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The upper logarithmic density of monochromatic subset sums

David Conlon* Jacob Fox' Huy Tuan Pham?

Abstract

We show that in any two-coloring of the positive integers there is a color for which the set of positive
integers that can be represented as a sum of distinct elements with this color has upper logarithmic

density at least (2 + \/§) /4 and this is best possible. This answers a forty-year-old question of Erdés.

1 Introduction

For a set A of positive integers, the logarithmic density dy(A;x) of A up to x is @ ZaeA,agx 1/a,
where logx denotes the natural logarithm of x. The upper logarithmic density of A is then dy(A) =
limsup,_,. d¢(A;x). Such logarithmic density functions arise very naturally in number theory. For
instance, a classical result of Davenport and Erdés [2] (see also [6]) shows that any set of positive integers
A with positive upper logarithmic density contains an infinite division chain, that is, an infinite sequence
a;, < a;, < --- with a;; € A and a;, | Qijyy for all j > 1. Much more recently, the celebrated Erdds
discrepancy problem was settled by Tao [8] using his progress [9] on a logarithmically-averaged version of
the Elliott conjecture on the distribution of bounded multiplicative functions.

Our concern here will be with a problem of Erdds concerning subset sums. Given a set of integers A,
the set of subset sums 3(A) is the set of all integers that can be represented as a sum of distinct elements
from A. That is,

E(A):{ZS:SQA}.
seS
Suppose now that r > 2 is an integer and consider a partition N = Ay U --- U A, of the positive integers
into r parts. In the problem papers [3, 4], Erdds noted that there must then be some i € [r] such that the
upper density of ¥(A4;) is 1 and the upper logarithmic density of X(A4;) is at least 1/2. He also observed
that if Ay consists of those n for which |log,logyn| is even and A; is the complement of As, then the
upper logarithmic density of both 3(A4;) and X(Asg) is less than one. In fact, one can check that in this
example each of ¥(A;) and X(Ay) has upper logarithmic density 14/15.1 Following this line of inquiry

to its natural end, Erdgs [3, 4] asked for a determination of cg, the largest real number such that every
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1Erdss incorrectly implies in [3] that in his construction the upper logarithmic density of both 3(A;) is at most 3/4.
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two-coloring of the positive integers has a color class such that the upper logarithmic density of its set of

subset sums is at least cg.

More generally, let ¢, be the minimum, taken over all partitions of N into r parts Ay,..., A,, of the
maximum over i = 1,...,7 of the upper logarithmic density of ¥(A4;). That is,
.= min  maxdy(S(A4;)).

N=A;LUA, ie[r]

Here we give a general upper bound for ¢, and, answering Erdds’ question, show that it is tight for r = 2.
We suspect that our upper bound is also tight for all » > 3, but our methods do not seem sufficient for

proving this. We refer the reader to the brief concluding remarks for a little more on this issue.

Theorem 1. For any integer v > 2, ¢, is at most

1 1
1— — ) (14 ——
< 2b0> < + 27‘1)0—7’)7

where by is the unique root of the polynomial b — 2rb+r — 1 with b > 1, and this is tight for r = 2, where
ca = (2++/3)/4 ~ 0.93301.

We start with the upper bound, which is comparatively simple, following as it does from an appropriate
generalization of Erdds’ coloring. Indeed, fix an integer r > 2 and a real number b > 1 and consider the
r-coloring of the positive integers where 7 is given the value of |log; logn | taken modulo r. Erdds’ coloring
mentioned earlier is essentially the special case where r = 2 and b = 4. Using the observation that the set
of non-zero subset sums of the interval [m,n] is contained in the interval [m, (""2"1)], it is easily checked

that the upper logarithmic density of the set of subset sums of each color class is at most

5.(b) = (1-%) (b b2 ) = <1—2ib> (1—57)"

Since ¢, < 0,(b) for any b > 1, we wish now to minimize ¢,(b). To this end, note that the derivative of
0 (b) with respect to b is

1 _ 1 _
) = gy (1 -57) 7 (1 _ 2_b> bl (1= b )2

The minimum value of 6,(b) occurs when this equals zero or, simplifying, when 0" — 2rb+r — 1 = 0. By
Descartes’ rule of signs, this polynomial has at most two positive roots and it is easily checked that there
are precisely two roots, one lying between 0 and 1 and the other lying above 1, thus completing the proof
of the claimed upper bound.

We now turn our attention to our main contribution, the proof of the lower bound for ¢, which
ultimately relies on an application of the Brouwer fixed-point theorem. We begin by proving a crucial

lemma about monochromatic subset sums which may be of independent interest.



2 Intervals of monochromatic subset sums

In this section, we use a result from our recent paper [1] to prove the following key lemma on subset sums,
which will be important in the proof of the lower bound for cs. We note that a weaker version of this
lemma, from which the bound ¢, > 1/2 easily follows, was previously claimed by Erdés [4, Theorem 3],

though the proof of this statement was never published.

Lemma 2. For every positive integer r, there are positive constants C = C(r) and C' = C'(r) such that
the following holds. For every N > 0 and every partition NN [N,eN) = A; U As U---U A, into r color

classes, there is some i € [r] such that ¥(A;) contains all positive integers in [C N, C'N?].

To state the result from [1] that we need for the proof of this lemma, we introduce the notation

»FA) = {Zs : SCA, |8 < k:}

seS
That is, X*/(A) is the set of subset sums formed by adding at most k distinct elements of A.

Theorem 3 (Theorem 6.1 of [1]). There exists an absolute constant C' > 0 such that the following holds.
For any subset A of [n] of size m > Cy/n, there exists d > 1 such that, for A ={x/d : z € A, d|z} and
k = 2n/m, SF(A") contains an interval of length at least n. Furthermore,

30
41— |4 < 9(logn)* + 21

We will also use the following observation of Graham [5]. Part (ii), which is the part we will use,

follows from the elementary part (i) by induction.
Lemma 4 (Graham [5]). Let A be a set such that 3(A) contains all integers in the interval [z, z + y).

(i) If a is a positive integer with a <y and a ¢ A, then X(AU{a}) contains all integers in the interval
[T,z +y+a).

(i) If a1,...,as are positive integers such that a; < y + 2j<i aj and a; ¢ A fori =1,...,s, then

Y(AU{ai,ag,...,as}) contains all integers in the interval [x,x +y + Y i, a;).

We are now in a position to prove Lemma 2. Recall that a homogeneous progression is an arithmetic

progression a,a +d, .. .,a + kd, where d divides a and, hence, every other term in the progression.

Proof of Lemma 2. Suppose, without loss of generality, that r is sufficiently large and NV is sufficiently
large in terms of r. Let X be the set of elements of N N [N,eN) which do not have any prime factor
at most 72. Let W = Hpgrg p and note that the number of integers in an interval of length ¢ which
are coprime to W is at least (1 — 0y(1))¢p(W)/W, where ¢ is the Euler totient function. By Merten’s
third theorem, ¢(W)/W = (e + o(1))/log(r?) > 1/(3.9logr) for r sufficiently large, where ~ is the

Euler—-Mascheroni constant. Thus, as N is sufficiently large in terms of r, we have

|X| > (e—1)N-1/(4logr) > N/(4logr).



Therefore, by the pigeonhole principle, there exists an index 7 such that |A; N X| > N/(4rlogr). Fix such
an ¢ and let A be an arbitrary subset of A; N X of size N/(8rlogr).

By Theorem 3, there exists d > 1 and a subset A* of A consisting of multiples of d such that

* 30 5 2%eN
A7) 2 4] = 2 (log(eV)’ = S > [A]/2 > N/(16r log )

and, for k = 2%eN/|A|, £¥/(A*) contains a homogeneous progression of common difference d and length
at least eN. If d > 1, then, since A does not contain multiples of any prime p < r2, we must have d > r2.
But then |[A*| < 1+ eN/r? < N/(16rlogr), a contradiction. We must therefore have that d = 1 and,
hence, X*(A*) contains an interval I of length at least eN.

Since k = 2°%eN/|A| < 2%rlogr, the smallest element of I is at most 25°rlogr - eN < 25" Nrlogr.
Therefore, by Lemma 4, we see that 3(A* U (4; \ A)) contains all integers between 2°7Nrlogr and
D seAnAT = N?/(8rlogr), as required. O

Remark 5. Alternatively, one can prove Lemma 2 by using Theorem 7.1 from Szemerédi and Vu’s paper [7].
This result says that there is a constant C' > 0 such that if A is a subset of [n] of size m > Cy/n and
k > Cn/m, then E[k](A) contains an arithmetic progression of length at least n. If we apply this result
rather than Theorem 3 to the set A, we find an arithmetic progression rather than an interval in 3(A).
However, we may then use the fact that the elements of A; N X do not have small factors to expand this

arithmetic progression to an interval. The remainder of the proof then proceeds as before.

3 Proof of the lower bound for ¢,

Suppose N = A; LI--- LI A, is a partition of the positive integers into r color classes. Given this partition,
we build an auxiliary r-coloring a : N — [r] of the positive integers, where we set a(n) = i for some ¢ such
that the color class A; of integers colored by i has the property that 3(A;) contains all positive integers
in the interval [CN, C'N?], where N = ¢" and C and C’ are as in Lemma 2. Note that at least one choice
for ¢ always exists by Lemma 2.

From this auxiliary coloring «, we build another auxiliary coloring ¢ : N — 2" of the positive integers,
where each positive integer now receives a set of at least one color. Explicitly, we place i in ¢(n) if and
only if there is some n/2 < j < n such that a(j) = i. Let S(¢,7) be the set of positive integers n such
that i € ¢(n). The next lemma shows that the upper logarithmic density of ¥(A;) is at least the upper
density of S(¢,1).

Lemma 6. The upper logarithmic density of ¥.(A;) is at least the upper density of S(¢,1).

Proof. Let v be a sufficiently large constant depending on C' and C’, where again C' and C’ are as
in Lemma 2. Consider the coloring ¢ : N — 207 such that i is in (g(n) if and only if there is some
n/2+~ < j < n—~ such that a(j) = 4. Then, if n € S(¢,7), there exists j € [n/2 4 ,n — 4] such that
a(j) =i and so, by definition, %(A;) contains [Ce/, C’e%’]. Hence, for v sufficiently large, $(A;) contains
[e",e"T1]. Noting that Y oen<geentt 1/x =14+ O(e™™), we obtain that the upper logarithmic density of
Y(A;) is at least the upper d;nsity of S(¢,1).



It remains to prove that the upper density of S(¢, ) is at least the upper density of S(¢,7). Partition
the elements of S(¢,4) into disjoint intervals Iy, so that min(Iy41) > 1 + max(I}) for any k > 1. Observe
that S(¢,4) is the union of intervals of the form [j + 7,2j — 2y] where «(j) = i. Thus, we must have
|Ir| > k — 3. Similarly, S(¢,1) is the union of intervals of the form [j, 2] where a(j) = i. Let S1(¢,%) be
the union of those intervals [7,2j] with a(j) =i and j < 37 and let Sa(¢,7) = S(¢,7) \ Si(¢,7). Observe
that if z € S(¢,4) \ S(¢,7), then either & € Si(¢,4) or there exists k such that z € [min I — ~, min I;,) U
(max I, max I, + 27]. Let t be a sufficiently large positive integer and let ¢ be the number of intervals Ij
intersecting [t]. We then have that |(S(¢,4) N [t])\ (S(¢, i) N [t])| < 3v(£+1)+ (3y+1)?/2, where we used
that [S1(¢,7)] <>05<3,7 < By + 1)2/2. Using that || > k — 3, we have £ + 1 < 2/t for t sufficiently

large and, hence,

_ < L < =7
t t - ﬁ + 2t B t
Thus, R
. . ‘
sup S@DOE 18,0 0[] o
t—o00 t t—o00 t

The next lemma therefore completes the proof of the lower bound for ¢o by showing that, for r = 2,
1=2/2 (2 ++/3) /4 for either i = 1 or 2. It is worth

1—22

noting that, from this point on, the argument only depends on our choice for the auxiliary coloring «

the upper density of S(¢,1) is at least fa := inf,c[ 1

and not on the original coloring of N. Thus, the following lemma holds true for the set-valued coloring ¢

derived from any coloring o : N — [r].
Lemma 7. For r = 2, the upper density of S(¢,1) or S(¢,2) is at least fo.

Proof. Suppose, for the sake of contradiction, that there exists some ¢ > 0 and a coloring « such that
S(¢,1) and S(¢,2) each have density at most fo — € in [n] for all n sufficiently large. Without loss of
generality, suppose that a(1) = 1. Define H; to be the first integer with a-color different from 1 and, for
each ¢ > 2, define H; to be the first integer greater than H; 1 with a-color different from H;_1.

First, we claim that there exists such a coloring with the property that H;yo > 2(H;y; — 1) for all
i > 0. Indeed, suppose that i is the smallest non-negative integer for which H;; o < 2(H;411 —1). Consider
a new coloring o where we change the a-color of every integer in [H;11, H;12) to a(H;), while fixing the
color of all other integers. Let ¢’ be the coloring associated to o’. We can verify that ¢'(z) = ¢(z) for all
x < Hiy1 — 1 and > 2(H;jpo — 1), while ¢/(z) C ¢(z) = {a(H;),a(Hiy1)} for @ € [Hit1,2(Hiyo — 1)].
Thus, ¢'(z) C ¢(x) for all z, so the coloring o also has the property that S(¢’,1) and S(¢,2) each have
density at most fo — € in [n] for all n sufficiently large.

It therefore suffices to consider the case where there exist 1 = Hy < Hy < --- such that H; > 2H;_1—1
for all 4 > 1 and all elements in [H;, H; 1) receive color (j + 1) (mod 2). Note that 1 € ¢(z) if and only
if £ € Uj=0 (mod 2)[Hj,2(Hj31 — 1)] and 2 € ¢(z) if and only if @ € U;=; (moa 2)[Hj> 2(Hj+1 — 1)]. Let @y
be the density of S(¢,n (mod 2)) in the interval [2(H, — 1)]. Then

Zizn (mod 2),i§n(2(Hi - 1) - (Hi—l - 1))

ap =

2(H, — 1)
. 2 Zizn (mod 2),i§n(Hi - 1) - Ez;‘én (mod 2),i§n(Hi - 1)
N 2(H, — 1) '



Let z, = H”:__ll < % and b, = G,_12,, Noting that b, is at most the density of S(¢,n — 1 (mod 2))

H
in the interval [2(H,, — 1)]. Observe that

2 Zizn (mod 2),i§n(Hi - 1) - Zz;én (mod 2),i§n(Hi - 1)

On = 2(H, — 1)
_ 22 i=n (mod 2),i<n—2(Hi = 1) = Xoistyy (mod 2),i<n—2(Hi — 1) Hyo—1 2(H,—1)— (Hp1—1)
2(Hps — 1) H, 1 2(H, — 1)
= Ap—922n—12n + 1 — 2, /2
=by 12 +1—2,/2.
Thus,

((_ln, bn) = (l_)n—lzn +1-— Zn/2yan—lzn) .

Let B = [0, f2 — €]?. For S C [0, 1], define
g9(S) ={(bz+1-2/2,az) : (a,b) € S,z €[0,1/2]} N B.

Since there is a coloring such that both S(¢, %) have density at most fo — € in [n] for all n sufficiently large,
letting (a,b) = (ay, b;) for t sufficiently large, we have, by induction, that (@syx,bsix) = (beor_12e4k + 1 —
2k /2, Grsk—12t40%) € g¥(S) for all k > 1. Thus, there is a point (a, b) such that ¢*({(a,b)}) is non-empty
for all k > 1. Let Sy be the set of points (a,b) € B such that g¥({(a,b)}) is non-empty for all k. For each
natural number K, let Sk be the set of points g = (ag,by) € B for which there exists z; € [0,1/2] for
each 1 <k < K such that z, = (a,bx) = (bk-12k + 1 — 21/2, ag—12) € B. Observe that Sp = (g Sk-

In the following claim, we show that Sy is convex and closed.

Claim 8. Sy is convex and closed.

Proof. Since So = (x> Sk, it suffices to show that Sk is convex and closed for each K.

First, we show that Sk is convex. Indeed, assume that xy = (ag,by) and z(, = (ay, b)) are in Sk
and yo = (co,do) = apzo + (1 — ap)xp for some ap € [0,1]. As zp and z{, are in Sk, we have that
xo,z( € B and there exist zj and 2, in [0,1/2] for each positive integer k < K such that x = (a,b;) =
(bg—12K + 1 — 21/2, ax_12;) and x) = (a},, b)) = (bj,_;2. + 1 — 2,,/2,a},_,2;) are in B. Since B is convex,
yo € B. We will show by induction that for each positive integer k < K there exists wy, € [0, 1/2] such that
Y = (e, d) = (dp—1wy + 1 — wg/2, c_1wy,) is a convex combination of z;, and z) and, hence, y, € B.
This shows that yy € Sk

We will need the following simple observation: any points t, u, u’, v, @ and @ in R? such that v is on
the segment between u and v/, @ is on the segment between t and u and 4’ is on the segment between ¢
and v’ have the property that the segment between @ and @’ intersects the segment between ¢ and v.

The set of points (by_12+1—2/2,a;_12) for z € [0,1/2] is a segment with one endpoint at (1,0) and the
other endpoint at §(by—1—1/2,ax—1)+(1,0). Similarly, the set of points (b),_,2+1—2/2,a}_,2) is a segment
with one endpoint at (1,0) and the other endpoint at 1(b,_, —1/2,a},_;) + (1,0). Noting that (a,b) —
$(b—1/2,a)+(1,0) is a linear map, we have, since (cy—1,dj_1) is a convex combination of (ag_1, by—1) and
(ay,_q,b)_;) by the induction hypothesis, that the point %(dk—l —1/2,¢5-1)+(1,0) is a convex combination
of L(by—1 —1/2,a5_1) + (1,0) and 3(b|,_; — 1/2,a}_;) + (1,0). Therefore, by the observation above, for



any z,2" € [0,1/2], the segment through (by_1z+1—2/2,a,_12) and (b)_,2’ +1—2'/2,a},_, ') intersects
the segment of points (dg_12" +1 — 2"/2,¢x—12") with 2” € [0,1/2]. Thus, there exists wy € [0,1/2] such
that yi, = (dk—1wi + 1 — wy/2, cx_1wy) is a convex combination of zj and z},, as required.

Next, we verify that Sk is closed. Let x{ be a sequence of points in Sk converging to xo. Then
we have g € B, since zj) € B for all i and B is closed. Since z} € Sk, there exists zi € [0,1/2] for
1 <k < K such that 2t = (al,b}) = (bi_ 2t +1— 28 /2,a}_,2%) is in B. Since [0, 1/2]K is compact, the
Bolzano-Weierstrass Theorem implies that there exists a subsequence i; such that (z,? Jk<K converges to
a limit (zx)g<x. For 1 <k < K, define xy, = (ak, br) = (bg—12x + 1 — 21/2, ar—12;) inductively. We now
prove by induction on 0 < k < K that xp = hmj_>C>O (azj,bij ). Indeed, this holds for £ = 0. Furthermore,

if k1 = hmj_mo(ak 1vbk 1), then, as lim;_, zk = 23, we have

]li)m (af,b7) = ]hm (bk 1zk +1-27/2,a] %)) = (bk—12k + 1 — 21/2, ag—12k) =
as required. Since x;j € B for all j and B is closed, we have that x; € B for all k¥ < K. In particular,
xg € Sk. Hence, Sk is closed. O

For each z = (a,b) € Sy, let t(z) = (bz + 1 — 2z/2,az), where z is the largest element of [0,1/2]
such that (bz +1 — 2/2,az) € Sp. It is clear that such a z exists for x € Sy by the definition of Sy
and the fact that Sp is closed. We next show that ¢(z) is a continuous map. For z = (a,b) € Sp, there
exists z € [0,1/2] such that bz + 1 — z/2 < f5. Thus, b < 2(fy —3/4) < 1/2. In particular, Sy is
a subset of [0,1] x [0,2(f2 — 3/4)]. Define the function w(x) = (a/(2a — 2b + 1),a/(2a — 2b + 1)) for
x = (a,b) € [0,1] x [0,2(f2 — 3/4)] and note that 7 is continuous on its domain. Let I be the image m(Sp)
of Sy, which is a closed interval consisting of points = (a,a) where 0 < a < 1/(3 —4(f2 —3/4)) < 1/2.
For z = (a,b) € 7~ 1(I), define the function v(z) = sup{z >0 : (bz + 1 — 2/2,az) € Sp}. Observe that
(a/(2a —2b+1) —1/2,a/(2a — 2b + 1)) = 5= (b — 1/2,a). Thus, for all = (a,b) € 7~ (1),

z

v(m(z)) = sup {z >0:(1,0)+ %1

(b—1/2,a) € So} = (2a — 2b + 1)v(x).

In particular, v(z) is well-defined and finite for € 7~1(I), as, for any such z, there exists a point 3 of Sy
for which 7(z) = 7(y) and, since v(y) is finite, v(7m(z)) = v(7(y)) is finite and so is v(x). For = € 7= 1(I),
define u(z) = (bv(z) + 1 —v(z)/2,av(x)). We then have

_ v(m(z)) _ _
u(m(z)) = (1,0) + m(b —1/2,a) = (1,0) + v(z)(b — 1/2,a) = u(x).

Noting that I C 771(I), let ¥ : I — R be the restriction of v to I and 7% : I — R? the restriction of u to I.

The next claim shows that ¥ is continuous on I.

Claim 9. The function v is continuous on 1.

Proof. Recall that, for any = = (a,a) € I, we have a < 1/(6 —4f2) < 1/2. Since Sy C B = [0, fo — €]?, we
have 14+9(z)(a—1/2) > 0 and so 0(x) < 1/(1/2—1/(6—4f2)) for all x € I. Similarly, 1+9(z)(a—1/2) < fo
and 0(x) > 2(1 — fa) for all x € I. Thus, there exist constants A\, A > 0 such that A < 9(x) < A for all
z el



Let iy = (a1,a1), i3 = (as,a3) € I and is = (a2,a2), where as = ca; + (1 — c)ag is a convex
combination of 4; and 3. Let ¢ = m We claim that 0(i2) > 0(i1) + (1 — ¢)0(iz). Let
z=c0(i1) + (1 — ¢)0(iz). Then

da19(ir) + (1 — ¢ )azd(iz) =

and

o = 1/D00) + (1 = )aa - 1/2ilin) = " HNAD =L L A= YD) _ (g, 172

Therefore, writing p; = (a19(i1) — 0(i1)/2 + 1,a10(41)) and p3 = (a30(iz) — 0(i3)/2 + 1,a30(i3)), we
have that ((ag — 1/2)z + 1,a22) = p1 + (1 — ¢)p3. Since Sy is convex and p1,p3 € Sy, we thus have
that ((a2 — 1/2)z 4+ 1,a22) € Sp. In particular, 0(ig) > z = 0(i1) + (1 — ¢)0(i3). Hence, since ¢ =

m >1- %, for all points 41,49 € I such that there exists i3 with is = ciy + (1 — ¢)i3, we

have B(iy) > (1 - #) o(i1). (1)

Using this, we now show that © is lower semi-continuous on I. Indeed, assume otherwise that there
exists a sequence of points x; € I converging to x = (a,a) € I with liminfo(z;) = w < o(x). For any
n > 0, there exists § > 0 such that if |z; — z| < ¢, then we can write z; = cx + (1 — ¢)y with y € I and
c¢>1—mn. By (1), we therefore have

(i) > (1 - @) i(z) > <1 - %) i(x).

But, for 7 sufficiently small, this contradicts our assumption that liminf o(z;) = w < o(x).

Next, we show that v is upper semi-continuous on I. Indeed, assume otherwise that there is a sequence
of points z; € I converging to = = (a,a) € I with limsupo(z;) = w > 0(x). We can then extract a
subsequence x;; for which ©(x;; ) converges to w. But then, by the fact that Sy is closed, (aw+1—w/2, aw) €
Sp and, hence, () > w, a contradiction.

Therefore, since v is both lower and upper semi-continuous on I, it is continuous on I. O

Since v is continuous on I, we obtain that 4 is also continuous on I. Then, by the continuity of = on
So and the fact that u(z) = u(w(x)) = u(n(z)), v is continuous on Sy and, hence, v is continuous on S.
Thus, x — t(x) = (1,0) + min(1/2,v(x))(b — 1/2,a) for = = (a,b) is also continuous on Sp.

Since t is a continuous map from Sy to itself and Sy is bounded, closed and convex, we may apply the
Brouwer fixed-point theorem to conclude that ¢ has a fixed point z¢. Let 29 = (ag,bp). We then have, for
some z € [0,1/2], that

boz +1—2/2 = ag, apz = by.

Thus,
1—2/2 1—2/2
0 1—22 = ze01/2) 1—22 — fo
However, this is a contradiction, since ag < fo — € for xg = (ag, by) € So. O



4 Concluding remarks

We conjecture that our upper bound for ¢, is also tight for three or more colors.

Conjecture 10. For any integer r > 3, ¢, is equal to

1 1
1— — ) (14 ——
< 2b0> < + 27‘1)0—7’)7

where by is the unique root of the polynomial b™ — 2rb+r — 1 with b > 1.

We have explored this conjecture in some detail ourselves, but were unable to establish the optimality
of our upper bound for ¢, without additional assumptions. For instance, it seems that our methods do
apply if the auxiliary coloring « defined in Section 3 is assumed to be cyclic, by which we mean that the
ith monochromatic interval in « has color i (mod ) for all ¢ > 1. Since every two-coloring of the positive

integers is automatically cyclic in this sense, this restriction does not hamper us in that case.
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