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DISCREPANCY IN MODULAR ARITHMETIC PROGRESSIONS

JACOB FOX, MAX WENQIANG XU, AND YUNKUN ZHOU

Abstract. Celebrated theorems of Roth and of Matoušek and Spencer together show that the dis-

crepancy of arithmetic progressions in the first n positive integers is Θ(n1/4). We study the analogous

problem in the Zn setting. We asymptotically determine the logarithm of the discrepancy of arithmetic

progressions in Zn for all positive integer n. We further determine up to a constant factor the discrep-

ancy of arithmetic progressions in Zn for many n. For example, if n = pk is a prime power, then the

discrepancy of arithmetic progressions in Zn is Θ(n1/3+rk/(6k)), where rk ∈ {0, 1, 2} is the remainder

when k is divided by 3. This solves a problem of Hebbinghaus and Srivastav.

1. Introduction

Given a finite set Ω, a (two-)coloring of Ω is a map χ : Ω → {1,−1}, and a partial coloring is a map

χ : Ω → {−1, 0, 1}. For A ⊆ Ω, let χ(A) =
∑

x∈A χ(x). For a family A of subsets of Ω, the discrepancy

of A is defined to be

disc(A) := min
χ

max
A∈A

|χ(A)|,

where the minimum is over all colorings of Ω. The discrepancy measures the guaranteed irregularity of

colorings with respect to a set system. Discrepancy theory is a rich area of study, see the books [1,3,4,9].

In particular, the study of discrepancy of arithmetic progressions has a long history, including notable

results of Weyl from 1916 [13] and Roth from 1964 [11]. Let [n] := {1, 2, 3, . . . , n} and A be the set

of arithmetic progressions in [n]. Using Fourier analysis, Roth [11] proved that there is an absolute

constant c > 0 such that

disc(A) ≥ cn
1
4 .

The exponent 1/4 was unexpected, as random colorings suggest that the best exponent might be 1/2.

Later, improving on a result of Montgomery and Sárközy (see Problem 10 in [5]), Beck [2] proved

that Roth’s lower bound is sharp up to a polylogarithmic factor. It was a big challenge to remove the

polylogarithmic factor and show that Roth’s bound is sharp up to a constant factor, and it was finally

done by Matoušek and Spencer [10] via entropy and partial coloring methods.

The modular variant is also a very natural problem to study. For a positive integer n, an arithmetic

progression in Zn is a set of the form {a + kd : 0 ≤ k < l} for any a, d ∈ Zn and l ≥ 0. To avoid

repeated elements in the set, we may assume that l ≤ n
gcd(n,d) . Let An be the set of all arithmetic

progressions in Zn. The quantity we are interested in is

disc(An) := min
χ:Zn→{1,−1}

max
A∈An

|χ(A)|.
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In the case where n = p is a prime, the following lower and upper bounds are proved by Hebbinghaus

and Srivastav [7] and Alon and Spencer (Theorem 13.1.1 in [1]) respectively. There exist positive

constants c1, c2 such that

c1
√
p ≤ disc(Ap) ≤ c2

√
p log p.

Hebbinghaus and Srivastav [7] wrote that it seemed to be a difficult open problem to close the

O(
√
log p) multiplicative gap between the upper and lower bounds. As part of our results, we re-

move the
√
log p factor in the upper bound and resolve the problem of determining disc(Ap) up to a

constant factor.

The problem for general Zn is more challenging and interesting. Note that any arithmetic progression

in [n] is also an arithmetic progression in Zn, so Roth’s lower bound from the integer case also applies.

As the number of sets in An is polynomial in n, considering a random coloring gives the following

upper bound (see Theorem 13.1.1 in [1]). So there are c1, c2 > 0 such that

c1n
1
4 ≤ disc(An) ≤ c2n

1
2 (log n)

1
2 .

Our main theorem asymptotically determines the logarithm of disc(An). It shows that disc(An)

depends heavily on the arithmetic structure of n, and neither of the above bounds are sharp.

Let ω(n) be the number of distinct prime factors of n and d(n) be the number of divisors of n.

Theorem 1.1. There exists an absolute constant c > 0 such that for any positive integer n,

1

8
√

d(n)
·min

r|n

(n
r
+

√
r
)
≤ disc(An) ≤ min

r|n

(n
r
+ c

√
r · 2ω(r)

)
.

Note that we have 2ω(r) ≤ 2ω(n) ≤ d(n) = no(1) (see [6]). This implies that

disc(An) = n
1
3
+x+o(1),

where x ≥ 0 is the largest real number such that there is no factor of n in the range (n
2
3
−x, n

2
3
+2x).

Thus, our results determine the correct exponent of n for disc(An) up to o(1).

Notice that when n has a bounded number of factors, Theorem 1.1 determines disc(An) up to a

constant factor. In particular, when n is prime, we have disc(An) = Θ(n1/2), and this solves the

problem of Hebbinghaus and Srivastav [7] discussed earlier.

We actually prove slightly stronger bounds, but we choose the formulation in Theorem 1.1 for sim-

plicity. These stronger bounds give the following sharp bound for disc(An) when n is a prime power.

Theorem 1.2. If n = pk for prime p and positive integer k, then

disc(An) = Θ
(
p

k−⌊k/3⌋
2

)
= Θ

(
n

1
3
+

rk
6k

)
,

where rk ∈ {0, 1, 2} is the remainder when k is divided by 3.

Remark 1.3. It is also natural to study the discrepancy problem in the case where the coloring function

χ is allowed to take any value in the unit circle in the complex plane {z ∈ C : |z| = 1}. For example,

this choice of coloring functions is studied in Tao’s [12] remarkable solution to the Erdős discrepancy

problem. By comparing the definitions of the coloring functions, we know that the discrepancy under

the more general choice of χ is at most as large as the discrepancy under the choice χ : Zn → {1,−1}.
We remark that our proof is robust enough to give the same lower bound on discrepancy when χ is

under the above choice. See Remark 4.8 for details on how to extend the proof of the lower bound to

the more general setting.



DISCREPANCY IN MODULAR ARITHMETIC PROGRESSIONS 3

Notations. Throughout the paper, all logarithms are base e unless otherwise specified.

We use symbols c, c0, c1, c2, etc. to denote absolute constants. To avoid using too many symbols in

different parts of the paper, we reuse these symbols to denote different constants. We make no attempt

to optimize constant factors in our results.

We treat elements in Zn as if they are in Z in the following ways. For an element r ∈ Zn and integers

a, b ∈ Z, we say a ≤ r ≤ b if there exists an element r′ ∈ Z such that a ≤ r′ ≤ b and r′ ≡ r (mod n).

The notation is similar if either ≤ is replaced with <. We typically use it when 0 ≤ a ≤ b < n, so this

notation should not cause any confusion. For any a ∈ Zn, we may also define gcd(a, n) = gcd(a′, n)

for any a′ ∈ Z with a′ ≡ a (mod n). For two nonnegative integers a and b, we write a|b if a divides b.

For any factor r of n and a ∈ Zn, we say that r|a if r| gcd(a, n).

Organization. In Section 2, we derive our first upper bound on disc(An) (see Corollary 2.3). The

upper bounds in Theorems 1.1 and 1.2 are proved in Section 3 (see Theorem 3.1). In Section 4, we

prove the lower bounds in Theorem 1.1 (Corollary 4.9) and Theorem 1.2 (Corollary 4.10). We end

with some concluding remarks and open problems in Section 5.

2. The First Step towards the Upper Bounds

We use the following version of a lemma of Matoušek and Spencer [10] to show there is a partial

coloring that colors a constant fraction of the elements of a set system with low discrepancy. The

proof of this lemma uses the entropy method.

Lemma 2.1 (Section 4.6 in [9]). Let (V,C) be a set system on n elements, and let a number ∆S ≥
2
√

|S| be given for each set S ∈ C. If

∑

S∈C:S 6=∅

exp

(
− ∆2

S

4|S|

)
≤ n

50
, (2.1)

then there is a partial coloring χ that assigns ±1 to at least n/10 variables (and 0 to the rest) satisfying

|χ(S)| ≤ ∆S for each S ∈ C.

The following lemma shows that there is a partial coloring of a constant fraction of any subset X of

Zn such that modular arithmetic progressions have low discrepancy. The proof utilizes the previous

lemma applied to a special family of intersections of X with modular arithmetic progressions. Each

set in this special family has size a power of 2. We show that any set which is an intersection of X

with a modular arithmetic progression can be written as the union of two sets, and each of them is a

set difference of two sets that each has a canonical decomposition into sets of different sizes from this

special family. We obtain the lemma by putting these together and using the triangle inequality.

Lemma 2.2. Let X ⊆ Zn be a set of size m > 0. There exists a partial coloring χ : X → {−1, 0, 1}
that assigns ±1 to at least m/10 elements in X such that

max
A∈An

|χ(A ∩X)| ≤ 200m
1
2

(
log

en

m

) 1
2
.

Proof. Let APn(a, d, i, j) := {a+ kd : i ≤ k ≤ j} where a, d ∈ Zn and i, j ∈ Z. By definition,

An =

{
APn(a, d, 0, l − 1) : a, d ∈ Zn, 0 ≤ l ≤ n

gcd(n, d)

}
.
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Consider the following decomposition of sets in An. Let

C1 =

{
APn(a, d, i, j) : 1 ≤ d < n, 0 ≤ a < gcd(n, d), 0 ≤ i ≤ j <

n

gcd(n, d)

}
.

Now we show that any set A ∈ An can be written as the disjoint union of at most two sets in

C1. For any set A = APn(a, d, 0, l − 1) with a, d ∈ Zn and 0 ≤ l ≤ n
gcd(n,d) , we may assume that

l > 0, or otherwise it is an empty set. If d = 0, then the set is the singleton {a}, which is also

APn(0, 1, a, a) ∈ C1 by choosing i, j to be the integer representative of a in the range [0, n). Now we

may assume 1 ≤ d < n. Note that {kd : 0 ≤ k < n
gcd(n,d)} splits Zn into n

gcd(n,d) equal-sized intervals,

so there is some 0 ≤ k < n
gcd(n,d) such that 0 ≤ a− kd < gcd(n, d). Define a′ = a− kd, and we have

APn(a, d, 0, l − 1) = APn(a
′, d, k, k + l − 1).

Moreover we have k < n
gcd(n,d) and l− 1 < n

gcd(n,d) , so 0 ≤ k + l− 1 < 2 n
gcd(n,d) . If k + l− 1 < n

gcd(n,d) ,

then APn(a
′, d, k, k + l − 1) ∈ C1. If k + l − 1 ≥ n

gcd(n,d) , then we may write

APn(a
′, d, k, k + l − 1) = APn

(
a′, d, k,

n

gcd(n, d)
− 1

)
∪ APn

(
a′, d, 0, k + l − 1− n

gcd(n, d)

)
.

Hence we know that for any partial coloring χ : Zn → {−1, 0, 1}, we always have

max
A∈An

|χ(A ∩X)| ≤ 2 max
A∈C1

|χ(A ∩X)|. (2.2)

Now we study the sets in CX := {A ∩X : A ∈ C1}. By definition we have

max
A∈C1

|χ(A ∩X)| = max
B∈CX

|χ(B)|. (2.3)

For each 1 ≤ d < n and 0 ≤ a < gcd(n, d), we define Ad,a =
{
a+ kd : 0 ≤ k < n

gcd(d,n)

}
, and define

Xd,a = Ad,a∩X. Since each element x inXd,a is associated to an integer 0 ≤ k < n
gcd(d,n) via the relation

x = a+kd, we may order elements in Xd,a in ascending order of k. We write Xd,a =
{
x
(1)
d,a, . . . , x

(ld,a)
d,a

}
,

where ld,a = |Xd,a|. For integers i and j, we define Xd,a(i, j) =
{
x
(t)
d,a : i ≤ t ≤ j

}
.

For each d ∈ Zn, because each element of Zn is in exactly one Ad,a for 0 ≤ a < gcd(d, n), we have

gcd(d,n)−1∑

a=0

ld,a =

gcd(d,n)−1∑

a=0

|X ∩ Ad,a| = |X| = m. (2.4)

For A = APn(a, d, i, j), if we take i′ to be the smallest index such that x
(i′)
d,a = a + k1d with k1 ≥ i

(or ld,a + 1 if no such index with 0 ≤ k1 < n
gcd(d,n) exists), and j′ to be the largest index such that

x
(j′)
d,a = a + k2d with k2 ≤ j (or 0 if no such index with 0 ≤ k2 < n

gcd(d,n) exists), then we have

A ∩X = Xd,a(i
′, j′). Hence each nonempty set in CX is of the form Xd,a(i, j) with 1 ≤ i ≤ j ≤ ld,a.

Therefore we may write

CX = {Xd,a(i, j) : 1 ≤ d < n, 0 ≤ a < gcd(n, d), 1 ≤ i ≤ j ≤ ld,a} ∪ {∅}.

Now we further decompose sets in CX into canonical sets. Formally,

C2 :=

{
Xd,a(1 + (t− 1)2i, t2i) : 1 ≤ d < n, 0 ≤ a < gcd(n, d), 0 ≤ i, 1 ≤ t ≤

⌊
ld,a
2i

⌋}
. (2.5)
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Notice that each set S ∈ CX can be written as U \ V with V ⊆ U where both U and V can be

written as the disjoint union of sets in C2 of different sizes. This is trivially true for the empty set.

For S = Xd,a(i, j), we may take U = Xd,a(1, j) and V = Xd,a(1, i − 1). If we write j in binary

form 2b1 + 2b2 + · · · + 2bs for b1 > b2 > · · · > bs, then U is the disjoint union of sets of the form

Xd,a(1 +
∑t−1

k=1 2
bk ,

∑t
k=1 2

bk) for t = 1, . . . , s. We can decompose V similarly.

Note that sets in C2 are all of size 2
i for 2i ≤ m. If χ : X → {−1, 0, 1} is such that for all 0 ≤ i ≤ log2m

we have χ(S) ≤ ∆i for any set S ∈ C2 of size 2i, then by using the decomposition property above we

have

max
B∈CX

|χ(B)| ≤ 2
∑

0≤i≤log2 m

∆i. (2.6)

For each i, we upper bound the number of sets in C2 of size 2i as following. For each 1 ≤ d < n and

0 ≤ a < gcd(d, n), the number of choices of t in (2.5) is ⌊ld,a/2i⌋. By (2.4) the number of such sets is

at most
n−1∑

d=1

gcd(d,n)−1∑

a=0

⌊
ld,a
2i

⌋
≤

n−1∑

d=1

gcd(d,n)−1∑

a=0

ld,a
2i

=
(n− 1)m

2i
. (2.7)

Now we define b(0) = 0 and for 0 < s ≤ n,

b(s) = 5
√
s
(
log

en

s

)1/2
. (2.8)

From the definition, we know that b(s) ≥ 2
√
s for all s ∈ N. We want to show that there exists a

partial coloring χ that colors at least m/10 elements in X, and for any S ∈ C2,

|χ(S)| ≤ b(|S|). (2.9)

In order to apply Lemma 2.1 to X and C = C2, it remains to check that

∑

S∈C2

exp

(
−b(|S|)2

4|S|

)
≤ m/50. (2.10)

From the definition of b(·) in (2.8), we know that

∑

S∈C2

exp

(
−b(|S|)2

4|S|

)
=

∑

S∈C2

e−
25
4 ·

( |S|
n

) 25
4

≤ e−6 ·
∑

S∈C2

( |S|
n

)2

. (2.11)

Using the bound in (2.7), we have

∑

S∈C2

( |S|
n

)2

≤
∑

0≤i≤log2 m

(n− 1)m

2i

(
2i

n

)2

≤ 2m.

Put this into (2.11). We get

∑

S∈C2

exp

(
−b(|S|)2

4|S|

)
≤ e−6 · 2m ≤ m/50.

This shows that (2.10) holds. By Lemma 2.1, we conclude that there exists a partial coloring χ : X →
{−1, 0, 1} that assigns ±1 to at least m/10 elements, and (2.9) holds for any S ∈ C2. Thus in (2.6)

we may take ∆i = b(2i) for 0 ≤ i ≤ log2m.
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It remains to show that χ satisfies the desired property. By (2.2), (2.3), and (2.6),

max
A∈An

|χ(A ∩X)| ≤ 4
∑

0≤i≤log2 m

b(2i) = 20

⌊log2 m⌋∑

i=0

2i/2
(
log

en

2i

) 1
2 ≤ 200 · √m

(
log

en

m

) 1
2
.

To obtain the last inequality, observe that the sum is roughly a geometric series with ratio 21/2

(although there is an extra logarithmic factor that slightly complicates this) and can be bounded by

a constant factor times the largest term. A careful analysis gives the claimed bound.

Hence the partial coloring χ satisfies the desired inequality. �

Corollary 2.3. Let X ⊆ Zn be a set of size m > 0. There exists an absolute constant c such that

there is a coloring χ : X → {−1, 1} satisfying

max
A∈An

|χ(A ∩X)| ≤ cm
1
2

(
log

en

m

) 1
2
.

In particular, for X = Zn, we have

disc(An) = O(
√
n).

Proof. The main idea is to iteratively apply Lemma 2.2 to the set of uncolored elements of X until all

elements of X are colored.

Start with X0 = X. For each i ≥ 0, we apply Lemma 2.2 to Xi to get a partial coloring χi : Xi →
{−1, 0, 1}, and we let Xi+1 = χ−1

i (0) ⊆ Xi to be the set of uncolored elements in i-th iteration. We

continue this process until the k-th iteration where all elements are colored (i.e. Xk+1 = ∅). Let

χ be the final coloring given by χ(xi) = χi(xi) if xi ∈ Xi \ Xi+1 for 0 ≤ i ≤ k. We know that

|Xi| ≤ 0.9|Xi−1| for all 1 ≤ i ≤ k, so |Xi| ≤ (0.9)i|X0| = (0.9)im. Moreover, we know that for any

A ∈ An, noting that x1/2 ·
(
log en

x

) 1
2 is monotonically increasing for real number x ∈ (0, n],

|χ(A ∩X)| =
∣∣∣∣∣

k∑

i=0

χi(Xi ∩ A)

∣∣∣∣∣ ≤
k∑

i=0

|χi(Xi ∩ A)| <
k∑

i=0

200 · |Xi|
1
2

(
log

n

e|Xi|

) 1
2

≤ 200m
1
2 ·

k∑

i=0

(0.9)
i
2

(
log

en

(0.9)im

) 1
2

< cm
1
2

(
log

en

m

) 1
2

for some appropriate choice of the absolute constant c. �

3. Upper Bounds

By Corollary 2.3, we have disc(An) = O(
√
n). In this section, we prove the following upper bound

on the same quantity, which shows that the previous bound is not always tight, and that disc(An)

depends on the factorization of n. Recall that ω(r) denotes the number of distinct prime factors of r.

Theorem 3.1. There exists an absolute constant c > 0 such that for any positive integer n, we have

disc(An) ≤ min
r|n

(n
r
+ c

√
r · 2ω(r)

)
.

The proof of Theorem 3.1 consists of two steps. The first key step is to establish an upper bound

on disc(An) using a coloring of Zr where r divides n that simultaneously has low discrepancy with

respect to two particular families of arithmetic progressions in Zr. This is achieved by Lemma 3.2. To

accomplish this, we need to introduce a special type of arithmetic progression in Zn. Recall that An
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is the set of all arithmetic progressions in Zn. We define A0
n to be the set of all congruence classes of

Zn. Formally, for any r, i ∈ Zn, let

C(r, i) := {x ∈ Zn : x ≡ i (mod r)}
and

A0
n := {C(r, i) : r, i ∈ Zn}.

In particular we know that A0
n ⊆ An. In Lemma 3.2 we obtain an upper bound on disc(An) if there

is an r that divides n and a coloring χ of Zr that has low discrepancy over both Ar and A0
r.

The second step is to find a coloring of Zr which has nearly optimal discrepancy over Ar and A0
r

simultaneously. Finally we will complete the proof by applying Lemma 3.2 with this coloring of Zr.

Lemma 3.2. Let n be a positive integer and r be a positive factor of n. For any χ : Zr → {1,−1},
disc(An) ≤ max

A∈Ar

|χ(A)|+ n

r
· max
A0∈A0

r

|χ(A0)|.

Proof. Let m = n/r. For the subgroup (m) ⊆ Zn, we have a quotient map τ : Zn → Zn/(m) = Zr

given by τ(x) = x = x + (m). Suppose we are given an arbitrary χ : Zr → {1,−1}. Now we define

χ′ = χ ◦ τ : Zn → {1,−1}. It suffices to show

max
A′∈An

|χ′(A′)| ≤ max
A∈Ar

|χ(A)|+m · max
A0∈A0

r

|χ(A0)|. (3.1)

Let A′ = {a+ kd : 0 ≤ k < L} for some a, d ∈ Zn be an arithmetic progression in Zn of length L. We

may assume that L ≤ n/gcd(d, n) so that there is no repeated element in A′.

Let L0 = r/ gcd(r, d) where d = τ(d). For any integer t > 0, we know that {a + kd : t ≤ k < t+ L0}
is a set of size L0 in A0

n, as it covers each element in the congruence class exactly once. For any

0 ≤ l < L0, as the set {a+ kd : t ≤ k < t+ l} has no repeated element, it is a set of size l in An.

Now we may write L = qL0 + r for some integers q and 0 ≤ r < L0. We know that

q ≤ L

L0
≤ n/ gcd(d, n)

r/ gcd(r, d)
= m · gcd(r, d)

gcd(n, d)
≤ m.

Applying the triangle inequality, we get

|χ′(A′)| =
∣∣∣∣∣

L−1∑

k=0

χ′(a+ kd)

∣∣∣∣∣ =
∣∣∣∣∣

L−1∑

k=0

χ(a+ kd)

∣∣∣∣∣ =

∣∣∣∣∣∣

q−1∑

t=0

(t+1)L0−1∑

k=tL0

χ(a+ kd) +

qL0+r−1∑

k=qL0

χ(a+ kd)

∣∣∣∣∣∣

≤
q−1∑

t=0

∣∣∣∣∣∣

(t+1)L0−1∑

k=tL0

χ(a+ kd)

∣∣∣∣∣∣
+

∣∣∣∣∣∣

qL0+r−1∑

k=qL0

χ(a+ kd)

∣∣∣∣∣∣
≤ q · max

A0∈A0
r

|χ(A0)|+ max
A∈Ar

|χ(A)| ≤ m · max
A0∈A0

r

|χ(A0)|+ max
A∈Ar

|χ(A)|.

Since the bound is uniform for all A′ ∈ An, we conclude that (3.1) holds. �

After the above deduction, the second step is to find a coloring χ : Zn → {1,−1} that has nearly

optimal discrepancy over An and A0
n simultaneously. Formally we have the following statement.

Lemma 3.3. There exists an absolute constant c > 0 such that the following holds. Suppose that n is

a positive integer with k distinct prime factors. Then there exists χ : Zn → {1,−1} such that

max
A0∈A0

n

|χ(A0)| ≤ 1 and max
A∈An

|χ(A)| ≤ c
√
n · 2k.
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We can now deduce Theorem 3.1 from the above two steps.

Proof of Theorem 3.1 assuming Lemma 3.3. For any positive factor r of n, by Lemma 3.3, there is a

coloring χ of Zr such that

max
A0∈A0

r

|χ(A0)| ≤ 1 and max
A∈Ar

|χ(A)| ≤ c
√
r · 2ω(r),

where c is an absolute constant. Then applying Lemma 3.2, we conclude that

disc(An) ≤
n

r
+ c

√
r · 2ω(r).

As this holds for all positive factors r of n, the desired result follows. �

It remains to prove Lemma 3.3. We first present a proof of the case that n is a prime power. The

proof of this case is simpler and illustrates the main ideas in the proof of Lemma 3.3.

Lemma 3.4. There exists absolute constant c > 0 such that the following holds. Let n = pα for some

prime p and positive integer α. Then there exists χ : Zn → {1,−1} such that

max
A0∈A0

n

|χ(A0)| ≤ 1 and max
A∈An

|χ(A)| ≤ c
√
n.

To find a coloring with low discrepancy over A0
n, the main idea is to color simultaneously two disjoint

subsets S1 and S2 of Zn that are translations of each other, and we hope that χ(S1∩A0) and χ(S2∩A0)

cancel out for many A0 ∈ A0
n. The c

√
n upper bound on the discrepancy over An in Lemma 3.4 is

achieved via Corollary 2.3. We first derive the following lemma that gives a desired coloring for a

subset X of Zn, provided that X is an initial interval of some special length.

Lemma 3.5. There exists absolute constant c > 0 such that the following holds. Let n = pα for some

prime p and positive integer α. Suppose that X = {0, . . . ,m− 1} ⊆ Zn for some m ≤ n satisfies that

m = spβ with s even and β being a nonnegative integer. Then there exists χ : X → {1,−1} such that

max
A∈An

|χ(A ∩X)| ≤ c
√
m

(
log

en

m

) 1
2
,

and for any w ∈ Zn and r = pγ with 0 ≤ γ ≤ β,

χ(C(r, w) ∩X) = 0.

Proof. Let S = {0, . . . ,m/2− 1}. By Corollary 2.3, there is χ0 : X → {1,−1} such that

|χ0(A ∩ S)| ≤ c0

√
m

2

(
log

2en

m

) 1
2

,

holds for any A ∈ An, where c0 is an absolute constant. We know that X is the disjoint union of S

and S + m
2 , i.e. each element x ∈ X is of the form x = s + vm

2 for some s ∈ S and v ∈ {0, 1}. We

define χ : X → {1,−1} given by χ(s+ vm
2 ) = (−1)v · χ0(s) for any s ∈ S and v ∈ {0, 1}.

For any A ∈ An, noting that A− m
2 is also an arithmetic progression,

|χ(A ∩X)| = |χ(A ∩ S) + χ(A ∩ (S +m/2))| = |χ0(A ∩ S) + (−1) · χ0((A−m/2) ∩ S)|

≤ |χ0(A ∩ S)|+ |χ0((A −m/2) ∩ S)| ≤ 2 · c0
√

m

2

(
log

2en

m

) 1
2

≤ c
√
m

(
log

en

m

) 1
2
,
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where c is an absolute constant. Next we verify that for any r = pγ with γ ≤ β and any w ∈ Zn,

χ(C(r, w) ∩X) = 0. Note that m/2 is a multiple of r, so C(r, w) −m/2 = C(r, w). Hence we have

χ(C(r, w)∩X) = χ0(C(r, w)∩S)+(−1)·χ0((C(r, w)−m/2)∩S) = χ0(C(r, w)∩S)−χ0(C(r, w)∩S) = 0.

We have thus shown the existence of such a coloring χ with the desired properties. �

In the case n = pα, we partition Zn into a few sets, each being an interval of Zn of length an even

number times a power of p as in Lemma 3.5.

Proof of Lemma 3.4. Note that for any C(r, w) ∈ A0
n, we have C(r, w) = C(gcd(r, n), w). Hence it

suffices to check |χ(C(r, w))| ≤ 1 where r divides n = pα, i.e., r = pγ for some nonnegative γ ≤ α.

Let c0 be the constant in Lemma 3.5.

If p = 2, we can take m = n = 2 · 2α−1 in Lemma 3.5. Thus, there exists χ : Zn → {1,−1} such that

max
A∈An

|χ(A)| ≤ c0
√
n,

and that for any w ∈ Zn and any r = 2γ with γ ≤ α − 1, χ(C(r, w)) = 0. This means that, for any

r = 2γ , if γ ≤ α − 1, then χ(C(r, w)) = 0; if γ = α, then C(r, w) contains a single element w, so

|χ(C(r, w))| = 1 in this case. We conclude that

max
A0∈A0

n

|χ(A0)| ≤ 1.

If p > 2 is an odd prime, then we partition Zn into a few intervals: X0 = {0},Xi = {x : pi−1 ≤ x < pi}
for 1 ≤ i ≤ α. Note that for each i ≥ 1, Xi is an interval of length (p−1) ·pi−1. We would like to apply

Lemma 3.5 to each Xi for i ≥ 1. It is applicable because the property is maintained by translation.

Therefore for each 1 ≤ i ≤ α there is a coloring χi : Xi → {1,−1} such that

max
A∈An

|χi(A ∩Xi)| ≤ c0

√
(p− 1) · pi−1

(
1 + log

pα

(p− 1) · pi−1

)1
2

,

and for each w ∈ Zn and r = pγ with γ ≤ i− 1, we have χi(C(r, w) ∩Xi) = 0.

For X0 we may take any arbitrary χ0 : X0 → {1,−1}. Note that X0 = {0} contains only one element,

so |χ0(A ∩X0)| ≤ 1 for all A ⊆ Zn.

Since X =
∐α

i=0Xi, we define χ : X → {1,−1} such that χ(xi) = χi(xi) for all 0 ≤ i ≤ α and xi ∈ Xi.

Consequently, we know that for each A ∈ An,

|χ(A)| =
α∑

i=0

|χi(A ∩Xi)| ≤ 1 +

α∑

i=1

c0

√
(p − 1) · pi−1

(
1 + log

pα

(p− 1) · pi−1

) 1
2

≤ c
√
n

for some appropriate constant c. Moreover, for each C(r, w) ∈ A0
n, we may assume that r = pγ for

some 0 ≤ γ ≤ α and it gives that

χ(C(r, w)) = χ

(
C(r, w) ∩

(
γ⋃

i=0

Xi

))
+

α∑

i=γ+1

χi(C(r, w) ∩Xi).

Now, for each i ≥ γ + 1, i.e. γ ≤ i − 1, we have χi(C(r, w) ∩ Xi) = 0. Also note that
⋃γ

i=0Xi is

{x : 0 ≤ x < pγ}, so there is exactly one element of C(r, w) in it. Hence

|χ(C(r, w))| =
∣∣∣∣∣χ

(
C(r, w) ∩

(
γ⋃

i=0

Xi

))∣∣∣∣∣ = 1.
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Thus we may conclude that

max
A0∈A0

n

|χ(A0)| ≤ 1.

Hence for both p = 2 and p is odd, we can always find such a coloring χ. �

Finally we extend the argument above to arbitrary n using Chinese remainder theorem.

Notations. Suppose that number n has prime factorization n = pα1
1 · · · pαk

k . By Chinese remainder

theorem, we have an isomorphism

ψn : Zp
α1
1

× · · · × Zp
αk
k

→ Zn.

Again, we first show the following analogue of Lemma 3.5. This shows that if X ⊆ Zn has some special

structure, then we have a coloring of X with low discrepancy with respect to both An and A0
n.

Lemma 3.6. Let n be a positive integer with prime factorization n = pα1
1 · · · pαk

k . For each 1 ≤ i ≤ k,

let Ti ≤ pαi
i be a positive integer. Let X = {ψn(t1, . . . , tk) : 0 ≤ ti < Ti for all 1 ≤ i ≤ k}. Then

X ⊆ Zn is a set of m =
∏k

i=1 Ti elements. Suppose that I ⊆ [k] is a subset of indices and (βi)i∈I is a

sequence of nonnegative integers, such that for each i ∈ I, Ti = sip
βi
i for some even number si. Then

there exists a coloring χ : X → {−1, 1} such that the following holds. Its discrepancy over An satisfies

that

max
A∈An

|χ(A ∩X)| ≤ c2
|I|
2 · √m

(
|I|+ 1 + log

n

m

) 1
2
, (3.2)

and for any w ∈ Zn and any i ∈ I,

χ(C(n/pαi−βi
i , w) ∩X) = 0. (3.3)

Proof. Let L = |I|. Let Si = Ti/2 if i ∈ I, and Si = Ti otherwise. For each i ∈ I, from the condition

that Ti/p
βi
i is even, we know that Si is a multiple of pβi

i . We define

X0 = {ψn(t1, . . . , tk) : 0 ≤ ti < Si for all 1 ≤ i ≤ k}.

We know that X0 ⊆ Zn is a set of size m/2L. Next we apply Corollary 2.3 to get the constant c0 > 0

and a partial coloring of χ0 : X0 → {−1, 1} such that

max
A∈An

|χ0(X0 ∩ A)| ≤ c0

√
m

2L

(
1 + log

2Ln

m

) 1
2

≤ c

√
m

2L

(
L+ 1 + log

n

m

) 1
2
,

where c is another absolute constant.

For each v = (vi)i∈I ∈ {0, 1}I (binary tuples of length L indexed by I), we define sgn(v) = (−1)
∑

i∈I vi ,

and let uv ∈ Zn be the unique element, by the Chinese remainder theorem, such that

uv ≡ viSi (mod pαi
i ) for all i ∈ I and uv ≡ 0 (mod p

αj

j ) for all j /∈ I.

Thus we have the decomposition of X into disjoint copies of translations of X0:

X =
∐

v∈{0,1}I

Xv, where Xv := uv +X0.

This implies that each x ∈ X can be written in the form x = uv+x0 for some v ∈ {0, 1}I and x0 ∈ X0.

Now we define χ : X → {1,−1} by χ(uv + x0) = sgn(v) · χ(x0) for all v ∈ {0, 1}I , x0 ∈ X0. For any
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A ∈ An, noting that A− uv is also in An, so

|χ(X ∩ A)| =

∣∣∣∣∣∣

∑

v∈{0,1}I

χ(Xv ∩ A)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∑

v∈{0,1}I

sgn(v) · χ0(Xv ∩ A− uv)

∣∣∣∣∣∣

≤
∑

v∈{0,1}I

|χ0(X0 ∩ (A− uv))| ≤ 2L max
A∈An

|χ0(X0 ∩ A)|

≤ 2L · c
√

m

2L

(
L+ 1 + log

n

m

) 1
2
= c2

L
2 · √m

(
L+ 1 + log

n

m

) 1
2
.

This shows that the coloring χ satisfies the condition (3.2) on the discrepancy over An.

It remains to show (3.3). For each i ∈ I, let ri = n/pαi−βi
i = pα1

1 · · · pβi
i · · · pαk

k . For any i ∈ I and

any w ∈ Zn, we know that C(ri, w) contains p
αi−βi elements. If C(ri, w) ∩X = ∅, then (3.3) trivially

holds. It suffices to check χ(C(ri, w) ∩X) = 0 for w = ψn(t1, . . . , tk) ∈ Xv for some v ∈ {0, 1}I . Since
p
αj

j divides ri, each element in C(ri, w) is congruent to tj mod p
αj

j for j 6= i. This implies that C(ri, w)

only has nonempty intersection with Xv and Xv′ where v, v
′ ∈ {0, 1}I differ only at the entry indexed

by i. Moreover by the definition of u, uv−uv′ is congruent to 0 mod p
αj

j for all j 6= i, and is congruent

to ± si
2 p

βi
i mod pαi

i . Thus uv − uv′ is a multiple of ri, which implies C(ri, w) = C(ri, w) + (uv − uv′),

or equivalently C(ri, w)− uv = C(ri, w) − uv′ . Therefore we have

χ(C(ri, w) ∩X) = χ(C(ri, w) ∩Xv) + χ(C(ri, w) ∩Xv′)

= sgn(v) · χ0((C(ri, w)− uv) ∩X0) + sgn(v′) · χ0((C(ri, w)− uv′) ∩X0) = 0.

This is true for all i ∈ I and w ∈ Zn, and thus we conclude that χ satisfies (3.3) as well. �

We are now ready to prove Lemma 3.3. The idea is that, we partition Zn into a few subsets, one for

each factor r of n, and for each of them we use Lemma 3.6 to get a coloring of this subset with low

discrepancy over An and nearly optimal discrepancy over A0
n. Finally we show that the full coloring

we get from combining these subset colorings satisfies the properties.

Proof of Lemma 3.3. Suppose that n has prime factorization n = pα1
1 · · · pαk

k . For each 1 ≤ i ≤ k, we

partition Zp
αi
i

into αi + 1 intervals
(
S
(t)
i

)αi

t=0
in the following way. If pi = 2, then we set S

(αi)
i = Zp

αi
i

and S
(t)
i = ∅ for all 0 ≤ t < αi. If pi > 2, then we set S

(0)
i = {0} ⊆ Zp

αi
i

and S
(t)
i = {x : pt−1

i ≤ x < pti}
for 1 ≤ t ≤ αi. In particular we have |S(t)

i | ≤ pti for all i and t. Moreover, for each i and t > 0, S
(t)
i is

always an interval of length sip
t−1
i in Zp

αi
i

for some even si.

For each factor r = pδ11 · · · pδkk of n, we define Yr = S
(δ1)
1 × · · · × S

(δk)
k ⊆ Zp

α1
1

× · · · × Zp
αk
k

and

Xr = ψn(Yr) ⊆ Zn. Since each Zp
αi
i

is partitioned into S
(t)
i for 0 ≤ t ≤ αi, their product is partitioned

into Yr for r divides n, so Zn is partitioned into Xr for r divides n. Because |S(t)
i | ≤ pti for all i and t,

|Xr| = |Yr| =
k∏

i=1

|S(δi)
i | ≤

k∏

i=1

pδii = r. (3.4)

For each nonempty Xr with r = pδ11 · · · pδkk , we would like to apply Lemma 3.6 to get a coloring of Xr

with bounded discrepancy. Note that we can translate Yr so that all intervals S
(δj)
j for 1 ≤ j ≤ k start

at 0, and notice those properties from Lemma 3.6 are invariant under translation, so it is applicable to

Xr. Let Ir = {i ∈ [k] : δi > 0} ⊆ [k]. We have that for each i ∈ Ir, S
(δi)
i is an interval of length sip

βi
i
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for some even si and βi = δi − 1. This implies that we can find a partial coloring χr : Xr → {−1, 1}
such that

max
A∈An

|χr(A ∩Xr)| ≤ c02
|Ir |
2

√
|Xr|

(
|Ir|+ 1 + log

n

|Xr|

) 1
2

, (3.5)

and for any i ∈ Ir and any w ∈ Zn,

χr(C(n/pαi−βi
i , w) ∩Xr) = χr(C(n/pαi−δi+1

i , w) ∩Xr) = 0. (3.6)

Having defined χr as above for each nonempty Xr, we now construct χ by setting χ(xr) = χr(xr) for

each xr ∈ Xr for all r that divides n. We first show that χ has low discrepancy over An. By (3.4) we

have |Xr| ≤ r. By definition we have |Ir| ≤ k. Also note that x1/2 ·
(
k + 1 + log n

x

) 1
2 is increasing for

x ∈ (0, n]. Combining these together, we know that for any nonempty Xr,

2
|Ir |
2

√
|Xr|

(
|Ir|+ 1 + log

n

|Xr|

) 1
2

≤ 2
k
2
√
r
(
k + 1 + log

n

r

) 1
2 ≤ 2

k
2 (k + 1)

1
2
√
r
(
log

en

r

) 1
2
. (3.7)

Combining (3.5) and (3.7), there exists an absolute constant c1 such that for each nonempty Xr,

max
A∈An

|χr(A ∩Xr)| ≤ c02
k
2 (k + 1)

1
2 · √r

(
log

en

r

) 1
2 ≤ c12

3
4
k · √r

(
1 + log

n

r

) 1
2
. (3.8)

This is also true for Xr = ∅. Moreover we know that for any r = pδ11 · · · pδkk ,

√
r
(
1 + log

n

r

) 1
2 ≤

k∏

i=1

p
δi/2
i

(
1 + log

pαi
i

pδii

) 1
2

=
√
n

k∏

i=1

p
−(αi−δi)/2
i (1 + (αi − δi) log pi)

1
2 .

Summing this over all factors r = pδ11 · · · pδkk for 0 ≤ δi ≤ αi, we have that if we set ti = αi − δi,

∑

r|n

√
r
(
1 + log

n

r

) 1
2 ≤ √

n ·
α1∑

δ1=0

· · ·
αk∑

δk=0

k∏

i=1

p
−(αi−δi)/2
i (1 + (αi − δi) log pi)

1
2

=
√
n

k∏

i=1

(
αi∑

ti=0

p
−ti/2
i (1 + ti log pi)

1
2

)
≤ √

n
k∏

i=1

(
∞∑

ti=0

p
−ti/2
i (1 + ti log pi)

1
2

)
.

Note that for p ≥ 2,

f(p) :=
∞∑

t=0

p−t/2(1 + t log p)
1
2

is well-defined and tends to 1 as p → ∞. Thus there exists an absolute constant P > 0 such that if

p ≥ P , then f(p) < 2
1
4 . Since there are only finitely many prime numbers less than P , we conclude

that there exists an absolute constant c2 such that

k∏

i=1

(
∞∑

ti=0

p
−ti/2
i (1 + ti log pi)

1
2

)
=

k∏

i=1

f(pi) ≤ c2 · 2
k
4 .

Thus we have

∑

r|n

√
r
(
1 + log

n

r

) 1
2 ≤ √

n

k∏

i=1

(
∞∑

ti=0

p
−ti/2
i (1 + ti log pi)

1
2

)
≤ c22

k
4
√
n. (3.9)
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Thus for any A ∈ An, by (3.8) and (3.9),

|χ(A)| =

∣∣∣∣∣∣

∑

r|n

χr(A ∩Xr)

∣∣∣∣∣∣
≤

∑

r|n

c12
3
4
k · √r

(
1 + log

n

r

) 1
2 ≤ c1c22

k√n.

Here we set c = c1c2 to get the desired bound on the discrepancy over An.

Now we study the discrepancy of χ over A0
n. Note that C(r′, w) = C(gcd(r′, n), w). We may only

consider the set of C(r′, w) ∈ A0
n for which r′ = pγ11 · · · pγkk is a factor of n. By definition of χ, we have

the relation that

χ(C(r′, w)) =
∑

r|n

χr(C(r′, w) ∩Xr). (3.10)

If r′ is not a multiple of r = pδ11 · · · pδkk , then we know that there exists some 1 ≤ i ≤ k for which

γi ≤ δi − 1. It follows that δi > 0, and i ∈ Ir. Since r′ is a factor of n and γi ≤ δi − 1, it is a factor of

n/pαi−δi+1
i . Consequently, the congruence class C(r′, w) can be partitioned into congruence classes of

the form C(n/pαi−δi+1
i , w′). Noting that (3.6) holds for any w′ ∈ Zn, we know that if r is not a factor

of r′, then χr(C(r′, w) ∩Xr) = 0. Thus we can remove all summands on the right hand side of (3.10)

except those r that divides r′. We get

χ(C(r′, w)) =
∑

r|r′

χr(C(r′, w) ∩Xr) = χ


C(r′, w) ∩


⋃

r|r′

Xr




 .

Note that we are taking union over all r = pδ11 · · · pδkk for which 0 ≤ δi ≤ γi for all 1 ≤ i ≤ k. We have

⋃

r|r′

Xr = ψn


⋃

r|r′

Yr




= ψn




γ1⋃

δ1=0

· · ·
γk⋃

δk=0

S
(δ1)
1 × · · · × S

(δk)
k




= ψn




n∏

i=1




γi⋃

δi=0

S
(δi)
i




 .

From our construction, we know that
⋃γi

δi=0 S
(δi)
i = ∅ if pi = 2 and γi < αi, and otherwise

γi⋃

δi=0

S
(δi)
i = {x : 0 ≤ x < pγii } ⊆ Zp

αi
i
.

Thus we may conclude that
⋃

r|r′

Xr ⊆ {ψn(t1, · · · , tk) : 0 ≤ ti < pγii for all 1 ≤ i ≤ k}. (3.11)

Let Zr′ be the set on the right hand side of (3.11). Any two distinct elements of Zr′ differ on some

ti for 1 ≤ i ≤ k, i.e., they have different remainders when divided by pγii for some i. Therefore their

difference is not divisible by r′. Hence there is at most one element of C(r′, w) in
⋃

r|r′ Xr ⊆ Zr′ for
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any w ∈ Zn. We conclude that for any r′ that divides n and any w ∈ Zn,

|χ(C(r′, w))| =

∣∣∣∣∣∣
χ


C(r′, w) ∩


⋃

r|r′

Xr





∣∣∣∣∣∣
≤ 1.

This finishes our proof. �

Remark 3.7. By being a little more careful with bounds in the above proof, we may improve the latter

inequality in Lemma 3.3 to

max
A∈An

|χ(A)| ≤ √
n · 2( 1

2
+o(1))k,

where the o(1) term tends to 0 as k → ∞. This in turn improves the bound on disc(An) to

minr|n

(
n
r +

√
r · 2( 1

2
+o(1))ω(r)

)
in Theorem 3.1, where the o(1) term goes to 0 as ω(r) → ∞.

4. Lower Bounds

In this section, we prove the lower bounds in Theorems 1.1 and 1.2. These proofs use Fourier analysis.

We first set up helpful notations and prove a consequence of the Plancherel theorem in Lemma 4.1.

Notations. Let f : Zn → C. Any coloring χ : Zn → {1,−1} is a special case. In this section, all

summations are over Zn unless otherwise specified.

We define the Fourier transform f̂ : Zn → C by f̂(r) =
∑

x∈Zn
f(x)e−

2πi
n

xr.

For two functions f1, f2 : Zn → C, their convolution f1 ∗ f2 : Zn → C is given by f1 ∗ f2(a) =∑
x f1(x)f2(a− x). We have the convolution identity f̂1 ∗ f2 = f̂1 · f̂2.

For any r ∈ N that divides n, we say that x ≡ y (mod r) for x, y ∈ Zn if x = y + kr for some k ∈ Zn.

We define, for any r ∈ N that divides n and a ∈ Zn,

gf (a, r) :=
∑

x∈Zn:x≡a(mod r)

f(x) and Gf (r) :=

r−1∑

a=0

|g(a, r)|2.

We see that gf (a, r) = gf (a+ kr, r), so gf (·, r) can be treated as a function on Zr.

Let M be a set or a multiset of elements in Zn. For a, r ∈ Zn, we define rM to be the multiset

{rx : x ∈ M}, and a +M to be the multiset {a + x : x ∈ M}. We define mM to be the multiplicity

function, i.e. mM (x) is the multiplicity of x in M . In particular, when M is a set, mM = 1M is the

indicator function. We also define

f(M) =
∑

x∈M

f(x).

Lemma 4.1. For any f : Zn → C, let f̂ be its Fourier transform. Let r ∈ N be a factor of n. Then

r−1∑

k=0

∣∣∣f̂
(
k · n

r

)∣∣∣
2
= rGf (r).

Proof. Let t = n/r. For each 0 ≤ k ≤ r − 1, we know that by definition

f̂(kt) =

n−1∑

x=0

f(x)e−
2πi
n

x·kt =

tr−1∑

x=0

f(x)e−
2πi
r

xk =

r−1∑

a=0

gf (a, r)e
− 2πi

r
ak.
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Hence for g : Zr → C defined by g(a) := gf (a, r), its Fourier transform is ĝ(k) = f̂(kt). By the

Plancherel theorem we have

r−1∑

k=0

∣∣∣f̂
(
k · n

r

)∣∣∣
2
=

r−1∑

k=0

|ĝ(k)|2 = r
r−1∑

a=0

|g(a)|2 = rGf (r).

�

In Lemmas 4.2 and 4.3, we prove lower and upper bounds on the same quantity respectively. Combining

them we get Corollary 4.4. This corollary lower bounds the discrepancy of a function f over arithmetic

progressions in Zn by the Fourier coefficients of f .

The next lemma lower bounds the quantity by a weighted L2 sum of Fourier coefficients f̂ . The weights

depend on the arithmetic structure of n.

Lemma 4.2. Let f : Zn → C, 1 ≤ m ≤ n be an integer, and M := {0, 1 . . . ,m− 1} ⊆ Zn. Then

∑

a∈Zn

∑

b∈Zn

|f(a+ bM)|2 ≥
∑

r∈Zn

|f̂(r)|2 ·max

(
m2 · gcd(r, n)

n
,m

)
. (4.1)

Proof. We show some properties about the multiplicity function. For the set M , we have

f(a+ bM) =
∑

x∈M

f(a+ bx) =
∑

x

f(x)ma+bM (x) =
∑

x

f(x)m−bM (a− x) = f ∗m−bM (a). (4.2)

For any u, v ∈ Zn, we have

m̂−uM(v) =
∑

x

m−uM(x)e−
2πi
n

vx =
∑

x∈−uM

e−
2πi
n

vx =
∑

y∈−M

e−
2πi
n

vuy = m̂−M (uv). (4.3)

Applying (4.3) twice we have m̂−uM (v) = m̂−vM (u). We have

∑

a

∑

b

|f(a+ bM)|2 =
∑

b

∑

a

|f ∗m−bM (a)|2 =
∑

b

1

n

∑

r

∣∣∣ ̂f ∗m−bM (r)
∣∣∣
2

=
1

n

∑

b

∑

r

|f̂(r)|2 ·
∣∣m̂−bM (r)

∣∣2 = 1

n

∑

b

∑

r

|f̂(r)|2
∣∣m̂−rM (b)

∣∣2

=
∑

r

|f̂(r)|2 ·
(
1

n

∑

b

∣∣m̂−rM (b)
∣∣2
)

=
∑

r

|f̂(r)|2 ·
∑

s

|m−rM(s)|2,

(4.4)

where the first equality uses (4.2), the second uses the Planchrel theorem, the third uses the Fourier

identity of convolution, the fourth uses (4.3) twice, and the last uses the Plancherel theorem. Now we

evaluate
∑

s |m−rM (s)|2. Let k = gcd(r, n). When km ≤ n, we know that rM contains m elements

with multiplicity 1. Thus in this case we have
∑

s

|m−rM (s)|2 = m.

Otherwise when km > n, we know that rM contains elements that are multiples of k. There are n
k

such elements in Zn. Therefore, by the Cauchy-Schwarz inequality, we have

∑

s

|m−rM (s)|2 =
n
k
−1∑

t=0

|m−rM(tk)|2 ≥

(∑n
k
−1

t=0 |m−rM (tk)|
)2

n/k
=

m2k

n
.



16 JACOB FOX, MAX WENQIANG XU, AND YUNKUN ZHOU

Hence we may conclude that for any r ∈ Zn,

∑

s

|m−rM (s)|2 ≥ max

(
m2 · gcd(r, n)

n
,m

)
. (4.5)

Combining this with (4.4), we obtain (4.1). �

The next lemma gives an upper bound on the quantity above. The upper bound involves the discrep-

ancy of f over An and some arithmetic sums of f . Let φ(·) be Euler’s totient function.

Lemma 4.3. Let f : Zn → C. Suppose that

Tf := max
A∈An

|f(A)|.

Let m ≤ n be a positive integer, and M := {0, 1, . . . ,m− 1} ⊆ Zn. Then we have

∑

a∈Zn

∑

b∈Zn

|f(a+ bM)|2 ≤ n2T 2
f +

∑

0≤k<m:k|N

m2φ(k)

k
Gf (n/k). (4.6)

Proof. For each fixed b ∈ Zn, we analyze the summation
∑

a |f(a + bM)|2. Let r = gcd(b, n) and

k = n/r. There are two possibilities: rm ≤ n or rm > n.

If rm ≤ n, then each element in bM has multiplicity 1. Therefore a + bM is a set for all a ∈ Zn.

Moreover from our definition of M = {0, 1, . . . ,m − 1}, we know that a + bM ∈ An is an arithmetic

progression in Zn. In this case, for any a, |f(a+ bM)| ≤ Tf , so
∑

a

|f(a+ bM)|2 ≤
∑

a

T 2
f = nT 2

f . (4.7)

If rm > n, i.e., m > k, then some elements in bM have multiplicity greater than 1. The bound in (4.7)

no longer applies. Let K = {0, 1, . . . , k− 1} and it follows that each element in bK has multiplicity 1.

Moreover, it covers each multiple of r in Zn exactly once. Hence

f(a+ bK) =

k−1∑

t=0

f(a+ bt) = gf (a, r).

Suppose that m = qk+s for integers q and 0 ≤ s < k. Then we may write mM = mS+
∑q−1

j=0 ms+jk+K

where S = {0, 1, . . . , s− 1}. Thus, for any a ∈ Zn, we have

f(a+ bM) = f(a+ bS) +

q−1∑

j=0

f(a+ b · (s+ jk) + bK)

= f(a+ bS) +

q−1∑

j=0

gf (a+ b · (s+ jk), r) = f(a+ bS) + q · gf (a, r).
(4.8)

In the last step, we use the fact that b · (s+ jk) is a multiple of r.

Since s < k, each element in bS has multiplicity at most 1, and further a+ bS ∈ An for all a. Thus

|f(a+ bS)| ≤ Tf . (4.9)

We now partition a ∈ Zn into congruence classes mod r. In particular, we have

∑

a

|f(a+ bM)|2 =
r−1∑

i=0

∑

a≡i(mod r)

|f(a+ bM)|2. (4.10)



DISCREPANCY IN MODULAR ARITHMETIC PROGRESSIONS 17

For each a′ ≡ i (mod r), there are exactly s choices of a ≡ i (mod r) such that a′ ∈ a+ bS. Thus,

k−1∑

j=0

f(i+ jr + bS) =
∑

a≡i(mod r)

f(a+ bS) = s · gf (i, r). (4.11)

Consequently, we have

∑

a≡i(mod r)

|f(a+ bM)|2 =

k−1∑

j=0

|f(i+ jr + bM)|2

[by (4.8)] =

k−1∑

j=0

|f(i+ jr + bS) + q · gf (i, r)|2

=

k−1∑

j=0

(
|f(i+ jr + bS)|2 + 2Re

(
q · f(i+ jr + bS)gf (i, r)

)
+ q2|gf (i, r)|2

)

[by (4.9)] ≤ kT 2
f + kq2|gf (i, r)|2 + 2qRe


gf (i, r)

k−1∑

j=0

f(i+ jr + bS)




[by (4.11)] = kT 2
f + kq2|gf (i, r)|2 + 2qs|gf (i, r)|2

≤ kT 2
f + |gf (i, r)|2 ·

k2q2 + 2kqs+ s2

k

[by m = kq + s] = kT 2
f +

m2

k
|gf (i, r)|2.

Put this into (4.10). We know that in the second case where rm > n, i.e., k < m,

∑

a

|f(a+ bM)|2 =
r−1∑

i=0

∑

a≡i(mod r)

|f(a+ bM)|2 ≤ nT 2
f +

m2

k
Gf (r) = nT 2

f +
m2

k
Gf (n/k). (4.12)

The second case happens exactly when gcd(b, n) = n/k for some k < m which divides n. The number

of such choices of b is exactly φ(k) for any fixed k. Hence combining (4.7) and (4.12), we get (4.6). �

Combining Lemma 4.2 and Lemma 4.3, we deduce the following general lower bounds.

Corollary 4.4. Let f : Zn → C and f̂ be its Fourier transform. Suppose that

Tf := max
A∈An

|f(A)|.

For any positive integer m ≤ n, we have

n2T 2
f +

∑

1≤k<m:k|n

m2φ(k)

k
Gf (n/k) ≥

∑

r∈Zn

|f̂(r)|2 ·max

(
m2 · gcd(r, n)

n
,m

)
. (4.13)

In Corollary 4.4, the inequality involves Gf and f̂ besides Tf . We aim to get a lower bound on disc(An)

that only depends on arithmetic structure of n (Proposition 4.7). To achieve that, we need two lemmas

(Lemma 4.5 and Lemma 4.6) to remove the dependency on f̂ and Gf .

Lemma 4.5. Let f : Zn → C and f̂ be its Fourier transform and m ≤ n be a positive integer. Then

∑

1≤k≤n:k|n

m2φ(k)

k
Gf (n/k) =

∑

r∈Zn

|f̂(r)|2 · m
2 · gcd(r, n)

n
.
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Proof. By Lemma 4.1, we know that

n

k
Gf (n/k) =

∑

r∈Zn:k|r

|f̂(r)|2.

Thus we have (noticing that
∑

k|l φ(k) = l for any positive integer l)

∑

1≤k≤n:k|n

m2φ(k)

k
Gf (n/k) =

∑

1≤k≤n:k|n

m2φ(k)

n

∑

r∈Zn:k|r

|f̂(r)|2 =
∑

r∈Zn

|f̂(r)|2 · m
2

n

∑

1≤k≤n:k|n,k|r

φ(k)

=
∑

r∈Zn

|f̂(r)|2 · m
2

n

∑

1≤k≤n:k|gcd(n,r)

φ(k) =
∑

r∈Zn

|f̂(r)|2 · m
2

n
gcd(r, n).

Hence we have the desired equality. �

Lemma 4.6. Let f : Zn → C and f̂ be its Fourier transform. Let m, l ≤ n be positive integers. Then

∑

r∈Zn

|f̂(r)|2 ·min

(
m2 · gcd(r, n)

n
,m

)
≤

∑

1≤k≤l:k|n

m2φ(k)

k
Gf (n/k) +

∑

l<k≤n:k|n

mn

k
Gf (n/k). (4.14)

Proof. It suffices to compare the coefficient of each |f̂(r)|2 on both sides after expanding all terms of

Gf on the right hand side (4.14) using Lemma 4.1. By Lemma 4.1, for any k that divides n,

n

k
Gf (n/k) =

∑

r∈Zn:k|r

|f̂(r)|2.

For each r ∈ Zn, the coefficient tr of |f̂(r)|2 on the right hand side of (4.14) is given by

tr =
∑

1≤k≤l:k|gcd(r,n)

m2φ(k)

n
+

∑

l<k≤n:k|gcd(r,n)

m =
m2

n

∑

1≤k≤l:k|gcd(r,n)

φ(k) +m
∑

l<k≤n:k|gcd(r,n)

1.

If gcd(r, n) ≤ l, then we know that the first summation sums over all factors of gcd(r, n), and the

second summation is zero. Hence we know that in this case,

tr =
m2

n
gcd(r, n).

If gcd(r, n) > l, then in particular the second summation contains at least one term k = gcd(r, n), and

the first summation is nonnegative. Hence in this case,

tr > m.

We may conclude that tr ≥ min
(
m2·gcd(r,n)

n ,m
)
for all r ∈ Zn. This yields (4.14). �

Using the lemmas above, we prove a lower bound on disc(An) which depends only on the arithmetic

structure of n.

Proposition 4.7. For any positive integers n and l ≤ n,

1

(disc(An))2
≤ 8

n

∑

1≤k≤l:k|n

φ(k) + 2
∑

l<k≤n:k|n

1

k2
.
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Proof. For simplicity let us denote

S1 :=
∑

1≤k≤l:k|n

φ(k) and S2 :=
∑

l<k≤n:k|n

1

k2
.

We aim to show

disc(An)
2 ≥ 1

8
nS1 + 2S2

. (4.15)

Because we always have disc(An) ≥ 1, we may assume that S1 <
n
8 .

Let χ : Zn → {1,−1} be any coloring of Zn, and let Tχ := maxA∈An |χ(A)|. Let m ≤ n be a positive

integer to be determined later. By Corollary 4.4, we know that

n2T 2
χ +

∑

1≤k<m:k|n

m2φ(k)

k
Gχ(n/k) ≥

∑

r∈Zn

|χ̂(r)|2 ·max

(
m2 · gcd(r, n)

n
,m

)
. (4.16)

By Lemma 4.5, we know that

∑

1≤k≤n:k|n

m2φ(k)

k
Gχ(n/k) =

∑

r∈Zn

|χ̂(r)|2 · m
2 · gcd(r, n)

n
.

Subtract both sides from (4.16). We get

n2T 2
χ +

∑

r∈Zn

|χ̂(r)|2 ·min

(
m2 · gcd(r, n)

n
,m

)
≥

∑

r∈Zn

|χ̂(r)|2 ·m+
∑

m≤k≤n:k|n

m2φ(k)

k
Gχ(n/k). (4.17)

Since χ takes value in {−1, 1}, we know that
∑

r∈Zn

|χ̂(r)|2 = nGχ(n) = n2. (4.18)

Note that each Gχ(·) is nonnegative. By (4.18), the right hand side of (4.17) is lower bounded by

∑

r∈Zn

|χ̂(r)|2 ·m+
∑

m≤k≤n:k|n

m2φ(k)

k
Gχ(n/k) ≥ n2m. (4.19)

For the left hand side of (4.17), we apply Lemma 4.6 for m and l and get

∑

r∈Zn

|χ̂(r)|2 ·min

(
m2 · gcd(r, n)

n
,m

)
≤

∑

1≤k≤l:k|n

m2φ(k)

k
Gχ(n/k) +

∑

l<k≤n:k|n

mn

k
Gχ(n/k). (4.20)

Note that by definition, each single gχ(a, n/k) is the sum of k values of χ. Because χ takes value in

{−1, 1}, we have

Gχ(n/k) ≤
n

k
· k2 = nk. (4.21)

Moreover, each gχ(a, n/k) is χ(A) for some A ∈ An, so |gχ(a, n/k)| ≤ Tχ. This means that for all k,

Gχ(n/k) ≤
n

k
· T 2

χ . (4.22)

We bound the first term on the right hand side of (4.20) using (4.21) and get

∑

1≤k≤l:k|n

m2φ(k)

k
Gχ(n/k) ≤ m2n

∑

1≤k≤l:k|n

φ(k) = nm2 · S1. (4.23)
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On the other hand, we bound the second term on the right hand side of (4.20) using (4.22) and get

∑

l<k≤n:k|n

mn

k
Gχ(n/k) ≤

∑

l<k≤n:k|n

mn2

k2
T 2
χ = n2mT 2

χ · S2. (4.24)

Put (4.23) and (4.24) into (4.20). We get

∑

r∈Zn

|χ̂(r)|2 ·min

(
m2 · gcd(r, n)

n
,m

)
≤ nm2 · S1 + T 2

χn
2mS2. (4.25)

Finally we put (4.19) and (4.25) into (4.17). We get
(
n2 + n2mS2

)
T 2
χ ≥ n2m− nm2S1.

Dividing both sides by n2m, we get
(

1

m
+ S2

)
T 2
χ ≥ 1− m

n
S1. (4.26)

Now we pick m = ⌊n/(2S1)⌋. Note that S1 < n/8 from our assumption, so m ≥ n
4S1

. Therefore,

1

m
≤ 4

n
S1 and 1− m

n
S1 ≥

1

2
.

Put them into (4.26). We conclude that

T 2
χ ≥ 1− m

n S1

1
m + S2

≥ 1/2
4
nS1 + S2

=
1

8
nS1 + 2S2

.

Since this bound applies to all T 2
χ , it also applies to (disc(An))

2 = minχ T
2
χ . Hence we have (4.15). �

Remark 4.8. As mentioned earlier in Remark 1.3, the proof above also applies to the case where χ

takes value in the unit circle on the complex plane {z ∈ C : |z| = 1} (instead of {1,−1}). Just note

that (4.18) and (4.21) hold in this more general case as well, and all other steps are identical.

Now we prove two corollaries. The first shows that the upper bound in Theorem 3.1 is tight up to an

no(1) factor.

Corollary 4.9 (Lower bound in Theorem 1.1). There exists an absolute constant c > 0 such that, for

any positive integer n,

disc(An) ≥
1

8
√

d(n)
·min

r|n

(n
r
+

√
r
)
,

where d(n) is the number of factors of n.

Proof. Let t1 be the minimum factor of n that is at least n
2
3 , and let t2 be the maximum factor of n

less than n
2
3 . As

2 ·min

(√
t1,

n

t2

)
≥ min

(√
t1 +

n

t1
,
√
t2 +

n

t2

)
= min

r|n

(n
r
+

√
r
)
,

it suffices to show that

disc(An) ≥
1

4
√

d(n)
·min

(√
t1,

n

t2

)
. (4.27)
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Now we apply Proposition 4.7 to n and l = n
t1
. We bound the two summations as follows. We have

∑

1≤k≤ n
t1

:k|n

φ(k) ≤
∑

1≤k≤ n
t1

:k|n

k ≤ n

t1
· d(n). (4.28)

Note that t2 is the largest factor of n less than t1, so the minimum k in { n
t1

< k ≤ n : k|n} is n/t2.

Thus we have
∑

n
t1

<k≤n:k|n

1

k2
≤

∑

n
t2

≤k≤n:k|n

1

k2
≤ t22

n2
· d(n). (4.29)

Using above two bounds, we get

(disc(An))
2 ≥ 1

8
t1
d(n) + 2

t22
n2d(n)

≥ 1

16d(n)
min

(
t1,

n2

t22

)
.

This is equivalent to (4.27), so we have the expected inequality. �

The second corollary proves the lower bound in Theorem 1.2. The main observation is that the factor

d(n) can be removed in (4.28) and (4.29) when n is a prime power.

Corollary 4.10 (Lower bound in Theorem 1.2). Let p be a prime number, and k be a positive integer.

Then for n = pk,

disc(An) ≥
1

4
p

k−⌊k/3⌋
2 . (4.30)

Proof. In Proposition 4.7, we pick l = pt for some 1 ≤ t < n to be determined later. Note that the

factors of n between 1 and l are given by s = pi for 0 ≤ i ≤ t, which are all factors of l. Hence we have
∑

1≤s≤l:s|n

φ(s) = l = pt.

All factors of n larger than l are given by s = pi for t+ 1 ≤ i ≤ k. Thus

∑

l<s≤l:s|n

1

s2
=

k∑

i=t+1

p−2i ≤ p−2t−2 ·
(
1 +

1

p2
+

1

p4
+ · · ·

)
≤ 2p−2t−2.

Therefore, by Proposition 4.7 we get

disc(An) ≥
√

1

8pt−k + 4p−2t−2
≥ 1

4
·min

(
p

k−t
2 , pt+1

)
=

1

4
· pmin(k−t

2
,t+1).

We pick t = ⌊k/3⌋ to get (4.30).

�

5. Concluding Remarks

In Theorem 1.1, the upper and lower bounds are off by a factor of O(d(n)3/2). We were not able to

close this gap, and it seems that major improvement of either bound would require new observations.

Problem 5.1. Determine disc(An) up to a constant factor for all n.
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There are other notions of discrepancy besides the one studied in this paper. Among them there is

the hereditary discrepancy, defined for a system (Ω,A) as

herdisc(A) := max
X⊆Ω

disc(A|X)

where A|X = {A∩X : A ∈ A}. Clearly disc(A) ≤ herdisc(A). For the set A of arithmetic progressions

in [n], Matoušek and Spencer [10] proved a stronger statement that herdisc(A) = O(n
1
4 ). This is

because their partial coloring method works not just for A, but also for A|X for any X ⊆ [n].

In contrast, our construction of the coloring in Section 3 is only valid for coloring the whole set Zn.

While it can be adapted so that the same upper bound (possibly with a larger constant factor) applies

to some special subsets of Zn, it does not work for all subsets X ⊆ Zn.

Problem 5.2. Estimate the hereditary discrepancy of An.

By Corollary 2.3 we have herdisc(An) = O(n
1
2 ). The method used in Section 2 can be adapted to give

the following slightly stronger statement. Let φ(·) be Euler’s totient function.

Theorem 5.1. There exists a constant c such that for all positive integers n, we have

herdisc(An) ≤ cφ(n)
1
2

(
log

en

φ(n)

) 3
2

.

We leave the proof of this theorem to the Appendix. It shows that the upper bound O(n
1
2 ) is not

always tight. It would be interesting to determine if there is a matching lower bound of the form

n
1
2
−o(1).
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Appendix A. Improved bound for hereditary discrepancy

In this appendix, we prove Theorem 5.1, an improved upper bound on the hereditary discrepancy of

modular arithmetic progressions. We need the following lemma which gives a partial coloring bound.
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Lemma A.1. Let X ⊆ Zn be a set of size m > 0. There exists an absolute constant c such that there

is a partial coloring χ : X → {−1, 0, 1} that assigns ±1 to at least m/10 elements in X such that

max
A∈An

|χ(A ∩X)| ≤ cφ(n)
1
2

(
log

en

φ(n)

) 1
2

.

Assuming this lemma, we may now prove Theorem 5.1.

Proof of Theorem 5.1 assuming A.1. Let X ⊆ Zn be a set of size m. We show that there exists a

coloring χ : X → {1,−1} such that, for some absolute constant c,

max
A∈An

|χ(A ∩X)| ≤ cφ(n)
1
2

(
log

en

φ(n)

) 3
2

. (A.1)

The idea is that we iteratively apply Lemma A.1 to the set of uncolored elements until there are at

most φ(n) elements left, and then apply Corollary 2.3 to color the remaining elements. Let c0, c1 be

the constants in Lemma A.1 and Corollary 2.3.

Start with X0 = X. For each i ≥ 0, we apply Lemma A.1 to Xi to get a partial coloring χi : Xi →
{−1, 0, 1}, and we let Xi+1 = χ−1

i (0) ⊆ Xi to be the set of uncolored elements in i-th iteration. We

continue this process until the (k − 1)-th iteration where there are at most φ(n) elements left (i.e.

|Xk| ≤ φ(n)). Then we apply Corollary 2.3 to get a coloring χk : Xk → {−1, 1}. Let χ be the final

coloring given by χ(xi) = χi(xi) if xi ∈ Xi \Xi+1 for 0 ≤ i ≤ k − 1, and χ(xk) = χk(xk). We know

that |Xi| ≤ 0.9|Xi−1| for all 1 ≤ i ≤ k, so |Xk| ≤ (0.9)k |X0| = (0.9)km ≤ (0.9)kn. Because we stop

when there are at most φ(n) elements left, we shall see that k ≤ 1 + log0.9
m
n ≤ 10 log en

m .

Applying the bounds on the discrepancy of χi from Lemma A.1 and Corollary 2.3, we conclude that

for any A ∈ An,

|χ(A ∩X)| =
∣∣∣∣∣

k∑

i=0

χi(Xi ∩ A)

∣∣∣∣∣ ≤
k−1∑

i=0

|χi(Xi ∩ A)|+ |χk(Xk ∩ A)|

≤ k · c0φ(n)
1
2

(
log

en

φ(n)

) 1
2

+ c1|Xk|
1
2

(
log

en

|Xk|

) 1
2

< 10c0φ(n)
1
2

(
log

en

m

) 3
2
+ c1φ(n)

1
2

(
log

en

m

) 1
2 ≤ cφ(n)

1
2

(
log

en

m

) 3
2

for c = 10c0 + c1 being an absolute constant. Since it holds for all A ∈ An, we have (A.1). �

We are left to prove Lemma A.1. We first need a slight generalization of the partial coloring lemma

in Lemma 2.1. In Lemma 2.1 we require ∆S ≥ 2
√

|S|. Here we allow ∆S to take any positive value.

Lemma A.2 (Section 4.6 in [9]). Let (V,C) be a set system on n elements, and let a number ∆S > 0

be given for each set S ∈ C. Suppose that

∑

S∈C:S 6=∅

g

(
∆S√
|S|

)
≤ n

5
(A.2)

where

g(λ) =

{
10e−λ2/4 if λ ≥ 2,

10 log(1 + 2λ−1) if 0 < λ < 2.
(A.3)
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Then there exists a partial coloring χ that assigns ±1 to at least n/10 variables (and 0 to the rest),

satisfying |χ(S)| ≤ ∆S for each S ∈ C.

We now prove Lemma A.1.

Proof of Lemma A.1. We use the same decomposition as in Lemma 2.2 to get the family C2 of

nonempty subsets of X. From the argument in Lemma 2.2, we know that sets in C2 are of size

2i for 2i ≤ m. If χ : X → {−1, 0, 1} is such that for all 0 ≤ i ≤ log2 m we have χ(S) ≤ ∆i for any set

S ∈ C2 of size 2i, then

max
A∈An

|χ(A ∩X)| ≤ 4
∑

0≤i≤log2 m

∆i. (A.4)

Then we apply a better bound on the number of sets in C2 of size 2i, which we shall denote as fi. The

notations here are the same as in Lemma 2.2. For each 1 ≤ d < n and 0 ≤ a < gcd(d, n), the number

of choices of t in (2.5) is ⌊ld,a/2i⌋. Yet note that ld,a ≤ n
gcd(d,n) . Hence if gcd(d, n) > n

2i
, then there are

no such sets included in the set Xd,a. Therefore we have the following better bound on fi:

fi ≤
∑

1≤d≤n−1:gcd(d,n)≤ n

2i

gcd(d,n)−1∑

a=0

⌊
ld,a
2i

⌋
=

∑

1≤d≤n−1:gcd(d,n)≤ n

2i

m

2i
≤

∑

1≤l≤ n

2i
:l|n

φ(n/l) · m
2i
.

Because φ(ab) ≥ φ(a)φ(b) for all a, b ∈ N, we know that φ(n/l) ≤ φ(n)/φ(l) for all l that divides n.

Also note that 0 < φ(n)/φ(l) for all l that does not divide n. By Landau [8, p. 184], for any x ≥ 1,∑
l≤x 1/φ(l) ≤ c0 log ex for some absolute constant c0. Hence we have

fi ≤
m

2i

∑

1≤l≤ n
2i

:l|n

φ(n/l) ≤ m

2i
φ(n)

∑

1≤l≤ n
2i

1

φ(l)
≤ c0

m

2i
φ(n) log

en

2i
. (A.5)

For simplicity we denote M = φ(n) log en
φ(n) . We define b : (0, n] → R, given by

b(s) =

{
c1
√
s ·

(
s
M

)−1
if s ≥ M,

c1
√
s ·

(
s
M

)−0.1
if s < M,

(A.6)

where c1 > 2 is an absolute constant to be determined later. We would like to show that there exists

a partial coloring that colors at least m/10 elements in X, such that for any S ∈ C2,

|χ(S)| ≤ b(|S|). (A.7)

In order to apply Lemma A.2, it suffices to verify that

∑

S∈C2

g

(
b(s)√
|S|

)
=

⌊log2 m⌋∑

i=0

fi · g
(
b(2i)2−i/2

)
≤ m/5. (A.8)

For fixed i, we denote τ = 2i/M , so 2i = τM ≥ τφ(n). Observe that

fi ≤ c0m · τ−1 · log en
2i

log en
φ(n)

≤ c0mτ−1
log en

τφ(n)

log en
φ(n)

= c0mτ−1

(
1 +

log τ−1

log en
φ(n)

)
.

When τ < 1, we have b(2i)2−i/2 = c1τ
−0.1 and

fi ≤ c0mτ−1

(
1 +

log τ−1

log en
φ(n)

)
≤ c0mτ−1(1 + log τ−1).
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When τ ≥ 1, we have b(2i)2−i/2 = c1τ
−1 and

fi ≤ c0mτ−1

(
1 +

log τ−1

log en
φ(n)

)
≤ c0mτ−1.

Therefore if we write the summation in (A.8) in terms of τ , we have

⌊log2 m⌋∑

i=0

fi · g
(
b(2i)2−i/2

)
= c0m


∑

τ≥1

τ−1g(c1τ
−1) +

∑

τ<1

τ−1(1 + log τ−1)g(c1τ
−0.1)


 , (A.9)

where the summation of τ is over a geometric sequence with ratio 2. By definition of g in (A.3), g is

monotonically decreasing. Let T be a large absolute constant to be determined later. We have
∑

τ≥T

τ−1g(c1τ
−1) ≤

∑

τ≥T

τ−1g(2τ−1) =
∑

τ≥T

τ−1 · 10 log(1 + τ).

Since
∑

τ≥1 τ
−1 · 10 log(1 + τ) converges, there exists sufficiently large constant T satisfying

∑

τ≥T

τ−1g(c1τ
−1) ≤ 1

20c0
. (A.10)

We bound the second term on the right hand side of (A.9) similarly. We have
∑

τ<T−1

τ−1(1+log τ−1)g(c1τ
−0.1) ≤

∑

τ<T−1

τ−1(1+log τ−1)g(2τ−0.1) =
∑

τ<T−1

τ−1(1+log τ−1)·10e−τ−0.2
.

Since
∑

τ<1 τ
−1(1 + log τ−1) · 10e−τ−0.2

converges, there exists sufficiently large constant T satisfying

∑

τ<T−1

τ−1(1 + log τ−1)g(c1τ
−0.1) ≤ 1

20c0
. (A.11)

Hence, there exists constant T such that whenever c1 > 2, (A.10) and (A.11) hold. Note that there

are at most (1 + log2 T ) terms in each of the ranges 1 ≤ τ < T and T−1 ≤ τ < 1, and that g(x) is

monotonically decreasing and tends to zero as x goes to infinity. We can choose c1 > 2 sufficiently

large so that
∑

1≤τ<T

τ−1g(c1τ
−1) ≤ (1 + log2 T ) · g(c1T−1) ≤ 1

20c0
(A.12)

and
∑

T−1≤τ<1

τ−1(1 + log τ−1)g(c1τ
−0.1) ≤ (1 + log2 T ) · T (1 + log T )g(c1) ≤

1

20c0
. (A.13)

Combining inequalities (A.10), (A.11), (A.12) and (A.13), there exists a constant c1 such that

∑

τ≥1

τ−1(1 + log τ)g(c1τ
−1) +

∑

τ<1

τ−1g(c1τ
−0.1) ≤ 1

5c0
. (A.14)

We use this constant c1 to define the function b(·) in (A.6). Combining (A.9) and (A.14), we have

⌊log2 m⌋∑

i=0

fi · g
(
b(2i)2−i/2

)
≤ c0m · 1

5c0
=

m

5
.
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Therefore (A.8) holds. By Lemma A.2, there exists a partial coloring χ : X → {−1, 0, 1} that assigns

±1 to at least m/10 elements in X such that (A.7) holds. For this coloring χ, we may choose ∆i = b(2i)

in (A.4). Again we denote τ = 2i/M , or equivalently 2i = τM . We have

∆i = b(2i) =

{
c1
√
M · τ−0.5 if τ ≥ 1,

c1
√
M · τ0.4 if τ < 1.

Put this in (A.4). We know that χ satisfies that

max
A∈An

|χ(A ∩X)| ≤ 4
∑

0≤i≤log2 m

∆i = 4c1
√
M


∑

τ≥1

τ−0.5 +
∑

τ<1

τ0.4


 .

Note that summation of τ is over a geometric sequence with ratio 2. Hence we have
∑

τ≥1

τ−0.5 ≤ 1

1− 2−0.5
and

∑

τ<1

τ0.4 ≤ 1

1− 2−0.4
.

Therefore we conclude that we can find χ that assigns ±1 to at least m/10 elements in X and satisfies

max
A∈An

|χ(A ∩X)| ≤ 4c1
√
M

(
1

1− 2−0.5
+

1

1− 2−0.4

)
≤ c

√
M = cφ(n)

1
2

(
log

en

φ(n)

) 1
2

for some appropriate absolute constant c. �

Department of Mathematics, Stanford University, Stanford, CA, USA

Email address: {jacobfox,maxxu,yunkunzhou}@stanford.edu


	1. Introduction
	Organization

	2. The First Step towards the Upper Bounds
	3. Upper Bounds
	4. Lower Bounds 
	5. Concluding Remarks
	References
	Appendix A. Improved bound for hereditary discrepancy

