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Abstract

Linear regression on network-linked observations has

been an essential tool in modelling the relationship

between response and covariates with additional net-

work structures. Previous methods either lack inference

tools or rely on restrictive assumptions on social effects

and usually assume that networks are observed with-

out errors. This paper proposes a regression model with

non-parametric network effects. The model does not

assume that the relational data or network structure

is exactly observed and can be provably robust to net-

work perturbations. Asymptotic inference framework

is established under a general requirement of the net-

work observational errors, and the robustness of this

method is studied in the specific setting when the errors

come from random network models. We discover a

phase-transition phenomenon of the inference validity

concerning the network density when no prior knowl-

edge of the network model is available while also show-

ing a significant improvement achieved by knowing

the network model. Simulation studies are conducted

to verify these theoretical results and demonstrate the

advantage of the proposed method over existing work in
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1852 LE and LI

terms of accuracy and computational efficiency under

different data-generating models. The method is then

applied tomiddle school students’ network data to study

the effectiveness of educational workshops in reducing

school conflicts.

KEYWORD S

linear regression, network-linked data, network modelling, network

perturbation, random networks

1 INTRODUCTION

Nowadays, networks appear frequently in many areas, including social sciences, transportation

and biology. In most cases, networks are used to represent relationships or interactions between

units of a complex (social, physical or biological) system, so analysing network data may render

crucial insights into the dynamics and/or interaction mechanism of the system. One particu-

lar, yet commonly encountered, situation is when a group of units is observed connected by a

network and a set of attributes for each of these units is available. Such data sets are some-

times called network-linked data (Li et al., 2019; Li et al., 2020c) or multi-view network data

(Gao et al., 2019). Network-linked data are widely available in almost all fields involving network

analysis about social effects (Michell & West, 1996; Pearson & West, 2003), collaborations (Ji &

Jin, 2016; Su et al., 2020), and causal experiments (Basse&Airoldi, 2018a; Basse&Airoldi, 2018b).

In network-linked data, rich information is available from the perspective of both the individual

attributes and the network, and the challenge is to find proper statistical methods to incorporate

both. Suppose one single network is available. Consider the situation where, for each node i of
the network, we observe (xi, yi), in which xi ∈ Rp is a vector of covariates while yi ∈ R is a scalar

response. In particular, we aim for a regression model of yi against xi that also takes the network
information into account. Such amodel arises naturally in any problemwhen a predictionmodel

or inference of a specific attribute is of interest.

Although the systematic study of regression on network-linked data has only recently begun

to attract interest in statistics (Li et al., 2019; Su et al., 2020; Zhu et al., 2017), it has been studied in

econometrics bymany authors, whomostly focused onmultiple networks (Bramoullé et al., 2009;

Lee, 2007; Manski, 1993) or longitudinal data (Jackson & Rogers, 2007; Manresa, 2013). Social

effects are typically observed in the form that connected units share similar behaviours or prop-

erties. The similarity or correlation may be due to either homophily, where social connections
are established because of similarity, or contagion, where individuals become similar through the
influence of their social ties. In general, one cannot distinguish homophily from contagion in a

single snapshot of observational data (Shalizi & Thomas, 2011), as in our setting. Therefore, the

two directions of causality will not be distinguished, and this type of generic similarity between

connected nodes will be called ‘network cohesion’, as in (Li et al., 2019; Li et al., 2020c). A sig-

nificant class of models for this type of network regression problems is the class of autoregressive

models, which is based on ideas in spatial statistics. The spatial autoregressive models have been

widely used in econometrics, such as in (Bramoullé et al., 2009; Hsieh & Lee, 2016; Lee, 2007;

Manski, 1993; Zhu et al., 2017), to name a few. A common form for such a model is
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LE and LI 1853

yi = 𝛾

(
1

ni

∑
i′∼i

yi′

)
+ X𝛽 +

1

ni

(∑
i′∼i

xi′

)T

𝜂 + 𝜖,

where yi is the response, xi is the covariate vector and ni is the number of neighbours of i (the
notation i ∼ i′ indicates that i and i′ are connected). In this model, the neighbourhood averages
of the response and covariates are used to model the social effect. The parameters 𝛾 and 𝜂 are

typically called ‘endogenous’ and ‘exogenous’ effects, respectively, while 𝛽 is the standard regres-

sion slope. This class of models is also called the linear in means model or social interaction

model (SIM).Whenmultiple networks for different populations are available, the intercept can be

treated as a group effect, called the external effect (Lee, 2007; Lee et al., 2010; Manski, 1993). The

SIM framework can also combined with network formulation models to study the correlation,

homophily and contagion effects, if rather than a single network, one could observe multiple net-

work snapshots over time (Goldsmith-Pinkham& Imbens, 2013; McFowland III & Shalizi, 2021).

The SIM framework, though it has been a popular set-up for regression on network-linked data,

suffers from two crucial drawbacks. The first comes from its restrictive parametric form of the

social effect. Assuming social effect in the form of autoregressive neighbourhood average (or

summation) is far from realistic, and this stringent assumption significantly limits the usefulness

of the framework. As shown in Li et al. (2019) and also in our empirical study, the restrictive

assumption of social effect leads to poor prediction performance. The second limitation comes

from the assumption that the network structure is precisely observed from the data. In practice,

it is well known that most network data are subject to errors, due to missingness (Butts, 2003;

Clauset & Moore, 2005; Lakhina et al., 2003), observational errors (Handcock & Gile, 2010;

Khabbazian et al., 2017; Le et al., 2018; Lunagómez et al., 2018; Newman, 2018; Rolland

et al., 2014) or data collection method (Rohe, 2019; Wu et al., 2018). If the imprecise network is

used in SIM, the model is ill-defined and the inference would also be problematic, as shown by

Chandrasekhar and Lewis (2011).

In this paper, a new regression model to fit the network-linked data is proposed that

addresses both drawbacks mentioned above. The newmodel is based on a flexible network effect

assumption and is robust to network observational errors. It also allows us to perform tests and

construct confidence intervals for the model parameters. Our theoretical analysis provides the

support for model estimation and inference and quantifies the magnitude of network obser-

vational errors under which the inference remains robust. Moreover, in the random network

perturbation scenario, the tradeoff between the available information of the network struc-

ture and the level of robustness of the statistical inference is characterised. In its most difficult

setting, when no prior knowledge about the network model is available, the result reveals a

phase-transition phenomenon at the network average degree of
√
n, above which the inference

is asymptotically correct, and below which the inference becomes invalid. The inference could

remain valid for much sparser networks if more information about the network structure is avail-

able. For example, when the network model is known and an effective parametric estimation can

be applied, the sparsity requirement can be relaxed to logn. To the best of our knowledge, this
paper is the first work that addresses the inference of the network-linked regression models and

accounts for the network observational errors.

Related to the network-linked model proposed in this paper is the semi-parametric model

called regression with network cohesion (RNC), introduced by Li et al. (2019). In their model, the

network effect is represented by individual parameters that are assumed to be ‘smooth’ over the

network, and a similar idea is used in a few other statistical estimation settings (Fan&Guan, 2018;
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1854 LE and LI

TABLE 1 Comparison between the proposed method and two other popular methods for network-linked

data

Models Social effect flexibility Inference Network robustness

SIM (Manski, 1993) × ✓ ×

RNC (Li et al., 2019) ✓ × ×

Current method ✓ ✓ ✓

Abbreviations: RNC, regression with network cohesion; SIM, social interaction model.

Wang et al., 2016; Zhao & Shojaie, 2016). Despite its flexibility of social effect assumption and

excellent predictive performance, the RNC model lacks a valid inference framework and cannot

be applied in many modern applications where statistical inference is needed (Ogburn, 2018; Su

et al., 2020). The result of Li et al. (2020c) indicates that the RNC estimator fails to guarantee valid

inference under reasonable assumptions unless additional assumptions such as sparsity aremade

(Zhao & Shojaie, 2016). Moreover, little is known about the robustness of the RNC method to

network observational errors, although preliminary results have been obtained in a particular sce-

nario of network sparsification (Li et al., 2019; Sadhanala et al., 2016). In contrast, ourmodel does

not assume the smoothness of network effects as in the RNC method. Instead, we use a general

relational subspace to define the social effects. As can be seen later, the proposedmodel overcomes

both of the two aforementioned limitations of RNC and is computationally more efficient.

Table 1 gives a high-level comparison between the proposed model and two popular bench-

mark regression models (discussed previously) in three aspects: the flexibility of modelling social

effects, the availability of an inference method, and the provable robustness to the network per-

turbation. The model we introduced in this paper is the only one of the three which renders all

of the desired properties.

The rest of the paper is organised as follows. Section 2 introduces our model and the cor-

responding statistical inference algorithm. Sections 3 and 4 are devoted to our main theoretical

results; the generic theory formodel estimation consistency and the asymptotic inference is given

in Section 3; then, under the random network modelling framework, detailed discussions of the

technical requirement are introduced in Section 4. Extensive simulation experiments are given

in Section 5 to verify our theory and compare our method with a few benchmark methods men-

tioned above. Section 6 demonstrates the usefulness of the proposed method in analysing a study

about the effects of educational workshops on reducing school conflicts. Concluding remarks

and future directions are discussed in Section 7. Extended theoretical results, proofs, additional

experiments and data analysis are given as Appendix S1.

2 NETWORK REGRESSION MODEL

Throughout the paper, 0k×𝓁 and Ik are used to denote the zeromatrix of size k × 𝓁 and the identity

matrix of size k × k, respectively. The subscripts may be dropped when the dimensions are clear
from the context. We use ei to denote the vector whose ith coordinate is 1 and the remaining

coordinates are zero; the dimension of ei may vary according to the context. Given a matrix

M ∈ Rk×𝓁 and 1 ≤ i ≤ j ≤ 𝓁, Mi∶j ∈ Rk×(j−i+1) is used to denote the matrix whose columns are

those of M with indices i, i + 1, … , j; when i = j, Mi is used instead of Mi∶i for the simplicity of

the notation. Throughout the paper, ||.|| denotes the spectral norm, which is the largest singular
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LE and LI 1855

value, for matrices and the Euclidean norm for vectors. The number of nodes in the network is

denoted by n. We say that an event E occurs with high probability if P(E) ≥ 1 − n−c for some con-
stant c > 2. We use an = o(1) and bn = O(1) to indicate that limn→∞ an = 0 and bn is a bounded
sequence, respectively.

2.1 A semi-parametric regression model with network effects

The unobserved true network is captured by the relational matrix P ∈ Rn×n, where Pij describes
the strength of the relation between nodes i and j. For each node i of the network (xi, yi) is
observed, where xi ∈ Rp is a vector of covariates while yi ∈ R is a scalar response. Denote by

Y = (y1, … , yn)T ∈ Rn the vector of responses and byX = (x1, … , xn)T ∈ Rn×p the designmatrix,

which sometimes has the first column as the all-one vector. Our goal is to construct a model that

describes the dependence of Y on X and P.
The observed network is represented by an n × n adjacency matrix A, where 0 ≤ Aij ≤ 1 is the

weight of the edge between i and j. In the special case of an unweighted network, A is a binary

matrix andAij = 1 if and only if node i and node j are connected.We viewA as a perturbed version
of P and focus on undirected networks, for which A and P are symmetric matricies. Moreover,
we only consider the fixed design setting, to avoid unnecessary complication of jointly modelling
covariates and relational data. That means X and P are always treated as fixed. The adjacency
matrix A is also treated as fixed for the moment as the regression model and its generic inference
framework are described. Later on, in only Section 4 where we study the robustness of our frame-

work under deviation of A from P, we will assume A as a perturbation of P following random
network models.

Intuitively, the structural assumption is that yi’s tend to be similar for individuals hav-

ing strong connections. This is called the assortative mixing or network cohesion property

(Kolaczyk, 2009; Li et al., 2019). To incorporate this intuition, consider the model

EY = X𝜁 + 𝜇, (1)

where 𝜁 ∈ Rp is the vector of coefficients for the covariates X and 𝜇 ∈ Rn is the vector of individ-

ual effects reflecting the network cohesion property. This model was studied in Li et al. (2019).

Instead of modelling the network effect by using a specific auto-regressive dependence as in

Manski (1993), (1) treats the network effect as a non-parametric component. As shown by Li

et al. (2019) and the experiments later on in this paper, this approach is more flexible and gives

significantly better predictive performance than the SIM framework of Manski (1993). In Li

et al. (2019), 𝜇 is assumed to have small sum of squared differences
∑

i,j∶Aij=1
(𝜇i − 𝜇j)

2. In contrast,

we rely on a different form of the network cohesion that proves to be more general and stable.

Specifically, the cohesion requirement of 𝜇 is formulated by assuming that

𝜇 ∈ SK(P), (2)

where SK(P) is the subspace spanned by the K leading eigenvectors of P. Depending on specific
problems it may be possible to replace P in (2) with other appropriate matrix-valued func-

tions of P for which the inference framework remains valid. One such example is provided

in Section A of Appendix S1. The idea of using the eigenspace of P to encode the cohesive

pattern over the network is motivated by many previous studies. It is related to the standard
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1856 LE and LI

spectral embedding (Belkin & Niyogi, 2003; Ng et al., 2001; Shi & Malik, 2000; Tang et al., 2013),

which maps the nodes of the network to a set of points in a Euclidean space so that the

geometric relations between these points are similar to the topological relations of the nodes

in the original network. Moreover, under random network models, Li et al. (2020a) and Lei

et al. (2020) show that the eigenspaces of the expected adjacency matrix and Laplacian matrix

encode varying resolutions of node similarity. Intuitively, since the spectral space combines both

the network’s macro-scale and micro-scale patterns, it is expected to be reasonably robust to per-

turbations on local connections. This gives a significant advantage comparedwith the SIMmodel.

Figure 3 (Section 6) includes such an example. In summary, we assume the following mean

structure:

Definition 1. The mean structure of the regression model with network effects is defined to be

EY ∈ span{col(X), SK(P)}, (3)

where col(X) is the column space ofX and span denotes the linear subspace jointly spanned
by col(X) and SK(P). This is equivalent to (1) with the cohesion property (2).

The advantage of our mean structure (1) lies in its generality. In particular, one distinction

between our model and the more commonly assumed linear mean structure is that our model

includes the situation when the two subspaces col(X) and SKP have non-trivial intersection. For
example, one of the covariates may be perfectly cohesive over the network, and this situation

is allowed in our model. In this case, one could not uniquely determine X𝜁 and 𝜇. However,

such a tricky situation is unavoidable for the level of generality and robustness we want to

achieve. As a matter of fact, this type of ambiguity is an instance of the general conclusion from

Shalizi and Thomas (2011) that contagion, and different types of homophily effects from a single

snapshot of observational data are not distinguishable. Nevertheless, the mean-structure, as well

as an interpretable decomposition of the effects, can be uniquely identified with the following

parameterisation.

Definition 2. Let  = col(X) ∩ SK(P) be the intersection of col(X) and SK(P). Model (3) can
reparametrised as

EY = X𝛽 + 𝜉 + 𝛼, (4)

where

𝜉 ∈ , X𝛽 ⊥ , 𝛼 ∈ SK(P), 𝛼 ⊥ , (5)

and 𝛽 ∈ Rp, 𝜉, 𝛼 ∈ Rn. We call it the regression model with network effects.

Although there are several ways to reparameterise the mean structure (3), the one in (5) is

preferable because it combines the two sources of information (the covariatesX and the relational
information P) in a natural way so that the interpretation of the corresponding parameters is

straightforward. Specifically, we observe that

• When 𝛽 = 0, we have EY ∈ SK(P) so the model can be specified as a cohesive network effects
without using the covariates X . Therefore, 𝛽 represents the conditional covariate effects of X
given P.
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LE and LI 1857

• When 𝛼 = 0, we have EY ∈ col(X) so the model can be specified by the covariates without

using the relational information P. Therefore, 𝛼 represents the conditional network effect of P
given X .

Thus, 𝛽 and 𝛼 reflect the conditional effects similar to the covariate effects in the standard linear

regression setting. In addition, 𝜉 is the overlap of the two sources. The following result confirms

the identifiability of our parameters.

Proposition 1 (Parameter identifiability). The parameterisation in Definition 2 is identifiable.
That is, if there exist (𝛽, 𝛼, 𝜉) and (𝛽′, 𝛼′, 𝜉′) satisfying (4) and (5) simultaneously then 𝛽 = 𝛽′,

𝛼 = 𝛼′, and 𝜉 = 𝜉′.

Remark 1. A seemingly easier way to combine the two sources of information is to treat the

eigenvectors of P as another set of covariates and fit Y using both X and the eigenvectors.

However, this approach has to assume  = {0} for identifiability. This model is a special

case of our model, and as can be seen later, our model estimation method would adapt to

this reduced case. Our model does not enforce this assumption because it is restrictive and

also causes difficulties in interpretations (see Section H in in Appendix S1 for details). Note

also that (5) does not require 𝛼 ⊥ X𝛽, although this strong restriction would significantly
simplify the fitting procedure and its analysis.

In the present setting, even when p is much smaller than n, the model inference is a

high-dimensional problem because of the non-parametric individual effects 𝛼. Throughout this

paper, we assume that the noise in the regressionmodel of Definition 2 is a multivariate Gaussian

vector, as in many other inference methods of high-dimensional regression model (Javanmard &

Montanari, 2014; Van de Geer et al., 2014; Zhang & Zhang, 2014). Specifically,

Y = EY + 𝜖 and 𝜖 ∼ N(0, 𝜎2I), (6)

where I ∈ Rn×n is the identity matrix and 𝜎2 is the variance of the noise. We leave the study of

other noise distributions for future work.

Remark 2. As to be clear in our theory later, the reasonable interpretation of K in (2) is the index

where the spectral space of P has a large eigen gap. The problem of estimating such a K
has been extensively studied in network literature and many efficient methods are now

available (Chatterjee, 2015; Chen & Lei, 2018; Jin et al., 2020; Le & Levina, 2022; Li, Levina,

& Zhu, 2020). These methods all provide theoretical guarantees for the recovery of K with

overwhelming probability and can be applied to our setting. Since the task of estimating K
neither makes our problem conceptually more challenging nor brings more insight about

it, for simplicity of presentation, we assume that K is known throughout the paper.

2.2 Statistical inference method

Our generic inference framework requires access to a certain approximation of P, denoted by P̂.
The specific P̂ is determined by the user according to the understanding of the data problem. For
example, onemay assume that the adjacencymatrixA is a perturbed version ofP. In this situation,
without additional information, a natural option is to set P̂ = A and we refer to the corresponding
estimation and inference procedure as the ‘model-free’ version of our method, highlighting that

no specific model for the network structure is assumed. Section 4 discusses some other cases
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1858 LE and LI

for which additional network model assumptions are considered and more accurate parametric

estimates of P are available.
The identifiability condition (5) suggests a natural procedure for estimating parameters in

model (4) via subspace projections. However, the fact that 𝛼 and X𝛽 need not be orthogonal com-
plicates the estimation procedure and its analysis. To highlight the main idea, we first describe

the population-level estimation, assuming that both P and EY are known.

Let Z ∈ Rn×p be amatrix whose columns form an orthonormal basis of the covariate subspace

col(X). Similarly, let W ∈ Rn×K be the matrix whose columns are eigenvectors of P that span

the subspace SK(P). Define the singular value decomposition (SVD) of matrix ZTW to be

ZTW = UΣVT .Here,U ∈ Rp×p andV ∈ RK×K are orthonormalmatrices of singular vectors while

Σ ∈ Rp×K is the matrix with the following singular values on the main diagonal:

𝜎1 = 𝜎2 = · · · = 𝜎r = 1 > 𝜎r+1 ≥ · · · ≥ 𝜎r+s > 0 = 𝜎r+s+1 = · · · = 0. (7)

Thus, r is the dimension of  = col(X) ∩ SK(P) and ZTW has r + s non-zero singular values.
Column vectors of the matrices

Z̃ = ZU and W̃ = WV , (8)

also form a basis of col(X) and SK(P), respectively. In particular, the first r column vectors of Z̃
and W̃ coincide and form a basis of. Moreover, the last p − r column vectors of Z̃ form a basis

of the subspace of col(X) that is perpendicular to; similarly, the last K − r column vectors of W̃
form a basis of the subspace of SK(P) that is perpendicular to. The model assumption (5) then
indicates

𝜉 ∈ col(Z̃1∶r) = col(W̃1∶r) = , X𝛽 ∈ col(Z̃(r+1)∶p)⊥, 𝛼 ∈ col(W̃ (r+1)∶K)⊥. (9)

Therefore, 𝜉 can be recovered by 𝜉 = EY , where is the orthogonal projection ontowritten

as

 = Z̃1∶rZ̃
T
1∶r = W̃1∶rW̃

T
1∶r. (10)

For the convenience of theoretical analysis later, we also introduce the projection coefficient

𝜃 ∈ Rp

𝜃 = (XTX)−1XT𝜉.

Recall that 𝜉 ∈  ⊂ col(X), so we have 𝜉 = X𝜃, and we have the one-to-one correspondence

between 𝜃 and 𝜉. However, notice that 𝜃 cannot be attributed to conditional effects of covariates,

as explained in the previous section.

For estimating 𝛼 and 𝛽, we project EY on col(Z̃(r+1)∶p) and col(W̃ (r+1)∶K), respectively. Since

these subspaces need not be orthogonal to each other (the principle angles between the two sub-

spaces are the singular values 𝜎r+1, ..., 𝜎r+s), the corresponding projections are not necessarily

orthogonal projections. Instead, they admit the following forms:

 =
(
Z̃(r+1)∶p, 0n×(K−r)

)
(MTM)−1MT , (11)

 =
(
0n×(p−r), W̃ (r+1)∶K

)
(MTM)−1MT , (12)
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whereM = (Z̃(r+1)∶p, W̃ (r+1)∶K). Both 𝛼 and 𝛽 can then be recovered by

𝛼 = EY and 𝛽 = (XTX)−1XTEY . (13)

Finally, to test the hypothesis H0 ∶ 𝛼 = 0, we can use ‖𝛼‖2 as the statistic. We have

𝛼 =
∑K−r

i=1 W̃ r+i𝛾i = W̃ (r+1)∶K𝛾, such that ‖𝛼‖ = ‖𝛾‖. Although 𝛾 cannot be uniquely determined

because W̃ (r+1)∶K is only unique up to an orthogonal transformation, we can still uniquely identify

its magnitude ‖𝛾‖2 to perform a chi-squared test against the null hypothesis H0 ∶ 𝛼 = 0.

In practice, when P and EY are not observed, it is natural to replace them everywhere by the

available approximations P̂ and Y in the procedure above. There is, however, one crucial issue

that requires special attention: the plugin estimate col(X) ∩ SK(P̂) for = col(X) ∩ SK(P) is often
a bad approximation of. This is because the intersection of subspaces is not robust with respect

to small perturbations to the subspaces. For example, it is easy to see that in low-dimensional

settings, when col(X) ∩ SK(P) is non-trivial, a small perturbation of P can easily make

col(X) ∩ SK(P̂) a null space. Therefore, rather than using col(X) ∩ SK(P̂) to approximate , the

projections in (10), (11) and (12) are directly approximated using the eigenvectors of P̂ (this

partially explains the detailed discussion of the population level estimation above). The whole

estimation procedure is summarised inAlgorithm1. Fromhere through Section 3,wewill assume

that the dimension r of  is known for simplicity. This is because, so far, A has been treated as

fixed while a discussion of selecting r naturally involves a detailed analysis of the perturbation
mechanism from P toA. In Section 4when the perturbationmodel forA is introduced, we provide
a simple method to select r with a theoretical guarantee (see Corollary 3).

Algorithm 1. (Spectral projection estimation). Given X , Y , P̂, K and r.

1. Calculate an orthonormal basis of col(X) and forms Z ∈ Rn×p. Similarly, calculate K
eigenvectors of P̂ and form Ŵ ∈ Rn×K .

2. Calculate the SVD

ZTŴ = ÛΣ̂V̂
T
, (14)

and denote

Ẑ = ZÛ, W̆ = ŴV̂ . (15)

3. Let M̂ = (Ẑ(r+1)∶p, W̆ (r+1)∶K). Estimate R,  and  by

̂ = Ẑ1∶rẐ
T
1∶r, (16)

̂ =
(
Ẑ(r+1)∶p, 0n×(K−r)

)
(M̂

T
M̂)−1M̂

T
, (17)

̂ =
(
0n×(p−r), W̆ (r+1)∶K

)
(M̂

T
M̂)−1M̂

T
. (18)

4. Estimate 𝜉, 𝛽 and 𝛼 by

𝜉 = ̂Y , 𝛽 = (XTX)−1XT̂Y , 𝛼̂ = ̂Y . (19)

And recover the projection coefficient of 𝜉 to col(X) as 𝜃̂ = (XTX)−1XT𝜉.
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1860 LE and LI

5. Let Ĥ = ̂ + ̂ + ̂ . Estimate the variance 𝜎
2 of 𝜖 in (4) by

𝜎̂2 =
‖‖‖Y − ĤY‖‖‖

2
∕(n − p − K + r). (20)

6. Estimate the covariance of 𝛽 by

𝜎̂2(XTX)−1XT̂̂
T
X(X

TX)−1. (21)

The inference of 𝛽 can be done according to Theorem 1.

7. To test the significance of 𝛼, estimate 𝛾 by

𝛾̂ = W̆ (r+1)∶K 𝛼̂, (22)

and estimate the covariance matrix of 𝛾̂ by Σ̂𝛾̂ = 𝜎̂2W̆ (r+1)∶K̂ ̂
T
 W̆

T
(r+1)∶K . Normalise

𝛾̂ to obtain 𝛾̂0 = Σ̂
−1∕2

𝛾̂ 𝛾̂ . Use ‖𝛾̂0‖2 for a chi-squared test (with K degrees of freedom)

against the null hypothesis H0 ∶ 𝛼 = 0 according to Theorem 2.

3 GENERIC INFERENCE THEORY OF MODEL
PARAMETERS

For valid inference of parameters, we make the following standard assumptions about the data.

Assumption 1 (Standardised scale). All columns of X satisfy ‖Xi‖ =
√
n. Moreover,

‖EY‖ ≤ C
√
np,

for some constant C > 0.

Assumption 2 (Weak dependence of X). Denote Θ = (XTX∕n)−1. Assume that Θ is

well-conditioned, that is, there exists a constant 𝜌 > 0 such that

𝜌 ≤ 𝜆min(Θ) ≤ 𝜆max(Θ) ≤ 1∕𝜌.

Due to the deviation of P̂ from the true signal P, the estimators would be biassed. A common

approach to ensure the valid inference is to control the bias levels of the parameter estimates

(Javanmard & Montanari, 2014; Van de Geer et al., 2014; Zhang & Zhang, 2014). In the current

context, we need to guarantee that the biases are negligible compared to the standard deviations

of the estimators. This requires P̂ − P to be controlled to some extent. In particular, the biases will
depend on the magnitude of the perturbation of SK(P) associated with col(X), defined by

𝜏n = ||ZTŴŴT − ZTWWT|| = ||(ŴŴT −WWT)Z||. (23)

As awarm-up, it is not difficult to get a bound on ||Σ̂ − Σ|| in terms of 𝜏n. Indeed, from the previous

discussion, the singular decompositions of ZTWWT and ZTŴŴT are

ZTWWT = UΣW̃
T
, ZTŴŴT = ÛΣ̂W̆

T
. (24)
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Therefore, by Weyl’s inequality,

||Σ̂ − Σ|| ≤ 𝜏n. (25)

Since the estimates depend crucially on the SVD of ZTWWT and ZTŴŴT , (23), (24) and (25) play

a central role in establishing the theoretical results. We now introduce our assumption on the

error level that ensures the validity of the inference. It can be seen as away to characterise the level

of perturbation our framework could tolerate. This validity and theoretical insights about this

assumption will be studied in more detail later (see Section 4). As we show there, the condition

is mild in many commonly studied network settings.

Assumption 3 (Small projection perturbation). Let Z and W be the matrices formed by the

bases of col(X) and SK(P), respectively. Let ZTW = UΣVT be the SVD with singular values

specified in (7). Assume P̂ is a small projection perturbation of Pwith respect toX , by which
we mean

𝜏n

min
{
(1 − 𝜎r+1)3, 𝜎

3
r+s

} = o
(
1∕

√
np

)
.

The first property to be introduced is the estimation consistency of 𝜎̂2, which serves as the

critical building block for later inference.

Proposition 2 (Consistency of variance estimation). If Assumption 1 holds and

40𝜏n ≤ min{(1 − 𝜎r+1)
2, 𝜎2r+s}. (26)

Then with high probability, the estimate 𝜎̂2 defined by (20) satisfies

|𝜎̂2 − 𝜎2| ≤ C𝜏n
min{(1 − 𝜎r+1)3, 𝜎

3
r+s}

⋅
n(𝜎2 + p)

n − p − K + r
,

for some constant C > 0. In particular, if Assumption 3 holds and p + K = o(n) then 𝜎̂2 is
consistent.

The covariate effects 𝛽 will be the central target for inference. The first result is the following

bound on the bias of 𝛽, defined to be
‖‖‖E(𝛽) − 𝛽

‖‖‖∞.
Proposition 3 (The bias of 𝛽). If condition (26) holds then there exists a constant C > 0 such that

‖‖‖E(𝛽) − 𝛽
‖‖‖ ≤

C𝜏n
min{(1 − 𝜎r+1)3, 𝜎

3
r+s}

⋅ ||(XTX)−1|| ⋅ ||X|| ⋅ ||X𝛽 + X𝜃 + 𝛼||.

In particular, if Assumptions 1, 2 and 3 hold then the bias of 𝛽 is of order o(1∕
√
n).

In general, one may be interested in inferring the contrast 𝜔T𝛽 for a given unit vec-

tor 𝜔, such as in comparing covariate effects or making predictions. Let X̃ = X∕
√
n, then

from (19),

Var(𝜔T𝛽) =
𝜎2

n
𝜔TΘX̃

T
̂̂

T
 X̃Θ𝜔, (27)
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1862 LE and LI

with ̂ defined by (17). According to Proposition 3, a sufficient condition for valid inference

of 𝜔T𝛽 is 𝜔TΘX̃
T
̂̂

T
 X̃Θ𝜔 ≥ c for some constant c > 0. Note that this quantity is directly

computable in practice. However, we will focus on the population condition with respect to the

true matrix  in the following result.

Theorem 1 (Asymptotic distribution of 𝜔T𝛽). If Assumptions 1, 2, 3 hold and

√
np ⋅min{1 − 𝜎r+1, 𝜎r+s} ≥ 1. (28)

For a given unit vector 𝜔 ∈ Rp, assume that

||Z̃T(r+1)∶pX̃Θ𝜔|| ≥ c, (29)

for some constant c > 0 and sufficiently large n. Then as n → ∞,

P

⎛⎜⎜⎜⎝

𝜔T𝛽 − 𝜔T𝛽√
𝜎̂2

n
𝜔TΘX̃

T
̂̂

T
 X̃Θ𝜔

≤ t

⎞⎟⎟⎟⎠
→ Φ(t),

where Φ is the cumulative distribution function of the standard normal distribution.

Next, we discuss the special case when 𝜔 = ej, which corresponds to making inference for
the individual parameter 𝛽j = eT

j
𝛽 for some 1 ≤ j ≤ p. In this case, condition (29) has a simple

interpretation.

Corollary 1 (Valid inference of individual regression coefficient). Let 𝜂j be the partial residual
from regressing X̃ j against all other columns of X̃ and Rj be the corresponding partial R2 for
this regression. If Assumption 1, 2, 3 hold and there exists a constant c > 0 such that

||Z̃T(r+1)∶p𝜂j||∕(1 − R2j ) ≥ c. (30)

Then, as n → ∞,

P

⎛
⎜⎜⎜⎝

𝛽 j − 𝛽j√
𝜎̂2

n
eT
j
ΘX̃

T
̂̂

T
 X̃Θej

≤ t

⎞
⎟⎟⎟⎠
→ Φ(t),

where Φ is the cumulative distribution function of the standard normal distribution.

To understand condition (30), notice that 𝜂j is the signal from Xj, after adjusting for the other

covariates, while 1 − R2
j
is the proportion of this additional information from X̃ j. Since ||Z̃T(r+1)∶p𝜂j||

is the magnitude of 𝜂j’s projection on the subspace col(Z̃(r+1)∶p), (30) essentially requires that the

additional information contributed by Xj after conditioning on other covariates should nontriv-
ially align with col(Z̃(r+1)∶p), the subspace on which the effect of 𝛽j lies. This type of condition is

needed because if Z̃
T
(r+1)∶p𝜂j = 0, the parameter space of 𝛽j degenerates to {0} and the inference

is not meaningful. Notice that requirement (30) is completely different from assuming that |𝛽j| is
large, and it does allow |𝛽j| to be zero or small.
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LE and LI 1863

The next result shows the consistency of estimating 𝛼. It also provides bounds for the bias and

variance of 𝛾̂ , which are later used for testing the hypothesis H0 ∶ 𝛼 = 0.

Proposition 4 (Consistency of 𝛼̂ and 𝛾̂). If Assumption 1 and (26) hold. Then there exists a
constant C > 0 such that with high probability, the following hold.

1. Let ||W ||2→∞ be the maximum of the Euclidean norms of the row vectors of W , then

||𝛼̂ − 𝛼||∞ ≤
C

min{(1 − 𝜎r+1)3, 𝜎
3
r+s}

⋅

(
||W ||2→∞

√
K𝜎2 logn + 𝜏n

√
n(p + 𝜎2)

)
.

2. There exists an orthogonal matrix O ∈ R(K−r)×(K−r) such that

‖E𝛾̂ − O𝛾‖ ≤
C𝜏n

√
np

min{(1 − 𝜎r+1)3, 𝜎
3
r+s}

.

3. Let Σ𝛾̂ be the covariance matrix of 𝛾̂ , then

‖‖‖‖‖‖
Σ𝛾̂ − 𝜎2

(
(Is − Γ2)−1 0

0 IK−r−s

)‖‖‖‖‖‖
≤

C𝜏n
min{(1 − 𝜎r+1)2, 𝜎

2
r+s}

,

where Γ = diag(𝜎r+1, · · · , 𝜎r+s).

Proposition 4 shows that 𝛼̂ is an element-wise consistent estimate of 𝛼 if Assumption 3

holds,min{(1 − 𝜎r+1)
3, 𝜎3r+s} is bounded away from zero, and ||W ||2→∞

√
K𝜎2 logn = o(1). The last

requirement holds when P is an incoherent matrix— the rows ofW are in similar magnitudes—

a commonly observed property introduced by (Candès & Recht, 2009; Candès & Tao, 2010). The

other two inequalities of Proposition 4 show that the bounds for both bias and variance of 𝛾̂ are of

order o(1) if Assumption 3 holds. These properties directly lead to the validity of the chi-squared
test for network effects.

Theorem 2 (Chi-squared test for 𝛼). If Assumptions 1 and 3 hold, K is a fixed integer, and
p = o(n). Then as n → ∞, the statistic ‖𝛾̂0‖2 constructed in Algorithm 1 satisfies

‖𝛾̂0‖2
d
−→ 𝜒2

K ,

where 𝜒2
K is a random variable that follows the chi-squared distribution with K degrees of

freedom and
d
−→ denotes the convergence in distribution.

The next theorem provides the theoretical result for 𝜃̂.

Theorem 3 (Inference of 𝜃 and 𝜉). The estimator 𝜃̂ in (19) follows a Gaussian distribution
with covariancematrix Cov(𝜃̂) = 𝜎2

n
ΘX̃

T
̂X̃Θ. Furthermore, under Assumptions 1, 2 and 3,

‖‖‖E(𝜃̂) − 𝜃
‖‖‖ = o(1∕

√
n). If in addition, there exists a constant c > 0 such that

||Z̃T1∶r𝜂j||∕(1 − R2j ) ≥ c, (31)
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1864 LE and LI

where 𝜂j and Rj are defined in Corollary 1, then as n → ∞,

P

⎛
⎜⎜⎜⎝

𝜃̂j − 𝜃j√
𝜎̂2

n
eT
j
ΘX̃

T
̂X̃Θej

≤ t

⎞
⎟⎟⎟⎠
→ Φ(t).

The inference of each 𝜉i, i ∈ [n] can be done by noticing 𝜉i = Xi⋅𝜃 where Xi⋅ is the ith row of X .

Condition (31) is in parallel of (30); see the discussion following Corollary 1 for its

interpretation.

4 SMALL PROJECTION PERTURBATION UNDER
RANDOM NETWORK MODELS

We have introduced the small projection perturbation condition as a general way to characterise

the structural perturbation level our framework could tolerate. To provide more insights about

this characterisation, in this section, we study the small projection perturbation assumption in a

special setting when the perturbation of P comes from random network models. Specifically, we

assume that the edge between each pair of nodes (i, j) is generated independently from a Bernoulli

distributionwithP(Aij = 1) = Pij, 1 ≤ i < j ≤ n. In particular,EA = P. Thismodel is known as the
inhomogeneous Erdős-Rényi model (Bollobas et al., 2007). To clarify, the randomness discussed

in this section comes from the randomnetworkmodel above, which is assumed to be independent

of the randomness from the noise 𝜖 in the regression model.

Section 4.1 investigates the most difficult setting when no prior information is available about

the network model, while Section 4.2 presents the results in the arguably easiest setting when

the true underlying network can be accurately estimated. Section A further extends the results in

another commonly seen setting when the Laplacianmatrix represents the relational information.

4.1 The non-informative situation: small projection perturbation
for adjacency matrices

In this section, we investigate the situation when no prior information about the network model

is available. This can be seen as the most difficult, yet the most general, situation. Arguably, the

only reasonable approximation of P is P̂ = A. We will study Assumption 3 for this version of P̂.
Recall that the main requirement of Assumption 3 is 𝜏n = o(1∕

√
n), where 𝜏n measures the

level of perturbation of the network subspace SK(P) associatedwith the covariate subspace col(X),
defined in (23). Existing results relevant for controlling 𝜏n, such as (Abbe et al., 2017; Cape

et al., 2019; Lei, 2019; Mao et al., 2020), do not give sufficiently tight bounds to support the infer-

ence, even for dense networks. The recent work of Xia (2021) contains useful tools for obtaining

such error bound that allows sparsitywhenP is a low-rankmatrix.However, since in general prob-
lems,Pmay be of full rank, a new tool is needed for theoretical analysis. The following assumption

is made about P.

Assumption 4 (Eigenvalue gap of the expected adjacencymatrix). LetA be the adjacencymatrix
of a random network generated from the inhomogeneous Erdős-Rényi model with the edge
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probability matrix P = EA. Assume that the K largest eigenvalues of P are well separated
from the remaining eigenvalues and their range is not too large:

min
i≤K, i′>K

|𝜆i − 𝜆i′ | ≥ 𝜌′d, max
i,i′≤K

|𝜆i − 𝜆i′ | ≤ d∕𝜌′,

where 𝜌′ > 0 is a constant and d = n ⋅maxij Pij.

The quantity d can be seen as an upper bound of the network node degree, which has been
widely used tomeasure network density (e.g., (Le et al., 2017; Lei &Rinaldo, 2014)). Assumption 4

is very general in the sense that it only assumes that P has a sufficiently large eigenvalue gap, but
P need not be low-rank or even approximately low-rank. It appears that this is already sufficient
to guarantee the small projection perturbation property of A, as stated in the next theorem. We
believe the theorem itself can be used as a general tool for statistical analysis of independent

interest.

Theorem 4 (Concentration of perturbed projection for adjacency matrix). Let w1, … ,wn

and 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆n be eigenvectors and corresponding eigenvalues of P and similarly,
let ŵ1, … , ŵn and 𝜆̂1 ≥ 𝜆̂2 ≥ · · · ≥ 𝜆̂n be the eigenvectors and eigenvalues of A. Denote
W = (w1, … ,wK) and Ŵ = (ŵ1, … , ŵK). Suppose that Assumption 4 holds and d ≥

C logn for a sufficiently large constant C > 0. Then for any fixed unit vector v, with high
probability,

||(ŴŴT −WWT)v|| ≤ 2
√
K logn

d
. (32)

Notice that the bound is for a given deterministic vector v instead of all unit vectors. The latter

would be equivalent to a bound on
‖‖‖ŴŴT −WWT‖‖‖ and is too large for our inference purpose.

By restricting the scope of applicability, our result trades off for the tighter bound (32), which is

crucial for our inference to work in relatively sparse network settings.

Corollary 2 (Small projection perturbation, adjacency matrix case). Assume that P̂ = A is used
in Algorithm 1. If Assumption 4 holds and d satisfies

d ⋅min
{
(1 − 𝜎r+1)

3, 𝜎3r+s
}

(
Knp logn

)1∕2 → ∞,

then Assumption 3 holds with high probability for sufficiently large n.

Corollary 2 provides a sufficient condition for valid inference. If min {1 − 𝜎r+1, 𝜎r+s} is

bounded away from zero while K and p are fixed then d needs to grow faster than
√
n logn. This

is arguably a strong assumption, although it does allow for moderately sparse networks. A natu-

ral question is whether it can be relaxed. Unfortunately, the answer to this is negative. We now

show that under the current assumptions, the bound (32) is rate optimal up to a logarithm factor

and we cannot guarantee valid inference if d is of the order
√
n.

Theorem 5 (Tightness of concentration and degree requirements). Assume C
√
n∕ logn ≤ d ≤

n1−𝜉 for some constant 𝜉 ∈ (0, 1∕2] and some sufficiently large constant C > 0. The following
statements hold.
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1866 LE and LI

1. There exists a configuration of (K, v,P) satisfying the condition of Theorem 4 with K =

O(1), under which, for a sufficiently large n,

‖‖‖(ŴŴT −WWT)v‖‖‖ ≥ c∕d,

holds with high probability and a constant c > 0.

2. There exists a configuration of (K, p,X ,P, 𝛽, 𝜃, 𝛼) satisfying Assumptions 1,2 and the con-
ditions of Theorem 4 with K, p = O(1) andmin {1 − 𝜎r+1, 𝜎r+s} ≥ 1∕4, under which, for a
sufficiently large n, we have

‖‖‖E𝛽 − 𝛽
‖‖‖∞ ≥ c′∕d and max

j
Var(𝛽 j) ≤ C′∕n,

with high probability for some constant C′, c′ > 0.

Notice that the two statements of Theorem 5 are different and, in general, neither implies the

other. The first statement is about the general concentration bound of Theorem 4. It indicates that

for the given range of d, the bound of (32) is rate optimal (up to a logarithm order). The second

statement is about the necessary condition of the inference problem, under themodel-free setting.

When d =
√
n, the bias is at least in the order of 1∕

√
n. In contrast, the SD is at most of order

1∕
√
n. Therefore, we will not be able to give asymptotically correct testing or confidence intervals

under these circumstances. Meanwhile, under the same condition, Corollary 2 shows that if d
grows faster than

√
n logn, valid inference could be achieved. In combination, we observe a phase

transition at the network degree of
√
n.

To conclude this section, we address the problem of selecting the correct dimension r, which
is used in Algorithm 1, as another application of Theorem 4. Specifically, denote d̂ =

1

n

∑n
i,j=1Aij

and d =
1

n

∑n
i,j=1Pij. The following rule is used to select r:

r̂ = max

{
i ∶ 𝜎̂i ≥ 1 −

4
√
pK logn

d̂

}
. (33)

This estimate can be shown to give the correct dimension with high probability.

Corollary 3 (Consistency of estimating the dimension of ). Assume that the conditions of
Theorem 4 hold and

d ≥
16
√
pK logn

1 − 𝜎r+1
. (34)

Then for a sufficiently large n, the dimension estimate r̂ defined in (33) satisfies r̂ = r with high
probability.

4.2 The informative situation: small projection perturbation
for parametric models

In the previous section, it is shown that ifA is used as P̂ in Algorithm 1, the network degree needs

to grow faster than
√
n for the small perturbation assumption to hold. In many cases, it may be
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reasonable to assume that P satisfies certain structural conditions. Leveraging such additional
information canprovide amore accurate estimate ofP and, in turn, ensure the validity of inference
for potentiallymuch sparser networks. In this section, we investigate a few special cases for which

the edge density requirement can be substantially relaxed, highlighting the benefit of knowing

the correct model.

The discussion begins with the stochastic block model (SBM) as the true network generat-

ing model. Specifically, assume that there exists a vector g ∈ [K]n specifying the community node
labels and a symmetric matrix B ∈ [0, 1]K×K such that Pij = Bgigj . The SBM has been widely used

to model community structures (Holland et al., 1983), and its theoretical properties have been

well-understood thanks to intensive research in recent years. For more detail, refer to the review

paper of Abbe (2018) and the references therein. Since the SBM is used in this section only to

illustrate how the degree requirement can be relaxed, we will focus on the following special

configuration.

Assumption 5 (Stochastic block model). Let nk be the number of nodes in the k th community.
Assume that (1 − t)n∕K ≤ nk ≤ (1 + t)n∕K for some constant t and all 1 ≤ k ≤ K. Moreover,
assume thatB = 𝜅nB0, whereB0 ∈ [0, 1]K×K is a fixedmatrix and 𝜅n controls the dependence

of network density on n and K = o(n1∕4).

Another example is the degree-corrected block model (DCBM) proposed by Karrer and New-

man (2011), which generalises the SBM by allowing the degree heterogeneity of the nodes.

Specifically, in addition to the SBM parameters, the model has a degree parameter 𝜈 ∈ Rn such

that Pij = 𝜈i𝜈jBgigj . Notice that 𝜈i is only identifiable up to a scale so additional constraints are
needed. The following simplified assumption is made about it.

Assumption 6 (Identifiability of degree parameter). Assume
∑

gi=k
𝜈i = nk and there exists a

constant 𝜁 such that 1∕𝜁 ≤ 𝜈i ≤ 𝜁 .

Notice that under Assumptions 5 and 6, both the SBM and DCBM satisfy Assumption 4 with

d = n𝜅n. In particular, under the SBM, the subspace of the K leading eigenvectors of P has the
same component for all nodes within the same community. Therefore, the model under the SBM

reduces to a linear regression model with fixed group effects according to communities. The

following assumption is further made for the two models.

Assumption 7 (Exact recovery of community labels). Assume the community g is known with
n𝜅n∕ logn → ∞.

Although g is seldom known in practice, this assumption is based on the fact that in many

cases g can be exactly recovered from the network. Indeed, there exist many polynomial-time

algorithms that ensure the exact recovery of g such as (Abbe et al., 2017; Gao et al., 2017;

Lei et al., 2020; Lei & Zhu, 2017; Li et al., 2020a) for the SBM and (Chen et al., 2018; Gao

et al., 2018; Lei & Zhu, 2017) for the DCBM, to name a few. The corresponding regularity con-

dition needed for such strong consistency of community detection is already reflected in the

degree requirement in Assumption 7. Given the community labels, the commonly used estima-

tor of P would be the MLE (see Section G of Appendix S1 for details). When such parametric

estimates are used as P̂ in Algorithm 1, the corresponding estimation and inference procedure

are referred to as the parametric version of our method, in contrast to the model-free version

when A is used as P̂. The following theorem shows that the parametric version delivers valid

inference under much weaker network density assumptions compared to its nonparametric

counterpart.
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1868 LE and LI

Theorem 6 (Small projection perturbation under block models). Let d = n𝜅n. Let P̂ be the
parametric estimator of P introduced in Section G. Under either of the following settings:

1. A is generated from P according to the SBM satisfying Assumptions 5 and 7 with

min
{
(1 − 𝜎r+1)

6, 𝜎6r+s
}
⋅

d
p logn

→ ∞;

2. A is generated from P according to the DCBM satisfying Assumptions 5, 6 and 7 with

min
{
(1 − 𝜎r+1)

6, 𝜎6r+s
}
⋅

d
K2p logn

→ ∞;

the estimator P̂ satisfies Assumption 3 with high probability.

Again, if p,K andmin {(1 − 𝜎r+1), 𝜎r+s} are fixed, then the degree requirement of the paramet-

ric version for the small projection perturbation to hold is d∕ logn → ∞ for either of two block

models. This is much weaker than the degree requirement for the non-parametric estimation,

indicating the benefit of knowing the underlying model for P. Although the above result is only
about two special classes of models for the network, it clearly shows the tradeoff between the

model assumption and statistical efficiency: without any information about the true model, the

model-free version of the proposed method requires the average degree to grow faster than
√
n to

be effective; in contrast, if the class that the true model belongs to is known then the parametric

version of our method performs well for much sparser networks.

5 SIMULATION

In this section, we present a simulation study to evaluate the proposed method and compare it

with other benchmark methods for linear regression on networks. First, we evaluate the validity

of the inference framework and demonstrate the predicted phase transition of the model-free

method, as well as the advantage of the parametric version in the situationwhen the true network

model is known. After that, we introduce comparisons with other benchmark methods under

several network effect models.

5.1 Inference validation

Wewill evaluate our theoretical claims about the inference andphase transition in this subsection.

For this purpose, wewill again assumeK to be known to exactlymatch our theoretical framework
in this subsection. However, this does not lose generality because in all of our experiment settings,

because the methods we mentioned before (Chen & Lei, 2018; Le & Levina, 2022; Li et al., 2020b)

can accurately identify the K almost perfectly in our settings. We fix p = K = 4 in all configura-

tions. The network is generated by the SBM with K = 4 communities. In Section J of Appendix

S1, we provide additional results and also a study when the network is generated by the more

general DCBM. Using the parameterisation in Section 4.1, we set B = 0.2141
T
4
+ 0.8I4, where 1k

denotes the all-one vector of length k. Three levels of sample size n = 300, 500, 1000, 2000, 4000,

and three levels of average expected degree 𝜑n = 2 logn,
√
n, and n2∕3 for each level of n are
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compared. Given the eigenvectors w1, ...,wn from P, we generate X ∈ Rn×p in the following way:

Set X1∕
√
n = w1; Set Xj∕

√
n =

√
1

25
wj +

√
24

25
wj+3, j = 2, 3, 4. This configuration gives a design

with r = 1, s = 3 and (𝜎1, 𝜎2, 𝜎3, 𝜎4) = (1, 0.2, 0.2, 0.2). In particular, the setup with 𝛽 = (0, 1, 1, 1)T

and 𝜃 = (1, 0, 0, 0)T satisfies the proposed model and is fixed in all settings. Similarly, the 𝛾 can

be any vector with the first coordinate being zero. We consider two cases: 𝛾 = (0, 1, 1, 1)T and

𝛾 = (0, 0, 0, 0)T . As discussed, the case of 𝛾 = (0, 0, 0, 0)T indicates that there is no network effect.

The two settings do not give any difference on inference of 𝛽 while the latter is used to verify

the validity of the 𝜒2 test. Also, notice that X1 violates assumption (30) because it is completely
orthogonal to the space of col(Ẑr+1∶p). Therefore, valid inference cannot be made for 𝛽1. This
set-up highlights that having a degenerate parameter space on 𝛽1 does not impact the validity of

our inference on the other parameters 𝛽2, 𝛽3, 𝛽4, as shown by both the theoretical and numerical

analyses. Both the model-free and parametric versions of the subspace projection (SP) methods

are used to demonstrate the empirical difference, denoted by ‘SP’ and ‘SP-SBM’, respectively. All

results are taken as the average of the 50 independent replications.

Table 2 shows the ratio between the absolute bias and standard deviation (SD) averaged

across 𝛽2, 𝛽3 and 𝛽4 for different n and network densities, when the network is generated from
the SBM. For average degree of order

√
n or below, the ratio does not vanish with increasing

n for the SP, indicating that valid statistical inference for the parameters cannot be achieved.

For denser networks, the bias becomes vanishing; thus, the asymptotic inference becomes valid.

These observations coincide with the prediction of the phase transition at degree
√
n. In con-

trast, the SP-SBM results in much smaller bias-SD ratios and achieves vanishing ratio even at

degree
√
n. At the borderline case 2 logn, such vanishing pattern is not clearly observed, even for

the SP-SBM.

Correspondingly, Table 2 also shows the resulting average coverage probabilities pcov of the
95% confidence intervals for 𝛽2, 𝛽3 and 𝛽4. Notice that, differently from Table 2, the coverage prob-

ability is calculated as the average of 500 Monte Carlo runs, thereby taking the errors of 𝜎̂ into

account. It can be seen that the confidence interval for the SP is not good enough for degree of

TABLE 2 Average bias-SD ratios for 𝛽2, 𝛽3 and 𝛽4 when the network is generated from the SBM

Bias-SD ratio Coverage probability

Average expected degree Average expected degree

Method n 2 logn
√

n n2∕3 2 logn
√

n n2∕3

SP 300 1.497 0.796 0.393 0.813 0.908 0.941

500 1.310 0.720 0.255 0.845 0.910 0.949

1000 1.929 0.791 0.232 0.717 0.888 0.948

2000 2.273 0.723 0.254 0.585 0.891 0.943

4000 2.818 0.790 0.213 0.554 0.884 0.949

SP-SBM 300 1.257 0.281 <10−4 0.844 0.945 0.950

500 0.826 0.157 <10−4 0.911 0.949 0.949

1000 0.887 0.012 <10−4 0.895 0.949 0.950

2000 0.934 <10−4 <10−4 0.856 0.950 0.950

4000 0.898 <10−4 <10−4 0.838 0.950 0.951

Abbreviations: SP, subspace projection; SP-SBM, SP-stochastic block model.
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1870 LE and LI

√
n or lower, but does give valid results for denser graphs. The parametric version is always more

accurate than the model-free version, and in particular, remains valid for the order of
√
n.

5.2 Comparison with other benchmarks

In this subsection,wewill evaluate the practical performance of ourmethod in different settings of

network effects and compare it with other benchmark methods. The first benchmark in the com-

parison is the ordinary least squares method (OLS). The other two are the SIM of Manski (1993)

and the RNC of Li et al. (2019) introduced before. It has been shown that the RNC is a better mod-

elling option than both OLS and the SIM (Li et al., 2019). However, the RNCmethod cannotmake

inference of the parameters, and it is computationally more intensive than our method. In this

experiment, the RNC is always tuned by 10-fold cross-validation. For our method, the number K
is determined by themethod of Le and Levina (2022). The theory-driven tuning of r introduced in
(33) is based on large-sample properties and may be conservative for small samples. We also pro-

pose a bootstrapping method in Section I of Appendix S1. This method is used to select r for the
numerical and data examples from now on and works very well. Lastly, a systematic model fitting

procedure is used for SP to take advantage of its available inference framework. Specifically, the

SP methods would check the 𝜒2 test result of 𝛾 . If the p-value for the 𝜒2 test is more significant

than 0.05 (any other reasonable level can be chosen), the method would instead return OLS fit,

which is equivalent to constraining 𝛾 = 0 in our estimation procedure.

As before, the network is generated by the SBMwith K = 4 with the same configurations. We

take n = 300 and n = 1000, as representative cases for small-sample and large-sample settings.

The results for the more general situation of DCBM can be found in Section J of Appendix S1.

However, to avoid overly tailoring the setup for our methods, X ’s are generated differently.

Specifically, X2, X3, X4 are randomly generated from Gaussian distribution N(0, 1), uniform

distribution U(0, 1) and exponential distribution Exp(1) before standardisation is applied. X1 is
directly set to be

√
nw1 as before, wherew1 is the first eigenvector of P. Meanwhile, three different

schemes are used to generate the individual effect 𝛼, so that themodel misspecification situations

can also be tested. In particular, the first scenario is exactly the same setting as in the last section,

which corresponds to the assumed model. This individual effect setting is called ‘eigenspace’. In

the second scenario, we set 𝛾 = 0, thus the model becomes the standard linear regression model

for which OLS is designed. In the last scenario, we set 𝛼 to be the average of the three eigenvectors

corresponding to the three smallest non-zero eigenvalues of the observed Laplacianmatrix L. This
𝛼 gives a small value of

∑
i∼j (𝛼i − 𝛼j)

2, and thus matches the assumption of the RNC framework

(Li et al., 2019). As discussed in Appendix S1 (Section A), our method should still work by using

P̂ = L when 𝛼 is defined in this way. Therefore, for the evaluation in this section, the Laplacian

version of the SP estimator is also included and labelled as ‘SP-L’.

Since the data generating models have different parameterisations, we directly compare the

relative mean squared error (MSE) of the expected response EY . All of the results are averaged
over 50 independent replications and are shown in Table 3. The overall pattern remains the same

for small-sample and large-sample problems. Under themodel with eigenspace individual effects

(the proposed model), it can be seen that OLS never renders competitive performance while

the SIM is only slightly better than OLS. The RNC gives much better results than OLS and the

SIM because it effectively incorporates the network information. However, since the network is

noisy, its performance is far from adequate. Both versions of our method (SP and SP-SBM) sig-

nificantly outperform the other methods, with the parametric version performing better than
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LE and LI 1871

TABLE 3 Mean squared error (MSE) ×102 of EY when the network is generated from the SBM with

p = 4,K = 4 with three types of individual effects, in small sample case (n = 300) and large sample case

(n = 1000), respectively

n

Individual

effects

Average

degree SP SP-SBM OLS SIM RNC SP-L SP-SBM-L

300 Eigenspace 2 logn 18.20 13.59 40.65 246.05 12.11 40.40 27.13
√
n 11.13 2.36 40.65 40.16 11.57 39.00 21.50

n2∕3 3.66 0.30 40.65 36.35 9.53 22.93 20.47

𝛾 = 0 2 logn 0.44 0.43 0.37 0.70 1.11 0.43 0.42
√
n 0.42 0.42 0.37 0.68 1.73 0.38 0.44

n2∕3 0.42 0.41 0.37 0.69 2.31 0.40 0.42

Smooth 2 logn 25.39 25.40 25.36 189.83 17.83 16.98 25.38
√
n 15.67 14.81 27.09 25.82 23.16 13.87 20.94

n2∕3 2.55 2.97 24.07 23.24 16.61 12.30 13.52

1000 Eigenspace 2 logn 13.60 8.67 38.47 38.68 12.07 39.38 23.57
√
n 5.24 0.24 38.47 37.90 10.52 23.13 19.35

n2∕3 1.44 0.11 38.47 35.82 7.83 20.16 19.29

𝛾 = 0 2 logn 0.14 0.14 0.13 0.43 0.56 0.13 0.14
√
n 0.14 0.14 0.13 0.22 0.80 0.14 0.13

n2∕3 0.14 0.14 0.13 0.24 2.19 0.13 0.14

Smooth 2 logn 25.34 25.26 25.33 26.40 21.73 12.75 25.29
√
n 14.69 14.75 17.61 16.54 18.79 8.90 16.18

n2∕3 1.16 1.23 3.30 2.55 11.95 1.74 2.26

Abbreviations: OLS, ordinary least squares method; RNC, regression with network cohesion; SIM, social interaction model; SP,

subspace projection; SP-SBM, SP-stochastic block model.

the model-free version, as expected. When there are no individual effects (𝛾 = 0), OLS becomes

the correct model and gives optimal results, as expected. The RNC and our methods all are cor-

rectly adaptive to this setting, but the SP methods are still better than the RNC. The performance

under the model with smooth individual effects (the RNC model) is noisier as it depends on

the perturbation of the network. Overall, neither OLS nor the SIM works. However, under the

SBM with average degree n2∕3, the network is too dense, such that the smooth individual effects
become almost identical everywhere, and OLS becomes effective. In this setting, using the Lapla-

cian matrix in our method still models the correct form of individual effects, so SP-L still works

and is more effective than the RNC. Note that the parametric versions (SP-SBM-L) are no longer

better than the SP in this situation because the individual effects depend on the observed net-

work instead of the population signal; thus, the parametric methods are not using the correct

model.

In conclusion, when there are network effects, our method outperforms the other benchmark

methods in the experiments.When there are nonetwork effects, it is adaptive to the simplermodel

and gives a similar result to OLS. Compared to the model-free SP, the parametric SP method is

less robust to model misspecification.
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1872 LE and LI

5.3 Timing evaluation

The proposed method is generally computationally efficient. We include the timing evaluation

in this section. All the computations are on a Linux system Intel(R) Xeon(R) CPU E5-2630 v3

2.40GHz CPU and 2G memory. Our implementation of the SP method is completely done in R

by taking advantage of sparse matrices and the efficient partial eigen-decomposition algorithm

in Qiu and Mei (2019). The SIM fitting is based on the two-stage least square method in the R

packagespatialreg (Bivand et al., 2013) and theRNCmethod is implemented in theRpackage

netcoh (Li et al., 2016). In Table 4 we include the average computational time for model fitting

in the same settings of Section 5.1.

The computational efficiency of our method depends on the network density. The computa-

tion is slightly faster on a sparse network, but the difference is marginal. This is because while

sparse networks result in more efficient spectrum decomposition, the other part of model fitting

involving X and the eigenvectors do not benefit from sparsity. Overall, the model fitting proce-

dure takes about 1.3 s for a network with 4000 nodes. All the other methods are also reasonably

fast. The SIM is similar to our method on sparse networks, but it becomes much slower when the

network is denser. The RNC is generally the slowest, taking about 2.5 times that of the SPmethod.

Notice that the timing only accounts for modelling fitting without prior tuning because these

prior procedures can be flexibly specified by users. Among themethods we recommend for select-

ing K in the SP method, the USVT of Chatterjee (2015) is the fastest while the Beth–Hession

method of Le and Levina (2022) is slightly slower; both of them are cheaper than ourmodel fitting

TABLE 4 Average timing (in seconds) of model fitting procedures in the settings of Table 2

n Average degree SP OLS SIM RNC

300 2 logn 0.01 <0.01 0.01 0.01
√
n 0.01 <0.01 0.02 0.01

n2∕3 0.01 <0.01 0.02 0.01

500 2 logn 0.01 <0.01 0.03 0.02
√
n 0.01 <0.01 0.03 0.02

n2∕3 0.01 <0.01 0.05 0.02

1000 2 logn 0.04 <0.01 0.12 0.11
√
n 0.04 <0.01 0.09 0.10

n2∕3 0.04 <0.01 0.20 0.09

2000 2 logn 0.19 <0.01 0.24 0.52
√
n 0.18 <0.01 0.29 0.51

n2∕3 0.18 <0.01 0.79 0.51

4000 2 logn 1.30 <0.01 1.22 3.15
√
n 1.33 <0.01 1.43 3.10

n2∕3 1.34 <0.01 3.94 3.12

Note: The SD is below 3% of the timing in all settings.

Abbreviations: OLS, ordinary least squares method; RNC, regression with network cohesion; SIM, social interaction model; SP,

subspace projection.
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LE and LI 1873

procedure itself. The cross-validation method of Li et al. (2020b) is much more computationally

intensive, but still remains feasible for moderately large networks. The r selection based on (33)
does not introduce an additional cost. Alternatively, if the bootstrap is used to select r, the com-
putational cost is upper bounded by that of the single model fitting in Table 4 times the bootstrap

cost, if no distributed computing is involved. Similarly, for the RNC method, the cross-validation

tuning time is not included, which depends on how many tuning parameter values are exam-

ined and the number of data-splitting for each value. Empirically, RNC needs cross-validation

for a wide range of tuning parameter values so its computational disadvantage will be even more

significant than Table 4.

6 SCHOOL CONFLICT REDUCTION STUDY

In Paluck et al. (2016), an experiment is conducted to study the impacts of educational work-

shops on reducing conflicts in schools. The experimenters randomly selected 26 middle schools

in New Jersey in which they held educational workshops. In each school, the experimenters first

determined a group of eligible students. A small proportion of themwas selected (randomly after

gender and race blocking) to participate in bi-monthly educational workshops about school con-

flicts. Students were also asked to name their friends (with whom they spend time) in school. The

friend nomination may not be symmetric in this case. Following the standard approach in previ-

ous studies (Bramoullé et al., 2009; Goldsmith-Pinkham & Imbens, 2013; Paluck et al., 2016), we

ignore the directions of edges and treat two students as connected as long as either one identifies

the other as a connection. This approach is widely applied with the assumption that as long as

one side nominates the association, it reliably indicates that connections reasonably exist.

One interesting aspect of the data set is that the social network information is collected in two

waves of surveys, one at the early stage of the school year and one towards the end of the year. The

nominated edge sets are very different from the two surveys in all schools. On average, across all

schools, 66% of edges only appear in one survey. Such amismatch is commonly observed in social

studies (Bramoullé et al., 2009; Goldsmith-Pinkham & Imbens, 2013). It also highlights the fact

that the observed social network relation is noisy. First, it is questionable whether one can use a

‘true network’. Second, it is not immediately clear how to construct a social network for further

analysis. These difficulties reveal that a suitable model in practice should be robust to network

variations, a property that our proposed model has been designed for. In Sections 6.1 and 6.2, we

will use the weighted network based on both surveys. If an edge is nominated in both surveys,

the edge weight is 1; if the edge only appears in one survey, the edge weight is 0.5; otherwise,

there is no connection. In Section 6.3, we will study the impacts of different ways to construct the

network and show that our proposed SPmodel gives consistent conclusions under these different

constructions.

At the end of the school year, students answered the 13 questions about their rating of the

school’s ‘friendliness’ atmosphere, such as ‘How many students at this school think it is good to

be friendly and nice with all students no matter who’. For each of such questions, the student

would give a score ranging from 0 to 5, representing their estimate of the proportion of students

satisfying the condition in the question, ranging from ‘Almost nobody’ (0) to ‘Almost everyone’

(5). Overall, a higher rating indicates a more friendly environment.1 We use the average of the

1Two of the questions were about negative atmosphere. So we transform then by the 5−the original scores before

combining with other questions to ensure all scores are measuring positive atmosphere.
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F IGURE 1 Marginal distributions of the response variable, race and grade in the data set

13 scores as the overall friendliness rating of each student. The score is further raised by a power

of 1.2 to make the data more Gaussian based on the Box-Cox test. In this example, our target

is to learn the workshop’s impact on students’ perception of the school atmosphere and conflict

situations, andwhich of the other demographic attributes are also strongly related to the response.

The demographic attributes include race (white, black, Hispanic, Asian, other), gender (M, F),

grade, whether the student is a returning student from the previous year, andwhether the student

lives with both parents. The involvement of the workshop is indicated by a single binary vector

(treatment). For each school, after removing observations with missing values in the response

and predictors, we take the largest connected component of the social network as the final data.

In total, 9026 students from 26 schools are included in our analysis. Each school will be assigned

an individual effect parameter to account for potential school-level differences. Figure 1 shows

distributions of non-binary variables in the data set. The distributions of the binary variables are

included in Appendix S1 (Section K).

Notice that the treatment is randomised by design, uncorrelated with other covariates. We

expect all reasonable estimation procedures to give a similar treatment effect estimate. However,

the variance of the estimation (and the validity of the inference) would depend on modelling

effectiveness. This will be reflected in our results to follow.

6.1 Full models

We first use all predictors to fit a regressionmodel based on our proposed SP and the three bench-

mark methods (OLS, SIM and RNC). Due to the redundancy of insignificant variables, these may

not serve as final models. However, we can have an evaluation of four methods on common

ground.

6.1.1 Network effects and model significance

In the SP estimation, r is detected to be 0, so there is no confounding observed between the

covariates and network space. The 𝜒2 test of our SP method gives a very small p-value (< 10−6),

representing strong evidence of network effects. Section K of Appendix S1 includes visualisa-

tions of our model fitting residuals, and the residuals follow a Gaussian pattern reasonably well.

The fitted 𝛼 values are shown in Figure 2a. Recall that our model includes the standard linear
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F IGURE 2 Fitted 𝛼i’s in the subspace projection method (SP) and the mean square prediction error

comparison for each school. (a) Fitted 𝛼 by the SP method; (b) Mean squared prediction error at each school: SP

versus ordinary least squares method; (c) Mean squared prediction error at each school: SP versus social

interaction model; (d) Mean squared prediction error at each school: SP versus regression with network cohesion

[Colour figure can be viewed at wileyonlinelibrary.com]
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TABLE 5 Estimates and p-values of the common covariates (excluding the intercept and schools)

SP OLS SIM RNC

Coefficient p-Value Coefficient p-Value Coefficient p-Value Coefficient p-Value

Race: White 0.0260 0.2432 0.0261 0.4831 0.0152 0.6941 0.2131 –

Race: Black −0.1193 0.0121 −0.1288 0.0149 −0.1079 0.0564 0.194 –

Race: Hispanic −0.0313 0.2261 −0.0244 0.5580 −0.0207 0.6272 0.1102 –

Race: Asian 0.0433 0.2477 0.0394 0.5358 0.0297 0.6449 0.1637 –

Grade −0.1663 <10−4 −0.1784 <10−4 0.0148 0.8574 0.3672 –

Gender −0.0091 0.3557 −0.0099 0.6842 0.0842 0.1458 0.1207 –

Return student −0.1429 0.0001 −0.1296 0.0002 −0.0816 0.0859 −0.1379 –

Live w/ both parents 0.0715 0.0066 0.0767 0.0078 0.0610 0.0376 0.1710 –

Treatment −0.0839 0.0442 −0.0889 0.0709 −0.0895 0.0702 −0.0768 –

Local avg.: White – – – – 0.0719 0.5769 – –

Local avg.: Black – – – – 0.0144 0.9321 – –

Local avg.: Hispanic – – – – −0.0023 0.987 – –

Local avg.: Asian – – – – −0.0152 0.9426 – –

Local avg.: grade – – – – −0.1776 0.2977 – –

Local avg.: gender – – – – −0.1389 0.1267 – –

Local avg.: return – – – – −0.1041 0.2623 – –

Local avg.: w. parents – – – – 0.2654 0.0064 – –

Local avg.: treatment – – – – 0.1982 0.2734 – –

Notes: For the SIM, exogenous coefficients (for local averages of covariates) are also included. ‘–’ indicates that the quantity is not available in the

setting.

Abbreviations: OLS, ordinary least squares method; RNC, regression with network cohesion; SIM, social interaction model; SP, subspace projection.

regression model as a special case. That means, if the OLS inference is correct, our inference

should also be correct. Therefore, the rejection in the 𝜒2 test also indicates that the OLS

model-fitting without network effects is not proper for the data. The test of network autore-

gressive effect in the SIM model gives a p-value of 0.92, suggesting no strong evidence of the
endogenous correlation. Furthermore, the exogenous coefficients are not significantly different

from zero either, as shown in Table 5. Together, these indicate that the SIM autoregressive pat-

tern is supported. The RNC model does not come with an inference framework. However, the

cross-validation procedure in the model fitting selects a penalty that gives a very different fitting

from the OLS, which implicitly indicates the potential network effects.

6.1.2 Parameter estimation

Table 5 displays the estimated coefficients (excluding schools and intercepts). The SP fitting and

OLS fitting agree on the overall magnitude in most coefficients with a 5%–10% difference in the

parameters with small p-values. In particular, on the treatment effect, the SP estimates a negative
effect of−0.084while the OLS gives an estimate of−0.089. The similarity is expected, as discussed
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before. However, the effectiveness of incorporating other factors would influence the variance for

the inference. In this example, while the SP estimates a slightly smaller treatment effect, the corre-

sponding p-value turns out to be smaller, indicating amuch smaller estimation variance. The SIM
model has very different estimates due to incorporating all local averages, except for the treatment

effect due to the randomised design. The coefficients are not directly comparable with SP or OLS,

but most of them come with larger p-values, especially considering the number of tests. Overall,
we consider the current SIM fitting as non-informative. RNCmethod does not allow for the inter-

cept and the school effects. Therefore, the estimated parameters are notmeaningfully comparable

to the other methods. We treat this as a limitation because it eliminates the straightforward inter-

pretation of school-level fixed effects. The drawback of lacking an inference framework becomes

more critical in this case. The table shows that the RNC renders larger estimated effects, but it is

unclear how significant they are.

6.1.3 Predictive performance

We can also compare themethods by their predictive performance. The predictive performance is

evaluated in a cross-validation manner. We randomly split the 9026 students into 200 folds. One

fold of students’ responses is held out each time, and we estimate themodels using the remaining

199 folds of responses with the full set of predictors and the network. This procedure is repeated

for all 200 folds. As schools exhibit significant variations in social effects, we calculate the mean

squared prediction errors within each school
∑

i∈schk
(yi − ŷi)2∕|schk|. The comparisons between

the SP method with the other three are shown in Figure 2. Recall that when the 𝛼i’s are uni-

formly close to zero, our model would be similar to the standard linear regression, while when

the 𝛼i’s exhibit large deviations from zero, the SP and OLP tend to have very different results. This

phenomenon is verified in the example. Figure 2b shows that the SP and OLS have similar perfor-

mance for most schools, but the SP has more accurate predictions for schools sch19, sch22, sch26

and sch56. This observation matches the fitted 𝛼 values in Figure 2a, as these four schools have

substantial variations in 𝛼’s. In most of the other schools, the estimated 𝛼’s have a smaller and

more uniform magnitude and the difference between the two methods is small. Compared with

the SIM and RNC, the SP renders better predictive performance in most schools. These results

show that the SP model is more proper for the data than the others.

6.2 Interpretation with refined models

In the full models of the previous section, many schools do not have significantly different effects

from the reference level, and Table 5 also suggests that many covariates are not significant. To

better understand and interpret the data, wewill resort to statistical inference formodel selection.

The RNC is not suitable for this model refinement procedure due to the lack of an inference

framework. We will focus only on SP, OLS and SIM.

Starting from the fullmodel, we first check the significance of the categorical variables, School

(26 categories) and Race (five categories). Bonferroni correction is applied to the multiple-level

tests. Insignificant levels (adjusted p-value ≥ 0.05) are merged into the reference level (School:

sch1, Race: other). After this step, the model selection follows backward elimination (Halinski

& Feldt, 1970). The variable with the largest p-value that exceeds 0.05 (after Bonferroni

correction) is removed at each step until no further elimination is possible. Throughout this
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TABLE 6 Estimates and p-values of variables in the reduced models

SP OLS SIM

Coefficient p-Value Coefficient p-Value Coefficient p-Value

(Intercept) 4.1221 <10−4 4.3117 <10−4 3.4427 <10−4

Treatment −0.0856 0.0411 −0.0812 0.0993 −0.079 0.1204

Race: Black −0.136 0.0033 −0.1786 0.0003

Grade −0.1828 <10−4 −0.1948 <10−4

Return −0.1162 0.0004 −0.0987 0.0016 −0.1967 0.0001

Live w/ both parents 0.0767 0.0038 0.0927 0.0019

School 3 0.5421 <10−4 0.4437 0.0001 0.3904 0.001

School 19 −0.2901 <10−4 −0.4269 <10−4

School 20 0.3503 <10−4 0.3281 <10−4 0.4512 <10−4

School 27 −0.3371 0.0005 −0.3954 <10−4

School 34 −0.3017 <10−4

School 35 0.8085 <10−4 0.5303 <10−4

School 40 0.4912 <10−4 0.3802 0.0008 0.4674 0.0002

School 42 0.4274 <10−4 0.3678 <10−4

School 48 −0.3634 <10−4

School 49 −0.3869 <10−4

School 51 −0.5481 <10−4 −0.5234 <10−4 −0.5032 <10−4

School 56 −0.3192 0.0002 −0.5437 <10−4 −0.606 <10−4

Local avg.: live w/ both parents – – – – 0.6465 <10−4

Notes: ‘–’ indicates that the quantity is not available in the setting. A blank means the variable is excluded by model selection.

Abbreviations: OLS, ordinary least squares method; RNC, regression with network cohesion; SIM, social interaction model; SP,

subspace projection.

procedure, we always keep the treatment variable from elimination. For the SIM, before the

backward elimination step, the elimination of the exogenous parameters is applied. The final

models from the three methods are given in Table 6. In the SP model, the 𝜒2 test for the network

effect gives a p-value smaller than 10−10, indicating strong evidence of network effects. However,
the SIM model results in a p-value of 0.168, showing no firm evidence of network autoregressive

correlation. The SIM model does have the local average of ‘live with both parents’ as a signifi-

cant covariate effect. However, it fails to identify the impacts of the Race:black and the Returning

Student, different from SP and OLS.

Comparing the OLS and SP, the high-level messages from the two models coincide in many

aspects. Both models identify that black students tend to have more negative ratings of the school

atmosphere, suggesting potential racial effects in school conflicts. Return students and students

from higher grades also tend to have more negative perceptions. The two models also have dif-

ferences in their conclusions. Based on the SP model, students living with both parents tend

to have a more positive perception of the school atmosphere, while the OLS fails to detect this

phenomenon. Though the ground truth about the data set is unknown, the SP’s finding agrees

with a few previous social studies on experiments (Anderson, 2014;Musick&Meier, 2010).When
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it comes to the treatment effect, as expected, all three methods give similar estimates but due

to the more effective modelling, the SP delivers a smaller p-value of 0.04, suggesting potentially
weak effects. Note that the treatment effect is negative. This is reasonable since the education

workshops help introduce more information about school conflicts, so students may be aware

of many conflicts they did not know about before. Our conclusion is implicitly supported by the

original analysis of experimenters (Paluck et al., 2016), who showed that students involved in the

workshops were more likely to wear orange waistbands as a public sign that they stand against

school conflicts. However, the analysis of Paluck et al. (2016) considers the experiment design

with additional assumptions about the spill-over effects of the educational workshops and is

based on complicated causal inferencemethods. Therefore, their conclusion is about the stronger

causal relation. In contrast, our method does not take advantage of the design, nor do we know

whether the network cohesion assumption explicitly corresponds to the widely used spill-over

effects assumptions. So our conclusion is not causal.We leave the development of causal inference

under the current framework for future work.

6.3 Robustness to network perturbation

In the previous sections, we use the information of both nomination surveys to construct a

weighted network for the regression analysis. In practice, researchers seldom knowwhether such

a construction is the best one or if an optimal construction exists. It may also be more natural

for some people to use the Wave II survey (or the Wave I survey) as the primary information.

However, a valuable analysis that can reflect the true nature of the data should deliver consistent

results as long as one uses some reasonable construction of the network. In this section, we exam-

ine how different ways of constructing the network would change the resulting models from the

previous analysis. OLS does not use the network information, so it would not be affected. We will

focus on comparing SP and the SIM.

The first alternative construction is the undirected network by only the Wave II survey. The

same model fitting procedures of the previous section are applied, where model selection is done

by back elimination with p-values and multiple comparison correction. The fitted SP and SIM
with the Wave II network are given in Table 7. The SP gives a very small p-value (< 10−10) for the

𝜒2 test, indicating strong network effects. Moreover, comparing Tables 7 and 6, we can see that

the high-level message of the SP model remains consistent: the Race:Black, Grade, and Return

Student variable have negative effects while ‘live with parents’ has a positive effect. The param-

eter estimates are slightly different but the changes are marginal. The school effects are also

very similar, with the only difference on the school sch49. So overall, the change of the network

construction method does not lead to material changes in the SP inference results. The SIM, in

contrast, delivers very different messages from Tables 6 and 7. For example, on the Wave II net-

work, the SIM model identifies a strong network autoregressive correlation (p-value= 0.0003).
However, the local average of ‘live with parents’ is no longer included in the model. Both Gender

and Race:Black are now identified as strong effects in the model. These are all different from the

previous result.

Naturally, the second alternative network is the unweighted network based on theWave I sur-

vey. Themodel fitting results are shown in Table 8. The conclusion remains the same. Though the

estimates of the SP model change numerically, the significance and the selected model remain

the same. The 𝜒2 test indicates a strong network effect in all three cases. The SIM again selects

different results compared to either Table 6 or Table 7. It also fails to identify the autoregressive
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TABLE 7 Estimates and p-values of reduced models based on the Wave II network

SP SIM

Coefficient p-Value Coefficient p-Value

(Intercept) 4.0926 <10−4 4.9619 <10−4

Treatment −0.0838 0.0439 −0.0904 0.1673

Race: Black −0.1362 0.0032 −0.2084 0.0022

Grade −0.1795 <10−4

Return −0.0761 0.0175 −0.1965 0.0005

Live with both parents 0.0765 0.0038 0.1392 0.0004

Gender 0.0850 0.0451

sch3 0.5213 <10−4

sch20 0.3621 <10−4

sch19 −0.6291 <10−4

sch22 −0.3637 <10−4

sch24 −0.4440 <10−4

sch26 −0.4029 0.0015

sch27 −0.3483 0.0004 −0.6313 <10−4

sch29 −0.5946 <10−4

sch34 −0.3376 <10−4

sch35 0.7134 <10−4 0.2783 0.0019

sch40 0.4733 <10−4

sch42 0.4121 <10−4

sch48 −0.7667 <10−4

sch49 −0.3490 0.0003 −0.6358 <10−4

sch51 −0.4448 0.0001 −1.1455 <10−4

sch56 −0.3561 <10−4 −0.9281 <10−4

sch58 −0.4807 <10−4

sch60 −0.7074 <10−4

Notes: ‘–’ indicates that the quantity is not available in the setting. A blank means the variable is excluded in the selection

procedure.

Abbreviations: SIM, social interaction model; SP, subspace projection.

correlation. In summary, it is evident that the SIM heavily relies on how one constructs the

network. Since it is unclear which is the best way to construct the network, the SIM fails provide

a reliable analysis in this case.

The above difference in robustness highlights the crucial advantage of our model over the

SIM framework. Figure 3 displays the ‘sch40’ networks from the two surveys. The two networks

have only about 60% overlapping edges. So a statistical model focusing on local edges may deliver

very different results, as reflected in the SIM case. Our model, in contrast, relies on the subspace

assumption that is more robust to these changes. In other words, the eigenspaces remain stable
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TABLE 8 Estimates and p-values of reduced models based on the Wave I network

SP SIM

Coefficient p-Value Coefficient p-Value

(Intercept) 4.1216 <10−4 3.5797 <10−4

Treatment −0.0860 0.0401 −0.0691 0.1687

Race: Black −0.1333 0.0037 −0.1409 0.0063

Grade −0.1797 <10−4

Return −0.0966 0.0017 −0.2237 <10−4

Live with both parents 0.0868 0.0012 0.0928 0.0019

sch3 0.5135 <10−4

sch20 0.4070 <10−4 0.5619 <10−4

sch27 −0.3530 0.0002

sch33 0.3088 0.0032

sch35 0.7650 <10−4

sch40 0.4672 <10−4

sch42 0.3836 0.0001 0.2750 0.0384

sch49 −0.3465 0.0004

sch51 −0.5468 <10−4 −0.4526 <10−4

sch56 −0.3861 <10−4 −0.5451 <10−4

sch19 −0.3956 <10−4

sch31 0.3844 <10−4

Local average: live with parents 0.3617 <10−4

Notes: ‘–’ indicates that the quantity is not available in the setting. A blank means the variable is excluded in the selection

procedure.

Abbreviations: SIM, social interaction model; SP, subspace projection.

Wave I Wave II

I versus I+II II versus I+II I versus II

Top 3 principle angle cosines
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F IGURE 3 Demonstration of network perturbation in two waves of surveys in one school. About 40%

edges in one network disappear in the other one. However, the leading three-dimensional eigenspaces of the

networks still align well, indicated by the large cosine values of the principle angles. [Colour figure can be viewed

at wileyonlinelibrary.com]
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under a certain amount of perturbations. Recall that the alignment of two subspaces is measured

by the cosine values of their principal angles. A perfect alignment would result in cosine values

of 1. Figure 3 shows the principle angle cosine values for the pairwise alignment between the

three-dimensional leading eigenspaces of Wave I network, combined (and weighted) Wave I+II

network, andWave II network. The eigenspace alignment is close to perfect (> 0.95) for the lead-

ing two dimensions and remains high for the third dimension. Therefore, even though the two

networks are very different in their edge sets, the eigenspace remains stable. In Figure K.3 of

Appendix S1, we include the principle angle plots for the other 25 schools in the data set. Such sta-

ble alignment of the eigenspace holds in most schools. This observation explains the robustness

of our model.

7 CONCLUSION

We have introduced a linear regression model on observations linked by a network. The model

comes with a computationally efficient inference algorithm that can tolerate network observa-

tional errors. The study in this paper focuses on using Assumption 3 to control the estimation

bias and deliver valid inference. It makes important progress towards the inference problem for

the network-linked model.

The next step is to explore whether a certain bias correction can be applied so that the small

perturbation assumption can be further relaxed. Developing such a technique will require an

accurate estimate of the perturbation P̂ − P and, in turn, new tools for characterising such random

matrices. Meanwhile, the current focus is on the fixed design problem of X and P; the framework
remains valid if we condition onX and Pwhile assuming that they are independent. Exploring the
model with dependence between X and P is another promising research direction. One such situ-
ation iswhennetwork evolution is observed over time. InGoldsmith-Pinkhamand Imbens (2013)

and McFowland III and Shalizi (2021), assuming the network is perfectly observed, the gener-

ative models between X and P lead to valid estimations of homophily effects. It would be very
interesting to study if embedding our subspace regression strategies in such settings would lead

to robust inference framework of homophily.
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