given G = (V,E) and a vertex k-partition V = V1 ⊔ · · · ⊔ Vk, then

π(l, G) ≥
k

∑

i=1

π(l, G[Vi])

Proof. For each i, fix an l-partition Vi = Wi1 ⊔ · · · ⊔ Wil such that the number of edges between
different Wij is Max-l-Cut(G[Vi]). From this, we construct an l-cut of V = U1 ⊔ · · · ⊔ Ul. For each
i, fix a random permutation σ ∈ Sl and assign Wij to Uσ(j). Note that the Max-l-Cut(G) is at
least the expected size of this random l-cut. In this process, all edges not contained in G[Vi] for
some i have endpoints randomly assigned and thus cross the resulting cut with probability 1− 1/l.
Therefore,

Max-l-Cut(G) ≥
(

1− 1

l

)

(

e(G)−
k

∑

i=1

e(G[Vi])

)

+
k

∑

i=1

Max-l-Cut(G[Vi]).

Since Max-l-Cut(G[Vi]) = (1 − 1/l)e(G[Vi]) + π(l, G[Vi]), the above inequality implies the desired
result. �

6. Max-Cut in graphs with a forbidden odd cycle

We leverage the previous results to prove the following lower bound on Max-Cut for C2r+1-free
graphs. This bound will be helpful to apply to graphs which are reasonably dense.

Lemma 6.1. For any positive integer r, there exists c = c(r) > 0 such that the following holds. If

G is a C2r+1-free graph with n vertices and m edges, then

Max-Cut(G) ≥ m

2
+ Ωr((m/n2)1/rm).

Proof. Let k be the smallest even integer that is at least (2crn
2/m)1/r, where cr is the implicit

constant in Theorem 1.3. In particular, crn
2/kr+1 ≤ m/(2k). Let m0 be the number of edges

we delete from G to get a k-partite graph, so dk(G)m = m − m0. By Theorem 1.3, we have
m0 ≤ crn

2/kr+1. Note as k is even,

d2(Kk) =
(k/2)2
(k
2

) =
k

2(k − 1)
=

1

2

(

1 +
1

k − 1

)

,

which is realized by assigning k/2 vertices to each of 2 parts arbitrarily. By Proposition 5.2, we
obtain that

Max-Cut(G) = d2(G)m ≥ d2(Kk)dk(G)m = d2(Kk)d2(Kk)(m−m0)

≥ 1

2

(

1 +
1

k − 1

)(

m− cr
n2

kr+1

)

≥ 1

2

(

1 +
1

k − 1

)

(

m− m

2k

)

=
m

2
+

m

4(k − 1)
.

This last inequality gives the desired bound. �
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We will be able to show another lower bound on Max-Cut(G) for graphs G = (V,E), using the
following result of Alon, Krivelevich, and Sudakov.

Lemma 6.2 (Lemma 3.3 [9]). There is an absolute positive constant ǫ such that for every positive

constant M , there is a α = α(M) > 0 with the following property. If G = (V,E) is a graph with

m edges such that the induced subgraph on any set of N ≥ M vertices all of which have a common

neighbor contains at most ǫN3/2 edges, then

Max-Cut (G) ≥ m

2
+ α

∑

v∈V

√

d(v).

In particular, this condition holds for graphs with a small forbidden cycle.

Corollary 6.3. For every positive integer k there is α = α(k) > 0 such that if G = (V,E) is a

Ck-free graph, then

Max-Cut(G) ≥ m

2
+ α

∑

v∈V

√

d(v).

Proof. Let M = M(k) = ǫ−2k2, where ǫ > 0 is the absolute constant from Lemma 6.2. Let
G′ = (V ′, E′) be an induced subgraph of G with |V ′| = N ≥ M and V ′ ⊂ N(v) for some v ∈ V . It

suffices to show that |E′| ≤ ǫN3/2. Since G is Ck-free, G
′ is Pk−1-free. Hence,

|E′| ≤ ex(N,Pk−1) < Nk/2 < ǫN3/2,

where the middle inequality is due to Erdős and Gallai [27]. �

We leverage these results to give an improved upper bound on the Max-Cut of a C2r+1-free graph
on m edges.

Proof of Theorem 1.7. Let k = 2r + 1 with r a positive integer and observe that (k + 5)/(k + 7) =
1 − 1/(r + 4). Let G = (V,E) be a C2r+1-free graph with m edges. Let U ⊂ V be the set of

vertices of degree at least m2/(r+4). As the sum of the degrees of vertices in G is 2m, we have
|U | ≤ (2m)/m2/(r+4) = 2m1−2/(r+4).

If the induced subgraph G[U ] contains at least m/2 edges, then applying Lemma 6.1 to G[U ], we

obtain that the surplus of G[U ] is Ωr((m/|U |2)1/rm), which is at least Ωr(m
1−1/(r+4)). Lemma 5.4

implies that the surplus of a graph as it least the surplus of any induced subgraph. Hence, the
surplus of G is also Ωr(m

1−1/(r+4)).
Otherwise, the induced subgraph G[U ] has less than m/2 edges, and so

∑

v∈V \U d(v) ≥ m/2. By

Corollary 6.3, the surplus of G is, for some positive constant cr, at least

cr
∑

v∈V

√

d(v) ≥ cr
∑

v∈V \U

√

d(v) ≥ cr
m/2

m2/(r+4)

√

m2/(r+4) = Ωr(m
1−1/(r+4)),

where the last inequality uses concavity of the function f(x) = x1/2 and that d(v) < m2/(r+4) for
all v ∈ V \ U . �

7. Concluding Remarks

Theorems 1.3 and 1.4 together determine h(n, k,C2r+1) up to a constant factor depending only
on r for sufficiently large n. The lower bound in Theorem 1.4 relies on the construction of Alon of a
relatively dense pseudorandom C2r+1-free graph as in Theorem 3.12. A corresponding pseudoran-
dom graph construction of Kr-free graphs does not exist apart from the case r = 3 (as K3 = C3).
However, it is conjectured that such a graph exists. If so, the proof would carry over and we would
obtain the following conjecture, which would show that Theorem 1.1 is tight up to a constant
function of r for sufficiently large n.

Conjecture 7.1. If r ≥ 3 and n ≫ k, then h(n, k,Kr) = Ωr

(

n2/k(r−1)/(r−2)
)

.
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It is known that other interesting results would follow from knowing the existence of such pseu-
dorandom Kr-free graphs, including giving nearly tight bounds for off-diagonal Ramsey numbers
(see [34,39]).

It would also be interesting to get better bounds on the Max-Cut of H-free graphs for other
forbidden subgraphs H. The methods of Sections 5 and 6 can be used to obtain improved bounds
for some other H, like odd wheels.
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