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DISCREPANCY IN MODULAR ARITHMETIC PROGRESSIONS

JACOB FOX, MAX WENQIANG XU, AND YUNKUN ZHOU

ABSTRACT. Celebrated theorems of Roth and of Matousek and Spencer together show that the dis-
crepancy of arithmetic progressions in the first n positive integers is @(n1/4)4 We study the analogous
problem in the Z, setting. We asymptotically determine the logarithm of the discrepancy of arithmetic
progressions in Z,, for all positive integer n. We further determine up to a constant factor the discrep-
ancy of arithmetic progressions in Z,, for many n. For example, if n = p® is a prime power, then the
discrepancy of arithmetic progressions in Z, is (9(7”L1/3+’"’€/(6k))7 where 7, € {0,1,2} is the remainder
when £ is divided by 3. This solves a problem of Hebbinghaus and Srivastav.

1. INTRODUCTION

Given a finite set 2, a (two-)coloring of 2 is a map x : Q — {1,—1}, and a partial coloring is a map
X:Q—{-1,0,1}. For A C Q, let x(A) = >, c 4 x(). For a family A of subsets of (2, the discrepancy
of A is defined to be

di := mi A
ise(A) 1= minma [x(4)]

where the minimum is over all colorings of 2. The discrepancy measures the guaranteed irregularity of
colorings with respect to a set system. Discrepancy theory is a rich area of study, see the books [1,3,4,9].

In particular, the study of discrepancy of arithmetic progressions has a long history, including notable
results of Weyl from 1916 [13] and Roth from 1964 [11]. Let [n] := {1,2,3,...,n} and A be the set
of arithmetic progressions in [n]. Using Fourier analysis, Roth [11] proved that there is an absolute
constant ¢ > 0 such that

disc(A) > eni.

The exponent 1/4 was unexpected, as random colorings suggest that the best exponent might be 1/2.
Later, improving on a result of Montgomery and Sérkozy (see Problem 10 in [5]), Beck [2] proved
that Roth’s lower bound is sharp up to a polylogarithmic factor. It was a big challenge to remove the
polylogarithmic factor and show that Roth’s bound is sharp up to a constant factor, and it was finally
done by Matousek and Spencer [10] via entropy and partial coloring methods.

The modular variant is also a very natural problem to study. For a positive integer n, an arithmetic
progression in Z, is a set of the form {a + kd : 0 < k < I} for any a,d € Z, and [ > 0. To avoid
repeated elements in the set, we may assume that [ < m. Let A, be the set of all arithmetic
progressions in Z,. The quantity we are interested in is

seln) = 2,y 2 Ak
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In the case where n = p is a prime, the following lower and upper bounds are proved by Hebbinghaus
and Srivastav [7] and Alon and Spencer (Theorem 13.1.1 in [1]) respectively. There exist positive
constants cq, co such that
c1y/p < disc(Ap) < cay/plogp.

Hebbinghaus and Srivastav [7] wrote that it seemed to be a difficult open problem to close the
O(y/log p) multiplicative gap between the upper and lower bounds. As part of our results, we re-
move the v/log p factor in the upper bound and resolve the problem of determining disc(A,) up to a
constant factor.

The problem for general Z,, is more challenging and interesting. Note that any arithmetic progression
in [n] is also an arithmetic progression in Z,, so Roth’s lower bound from the integer case also applies.
As the number of sets in A4,, is polynomial in n, considering a random coloring gives the following
upper bound (see Theorem 13.1.1 in [1]). So there are ¢, ca > 0 such that

cint < disc(A,) < CQTL%(lOg n)%
Our main theorem asymptotically determines the logarithm of disc(A,). It shows that disc(.A;,)
depends heavily on the arithmetic structure of n, and neither of the above bounds are sharp.

Let w(n) be the number of distinct prime factors of n and d(n) be the number of divisors of n.

Theorem 1.1. There exists an absolute constant ¢ > 0 such that for any positive integer n,

- min (E + \/7_“> < disc(A;,) < min <§ + - Qw(r)> .

1
84 /d(n) rln \T r|n
Note that we have 2¢(") < 2¢(") < d(n) = n°") (see [6]). This implies that

disc(A,) = n%+$+0(1),

where z > 0 is the largest real number such that there is no factor of n in the range (n%ﬁ”,n%qu).

Thus, our results determine the correct exponent of n for disc(A,) up to o(1).

Notice that when n has a bounded number of factors, Theorem 1.1 determines disc(A,) up to a
constant factor. In particular, when 7 is prime, we have disc(A,) = O(n!/?), and this solves the
problem of Hebbinghaus and Srivastav [7] discussed earlier.

We actually prove slightly stronger bounds, but we choose the formulation in Theorem 1.1 for sim-
plicity. These stronger bounds give the following sharp bound for disc(A,) when n is a prime power.

Theorem 1.2. If n = p" for prime p and positive integer k, then
— / T
disc(A,) = © (10]c ) 3J> =0 <n%+£) ,
where 1, € {0,1,2} is the remainder when k is divided by 3.

Remark 1.3. It is also natural to study the discrepancy problem in the case where the coloring function
X is allowed to take any value in the unit circle in the complex plane {z € C : |z| = 1}. For example,
this choice of coloring functions is studied in Tao’s [12] remarkable solution to the Erdés discrepancy
problem. By comparing the definitions of the coloring functions, we know that the discrepancy under
the more general choice of x is at most as large as the discrepancy under the choice x : Z,, — {1, —1}.
We remark that our proof is robust enough to give the same lower bound on discrepancy when y is
under the above choice. See Remark 4.8 for details on how to extend the proof of the lower bound to
the more general setting.
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Notations. Throughout the paper, all logarithms are base e unless otherwise specified.

We use symbols ¢, ¢cg, c1, co, etc. to denote absolute constants. To avoid using too many symbols in
different parts of the paper, we reuse these symbols to denote different constants. We make no attempt
to optimize constant factors in our results.

We treat elements in Z,, as if they are in Z in the following ways. For an element r € Z,, and integers
a,b € Z, we say a < r < b if there exists an element r’ € Z such that a <7’ <b and ' = r (mod n).
The notation is similar if either < is replaced with <. We typically use it when 0 < a < b < n, so this
notation should not cause any confusion. For any a € Z,, we may also define ged(a,n) = ged(a’,n)
for any o’ € Z with a’ = a (mod n). For two nonnegative integers a and b, we write a|b if a divides b.
For any factor r of n and a € Z,, we say that r|a if 7| gcd(a,n).

Organization. In Section 2, we derive our first upper bound on disc(A,,) (see Corollary 2.3). The
upper bounds in Theorems 1.1 and 1.2 are proved in Section 3 (see Theorem 3.1). In Section 4, we
prove the lower bounds in Theorem 1.1 (Corollary 4.9) and Theorem 1.2 (Corollary 4.10). We end
with some concluding remarks and open problems in Section 5.

2. THE FIRST STEP TOWARDS THE UPPER BOUNDS

We use the following version of a lemma of Matousek and Spencer [10] to show there is a partial
coloring that colors a constant fraction of the elements of a set system with low discrepancy. The
proof of this lemma uses the entropy method.

Lemma 2.1 (Section 4.6 in [9]). Let (V,C) be a set system on n elements, and let a number Ag >
2y/|S| be given for each set S € C. If

A% n
_T8 )< = 2.1
2 exp( 4|S|>—50’ =y
SeC:S#(

then there is a partial coloring x that assigns +1 to at least n/10 variables (and 0 to the rest) satisfying
IX(S)| < Ag for each S € C.

The following lemma shows that there is a partial coloring of a constant fraction of any subset X of
Zy, such that modular arithmetic progressions have low discrepancy. The proof utilizes the previous
lemma applied to a special family of intersections of X with modular arithmetic progressions. Each
set in this special family has size a power of 2. We show that any set which is an intersection of X
with a modular arithmetic progression can be written as the union of two sets, and each of them is a
set difference of two sets that each has a canonical decomposition into sets of different sizes from this
special family. We obtain the lemma by putting these together and using the triangle inequality.

Lemma 2.2. Let X C 7Z, be a set of size m > 0. There exists a partial coloring x : X — {—1,0,1}
that assigns +£1 to at least m/10 elements in X such that

N[

1 en
AN X)| < 200m? (1 —)

ax [x( )| < 200m2 (log —
Proof. Let AP, (a,d,i,j) :={a+kd:i <k < j} where a,d € Z,, and i,j € Z. By definition,

n
n — APn ,da ,l_l : ad Zna Slgi .
A { (a,d,0 ):a,d € Zy,0 gcd(n,d)}
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Consider the following decomposition of sets in A,. Let

) = {Apn(a,d,z‘,j) 11<d<n0<a<ged(nd),0<i<j< m}'

Now we show that any set A € A, can be written as the disjoint union of at most two sets in
Cy. For any set A = AP,(a,d,0,l — 1) with a,d € Z,, and 0 < [ < = d( 7, We may assume that
[ > 0, or otherwise it is an empty set. If d = 0, then the set is the singleton {a}, which is also
AP,(0,1,a,a) € C1 by choosing i,j to be the integer representative of a in the range [0,n). Now we
may assume 1 < d < n. Note that {kd : 0 < k < ﬁ} splits Z,, into Wnn,d) equal-sized intervals,
so there is some 0 < k < e d( ) such that 0 < a — kd < ged(n,d). Define @’ = a — kd, and we have

AP,(a,d,0,1 — 1) = AP, (d’,d, k, k +1— 1).

Moreoverwehavek:<mandl—l<wnn7d),800§k+l 1<2 ( D Ifk‘—l—l—1<m,
then AP, (d',d,k,k+1—-1) e Cy. fk+1—-1> m, then we may wrlte
AP, (d d k k+1—1)=AP, (d d k,——— — 1) UAP, (', d, 0,k +1 -1 — — ).
n(a y Ry R+ ) n (a’ gcd(n’d) ) n|\ %% + gcd(n,d)
Hence we know that for any partial coloring x : Z,, — {—1,0, 1}, we always have
ANX)| <2 AN X)|. 2.2
max x( )| < 2 max [x( )| (2.2)
Now we study the sets in Cx := {ANX : A € C1}. By definition we have
ANX)| = B)|. 2.3
max |x( )| = max [x(B)| (2.3)

For each 1 <d < n and 0 < a < ged(n,d), we define Ay, = {a—}— kd:0<k <3 (d )}, and define
X4,a = AgoNX. Since each element  in Xg , is associated to an integer 0 < k < m via the relation
x = a+kd, we may order elements in X, , in ascending order of k. We write X, = {CES()I, . ,xg‘;’a)},
where lq, = |Xg4|. For integers i and j, we define X4 ,(i,j) = {xgl i<t < j}.

For each d € Z,,, because each element of Z,, is in exactly one A, for 0 < a < ged(d,n), we have

ged(d,n)—1 ged(d,n)—1
Y laa= > XN Al =1X]=m. (2.4)
a=0 a=0

For A = AP, (a,d,1,j), if we take i’ to be the smallest index such that :Ugg = a+ kid with k& > ¢
(or lgq + 1 if no such index with 0 < &k < m exists), and j' to be the largest index such that

x&]a) = a + kod with ky < j (or 0 if no such index with 0 < ky < W’fm) exists), then we have

ANX = Xg4(i,7"). Hence each nonempty set in Cx is of the form X;,(7,7) with 1 <7 < j <lgg.
Therefore we may write

Cx = {X4a(i,j) : 1 <d <n,0 <a<ged(n,d),1 <i<j<lg,}U{0}

Now we further decompose sets in C'x into canonical sets. Formally,

A laa
Cy = {dea(1+(t—1)2’,t2’) 1<d<n0<a<ged(n,d),0<il<t< H—J} (2.5)
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Notice that each set S € Cx can be written as U \ V with V' C U where both U and V can be
written as the disjoint union of sets in Cy of different sizes. This is trivially true for the empty set.
For S = Xd7a(i,j), we may take U = X;,(1,7) and V = Xg,(1,7 — 1). If we write j in binary
form 201 + 202 4 ... 4 20 for by > by > --- > b,, then U is the disjoint union of sets of the form
Xaa(l+ Zt L obk 22:1 2b’€) fort=1,...,s. We can decompose V similarly.

Note that sets in Cy are all of size 2° for 28 < m. If y : X — {—1,0, 1} is such that for all 0 < i < logym
we have x(S) < A; for any set S € Cy of size 2¢, then by using the decomposition property above we
have

max [y(B)| <2 ) A, (2.6)

BeC
X 0<i<logy m

For each 4, we upper bound the number of sets in Cy of size 2! as following. For each 1 < d < n and
0 < a < ged(d,n), the number of choices of t in (2.5) is |lg4/2']. By (2.4) the number of such sets is

at most
n—1ged(d,n)—1 n—1ged(d,n)—1

> | < DY o _ fn =, 27)

Now we define b(0) = 0 and for 0 < s < n,

b(s) =5V/s <10g —)1/2- (2.8)

From the definition, we know that b(s) > 2./s for all s € N. We want to show that there exists a
partial coloring x that colors at least m/10 elements in X, and for any S € Cy,

IX(S)] < b(|S)). (2.9)

In order to apply Lemma 2.1 to X and C' = (5, it remains to check that

2
> exp (—%) < m/50. (2.10)

SeCy

From the definition of b(-) in (2.8), we know that

> e (D) y o (B 2y (181)° )

SeCs SeCs SeCs

Using the bound in (2.7), we have

S ()= 2 () e

Sels 0<i<logy m

Put this into (2.11). We get

2
Z exp <— b(4|f§||) ) <eb.o9m< m/50.

SeCy

This shows that (2.10) holds. By Lemma 2.1, we conclude that there exists a partial coloring y : X —
{—1,0,1} that assigns £1 to at least m/10 elements, and (2.9) holds for any S € Cy. Thus in (2.6)
we may take A; = b(2%) for 0 < i < log, m.
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It remains to show that x satisfies the desired property. By (2.2), (2.3), and (2.6),

|logy m | 1 1
a5 e S () com ()
max (AN X)| <4 Z b(2%) = 20 Z 2/ (log o7 ) * <200 y/m (log —
0<i<log, m =0

To obtain the last inequality, observe that the sum is roughly a geometric series with ratio 21/2
(although there is an extra logarithmic factor that slightly complicates this) and can be bounded by
a constant factor times the largest term. A careful analysis gives the claimed bound.

Hence the partial coloring x satisfies the desired inequality. O

Corollary 2.3. Let X C Z,, be a set of size m > 0. There exists an absolute constant ¢ such that
there is a coloring x : X — {—1,1} satisfying
1 en
ANX)| < em? 1 —>
max |x( )| =< 0g

In particular, for X = Z,, we have

disc(A,) = O(v/n).

Proof. The main idea is to iteratively apply Lemma 2.2 to the set of uncolored elements of X until all
elements of X are colored.

Start with Xg = X. For each i > 0, we apply Lemma 2.2 to X; to get a partial coloring y; : X; —
{~1,0,1}, and we let X;11 = x; '(0) C X; to be the set of uncolored elements in i-th iteration. We
continue this process until the k-th iteration where all elements are colored (i.e. Xpi1 = 0). Let
X be the final coloring given by x(x;) = xi(z;) if ; € X; \ X;41 for 0 < ¢ < k. We know that
|X;| < 0.9X; 1] for all 1 < i <k, so |X;| < (0.9)¢|Xo| = (0.9)"m. Moreover, we know that for any

l

A € A, noting that /2 (log )2 is monotonically increasing for real number z € (0,n],

1
2
Ix(ANX)| (X N A) <Z|szmA|<Z2oo <1og |X|>
L e i en \? 1 eny 2
for some appropriate choice of the absolute constant c. O

3. UrpPER BOUNDS

By Corollary 2.3, we have disc(A,) = O(y/n). In this section, we prove the following upper bound
on the same quantity, which shows that the previous bound is not always tight, and that disc(Ay)
depends on the factorization of n. Recall that w(r) denotes the number of distinct prime factors of r.

Theorem 3.1. There exists an absolute constant ¢ > 0 such that for any positive integer n, we have

disc(A;,) < min <2 + - 2“’(”> :
rln \T

The proof of Theorem 3.1 consists of two steps. The first key step is to establish an upper bound

on disc(.A,,) using a coloring of Z, where r divides n that simultaneously has low discrepancy with

respect to two particular families of arithmetic progressions in Z,. This is achieved by Lemma 3.2. To

accomplish this, we need to introduce a special type of arithmetic progression in Z,. Recall that A,
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is the set of all arithmetic progressions in Z,. We define A% to be the set of all congruence classes of
Zy. Formally, for any r,i € Z,, let
C(ryi) ={x €Zp:x=1i(modr)}
and
A = {C(r,i) 70 € Ly}
In particular we know that A? C A,,. In Lemma 3.2 we obtain an upper bound on disc(A,,) if there
is an r that divides n and a coloring x of Z, that has low discrepancy over both A, and A,

The second step is to find a coloring of Z, which has nearly optimal discrepancy over A, and .A”
simultaneously. Finally we will complete the proof by applying Lemma 3.2 with this coloring of Z,.

Lemma 3.2. Let n be a positive integer and r be a positive factor of n. For any x : Z, — {1,—1},

n
disc(A,) < Al + = - Ag)l.
isc(A )_ﬁ% Ix( )!+T e, Ix(Ao)|

Proof. Let m = n/r. For the subgroup (m) C Z,, we have a quotient map 7 : Z,, — Z,/(m) = Z,
given by 7(z) =T = x 4+ (m). Suppose we are given an arbitrary x : Z, — {1,—1}. Now we define
X' =xort:Z,— {1,—1}. Tt suffices to show

AN < . Ap)|. 3.1
max [x'(A)] < max p(A)] +m Jmax, [x(4o)| (3.1)

Let A’ ={a+kd:0 <k < L} for some a,d € Z,, be an arithmetic progression in Z, of length L. We
may assume that L < n/ged(d,n) so that there is no repeated element in A’.

Let Lo = 7/ ged(r,d) where d = 7(d). For any integer ¢ > 0, we know that {@+ kd : t < k < t+ Lo}
is a set of size Ly in LAY, as it covers each element in the congruence class exactly once. For any
0 <1< Lo, as the set {@+kd : t <k < t 41} has no repeated element, it is a set of size [ in A,.

Now we may write L = qLg + r for some integers ¢ and 0 < r < Ly. We know that
< n/ged(d,n) - ged(r, d) <

r/ ged(r, d) ged(n, d)
Applying the triangle inequality, we get

QS—

L—1 q—1 (t+1)Lo—1 qLo+r—1
A =D Xla+kd)| = x@+kd)|= > > x@+kd+ > x(@+kd)
k=0 t=0 k=tLg k=qLo
g—1|(t+1)Lo—1 qLo+r—1
< X@+kd)|+| > x(@+ kd)
t=0 | k=tLg k=qLo

<gq- A <m- A A)l.
S max, Ix( o)|+maX Ix(A)] <m AI?G%IX( 0)|+£%%|X( )

Since the bound is uniform for all A’ € A,,, we conclude that (3.1) holds. O

After the above deduction, the second step is to find a coloring x : Z, — {1,—1} that has nearly
optimal discrepancy over A, and A% simultaneously. Formally we have the following statement.

Lemma 3.3. There exists an absolute constant ¢ > 0 such that the following holds. Suppose that n is

a positive integer with k distinct prime factors. Then there exists x : Zn — {1,—1} such that

Al <1 d A)| < .9k,
ATﬁfg‘X( o) <1 an gé%!x( )| < evn
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We can now deduce Theorem 3.1 from the above two steps.

Proof of Theorem 3.1 assuming Lemma 3.3. For any positive factor r of n, by Lemma 3.3, there is a
coloring y of Z, such that

max |X(A0)| <1 and max |x(A)| < cyr- 200,
AocA A€A,

where c¢ is an absolute constant. Then applying Lemma 3.2, we conclude that
disc(A,) < oy eV - 29
r
As this holds for all positive factors r of n, the desired result follows. O

It remains to prove Lemma 3.3. We first present a proof of the case that n is a prime power. The
proof of this case is simpler and illustrates the main ideas in the proof of Lemma 3.3.

Lemma 3.4. There exists absolute constant ¢ > 0 such that the following holds. Let n = p® for some
prime p and positive integer . Then there exists x : Z, — {1,—1} such that

Ayl <1 d <
e [x(Ag) <1 and - max [\(4)] < v/

To find a coloring with low discrepancy over A, the main idea is to color simultaneously two disjoint
subsets Sp and Sy of Z,, that are translations of each other, and we hope that x(S1NAg) and x(S2NAp)
cancel out for many Ag € A%. The ¢y/n upper bound on the discrepancy over A, in Lemma 3.4 is
achieved via Corollary 2.3. We first derive the following lemma that gives a desired coloring for a
subset X of Z,, provided that X is an initial interval of some special length.

Lemma 3.5. There exists absolute constant ¢ > 0 such that the following holds. Let n = p™ for some
prime p and positive integer . Suppose that X ={0,...,m — 1} C Z,, for some m < n satisfies that
m = sp® with s even and B being a nonnegative integer. Then there exists x : X — {1, —1} such that

1
en\ 3
ANX) < w/—(1 —) ,
max [x( )| < ev/m (log —
and for any w € Zy, and r =p7 with 0 < v < 5,
x(C(r,w)NX)=0.

Proof. Let S = {0,...,m/2 —1}. By Corollary 2.3, there is xo : X — {1, —1} such that

1
2en \ 2
xo(A N 8)] < e/ ™ <1og—) ,

holds for any A € A,, where ¢y is an absolute constant. We know that X is the disjoint union of §
and S + ¢, ie. each element € X is of the form x = s + v'§ for some s € S and v € {0,1}. We
define x : X — {1, =1} given by x(s +v%§) = (=1)" - xo(s) for any s € S and v € {0,1}.

For any A € A,, noting that A — 3 is also an arithmetic progression,

IX(ANX)[ = [x(ANS) + x(AN(S+m/2))] = [xo(ANS) + (=1) - xo((A —m/2) N 5)]

< 40 )+ ol =2 1) 20y (10 22) < e (08 2)
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where ¢ is an absolute constant. Next we verify that for any r = p¥ with v < 8 and any w € Z,,
X(C(r,w) N X) = 0. Note that m/2 is a multiple of r, so C(r,w) — m/2 = C(r,w). Hence we have
X(C(r,w)NX) = xo(C(r,w)NS)+(=1)-xo((C(r,w)—m/2)NS) = xo(C(r,w)NS) =xo(C(r,w)NS) =

We have thus shown the existence of such a coloring x with the desired properties. O

In the case n = p®, we partition Z, into a few sets, each being an interval of Z,, of length an even
number times a power of p as in Lemma 3.5.

Proof of Lemma 3.4. Note that for any C(r,w) € AY, we have C(r,w) = C(ged(r,n),w). Hence it
suffices to check |x(C(r,w))| <1 where r divides n = p®, i.e., r = p" for some nonnegative v < a.
Let ¢g be the constant in Lemma 3.5.

If p=2, we can take m = n = 2- 2% in Lemma 3.5. Thus, there exists x : Z, — {1, —1} such that

max [x(A)] < cov/n,
AeA

and that for any w € Z,, and any r = 27 with v < a — 1, x(C(r,w)) = 0. This means that, for any
r =27 if vy < a—1, then x(C(r,w)) = 0; if v = «, then C(r,w) contains a single element w, so
IX(C(r,w))| =1 in this case. We conclude that

max Ag)l < 1.
nax, [X(Ao)]

If p > 2 is an odd prime, then we partition Z, into a few intervals: Xo = {0}, X; = {z : p"~ ! <z < p'}
for 1 < i < a. Note that for each i > 1, X is an interval of length (p—1)-p*~1. We would like to apply
Lemma 3.5 to each X for ¢« > 1. It is applicable because the property is maintained by translation.
Therefore for each 1 < i < « there is a coloring x; : X; — {1,—1} such that

. pa 2
. . _ . pi—1 I
ax IXi(ANX;)| < con/(p—1) - p (1 + log e _pi_1> ,

and for each w € Z,, and r = p” with v <i — 1, we have x;(C(r,w) N X;) = 0.

For Xy we may take any arbitrary xo : Xg — {1, —1}. Note that Xy = {0} contains only one element,
50 [xo(ANXy)| <1 forall ACZ,.

Since X = [[i-, X;, we define x : X — {1, —1} such that x(z;) = xi(z;) for all 0 < i < a and z; € X;.
Consequently, we know that for each A € A,

«

Z AﬂX|<1+Zcm/ -1) <1+log ) Zl>2§c\/ﬁ

i=0
for some appropriate constant c. Moreover, for each C(r,w) € A%, we may assume that r = p? for
some 0 < v < « and it gives that

x(C(r,w)) =x (C(r,w) N (U XZ>> + Z Xi(C(r,w) N X5).
=0

i=y+1
Now, for each i > v+ 1, i.e. v < i— 1, we have x;(C(r,w) N X;) = 0. Also note that [J;_,X; is

{z : 0 < x < p7}, so there is exactly one element of C'(r,w) in it. Hence

(o)

IX(C(r,w))| =
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Thus we may conclude that

max Ap)l < 1.
e, Ix(Ao)| <

Hence for both p = 2 and p is odd, we can always find such a coloring . O

Finally we extend the argument above to arbitrary n using Chinese remainder theorem.

Notations. Suppose that number n has prime factorization n = p{*--- pZ"“. By Chinese remainder
theorem, we have an isomorphism

wn:Zp‘l"l X---XZp:k —)Zn.

Again, we first show the following analogue of Lemma 3.5. This shows that if X C Z,, has some special
structure, then we have a coloring of X with low discrepancy with respect to both A,, and A9.

Lemma 3.6. Let n be a positive integer with prime factorization n = pi* ---pp*. For each 1 <i < k,
let T; < pi* be a positive integer. Let X = {tn(t1,...,tg) : 0 < t; < Tiforalll < i < k}. Then
X CZy is a set of m = Hle T; elements. Suppose that I C [k] is a subset of indices and (53;)icr s a
sequence of nonnegative integers, such that for each i € I, T; = Sipiﬁi for some even number s;. Then
there exists a coloring x : X — {—1,1} such that the following holds. Its discrepancy over A, satisfies
that

1
u (AW
ANX) <27 . (I 141 —), 3.2
max x( )| <e27 - /m ([I]+1+log — (3.2)
and for any w € Z,, and any i € I,
X(C(n/p2i™% w) N X) = 0. (3.3)
Proof. Let L = |I|. Let S; = T;/2 if i € I, and S; = T; otherwise. For each i € I, from the condition
that T;/ pf ‘ is even, we know that S; is a multiple of piﬁ ‘. We define
Xo =A{tn(t1,...,tg) : 0<t; < S;forall 1 <i<k}.

We know that Xy C Z,, is a set of size m/ 2L, Next we apply Corollary 2.3 to get the constant co > 0
and a partial coloring of x¢ : X9 — {—1,1} such that

1
m 2Lp\ 2 m nys

where c is another absolute constant.
For each v = (v;)ics € {0,1} (binary tuples of length L indexed by I), we define sgn(v) = (—1)Zier ¥,
and let u, € Z, be the unique element, by the Chinese remainder theorem, such that

uy = v;5; (mod p*) foralli € I and uy = 0 (mod p?j) forall j ¢ I.
Thus we have the decomposition of X into disjoint copies of translations of Xjg:

X = H X,, where X, :=u, + Xo.
ve{0,1}1

This implies that each # € X can be written in the form x = wu,, +z¢ for some v € {0,1} and z¢ € Xo.
Now we define x : X — {1,—1} by x(u, + x0) = sgn(v) - x(xo) for all v € {0,1}!, 29 € Xo. For any



DISCREPANCY IN MODULAR ARITHMETIC PROGRESSIONS 11

A € A,, noting that A — u,, is also in A, so

(XA =] Y x(XenA)| =] > sen) xo(XeNA-w)

ve{0,1} ve{0,1}
< XoN (A —up))| <2F XoNA
_UE{ZO%}I\XO( 0N (A—uy))| < ﬁ%\Xo( 0N A

1 1
<ob.¢ m(L—i—l—i—log£>2 :02%-\/m(L+1+log£)2.
\V 2L m m

This shows that the coloring y satisfies the condition (3.2) on the discrepancy over A,,.

It remains to show (3.3). For each i € I, let r; = n/pf”fﬁi =pit- pfl ---pp*. For any i € I and
any w € Z,, we know that C(r;,w) contains p® % elements. If C'(r;,w) N X = (), then (3.3) trivially
holds. It suffices to check x(C(r;,w) N X) = 0 for w = ¥y (t1,...,t;) € X, for some v € {0,1}. Since
p?j divides 7, each element in C'(r;,w) is congruent to ¢; mod p?j for j # . This implies that C(r;, w)
only has nonempty intersection with X, and X,, where v,v’ € {0,1}! differ only at the entry indexed
by i. Moreover by the definition of u, u, — u,s is congruent to 0 mod p?j for all j # 4, and is congruent
to i%piﬁi mod p;*. Thus u, — u, is a multiple of r;, which implies C(r;, w) = C(r;, w) + (uy — Uy ),
or equivalently C(r;, w) — u, = C(r;,w) — uy. Therefore we have

X(C(Tia ’U)) N X) = X(C(Tza ’U)) N XU) + X(C(TZ, w) N Xv’)
=sgn(v) - xo((C(rs, w) — uy) N Xo) +sgn(v’) - xo((C(ri, w) — uy) N Xp) = 0.

This is true for all i € I and w € Z,,, and thus we conclude that y satisfies (3.3) as well. a

We are now ready to prove Lemma 3.3. The idea is that, we partition Z, into a few subsets, one for
each factor r of n, and for each of them we use Lemma 3.6 to get a coloring of this subset with low
discrepancy over A, and nearly optimal discrepancy over A%. Finally we show that the full coloring
we get from combining these subset colorings satisfies the properties.

Proof of Lemma 3.3. Suppose that n has prime factorization n = p{™* - - pi*. For each 1 <1i < k, we

a; )
partition Z e: into a; + 1 intervals (Si(t)) in the following way. If p; = 2, then we set Sl-(o”) = Ly

t=0
and SZ-(t) = () for all 0 <t < ay. If p; > 2, then we set Si(o) = {0} € Z,o and Si(t) ={z:pl7t <z <pl}

for 1 <t < ;. In particular we have \Si(t)] < p! for all i and ¢t. Moreover, for each i and ¢ > 0, Si(t) is

always an interval of length sipg_l in Zp?éi for some even s;.
T

For each factor r = pfl---pg’“ of n, we define Y, = Syl) X e X S,(f’“) C Zyea X -+ X Zp:k and
X, = Yn(Y,) C Zy,. Since each Zp% is partitioned into Si(t) for 0 <t < ay, their product is partitioned

into Y, for r divides n, so Z, is partitioned into X, for r divides n. Because ]SZ-(t)\ < p! for all i and t,
k 5 k

Xl = vl = TTIs 1 < T ot = (3.4)
i=1 i=1

For each nonempty X, with r = p‘fl e pi‘“, we would like to apply Lemma 3.6 to get a coloring of X,

with bounded discrepancy. Note that we can translate Y,. so that all intervals Sj(»éj ) for 1 < j < k start

at 0, and notice those properties from Lemma 3.6 are invariant under translation, so it is applicable to
X,. Let I, = {i € [k] : &; > 0} C [k]. We have that for each i € I, Si(éi) is an interval of length sipf"
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for some even s; and ; = §; — 1. This implies that we can find a partial coloring x, : X, — {—1,1}
such that

1
| 2
max [ (AN X)) < 2 2 VX (\I [+ 1+ log o ‘> : (3:5)
and for any i € I, and any w € Z,,
Xr(c(n/p?i_ﬁiaw) N Xr) = Xr(c(n/p?iiéﬂrl, w) N Xr) =0. (3'6)

Having defined y, as above for each nonempty X,., we now construct y by setting x(z,) = x,(z,) for
each z, € X, for all r that divides n. We first show that x has low discrepancy over A,. By (3.4) we

1
have | X,| < 7. By definition we have |I,| < k. Also note that z'/2 . (k4 1+1log2)2 is increasing for
€ (0,n]. Combining these together, we know that for any nonempty X,,

1

T 2 1 1
217\/|XTI<II|+1+1og‘X’> §2%\/F<k:—|—1+log%>2§2§(k‘+1)%\/7_“(10g%)2. (3.7)

Combining (3.5) and (3.7), there exists an absolute constant ¢; such that for each nonempty X,,

1 1
max [, (4N X,)| < 025 (k+1)% - /i (log @> 2 <2ttt (1 +log ﬁ) 2 (3.8)
EAn T T

This is also true for X, = (). Moreover we know that for any r = p(il e pg’“,

1 k
\/7_“(1+10g;)2 Spriﬂ(

1
a; \ 2
p 1 o — 1
w) *me P2 (14 (0 — 5;) log i)

Summing this over all factors r = p(il . -p(S’c for 0 < 9; < «;, we have that if we set t; = a; — d;,

Z\/;<1+logr> <V Z ZH JOO/2 (1 4 (a; — 67) log pi)

rln 61=0 0r=01i=1

T (S et ) < T (35007 o)
t;=0

Note that for p > 2,

> _ 1
)= p (1 + tlogp)?
t=0

is well-defined and tends to 1 as p — oo. Thus there exists an absolute constant P > 0 such that if
1

p > P, then f(p) < 21. Since there are only finitely many prime numbers less than P, we conclude

that there exists an absolute constant ¢y such that

k

0o
—t; 1
H( P; tz/2(1+ti10gpz 2) Hf pz < ey- 24.
t;=0

i=1 i=1

Thus we have

1 k [e%s)
> V(1410 )" < H <Z JP logp»%) < 2. (3.9)
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Thus for any A € A, by (3.8) and (3.9),

1
A)| = ZXr(AﬂX <20124 . <1—|—10g )2 < 1928/
rin rin
Here we set ¢ = cyco to get the desired bound on the discrepancy over A,,.

Now we study the discrepancy of x over A%. Note that C(r/,w) = C(ged(r',n),w). We may only
consider the set of C(r’,w) € AY for which ' = p]* - - - p/* is a factor of n. By definition of y, we have
the relation that

=> x(C )N X,). (3.10)

rln

If v’ is not a multiple of r = p‘ls1 e pg’“, then we know that there exists some 1 < i < k for which

~vi < 6; — 1. Tt follows that d; > 0, and ¢ € I,.. Since r’ is a factor of n and v; < §; — 1, it is a factor of

n/ pf‘iﬂsiﬂ. Consequently, the congruence class C(r’, w) can be partitioned into congruence classes of

the form C(n/p®~%*! w'). Noting that (3.6) holds for any w’ € Z,, we know that if r is not a factor
of r', then x,(C(r',w) N X,) = 0. Thus we can remove all summands on the right hand side of (3.10)
except those r that divides 7. We get

=S (@ wynX,)=x | o wyn [ X,

rlr! rlr!

Note that we are taking union over all r = p‘fl e pi’“ for which 0 < d; < ~; for all 1 <4 < k. We have

UXr:wn UYT‘

rlr! rlr!

~ U U551 xS0

51

From our construction, we know that U =0 if p; = 2 and ; < «;, and otherwise

U SZ-((Si) ={2:0<z<pl'} CZyo.

Thus we may conclude that

UXr € {tnlts, -+ th) 1 0 <ty < p) forall 1 <i <k} (3.11)

r|r’

Let Z, be the set on the right hand side of (3.11). Any two distinct elements of Z,, differ on some
t; for 1 <14 <k, i.e., they have different remainders when divided by p]* for some i. Therefore their

difference is not divisible by r’. Hence there is at most one element of C(r',w) in U,,» X C Z,» for
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any w € Zy,. We conclude that for any 7’ that divides n and any w € Z,,

e w)l=|x|Ctwn|JX ] ]| <L

r|r’

This finishes our proof. O

Remark 3.7. By being a little more careful with bounds in the above proof, we may improve the latter
inequality in Lemma 3.3 to

A)| < c9(3+o(1))k
ggé%!x( )| < Vn-2\z ,

where the o(1) term tends to 0 as k — oo. This in turn improves the bound on disc(A,) to
min,,, (% +/7- 2(%“(1))”(”)) in Theorem 3.1, where the o(1) term goes to 0 as w(r) — oo.

4. LOWER BOUNDS

In this section, we prove the lower bounds in Theorems 1.1 and 1.2. These proofs use Fourier analysis.
We first set up helpful notations and prove a consequence of the Plancherel theorem in Lemma 4.1.

Notations. Let f : Z, — C. Any coloring x : Z, — {1,—1} is a special case. In this section, all
summations are over Z, unless otherwise specified.

We define the Fourier transform [ : Z, — C by f(r) = Yoz, f(w)e_%”.
For two functions fi, fo : Z, — C, their convolution f; * fo : Z, — C is given by f1 x fa(a) =

> . fi(@)fa(a — x). We have the convolution identity fi * fo = fi - fa.

For any r € N that divides n, we say that x = y (mod r) for z,y € Z,, if x = y + kr for some k € Z,.
We define, for any r € N that divides n and a € Z,,

r—1

grla,r) = > flz) and Gy(r):=_lg(a,r)*
x€Lp:x=a(mod ) a=0

We see that g¢(a,r) = gf(a+ kr,r), so g¢(-,r) can be treated as a function on Z,..

Let M be a set or a multiset of elements in Z,. For a,r € Z,, we define rM to be the multiset
{rez:z € M}, and a + M to be the multiset {a +x : x € M}. We define mys to be the multiplicity
function, i.e. mps(x) is the multiplicity of = in M. In particular, when M is a set, my; = 1/ is the
indicator function. We also define

jan =" ().

zeM

Lemma 4.1. For any f : Z, — C, let f be its Fourier transform. Let r € N be a factor of n. Then
r—1
~ 2
Z ‘f (k: ﬁ)‘ =7rGy(r).
k=0 "

Proof. Let t =n/r. For each 0 < k <r — 1, we know that by definition

n—1 tr—1 r—1

Flety =" fla)e oM = 3" fla)e™ Tk = 3" gy(a,r)e” Tk
=0

=0 a=0
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o~

Hence for g : Z, — C defined by g(a) := g¢(a,r), its Fourier transform is g(k) = f(kt). By the
Plancherel theorem we have

l‘f( )(2=Z!g —TZ!g > =rGy(r).

k=0 k=0

r—

O

In Lemmas 4.2 and 4.3, we prove lower and upper bounds on the same quantity respectively. Combining
them we get Corollary 4.4. This corollary lower bounds the discrepancy of a function f over arithmetic
progressions in Z, by the Fourier coefficients of f.

The next lemma lower bounds the quantity by a weighted L? sum of Fourier coefficients f The weights

depend on the arithmetic structure of n.

Lemma 4.2. Let f : Z, — C, 1 < m <n be an integer, and M :={0,1...,m —1} C Z,,. Then

m? - ged(r,n
Z Z |f(a +bM)|? > Z |f - max <gTd(’),m> (4.1)

a€Zn bELn, TE€ZLn
Proof. We show some properties about the multiplicity function. For the set M, we have
fla+bM) = Z fla+bz) = Zf( )Marpn (x Zf m_pp(a—xz)=fxm_pp(a). (4.2)
zeM T
For any u,v € Z,, we have

:Zm_uM(ﬂU)e_%w: Z e T = Z e 2m”“y—ﬁ_ﬂ(uv). (4.3)
x

reE—uM ye—M

—

Applying (4.3) twice we have m_,37(v) = m_,a7(u). We have

ZZ|fa+bM ZDf*mbM Z Z(f*mw
:—ZZU 2 m i (r ZZU )2 [ (b)) (4.4)

=S Ife (%Z \m<b>|2> =S 1FE)P - Y Imrar(s)P
r b T s

where the first equality uses (4.2), the second uses the Planchrel theorem, the third uses the Fourier
identity of convolution, the fourth uses (4.3) twice, and the last uses the Plancherel theorem. Now we
evaluate >, |m_rp(s)[>. Let k = ged(r,n). When km < n, we know that 7M contains m elements
with multiplicity 1. Thus in this case we have

> Im_rar(s)] = m.

Otherwise when km > n, we know that rM contains elements that are multiples of k. There are 7
such elements in Z,. Therefore, by the Cauchy-Schwarz inequality, we have

n 2
(ZE mern @) 2
2 2 t=0 " m°k
Do)t = 3 morae(th)* > Th -
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Hence we may conclude that for any r € Z,,

5 o) 2 (Mm> . (5)

n

Combining this with (4.4), we obtain (4.1). O

The next lemma gives an upper bound on the quantity above. The upper bound involves the discrep-
ancy of f over A, and some arithmetic sums of f. Let ¢(-) be Euler’s totient function.

Lemma 4.3. Let f: Z, — C. Suppose that

Ty = max [£(A)].

Let m < n be a positive integer, and M :={0,1,...,m — 1} C Z,,. Then we have

ST fla+bM)P <n®Ti+ > m2@c;f(n/k). (4.6)

a€Zn bELn 0<k<m:k|N

Proof. For each fixed b € Z,, we analyze the summation >, |f(a + bM)[*>. Let r = ged(b,n) and
k =n/r. There are two possibilities: rm < n or rm > n.

If rm < n, then each element in bM has multiplicity 1. Therefore a + bM is a set for all a € Z,.

Moreover from our definition of M = {0,1,...,m — 1}, we know that a + bM € A, is an arithmetic
progression in Z,. In this case, for any a, |f(a + 0M)| < T}, so
D e+ bM)? < TF =nT}. (4.7)
a a

If rm > n, i.e., m > k, then some elements in bM have multiplicity greater than 1. The bound in (4.7)
no longer applies. Let K = {0,1,...,k — 1} and it follows that each element in bK has multiplicity 1.
Moreover, it covers each multiple of r in Z, exactly once. Hence

fla+bK) = Zfa—i—bt gs(a,r).

Suppose that m = gk + s for integers ¢ and 0 < s < k. Then we may write my; = mS+Z?;(1) Mgy jht K
where S ={0,1,...,s — 1}. Thus, for any a € Z,,, we have

-1

fla+bM) = f(a+0bS)+ fla+0b-(s+jk) + bK)

=}

Q.
!
= o

= fla+bS)+ > grla+b-(s+jk),r) = fla+bS)+q-gsla,r).
0

<.
Il

In the last step, we use the fact that b- (s + jk) is a multiple of r.
Since s < k, each element in bS has multiplicity at most 1, and further a + bS5 € A, for all a. Thus

Fla+b8)] < Ty, (49)
We now partition a € Z, into congruence classes mod r. In particular, we have

Z|fa+bM Z > Ifa+bM)P (4.10)

1=0 a=i(mod r)
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For each @’ =i (mod r), there are exactly s choices of a =i (mod r) such that a’ € a + bS. Thus,

k—1
fla+jr+0S)= > fla+bS)=s-gs(i,r). (4.11)
Jj=0 a=t(mod r)
Consequently, we have
k—1
Y. @t bM)P =Y If i+ jr+ M)
a=i(mod r) j=0
k—1
by (4.8)] = [f(i+jr+bS) +q-gs(i,r)
§=0
k—1
= <]f(1 + jr +bS)|> + 2Re (q f(i+ jr 4+ bS)gs(i, 7")) + q2]gf(i,r)\2>
7=0
k—1
by (4.9)] < KTF +kg?lgs(i,r)[* +2qRe | g¢(i,r) p_ f(i+ jr +bS)
§=0
by (4.11)] = kTJ? + kqQ\gf(i,r)IQ + 2qs]gf(i,7")\2
o Kk2q? + 2kqs + s*

< EKTF + |gs(i, ) -

k

2
by m=kq+s] =kT?+ %]gf(i,r)\Q.

Put this into (4.10). We know that in the second case where rm > n, i.e., k <m,

2 2
Z|fa+bM Z > |f(a+bM)|2SnTjg%—%Gf(r):nT]?%—m?Gf(n/k). (4.12)

1=0 a=i(mod r)

The second case happens exactly when ged(b,n) = n/k for some k < m which divides n. The number
of such choices of b is exactly ¢(k) for any fixed k. Hence combining (4.7) and (4.12), we get (4.6). O

Combining Lemma 4.2 and Lemma 4.3, we deduce the following general lower bounds.
Corollary 4.4. Let f : Z,, — C and f be its Fourier transform. Suppose that
Ty = A)l.
o= max | (4)]
For any positive integer m < n, we have

m’ n m? - ged(r,n
YD Z(k)Gf(n/k) > > If ()P - max (g—d(’),m> . (4.13)

n
1<k<m:k|n r€Ln

In Corollary 4.4, the inequality involves Gy and fbesides Ty. We aim to get a lower bound on disc(.A,,)
that only depends on arithmetic structure of n (Proposition 4.7). To achieve that, we need two lemmas
(Lemma 4.5 and Lemma 4.6) to remove the dependency on f and Gy.

Lemma 4.5. Let f:7Z, — C and f be its Fourier transform and m < n be a positive integer. Then

m2 -~ m2 s gealr,n

1<k<n:k|n T€Ln
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Proof. By Lemma 4.1, we know that
n _ T2
2aym/k) = 3 0
rE€Ln k|r

Thus we have (noticing that };, ¢(k) = I for any positive integer 1)

m2 m? " I m’
ORLUIVAN iﬁ(’” DRUCIED MLEISCD DT

1<k<n:k|n 1<k<n:k|n rELn:k|r 7€Ln n 1<k<n:k|n,k|r
2
m -~ 2 m
=D 0P > etk =D 1f()P - ged(rn).
rE€Lm 1<k<n:k|gcd(n,r) rE€Lm
Hence we have the desired equality. U

Lemma 4.6. Let f:7Z, — C and f be its Fourier transform. Let m,l < n be positive integers. Then

Z\f(r)\Q-min<w,m>§ 3 m;’j(k)c:f(n/kH 3 %Gf(n//g). (4.14)

n
r€Zn 1<k<l:k|n I<k<n:k|n

Proof. It suffices to compare the coefficient of each |!)/"\(7“)|2 on both sides after expanding all terms of

G on the right hand side (4.14) using Lemma 4.1. By Lemma 4.1, for any k that divides n,

ZGrn/k) = > [P

rE€Ln k|r

For each r € Z,, the coeflicient ¢, of |]/C\(’I“)|2 on the right hand side of (4.14) is given by

m2¢(k) m?
t, = Z + Z m=— Z o(k) +m Z 1.

n n
1<k<l:k| ged(r,n) I<k<n:k|gcd(r,n) 1<k<l:k| ged(r,n) I<k<n:k|gcd(r,n)

If ged(r,n) < I, then we know that the first summation sums over all factors of ged(r,n), and the
second summation is zero. Hence we know that in this case,

2
t, = m ged(r,n).
n

If ged(r,n) > I, then in particular the second summation contains at least one term k = ged(r, n), and
the first summation is nonnegative. Hence in this case,

t, > m.
We may conclude that ¢, > min (w, m) for all r € Z,,. This yields (4.14). O
Using the lemmas above, we prove a lower bound on disc(.4,) which depends only on the arithmetic
structure of n.
Proposition 4.7. For any positive integers n and | < n,

1 8 1
(disc( Ay, SE Z ok Z k2

1<k<l:k|n I<k<n:k|n
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Proof. For simplicity let us denote
1
Sy = Z ¢(k) and Sy:= Z =R
1<k<l:k|n I<k<n:kln

We aim to show

1
diSC(An)Q > m

Because we always have disc(A,) > 1, we may assume that Sy < g

(4.15)

Let x : Z,, — {1, —1} be any coloring of Z,, and let T} := maxac4, |x(A)|. Let m < n be a positive
integer to be determined later. By Corollary 4.4, we know that

m2o(k N m? - ged(r,n
HZTi + Z k( )Gx(n/k’) = Z 1X(r)]? - max <+),m> . (4.16)
1<k<m:k|n r€Zn
By Lemma 4.5, we know that
m*¢(k) m? - ged(r,n
> "W ik = 3 f - A,
n
1<k<n:k|n r€ZLn

Subtract both sides from (4.16). We get

m calr,n m2
W+ YRR i (P ) s S s Y WG . )

n
rE€7Ln rE€Ln m<k<n:k|n

Since x takes value in {—1,1}, we know that
> IR0 = nGy(n) = n*. (4.18)
TEZn

Note that each Gy (-) is nonnegative. By (4.18), the right hand side of (4.17) is lower bounded by

m2
SR -m+ > ‘z(k) Gy (n/k) > n’*m. (4.19)

r€%n m<k<n:k|n

For the left hand side of (4.17), we apply Lemma 4.6 for m and [ and get

m2' cair,n m2 mn
Z|)?(r)|2-min<w,m>§ 3 Z(k)GX(n/k)+ S Gyn/k). (4.20)

n
r€Ln 1<k<l:k|n I<k<n:k|n

Note that by definition, each single g, (a,n/k) is the sum of k values of x. Because x takes value in
{-=1,1}, we have

Gy (n/k) < % - k? = nk. (4.21)
Moreover, each g, (a,n/k) is x(A) for some A € A, so |gy(a,n/k)| <T,. This means that for all £,
n
Gy(n/k) < T i (4.22)

We bound the first term on the right hand side of (4.20) using (4.21) and get

m2
D Z(k)Gx(n/k)éan > o(k) =nm?- 5. (423)

1<k<l:k|n 1<k<l:k|n
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On the other hand, we bound the second term on the right hand side of (4.20) using (4.22) and get

2
mn mn
I<k<n:k|n I<k<n:k|n

Put (4.23) and (4.24) into (4.20). We get
2, d
}:\QWNqun<ﬁL—§L@ﬁQﬂi>grmﬁ.sl+1§n%m$. (4.25)
TEZn "
Finally we put (4.19) and (4.25) into (4.17). We get
(n2 + nzmSg) Ti > n?m — nm?29;.

Dividing both sides by n?m, we get

1
<— + 52> 2 >1-29, (4.26)
m n
Now we pick m = |n/(251)]. Note that S1 < n/8 from our assumption, so m > 75-. Therefore,
1 4 1
—S—Sl and 1——Sl>—
m- n 2
Put them into (4.26). We conclude that
soo L= B8 1/2 1

X 1 =1 -3 :
prei ) 2S1+ 82 51+ 25
Since this bound applies to all Ti, it also applies to (disc(A,))? = min, Ti. Hence we have (4.15). O

Remark 4.8. As mentioned earlier in Remark 1.3, the proof above also applies to the case where x
takes value in the unit circle on the complex plane {z € C : |z| = 1} (instead of {1, —1}). Just note
that (4.18) and (4.21) hold in this more general case as well, and all other steps are identical.

Now we prove two corollaries. The first shows that the upper bound in Theorem 3.1 is tight up to an
n°®) factor.

Corollary 4.9 (Lower bound in Theorem 1.1). There exists an absolute constant ¢ > 0 such that, for
any positive integer n,

disc(A 8\/— T\n< —|—f)

where d(n) is the number of factors of n.

2
3

Proof. Let t1 be the minimum factor of n that is at least n3, and let t5 be the maximum factor of n

less than n3. As
2.min<\/t t>>m1n<w/ + , Vit + >:min<2—|—\/7_“),
r|in T

it suffices to show that

) - min <¢E ﬁ) . (4.27)
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Now we apply Proposition 4.7 to n and [ = % We bound the two summations as follows. We have
Sooek) s Y k<-dn). (4.28)
1§k§%:k|n 1§k§%:k\n 1

Note that ¢, is the largest factor of n less than ¢;, so the minimum k in {7+ <k <n: kln} is n/ts.

Thus we have
3 1 > 1t

- <k<n:kln 2 <k<n:kln
1 2

Using above two bounds, we get

(disc(An))? > . > L (t ”2>
isc(A,))” > 5 > min (¢, — | .
S d(n) +22d(n) — 16d(n) t
This is equivalent to (4.27), so we have the expected inequality. O

The second corollary proves the lower bound in Theorem 1.2. The main observation is that the factor
d(n) can be removed in (4.28) and (4.29) when n is a prime power.

Corollary 4.10 (Lower bound in Theorem 1.2). Let p be a prime number, and k be a positive integer.
Then for n = pF,

disc(A,) > -p 2 . (4.30)

Proof. In Proposition 4.7, we pick | = p' for some 1 < ¢t < n to be determined later. Note that the
factors of n between 1 and [ are given by s = p’ for 0 < 4 < ¢, which are all factors of I. Hence we have

Y bls)=1=0p".

1<s<l:s|n
All factors of n larger than [ are given by s = p for ¢t +1 <i < k. Thus
1 b A L
Z 2 = Z p‘21 Sp—2t—2. (1—1-?—1—]?4_...) §2p—2t—2.
l<s<l:s|n i=t+1

Therefore, by Proposition 4.7 we get

1
8pt—k + 4p—2t—

s> i . min (p%mtﬂ) _ 1 .pmin(%,tﬂ)_

disc(Ap) > \/

We pick t = |k/3] to get (4.30).

5. CONCLUDING REMARKS

In Theorem 1.1, the upper and lower bounds are off by a factor of O(d(n)%?). We were not able to
close this gap, and it seems that major improvement of either bound would require new observations.

Problem 5.1. Determine disc(Ay) up to a constant factor for all n.
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There are other notions of discrepancy besides the one studied in this paper. Among them there is
the hereditary discrepancy, defined for a system (£2,.4) as

herdisc(A) := max disc(Alx)

where A|x = {ANX : A € A}. Clearly disc(A) < herdisc(.A). For the set A of arithmetic progressions
in [n], Matousek and Spencer [10] proved a stronger statement that herdisc(A) = O(ni). This is
because their partial coloring method works not just for A, but also for A|x for any X C [n].

In contrast, our construction of the coloring in Section 3 is only valid for coloring the whole set Z,.
While it can be adapted so that the same upper bound (possibly with a larger constant factor) applies
to some special subsets of Z,,, it does not work for all subsets X C Z,,.

Problem 5.2. Estimate the hereditary discrepancy of A,,.

By Corollary 2.3 we have herdisc(A,) = O(n%) The method used in Section 2 can be adapted to give
the following slightly stronger statement. Let ¢(-) be Euler’s totient function.

Theorem 5.1. There exists a constant ¢ such that for all positive integers n, we have
3

herdisc(Ay) < c(n)> <10g %) °)

We leave the proof of this theorem to the Appendix. It shows that the upper bound O(n%) is not

always tight. It would be interesting to determine if there is a matching lower bound of the form
1
nz—o),
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APPENDIX A. IMPROVED BOUND FOR HEREDITARY DISCREPANCY

In this appendix, we prove Theorem 5.1, an improved upper bound on the hereditary discrepancy of
modular arithmetic progressions. We need the following lemma which gives a partial coloring bound.
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Lemma A.1. Let X C Z, be a set of size m > 0. There exists an absolute constant ¢ such that there
is a partial coloring x : X — {—1,0,1} that assigns £1 to at least m/10 elements in X such that

ma (A0 X)| < eoln) (1%)) .

Assuming this lemma, we may now prove Theorem 5.1.

Proof of Theorem 5.1 assuming A.1. Let X C 7Z, be a set of size m. We show that there exists a
coloring x : X — {1, —1} such that, for some absolute constant c,

3
1 en \?2
(AN )] < com? (1og ) (A1)
The idea is that we iteratively apply Lemma A.1 to the set of uncolored elements until there are at
most ¢(n) elements left, and then apply Corollary 2.3 to color the remaining elements. Let ¢y, c¢; be
the constants in Lemma A.1 and Corollary 2.3.

Start with Xy = X. For each ¢ > 0, we apply Lemma A.1 to X; to get a partial coloring x; : X; —
{~1,0,1}, and we let X;11 = x; '(0) C X; to be the set of uncolored elements in i-th iteration. We
continue this process until the (K — 1)-th iteration where there are at most ¢(n) elements left (i.e.
| Xk < ¢(n)). Then we apply Corollary 2.3 to get a coloring xx : X — {—1,1}. Let x be the final
coloring given by x(z;) = xi(x;) if z; € X; \ Xip1 for 0 <i < k —1, and x(xr) = xx(xr). We know
that | X;| < 0.9|X; 1| for all 1 <4 <k, so |Xx| < (0.9)%|Xo| = (0.9)*m < (0.9)*n. Because we stop
when there are at most ¢(n) elements left, we shall see that & <1+ logyg ™ < 10log &

Applying the bounds on the discrepancy of x; from Lemma A.1 and Corollary 2.3, we conclude that
for any A € A,

k

Y xi(Xin A)

=0

1 1
1 en \?2 1 en \2
<k- 2 | log —— Xil2 [ log —
< ke aptort (e 505 ) el (o )
3
2

< 10c00(n)* (108 ) 4 erom)? (108 ) < com)? (10g )’

for ¢ = 10cp + ¢; being an absolute constant. Since it holds for all A € A,,, we have (A.1). O

k-1

<Y (X N A)| + [xe(Xe N A)
i=0

IX(ANX)| =

We are left to prove Lemma A.1. We first need a slight generalization of the partial coloring lemma
in Lemma 2.1. In Lemma 2.1 we require Ag > 2,/|S|. Here we allow Ag to take any positive value.

Lemma A.2 (Section 4.6 in [9]). Let (V,C) be a set system on n elements, and let a number Ag > 0
be given for each set S € C. Suppose that

AS n
— — A2
R <¢|S|> =5 -

10e— /4 if A > 2,
10log(1+2X71) fo< A< 2.

where

g(A) =
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Then there exists a partial coloring x that assigns £1 to at least n/10 variables (and 0 to the rest),
satisfying |x(S)| < Ag for each S € C.

We now prove Lemma A.1.

Proof of Lemma A.1. We use the same decomposition as in Lemma 2.2 to get the family Cy of
nonempty subsets of X. From the argument in Lemma 2.2, we know that sets in Co are of size
2% for 28 < m. If xy : X — {—1,0,1} is such that for all 0 < i < log, m we have x(S) < A; for any set
S € Cy of size 2¢, then

max |[x(ANX)| <4 A;. A4

pEh@nDIs 3 (A1)
Then we apply a better bound on the number of sets in Cy of size 2¢, which we shall denote as f;. The
notations here are the same as in Lemma 2.2. For each 1 <d <n and 0 <a < gcd(d n), the number
of choices of ¢ in (2.5) is [lg4/2"]. Yet note that l;, < sed(@m - Hence if ged(d, n) > 3,
no such sets included in the set X;,. Therefore we have the following better bound on f;:

then there are

ged(d,n)—1

RS 3 V;—J: > e Y e

1<d<n—1:gcd(d,n)< 2£ a=0 lgdgnflzgcd(d,n)g 1§l§%:l|n

Because ¢(ab) > ¢(a)p(b) for all a,b € N, we know that ¢(n/l) < ¢(n)/¢(l) for all [ that divides n.
Also note that 0 < ¢(n)/¢(l) for all I that does not divide n. By Landau [8, p. 184], for any = > 1,
> 1<z 1/8(1) < cologex for some absolute constant cg. Hence we have

ES D S DES OIS ¢ 5ro(n)log T (A.5)

1§l§%:l|n 1<l< .

For simplicity we denote M = ¢(n) log -% ¢>( 7 We define b : (0,n] — R, given by

- clﬁ-(i)_l if s > M,
b(s) = {cl\/g- (g)fm if s < M, (A.6)

where ¢; > 2 is an absolute constant to be determined later. We would like to show that there exists
a partial coloring that colors at least m/10 elements in X, such that for any S € Cy,

IX(S)] < b(|S)). (A7)
In order to apply Lemma A.2, it suffices to verify that

[logy m]
Z!J(\/—) Z fi- ( 2" Z/Q)Sm/& (A.8)

SeCy
For fixed i, we denote 7 = 2¢/M, so 2! = 7M > 7¢(n). Observe that

log £ log — log =1
fi <ecom-1 1. £ 2 < comr ! 745(”) = comr ! <1 + 87 .

1 en en

8 30n) log 3y

— ) < comr (1 4+logrt).
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When 7 > 1, we have b(29)27%/2 = ¢;7~! and

1 —1
fi < comt ! <1 + 08T ) < comr !

1 en

& 5(n)

Therefore if we write the summation in (A.8) in terms of 7, we have

[logy m |

Z fi-g ( 2') Z/2>_Com ZT glerr™ +ZT (1+logr Hg(err™™) |, (A.9)

T>1 T<1

where the summation of 7 is over a geometric sequence with ratio 2. By definition of g in (A.3), g is
monotonically decreasing. Let T be a large absolute constant to be determined later. We have

S o) < X e ) = Xt 0los(1-+7),

>T =T =

Since 2721 771.10log(1 + 7) converges, there exists sufficiently large constant T satisfying

~1 ~1
d rlglar™) < S0 (A.10)
We bound the second term on the right hand side of (A.9) similarly. We have

Z T (14log 7 Hgler 770 < Z 1 +log T Hg(2r ) = Z 7 Y1 +logT 1) 10e™7

T<T-1 T<T-1 T<T-1

0.2

Since > .4 7 Y1 +1log771) - 10e—" " converges, there exists sufficiently large constant 7' satisfying

1
Z 11 +log Hg(er 770 < —. (A.11)
2060
T<T-1

Hence, there exists constant 7" such that whenever ¢; > 2, (A.10) and (A.11) hold. Note that there
are at most (1 + log, T) terms in each of the ranges 1 < 7 < T and T~! < 7 < 1, and that g(z) is
monotonically decreasing and tends to zero as x goes to infinity. We can choose ¢; > 2 sufficiently
large so that

1
> rlglar™) < (1 +1og, T) - g(erT™) < 5 (A.12)
OCO
1<7<T
and
1
> A +logm Ng(em ) < (141og, T) - T(1+log T)g(er) < T (A.13)
0

T-1<r<1
Combining inequalities (A.10), (A.11), (A.12) and (A.13), there exists a constant ¢; such that
1

g (1 +log)g(crm™) + E gm0 < —. (A.14)
560
T>1 T<1

We use this constant ¢; to define the function b(-) in (A.6). Combining (A.9) and (A.14), we have

[logy m |

io—i I m
; fieg (b2)272) < com - o = .
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Therefore (A.8) holds. By Lemma A.2, there exists a partial coloring x : X — {—1,0, 1} that assigns
+1 to at least m /10 elements in X such that (A.7) holds. For this coloring x, we may choose A; = b(2%)
n (A.4). Again we denote 7 = 2!/M, or equivalently 2! = 7M. We have
, VM -770% ifr>1
A = b(2) = c T if 7 >1,
avM- -9 ifr < 1.

Put this in (A.4). We know that x satisfies that

ANX)| <4 A; =4V M —0.5 04
max (ANX)| <4 aVM () T4

0<i<log, m 7>1 <1
Note that summation of 7 is over a geometric sequence with ratio 2. Hence we have
. 1 0.4
> 7 <7505 and 2.7 31_2 04
>1 <1
Therefore we conclude that we can find x that assigns +1 to at least m /10 elements in X and satisfies
1
1 1 1 en \?2
ax IX(ANX)| <4avM <1 —5=os T 1T 2_0.4> < cVM = ch(n)?z <10g e )>

for some appropriate absolute constant c. O
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