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WHICH GRAPHS CAN BE COUNTED IN C,-FREE GRAPHS?

DAVID CONLON, JACOB FOX, BENNY SUDAKOV, AND YUFEI ZHAO

ABSTRACT. For which graphs F' is there a sparse F-counting lemma in Cy-free graphs? We are
interested in identifying graphs I’ with the property that, roughly speaking, if G is an n-vertex Cy-
free graph with on the order of n®/? edges, then the density of F in G, after a suitable normalization,
is approximately at least the density of F' in an e-regular approximation of G. In recent work,
motivated by applications in extremal and additive combinatorics, we showed that C5 has this
property. Here we construct a family of graphs with the property.

1. INTRODUCTION

When applying the regularity method in extremal graph theory, proofs can often be divided into
two steps: first applying Szemerédi’s regularity lemma to partition a large graph so that most pairs
of parts are regular and then using a counting (or embedding) lemma to find copies of a particular
subgraph in this regular partition. For dense graphs, these steps are generally well-behaved and
essentially completely understood. For sparse graphs, however, both steps can break down without
additional hypotheses. Here we will focus on the second step of finding appropriate counting lemmas
in the sparse regime, since the regularity step is now reasonably well understood [14, 22] (although
difficulties in maintaining the so-called no-dense-spots condition can arise even here).

Similar issues arise in the study of quasirandom graphs, a fundamental theme developed and
popularized by Chung, Graham and Wilson [4], building on earlier work of Thomason [23]. In
their work, they showed, somewhat surprisingly, that several distinct notions of quasirandomness
in dense graphs are essentially equivalent. In particular, in an n-vertex graph G with edge density
p, where p is a fixed constant, having Cj-density p* + o(1) is equivalent to a certain discrepancy
condition and this in turn implies that the F-density in G is pl®U)l 4 o(1) for all fixed graphs F.
However, as already observed by Chung and Graham in [5], these equivalences do not automatically
carry over to graphs with o(n?) edges without additional assumptions. Indeed, even rather modest
variants of the Chung-Graham-Wilson equivalences can fail to hold [20]. One viewpoint on our
work here is that some aspect of the Chung—Graham—Wilson equivalences may be recovered if we
assume that our graph is Cy-free.

Previous work on developing counting lemmas for sparse graphs has largely focused on con-
trolling relatively dense subgraphs of sparse random or pseudorandom graphs. For instance, a
counting lemma in sparse random graphs was proved by Conlon, Gowers, Samotij, and Schacht [6]
in connection with the celebrated KLR conjecture [15] (see also [2, 21]), while a counting lemma
in sparse pseudorandom graphs was proved by Conlon, Fox, and Zhao [8] and later extended to
hypergraphs [10], allowing them to simplify the proof of the Green—Tao theorem [13] (see also [9]
for a detailed exposition incorporating many further simplifications of the original proof).

In recent work [7], motivated by applications in extremal and additive combinatorics, we pursued
the study of sparse regularity in a very different setting, without any explicit pseudorandomness
hypothesis. Instead, the only hypothesis on the host graph was that it be Cy-free. Under this

Conlon is supported by NSF Award DMS-2054452.
Fox is supported by a Packard Fellowship and by NSF Award DMS-1855635.
Sudakov is supported in part by SNSF grant 200021_196965.
Zhao is supported by NSF Award DMS-1764176, the MIT Solomon Buchsbaum Fund, and a Sloan Research
Fellowship.
1


http://arxiv.org/abs/2106.03261v1

2 DAVID CONLON, JACOB FOX, BENNY SUDAKOV, AND YUFEI ZHAO

assumption, we proved a Cs-counting lemma, which, when combined with an appropriate sparse
regularity lemma, led to various new results, including a Cs-removal lemma in Cy-free graphs. As
an example of an additive combinatorics application, we showed that every Sidon subset of [N]
without nontrivial solutions to w 4 x + 3 + z = 4u has at most o(v/N) elements. Here a Sidon
set is a set without nontrivial solutions to the equation x + y = z + w and it is known that the
maximum size of a Sidon subset of [N] is (1 + o(1))v/N. We refer the interested reader to [7] for
further discussion of applications.

In this article, we continue the study of counting lemmas in Cy-free graphs, our main interest
being the problem of determining which graphs F', besides (5, satisfy an F-counting lemma in
Cy-free graphs. We will make this question more precise in Definition 1.3 below, when we say
formally what it means for a graph F' to be countable.

Question 1.1 (Main question, informal). For which graphs F' is there an F-counting lemma in
Cy-free graphs?

By extending the proof of [7, Theorem 1.1, see Section 4] (which was written for F' = Cj5, but
easily extends), we can deduce an F-removal lemma in Cy-free graphs whenever F' is countable.

Corollary 1.2 (Sparse removal lemma in Cy-free graphs). For any countable graph F and any € >
0, there exists 6 = 0(F,€) > 0 such that every n-vertex Cy-free graph with at most SnlVIE-IEE)/2
copies of F' can be made F-homomorphism-free by removing at most en®? edges.

Here “copies of F” refer to subgraphs isomorphic to F', whereas “F-homomorphism-free” means
that there is no graph homomorphism from F' into the resulting graph after edge removal. In
particular, if F' is bipartite and the number of copies of F' in a Cy-free graph on n vertices is
o(nlVII=IE(FI/2) "then G has o(n3/?) edges.

Let us sketch the main ideas of the proof of Corollary 1.2, referring the reader to [7, Section 4] for
further details. We first apply a sparse weak regularity lemma to approximate the Cy-free graph G
by some “dense” graph H (allowing edge-weights in [0, 1] for H). The counting lemma then implies
that H has small F-homomorphism density. By the dense F-removal lemma, applied as a black
box, one can therefore remove a collection of edges from H with small total weight so that the
remaining graph contains no subgraphs to which F' is homomorphic. Removing the corresponding
edges from G then makes it F-homomorphism-free.

The notion of having an F-counting lemma is made precise in the following definition. Note
that the conclusion we seek is one-sided, that is, we only ask for a lower bound. In practice, this is
usually all that is needed in applications.

Definition 1.3. A graph F' is countable if, for every € > 0, there exists 6 = 0(F,€) > 0 such that
if G is an n-vertex Cy-free graph on vertex set V and H € [0,1]V*V is a symmetric matrix (i.e., an
edge-weighted graph) satisfying

GG’(A, B) CH(A,B)
52 <4 forall A,B CV, (1.1)
(here eq(A, B) = {(z,y) € Ax B :zy € E(G)} and ey(A,B) =3, c 4 yep H(2,y)), then, for every
A = (Ay)yey(ry with A, CV for each v € V(F), one has
hom 4 (F, G) homa (F, H)
nlVEN=IEE)/2 = plV(F)

— €, (1.2)

where hom 4 (F, G) is the number of homomorphisms from F' to G where each v € V(F') is mapped
to a vertex in A, and homx (F, H) is the weighted analogue defined by the formula

homa (F, H) := Z H H(xy,xy).

Ty €Ay YWEV (F) wweE(F)



WHICH GRAPHS CAN BE COUNTED IN C4-FREE GRAPHS? 3

The scaling in the denominators of the definition above is natural because the maximum number
of edges in an n-vertex Cy-free graph is (1/2 + o(1))n3/? (see Remark 1.5 below). It may be
instructive to consider what happens when G is the random graph G(n, n=1/ 2) and H is the all-1
matrix, in which case, provided |E(F")| < 2|V (F’)| for all subgraphs F’ of F, (1.1) and (1.2) with
d,€ — 0 hold with high probability as n — co.

Remark 1.4. In Definition 1.3, it suffices to only consider unweighted graphs H, since we can always
randomly sample a weighted graph to get an unweighted graph with similar density properties.
However, in applications, H is usually the normalized edge-density matrix of some (weak) regular
partition of G, so it is more intuitive to allow edge-weights for H.

Remark 1.5. The polarity graph [3, 11, 12] is an n-vertex Cy-free graph G with (1/240(1))n?/? edges
(which is essentially best possible by the K&vari-Sés—Turdn theorem [16]). In addition, it has the
property that every edge lies in exactly one triangle and it satisfies the discrepancy condition (1.1)
with § = O(n~/*) and H being the all-1 matrix.

More specifically, let ¢ be a prime power and let Gy be the graph with ¢? + ¢ + 1 vertices, each
corresponding to a point of the projective plane over [, i.e., elements of IF';;’ \ {(0,0,0)} where
(x,y, 2) is identified with (Az, Ay, A\y) for every nonzero A € F,, with an edge between (z,v, 2)
and (2,y,2') if and only if xza’ + yy’ + 22’ = 0. This graph has exactly ¢ + 1 loops. It is also
(¢ + 1)-regular and has the property that each pair of distinct vertices has exactly one common
neighbor, which in particular implies that G is C4-free. The square of its adjacency matrix is thus
gl + J (with J being the all-1 matrix) and, hence, all of its eigenvalues, besides the top eigenvalue
q+1, are £,/g. The discrepancy claim in the previous paragraph then follows from the expander
mixing lemma (see, e.g., [17]). In practice, we will actually use the induced subgraph G of this
graph where we remove all vertices with loops. This inherits the discrepancy property from G,
but has the additional property mentioned above that every edge is contained in a unique triangle
(see [18] for a more detailed discussion of this point).

We now use the polarity graph to deduce a simple necessary condition for F' to be countable.

Remark 1.6. If F is countable, then it has girth at least 5.

Indeed, suppose that F' contains a 4-cycle vivovgvy. Let G be an n-vertex polarity graph and H
the all-1 matrix. The discrepancy property (1.1) is satisfied for § = o(1) by the previous remark.
Set Ay, Ay, Aus, Ay, to be disjoint vertex sets of V(G), each of order [n/4], and A, = V(G) for
all v € V(F)\ {v1,v2,v3,v4}. Then homx(F,G) = 0 since G is Cy-free, but hom4 (F, H) > n!V ),
so F' is not countable.

Now suppose that F' contains a triangle. Consider the graph G’ obtained from the polarity graph
G by deleting one edge from each triangle of G chosen uniformly and independently at random
(recall that G is a disjoint union of triangles). With probability 1 — o(1), the discrepancy property
(1.1) remains valid with § = o(1) and H the all-2/3 matrix. However, (1.2) fails when A, = V(G)
for all v, since the fact that G’ is triangle-free implies that hom(F,G’) = 0. So again F is not
countable. (The same construction also appears in [1, Lemma 2.6].)

In the next section, we describe our main result, which gives a sufficient condition for countability,
presented as a recursive construction.

2. COUNTABLE GRAPHS
We begin with a simple proposition, whose proof may be found in Section 5.
Proposition 2.1. Adding a pendant edge to a countable graph produces a countable graph.
In particular, we have the following important corollary.

Corollary 2.2. All trees are countable.
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It will be shown in the next section that it suffices to verify countability within n-vertex Cy-free
graphs G with maximum degree at most 2y/n. This makes the following definition relevant.

Definition 2.3. A graph F' is tame if there exists a constant C' = C'(F') such that hom(F,G) <
CnlVIEI-IEWE/2 for every n-vertex Cy-free graph G with maximum degree at most 2v/n.

An edgeless graph is clearly tame. Here is a sufficient recursive condition for tameness.

Proposition 2.4. Let F be a tame graph. Let F' be obtained from F by either

(a) adding a pendant edge to F (creating a single new leaf vertex) or
(b) joining two (not necessarily distinct) vertices of F' by a 3-edge path whose two intermediate
vertices are new. (If the two vertices of F' are the same, then the path is a triangle.)

Then F' is tame.

Proof. Let G be an n-vertex Cy-free graph with maximum degree at most 2y/n. It suffices to show
that hom(F’, G) < 4y/nhom(F,G). In case (a), this is clear, since G has maximum degree at most
2y/n. In case (b), we verify that the number of 3-edge walks between any pair of vertices (not
necessarily distinct) in G is at most 4y/n. Indeed, given z,y € V(G), let w be a neighbor of z. If
w # y (at most 24/n such w), then, since G is Cy-free, there is at most one 2-edge walk from w to
y. On the other hand, if w = y (at most one such w), the number of 2-edge walks from w = y back
to itself is deg(y) < 24/n. O

Example 2.5. All cycles are tame, since, for each ¢ > 3, one can first build an (¢ — 3)-edge path
using (a) and then complete it to an ¢-cycle using (b).

Example 2.6. The graphs in the sequence depicted below are also tame. To see this, observe that,
at each step, we add a new path with £ > 3 edges whose intermediate vertices are new (by again
applying step (a) £ — 3 times and then applying step (b) once)

Q&W%%

Example 2.7. Kj3 is not tame. Indeed, the n-vertex polarity graph G has hom(K33,G) >
hom (K13, G) = X cv(q) dega (@ )3 > n5/2, which is much larger than the Cn? upper bound re-
quired for tameness.

Example 2.8. Let K, denote the 1-subdivision of Kj. Then K is tame if and only if £ < 4.
Indeed, let G be the n-vertex polarity graph. Then, since there is a homomorphism K; — K 1,(%)
N2

mapping all k£ vertices of the original K} to the same vertex, we have that

hom (K}, G) > hom(K, (k),G) > nit(5)/2,
2

But 1+ (g)/2 >k = |V(K,)| — |E(K})|/2 for k > 5, so K}, is not tame. On the other hand, for
k < 3, K, is tame due to Proposition 2.4, while, despite the fact that Proposition 2.4 does not
apply to K}, it is still tame, as may be verified by performing a case check based on which subsets
of the original four vertices of K, are mapped to the same vertex.

It will follow from our results below that every K is countable. Therefore, Kf (or K, for any
k > 5) is an example of a non-tame countable graph. Moreover, since, for H the all-1 matrix, the
polarity graph G satisfies the discrepancy property (1.1) with § = o(1), we see that K[ does not
satisfy an “upper-bound counting lemma”, i.e., (1.2) with > --- — € replaced by < ---+ €. That is,
the Kl-counting lemma in Cy-free graphs is truly one-sided.

We now describe an important building block in our recursive construction of countable graphs.
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Definition 2.9. Let F be a graph and I C V(F) an independent set. We say that F is a connector
with ends I (or simply that (F,I) is a connector) if

(a) F'is countable and
(b) the graph F Vi F formed by gluing two copies of F' along I is tame.

Here is the simplest interesting connector.

Example 2.10. The 2-edge path vgvivs is a connector with ends {vg, vo}. This is illustrated below,
where the ends of the connector are marked by red triangles.

F=&" Sa szF=<>-

More generally, any path is a connector with ends being any independent set. However, the same
statement does not extend to all trees. For instance, K;3 does not give rise to a triple-ended
connector, since K» 3 is not tame by Example 2.7.

Our main result is the following recursive construction of countable graphs. It can be visualized
in terms of “islands” and “bridges.” We start with several disjoint tame countable components (the
islands) and join them using connectors (the bridges). The theorem then says that the resulting
graph is countable.

Theorem 2.11. Let F be a graph that is an edge-disjoint union of its subgraphs Fi, ..., Fy,Ji,...,Jyg,
satisfying all of the following conditions:

(a) Fi,...,Fy are countable and vertex-disjoint;

(b) Fi,...,Fr_1 are tame (Fy may be tame or not);

(c) for each j € [{], J; is a connector with ends I; = V(J;) " V(F1 U---UFy) and I; has at
most one vertex in common with each F;;

(d) each pair of connectors J; and J; share at most one vertex and the vertex they share (if
any) lies in I; N I;.

Then F' is countable.

Example 2.12. The 5-cycle is countable. The “islands and bridges” decomposition is illustrated
below, where each contiguous shaded region is an island. Both connectors are 2-edge-paths.

—————————

Similarly, ¢-cycles, for £ > 5, can be shown to be countable by starting with two islands, one
an isolated vertex, as above, and the other a path of length ¢ — 4, with 2-edge-path connectors
joining the endpoints of this path to the isolated vertex. As mentioned in [7, Footnotes 1 and 3],
knowing that longer cycles can be counted allows us to extend our results [7, Section 1.3] about
finding solutions of translation-invariant equations in Sidon sets to equations with more than five
variables.

Example 2.13. Since the 5-cycle is both countable and tame, we can use it as an island to build up
further countable graphs. For example, connecting a pair of 5-cycles using 2-edge-path connectors,
as shown below, yields a new countable graph.
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Example 2.14. Using that the 5-cycle is countable and tame, we see that the following graph is
also countable, again with the islands shaded:

This graph is also tame by Proposition 2.4, so we can repeat the process to show that the following
graph (and any longer chain of 5-cycles) is tame and countable.

Example 2.15. The following graph is a connector (with the ends again marked by red triangles):

S \/I (2.1)

Indeed, we saw in the last example that this graph is countable, while the graph formed by gluing
two copies along the ends, as shown below, is tame by Example 2.6.

Similarly, we can check that the following graph (and any longer chain of 5-cycles) is a multi-ended
connector:

SPNS

Example 2.16. The following graph is countable (one of the connectors is a 2-edge-path, while
the other is (2.1)):

—————————

We can extend this example further. Since the above graph is countable, we can use Proposition 2.4
to verify that, with the ends as marked, it is also a connector:

Using this connector, we deduce that the following graph is countable:

Similar inductive arguments allow us to prove the countability of many other graphs of girth at
least 5. However, as we shall explain in more detail in the concluding remarks, we are far from a
classification. For instance, our methods seem insufficient for showing that 3-regular graphs such
as those below are countable.
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Open Problem 2.17. Are the dodecahedral and Petersen graphs, shown below, countable?

In the remainder of the article, we prove Proposition 2.1 and Theorem 2.11.

3. TRIMMING HIGH-DEGREE VERTICES

In this brief section, we show that in the definition of countability, Definition 1.3, we can restrict
to considering n-vertex Cy-free graphs G satisfying an additional maximum degree assumption,
namely, that G has maximum degree at most 2y/n, without affecting the family of graphs which
are countable.

Lemma 3.1. Let G be a graph on a vertex set V of size n and let H € [0,1]V*Y be a symmetric

matrixz such that

eg(4,B) en(A,B)
n3/2  p2

Let S = {v € V : degg(v) < 2¢/n} and let G' be the subgraph of G with the same vertex set V but

only keeping edges with both endpoints in S. Then

eG’(A7 B) EH(A, B)
nd/2 n2

<6 for all A,B CV. (3.1)

‘§3(5 forall A, B CV.

Proof. Write S =V \ S. Applying (3.1) to (4, B) = (S, V), we have
an® > Vnea(S,V) —en(S,V) = vn- 2v/n[S| - [S||V] = n|S],
s0 |S| < dn. For any A, B C V, writing A’ = ANS and B’ = BNS, we have e/ (A, B) = eq(A’, B),
S0
|Vnec (A, B) — en(A, B)| = |Vneg(A', B") —eq (A", B') + en(A', B') — en (A, B)|
< |Viea(A, B) - e (A B)| + A\ 4|+ |B\ B'n
< 6n? +2[S|n < 30n. O

4. NOTATION AND SETUP

Given a graph F, a vertex weight function on F' (sometimes we say “on V(F')”, as graphs and
their vertex sets are interchangeable for this purpose) is a collection @ = (v ),y () of functions
ay: V — [0,1] indexed by v. It will be important for our arguments that each «, takes values in
[0,1] and not in some wider range.

Let 2 = (2y)yev(r) € VV(E) with o, € V. For each S C V(F), we write x5 = (,)pes for its
projection onto the coordinates indexed by S. To avoid notational clutter, we will sometimes write
a subgraph as the subscript rather than its vertex set. For example, if F’ is a subgraph of F' and
S C V(F), then we write T = Ty (1), Tp\pr = Ty (p)\v(F), a0d Tp\g = Ty(p)\s-

Given a function f: V¥ — R, we write

/f(xs)dl’s = VIS fas).
xg€VS
Furthermore, given a vertex weight function o = (ay)yes on S, we write

[ fasiaoas = [ fas) [Lauten) das.

veS
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Given a symmetric function g: V x V — R and x € VVIE) | we define gr: vV SR by

gr(z) = H 9(Ty, To).

uvelF
Given S C V(F) and a vertex weight function o on F'\ S, we define grg: V° — R by

g% s(xs) = / gr(2p) e s,

which (up to normalization) corresponds to counting homomorphisms F' — G where the image of
S is xg and the remaining vertices of F' are weighted by a. Such quantities also arise naturally
when using flag algebras. Finally, given a vertex weight function v on F', we write

ta(F7g) = g%,@ :/ H g(xuyxv) H (av(xv)dxv)a

uveF veV (F)

which is the a-weighted homomorphism density of F' in g.

It will also be convenient to allow our weight function notation to be a little more flexible, in
the sense that we automatically ignore uninvolved vertices. For example, if a is a vertex weight
function on F' and F’ is a subgraph on a proper vertex subset, then we still write t*(F’, g) and
d®zp with the understanding that a is now restricted to the vertex set of F’. This way we do not
always have to specify the set of vertices that the weight function is defined on.

Both the discrepancy condition (1.1) and the counting lemma conclusion (1.2) can be equivalently
rephrased in terms of weight functions a rather than product sets A. The extra flexibility allowed
by considering [0, 1]-valued weight functions will be helpful in our proofs. To see the equivalence,
note that, with the function ¢ = /nG (here we view G: V x V' — {0,1} as the edge-indicator
function of the graph G), we have

homa(F,G)
avE-EmE L E9)
for the vertex weight function a on F' which is equal to the indicator function of A (i.e., a,(z) =1
if z € A, and 0 otherwise). Likewise, for h = H,
hom 4 (F, H)
nlV(E)
Hence, the counting lemma conclusion (1.2), that
hom 4 (F, G) homa (F, H)
nlVIEI=IEE)/2 = plV(E)

= t%(F,h).

— €,

is equivalent to the statement that

2(F,g) > t%(F,h) — ¢ (4.1)
for any {0, 1}-valued vertex weight function a. Since t*(F,g) — t*(F,h) is a multilinear function
of the values (ay(2))verazev, the extrema of the function are attained when o, (z) € {0,1} for
all v € F and z € V. This shows that the counting lemma conclusion (1.2) is equivalent to the

statement that (4.1) holds for all vertex weight functions.
By the same argument, the discrepancy condition (1.1), that

eG(A7B) eH(A7B)
nd/2 n?

<6 for all A, B CV,

is equivalent to

‘/(g — h)(z,y)ar (z)as(y)dzdy| < 6§ for all aq,a9: V — [0,1].
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In fact, (thanks to the trimming step in the previous section) from now on we will only need the
one-sided discrepancy hypothesis

/g(m,y)al(az)ag(y)da;dy > /h(az,y)al (x)az(y)dxdy — 6 for all ay,a9: V —[0,1].  (4.2)

Summary of what needs to be proved. To prove that F' is countable, it suffices to show that there
is a constant ¢ > 0 such that for every € > 0 there exists > 0 satisfying the following. Let G
be an n-vertex Cy-free graph on vertex set V' with maximum degree at most 2/n. Let g = ¢y/nG
and let h: V x V — [0,1] be a symmetric function satisfying (4.2). Then, for every vertex weight
function @ on F', one has (4.1).

The reason that we scale by a factor of ¢ in defining ¢ is so that the various tameness hypotheses
on subgraphs of G can be made to have the form ¢(F”,g) < 1. Furthermore, as long as ¢ < 1/2,
the hypothesis that G has maximum degree at most 2/n implies that

/g(az,y) dy <1 for all x € V. (4.3)

5. COUNTING LEMMA PROOFS

We follow without further comment the framework discussed in the previous section.

Proof of Proposition 2.1 (adding a pendant edge preserves countability). Let F be a graph with a
leaf vertex u. Let I’ be F' with u removed and assume that F’ is countable. Suppose that

[ s war@asindy > [ e pa@aslpdsdy - ¢ (5.1
for all ag,ag: V — [0,1]. Since F” is countable, we may also assume that
1 (F', g) >t~ (F',h) — e (5.2)

for every vertex weight function o’ on F”.
It suffices to show that these two inequalities imply that

t(F,g) > t*(F, h) — 2e (5.3)

for every vertex weight function e on F. For this, define a vertex weight function o’ on F’ by
o, = o, unless v is the neighbor v of u, in which case o, (z,) = ay(zy) [ g(@y, ) (z0)dz,, € [0,1]
by (4.3). Then, by (5.2) applied with this o/,

t¥(F, g) =t~ (F', g) >t~ (F',h) — e.

Furthermore, we have

19 (F! ) = / B2 o (20)9(@ 0 T )tu(Tu) o (20) d o,

> /ho‘/w(:nv)h(ajv,xu)au(:nu)ozv(azv)dajudznv —€
=t*(F,h) —,

where the inequality step uses (5.1). Combining the last two displayed inequalities yields (5.3), as
desired. O

Proof of Theorem 2.11 (islands and bridges). By the tameness assumptions, we can choose a suf-
ficiently small constant ¢ € (0,1] (depending only on F') such that, setting g = ¢y/nG: V xV —
[0, 00), we have

t(Fi,g) <1lforallie[k—1] and #(J;Vy, Jj,g) <1forallje [l (5.4)
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Let € € (0,1] and let

2Z+1

N = ¢ for each i € /] and n=c¢ (5.5)

By the countability assumption on Fi, ..., Fy, Ji,...,J; it suffices to show that if h: V xV — [0, 1]
satisfies

t*(L,g) > t*(L,h) —n (5.6)
for each L € {F},..., Fx,J1,...,J;} and vertex weight function a on L, then
t*(F,g) > t*(F,h) — (20 + k)e, (5.7)

for every vertex weight function o on F'.
Write

flx) if fz) >,

0 otherwise 0 otherwise.

f<t<:c>={f @ Br@ <t g f>t<a:>:{

For each connector (J,I) = (J;,I;) (temporarily dropping the subscript j to avoid notational
clutter), writing

9?,1,>5*1 = (9?,1)>6*17
we have, using ¢(J Vy J,g) <1 from (5.4), that

/g%}él(x]) d%zr <6 /giﬂm) d%xp < ot(J Vi J,g) <.

Thus, using (5.6),
[ 51z senaar = ( [ s iter) ~o = ([ 15ueaa) ~u-s. G3)

Step 1. Swapping out the islands one at a time.

Write F' = U, F; (islands without connectors). We have

(Fg) = [ gr(or) dor
k ¢
— [ TLomer) [T 651, 1) d"ar
i=1 Jj=1

k J4
> [Ton@r) T165 1, i or) der
i=1 j=1

l k—1
[\ [omton T 95 1, cprton)ien, | TT (o (er)aen).
j=1 1=1

Now, using (5.6) for Fj and noting that the inner integral inside the parenthesis has the form
[ gr, (z Fk)do"x F - H§=1 nj_l for some other vertex weight function &’ (absorbing the connector
factors by using the fact that each connector uses at most one vertex from the island F},), we have,
continuing from above, that the last expression is

k-1

)4 ¢
> [ [reten) T 65, cpron)den, 0 TTn" ) T o er)aen).
j=1

j=1 i=1
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Since 77H§:1 77]-_1 < eby (5.5) and [ gp,(zp,)d*xp, < t(F;,g) <1 for each i € [k — 1] by (5.4), we
can continue the above as

k—1 4
> [ hntar) [Lonter) [165, <, rlor) e~
i=1 j=1

We can now repeat this process to successively replace each remaining gr, factor by hp,, losing at
most an additive error of € at each step. (Note that even though we do not assume that ¢(Fj, g) < 1,
it is no longer needed, since what matters from now on is that ¢(Fj, h) < 1 and this is automatically
true for h, which takes values in [0, 1]). We may therefore continue the above as

k ‘
= /H hr(7r) H gz,lj,qfl(xlj) d%*xpr — ke.
=1 j=1 ="

Step II. Swapping out the connectors one at a time.
Continuing, we have, applying (5.8) to replace gz’ Io<ny? (z1,) by h9, 1,(x,,) (here we are applying
5.8) for each fixed xp\ j, and with a different @ which absorbs additional factors; this step works
\Je

only because each Jy intersects each of Fi,..., Fy, Ji,...,Jy_1 in at most one vertex and all these
intersections are contained in Iy), that the last expression above is

k /-1 /-1
« fe o —1
> /thFl(':UFz) . thIZ(ﬂZ‘[Z) I_Ingj71j7<77j1(ij)d Tpr — (’I’} + 77() 1_1177]- — ke.
i= Jj= J=

We have (1 + 1) Hﬁ;i 77j_1 < 2¢ by (5.5). Continuing, we can replace giljénj,l(x[j) by h§ 1. (w1,)

one at a time in decreasing order of j, so that the additive error at j is at most (n+mn;)n; ... 77]-__11 <
2¢ (this is why we need ny,...,n, to be rapidly decreasing). Finally, we can continue the above as

k l
> / [17e@e) [T 55,1, (r) ¥ — (k + 20)e
i=1 j=1

=t*(F,h) — (k + 20)e,
thereby proving (5.7). O

6. CONCLUDING REMARKS

We conclude by exploring some of the problems that arose from our study of countability.

Classifying countable graphs. We have made partial progress on our Question 1.1 by producing
a family of graphs F' for which there is an F-counting lemma in Cy-free graphs. However, our results
are likely far from a complete classification. We saw one necessary condition on any such F' in
Remark 1.6, namely, that F' should have girth at least 5. It also seems necessary that the 2-density
of F should be less than 2, that is, that any subgraph F” of F' should satisfy |F(F")| < 2|V (F")|—4.
In particular, this would imply that any d-regular countable graph has d < 3.

Though not a formal proof, the intuition here is that the number of copies of F’ in our Cy-free
graph should not be smaller than the number of edges (otherwise, we can delete all copies of F”,
and hence F', by removing an edge from each copy) and, for a random graph of the same density
n~1/2, the condition that the 2-density be less than 2 is necessary for this to hold. Most likely,
the true conditions for countability are even more stringent than this argument suggests. Perhaps
resolving the cases highlighted in Open Problem 2.17 would be a good starting point for further
progress.



12 DAVID CONLON, JACOB FOX, BENNY SUDAKOV, AND YUFEI ZHAO

We remark in passing that we expect any progress on Question 1.1 to also impinge on the closely
related question where we assume that there are o(n?) copies of Cy in our n-vertex graph rather
than none. Indeed, the arguments in [7] showing that C5 is countable apply in this more general
situation and the proofs here may also be adapted to this context. We suspect that the same will
be true of any countable graph.

Variations on countability. There are several variants of our basic question which may be
interesting. For instance, for which graphs F' is there a two-sided counting lemma in Cjy-free
graphs? Our results are fundamentally one-sided, so new ideas are probably necessary to make
progress on this question. However, we do know that for F' to satisfy a two-sided counting lemma,
it must, at the very least, be tame. As observed in Example 2.8, this already rules out two-sided
counting for the family of subdivisions K| with ¢ > 5.

Another natural variant is to ask which graphs F' have an F-counting lemma in H-free graphs
when H is a bipartite graph other than C4? Our arguments apply just as well to Ky -free graphs
as they do to Cy-free graphs, but further extensions are less obvious. We do expect our methods
to extend to prove counting lemmas in Cox-free graphs for any k > 3, but here the real difficulty
passes back to the regularity side. Indeed, in order to apply a Cojy1-counting lemma in Cop-free
graphs to prove a corresponding removal lemma, we also need to show that any regular partition of
a Cop-free graph has few edges between irregular pairs. However, we do not at present know how to
do this for any k£ > 3. As in [7], resolving this issue would have several consequences. To give just
one example, it would allow us to show that any 3-uniform hypergraph with n vertices and girth
greater than 2k + 1 has o(n'*/*) edges, extending both the classic Ruza-Szemerédi theorem [19],
which is equivalent to the case k = 1, and a recent result of the authors [7, Corollary 1.10] resolving
the case k = 2.
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