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Summary.
In analyzing a network, the core component with interesting structures is usually hidden
while the rest of the network connections are not informative. The noises and bias intro-
duced by the non-informative component can obscure the salient structure and limit many
network modeling procedures’ effectiveness. This paper introduces a novel core-periphery
model for the non-informative periphery structure of networks without imposing a specific
form of the core structure. We propose spectral algorithms for core identification as a data
preprocessing step for general downstream network analysis tasks based on the model.
The algorithms enjoy strong performance guarantees and are scalable for large networks.
We evaluate the proposed methods by extensive simulation studies demonstrating advan-
tages over multiple traditional core-periphery methods. We apply the proposed methods
to extract the informative core structure from a citation network, which in turn gives more
interpretable results in a downstream hierarchical community detection task.

1. Introduction

Network data, representing interactions and relationships between units, have become
ubiquitous with the rapid development of science and technology. The need to ana-
lyze such complex and structurally novel data has resulted in a rich body of new ideas
and tools in physics, mathematics, statistics, computer science, and the social sciences.
Given that complex network structures are typically noisy and complicated, treating the
network as a random instantiation of a probabilistic model is a popular means of learning
networks’ structural properties while ignoring noises. This approach appeared in work
as early as that of Erdös [1959]. Later efforts from Aldous [1981] and Hoover [1979]
further expanded the foundation for more flexible random network modeling. More re-
cently, significant progress has rendered network analysis more computationally efficient
and scientifically interpretable with theoretical guarantees [Albert and Barabási, 2002,
Hoff et al., 2002, Bickel and Chen, 2009, Zhao et al., 2012, Newman, 2016, Gao et al.,
2017, Athreya et al., 2017, Mukherjee et al., 2018]. These methods have been adopted
to solve many important problems. Empirically, however, they fail to learn structural
information effectively in many applications. One critical issue complicating this mat-
ter in practice is the relative lack of interesting or informative structures in large-scale
networks. Throughout this paper, the term “informative” generally means that the
structure presents a special pattern of connections that researchers are interested in
identifying and understanding. Examples of informative network structures include, but



2 Miao and Li

are not limited to transitivity patterns, community structures, and latent space topolo-
gies. While most models assume certain particular informative network structures, the
presumed structures may only be valid for a subnetwork, leaving the rest of the net-
work noninformative. For instance, Ugander et al. [2013] observed that the lower-order
moments in 100 Facebook subnetworks were highly similar to the Erdös-Renyi model.
Gao and Lafferty [2017] later tested these networks and found that most of them were
indistinct from purely random connections and thus presented no especially interesting
structure. As additional examples, Wang and Rohe [2016] and Li et al. [2020b,a] both
applied preprocessing to remove a subset of nodes prior to community detection.
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(a) Estimated latent vectors with-
out periphery.

(b) Core nodes (red) with periph-
ery (blue) nodes.
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(c) Estimated latent vectors with
1500 periphery nodes.
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(d) P-values of the unimodal tests
on latent vector norms.

Fig. 1. The impact of periphery components on learning latent space topology. (a) Estimated
latent positions of 500 nodes without any periphery nodes — a two-layer pattern of latent vec-
tors is observable; (b) Network of the same 500 core nodes with 1500 periphery nodes; (c)
Estimated latent positions based on the network in (b); (d) p-values of 100 replications, based
on the unimodal test for the latent vector norms — a small p-value indicates a multimodal distri-
bution, though this procedure may not rigorously control the type-I error in this context.
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The so-called core-periphery structure offers a natural framework with which to rep-
resent networks containing both informative and noninformative components. The core
component includes nodes that induce an informative structure, while the periphery
nodes do not have informative structures in their connections. Including the periphery in
data can significantly undermine the effectiveness of statistical analysis. For illustration,
we consider a synthetic example. We generate the core network from the inner-product
latent space model [Hoff et al., 2002]. Any two nodes i and j are independently connected
with probability satisfying logit(Pij) = α + βXT

i Xj , where Xi, i = 1, · · · , 500 are the
two-dimensional latent positions of the nodes, shown by the circles in Figure 1(a). The
norms of the true latent vectors exhibit a bimodal pattern, corresponding to two levels
of connection popularity, a useful concept in studying social influence [Paluck et al.,
2016]. Figure 1(a) shows the latent vectors estimated by the method of Ma et al. [2020],
based on the network with core nodes only. The estimated model nicely recovers the
bimodal norms. The basic unimodal test [Ameijeiras-Alonso et al., 2019] of the latent
vector norms also results in a clear rejection. We then consider the case when the core
nodes are observed with periphery nodes (Figure 1(b)). Each periphery node connects
to all other nodes independently with probability 1/

(
1 + exp(−α)

)
. This is an instanti-

ation of the ER-type periphery model in Section 2. If we directly use the full network
as the input data for model fitting, the estimation becomes much less accurate and the
bimodal pattern is no longer observable (Figure 1(c)). In particular, Figure 1(d) shows
that the unimodal test gives increasing p-values when there are more periphery nodes.
Notice that this degradation cannot be explained by model misspecification. Because
the periphery nodes can be modeled by taking their latent positions at the origin in the
same latent space. Therefore, the two-dimensional inner-product model is still correct.
The degradation of estimation is really because including the periphery nodes hurts the
modeling efficiency on the core nodes. In Section 5, we will provide another detailed
example demonstrating the importance of removing periphery nodes in community de-
tection tasks. In general, removing periphery nodes is a crucial data preprocessing step
before learning the core structure.

The core-periphery structure has been extensively studied in the network literature.
For instance, Borgatti and Everett [2000] defined the core-periphery model as a special
case of the stochastic block model [Holland et al., 1983]. This definition of core-periphery
was subsequently adopted by Zhang et al. [2015], Priebe et al. [2019], and applied to the
so-called “planted clique” problem [Alon et al., 1998, Dekel et al., 2014]. However, per
this definition, the network core is a densely connected Erdös-Rényi network, which itself
is not interesting for any downstream analysis. This definition is also largely contingent
on a large density gap between the core and the periphery [Zhang et al., 2015, Kojaku and
Masuda, 2018], a phenomenon which may not manifest in many applications. Another
related problem is the submatrix localization problem [Butucea et al., 2015, Deshpande
and Montanari, 2015, Hajek et al., 2017, Cai et al., 2017]. The objective is to find K
densely connected subgraphs planted in a large graph; the K subgraphs are usually
assumed to be Erdös-Rényi graphs, which is again too restrictive in practice. Naik
et al. [2019] recently proposed another core-periphery model. The core structure is
more general than the Erdös-Rényi graph but still follows a restrictive parametric form.
Moreover, the model can only generate networks with node degrees at least as dense as
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the square root of the network size, which is too dense to most most real-world networks.
Algorithm-based methods have been studied in relation to core-periphery structures as
well [Lee et al., 2014, Della Rossa et al., 2013, Barucca et al., 2016, Cucuringu et al.,
2016, Rombach et al., 2017]. These approaches typically assign a “coreness” score to
each node based on certain topological assumptions. For example, in Wang and Rohe
[2016] and Li et al. [2020b,a] , the k-core pruning algorithm [Seidman, 1983] was used to
remove low-degree nodes as periphery. The statistical properties of this class of methods
are not yet well-understood.

This paper aims to bridge the gap between the theoretically predicted effectiveness of
network modeling and the empirical expectation in data analysis by proposing a princi-
pled and computationally efficient preprocessing method to extract the informative core
structure from a large network. We introduce two core-periphery models with informa-
tive and noninformative structures. The novelty of our models is two-fold. First, we
do not assume a specific structure for the core component; our framework can therefore
be used as to preprocess data for any downstream network analysis tasks. Second, the
distinction between the core and periphery components is whether they exhibit informa-
tive connection patterns. As such, our core-periphery definition emphasizes what we care
about most: the informative structure for downstream network modeling. From this per-
spective, our overall assumption can be labeled as an “informative-core+noninformative-
periphery” model. Under the proposed models, we develop simple yet efficient algorithms
to identify the core structure with theoretically provable guarantees. We show that our
algorithms can exactly identify the core component in sparse networks – the so-called
“strong consistency” guarantee. The strong consistency is crucial for our method to be
a general preprocessing approach. Given the strong consistency, the theoretical analysis
for any downstream modeling of the core component remains valid, conditioned on the
success of our method.

The rest of the paper is organized as follows. We first propose our core-periphery
models in Section 2.1 and then introduce the algorithms for core identification in Sec-
tion 2.2. Section 3 focuses on the algorithms’ theoretical properties with respect to the
accuracy of core identification. Extensive evaluations are presented in Section 4, where
we demonstrate the advantages of our method against several benchmark methods for
core-periphery structures. In Section 5, we demonstrate our method by extracting in-
formative core structure from a citation network to improve downstream hierarchical
community detection. We conclude the paper with a discussion in Section 6. All the
proofs of our theoretical results are included in the our supplementary materials.

2. Methodology

Notations. We use capital boldface letters such as M to denote matrices. Given a
matrix M , Mi,∗, M∗,j , and Mij denote the i-th row, j-th column, and (i, j)-th entry,
respectively. Let ‖M‖F , ‖M‖2, ‖M‖2,∞ be the Frobenius norm, the spectral norm, the

two-to-infinity norm (maximum Euclidean norm of rows) of M , respectively. We use Id
to denote the d× d identity matrix, and 1d to denote the d× 1 vector whose entries are
all 1. Let rank(M) be the rank of M , and M t be the transpose of M . Let [l] be the
index set {1, 2, ..., l}. Let Op1,p2 be the set of p1×p2 matrices with orthonormal columns,
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and let Op be the shorthand for Op,p. For any two positive sequences {an} and {bn}, we
say an � bn if there exists a positive constant C such that an ≤ Cbn for sufficiently large
n, in which case we may also write bn � an; an ' bn if an � bn and an � bn; an � bn if
for an arbitrarily large C > 0; and an > Cbn for sufficiently large n.

2.1. Informative core-periphery models
Assume the network size to be n. We will focus on undirected and unweighted networks
without self-loops. Such a network can be represented by an n × n symmetric binary
adjacency matrix A, such that Aij is 1 if and only if nodes i and j are connected. As will
be seen later, it would be easy to adapt our method for undirected weighted networks. We
will embed our discussion into the so-called “inhomogeneous Erdös-Renyi” framework.
Specifically, we assume that there exists an underlying n× n probability matrix P such
that Aij ’s are generated independently from Bernoulli(Pij), for 1 ≤ i < j ≤ n. The
lower triangular entries are filled according to the symmetric constraint. We denote by
E the difference between A and P , i.e. A = P + E. The elements {Pij} are called
connection probabilities. The matrix P fully specifies the structural information of the
network model.

In our context, the periphery component should not display interesting structures.
Though an interesting structure may depend on specific applications, we believe that
the widely regarded uninteresting pattern is relatively simple to define. The following
core-periphery model is defined according to one such pattern for the periphery.

Model 1 (The ER-type core-periphery model). Network nodes can be parti-
tioned into a core set C and a periphery set P, where

P = {i ∈ [n]|Pij = Pik, for all j, k ∈ [n], j 6= i, k 6= i}.

and C = [n] \ P.

The ER-type model gets its name from the Erdös-Rényi (ER) model [Erdös, 1959]. In
brief, thanks to symmetry of P , Model 1 indicates that all edges involving periphery
nodes are generated with an identical probability, resembling the ER model. That means,
there exists a probability p such that

Pij = p, for all i ∈ P, j ∈ [n]. (1)

By contrast, the subnetwork induced by the core nodes can follow any connection pattern
as long as the pattern differs from (1). This generality provides the necessary flexibility
to use our model as a data preprocessing step for any downstream analysis. In the special
case where the core subnetwork is also an ER model but with a different density, the
model reduces to the planted clique model used in Borgatti and Everett [2000], Zhang
et al. [2015], and Priebe et al. [2019]. Figure 2 illustrates one example of the P matrix
following the ER-type model.

The ER-type periphery is arguably the most basic form of non-informative structure;
it also indicates that all periphery nodes have the same expected degree (n − 1)p. Al-
ternatively, there are other situations where the nodes have heterogeneous degrees but
their connection patterns are still uninteresting because the connection only depends on
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two nodes separably. Such a pattern resembles the configuration model [Bollobás, 1980,
Chung and Lu, 2002, Newman, 2018], in that the connection probability between two
nodes solely depends on the product of their degrees. In core-periphery contexts, this
model can be defined as follows.

Model 2 (The configuration-type core-periphery model). Let di be the ex-
pected degree of node i. Network nodes can be partitioned into a core set C and a periphery
set P, where

P = {i ∈ [n]|Pij =
didj∑n
k=1 dk

, for all j ∈ [n], j 6= i}. (2)

and C = [n] \ P.

The periphery connection pattern under the configuration-type model essentially as-
sumes that

Pij ∝ didj , for all i ∈ P, j ∈ [n]. (3)

Figure 2 illustrates the configuration-type model. Compared with the ER-type model,
the periphery also exhibits a heterogeneous connection pattern. This model can adopt
arbitrary degree distributions for the periphery nodes.

Before concluding this section, we want to emphasize that we do not assume that the
core-induced subnetwork and the rest of the network to have different densities, unlike
many other core-periphery models [Zhang et al., 2015, Kojaku and Masuda, 2018]. Our
methods work well even if the core and periphery components have identical densities,
as shown in our theory and empirical results.

2.2. Algorithms for core identification
We now proceed to introduce our algorithms to identify the core components under the
two models. Likelihood-based procedures are not applicable in this context because the
core subnetwork model is unspecified. Instead, we will leverage the special pattern of
the core-periphery structure.

Consider the ER-type model first. For any periphery node i, Pi,∗ is a vector of the
same value except for the diagonal entry and exhibits almost no variation; for any core
node i, the entries in Pi,∗ exhibit greater variation by definition. Therefore, the core and
periphery may be split according to the row-wise variation in connection probabilities.
Define the centering matrix H to be In − 1

n1n1
t
n. Then ||Pi,∗H||22 is the natural metric

of variation in Pi,∗. In particular, the norm ||Pi,∗H||2 is almost zero for i ∈ P, because
Pi,∗ is a constant vector except on the ith coordinate. The periphery nodes can thus be
identified by looking for such small ||Pi,∗H||2 values.

In practice, we observe A rather than P , and the above strategy will not work due
to the large perturbation of A from P . As such, we denoise A with an estimator P̂
and then shift the above strategy to P̂ . Notice that rank(P ) ≤ rank(P C) + 1 where P C

is the connection probability matrix for the induced network of the core nodes. Simi-
lar properties can be obtained by replacing the rank with many reasonable definitions
of stable rank. Meanwhile, as Chatterjee [2015] suggested, almost all interesting net-
work models give approximately low-rank structures. These motivate us to consider P
as approximately low-rank (to be formally defined in our theory) and to use low-rank
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Fig. 2. Illustrations of the P matrices in our core-periphery models: (a) ER-type core-periphery
model, where the expected degrees of the periphery nodes are the same. (b) Configuration-
type core-periphery model, where the expected degrees of the periphery nodes are randomly
sampled from a uniform distribution.

approximation as an estimator of P̂ . The simplest estimator would be the universal
singular value thresholding estimator proposed by Chatterjee [2015]. However, theoret-
ically and empirically, using an adaptive method to cut off the singular values of A to
a certain rank turns out to be more effective. Specifically, given a positive integer r,
we use the rank-r truncated SVD of A as P̂ . Our algorithm under the ER-type model
is summarized in Algorithm 1. In the algorithm, we treat the approximating rank r as
given. In practice, the r will be chosen based on the data. This task can be accomplished
in two ways: either through visualization with a scree plot, as is often done for low-rank
models [Kanyongo, 2005, Athreya et al., 2017]; or through a data-driven criterion such
as Le and Levina [2022] and Li et al. [2020b], which admit various theoretical guarantees
under an exact low-rank assumption. We will use the spectral Bethe-Hessian method of
Le and Levina [2022] to select a proper r in our examples for its computational efficiency.

Under the configuration-type model, a similar strategy can be applied with an ad-
ditional modification. The key attribute is a degree-correction step to neutralize the
impacts of heterogeneous degrees. According to the periphery connection probabilities
in (2), for any i ∈ P, we have

Pij/dj =
di∑
k dk

, for any j 6= i.

Hence, normalizing the columns by the corresponding degrees would result in an asym-
metric matrix where the row for each periphery node is a constant, except for the diag-
onal entry. Define D = diag(d1, · · · , dn). The column correction step can be written as
PD−1. After this degree-correction step, the same idea in Algorithm 1 can be applied
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Algorithm 1 Spectral algorithm for core identification from the ER-type periphery

Input: Adjacency matrix A, the core size NC , and approximating rank r.

(a) Find the low-rank approximation of A through rank r truncated SVD. Denote

the resulting matrix as P̂ .

(b) Compute the score Si = ||P̂i,∗H||2, for i ∈ [n].

(c) Sort the scores S1, S2, ..., Sn.

(d) For each i ∈ [n], classify node i as a core node if Si is among the top-NC scores;
otherwise classify node i as a periphery node.

Algorithm 2 Spectral algorithm for core identification from the configuration-type
periphery

Input: Adjacency matrix A, the core size NC and approximating rank r.

(a) Find the low-rank approximation of A through rank r truncated SVD. Denote

the resulting matrix as P̂ .

(b) Compute d̂i =
∑n

j=1Aij , and let D̂ = diag{d̂1, d̂2, ..., d̂n}.

(c) Compute the scores S′i = ||P̂i,∗D̂−1H||2, for i ∈ [n].

(d) Sort scores S′1, S
′
2, ..., S

′
n.

(e) For each i ∈ [n], classify node i as a core node if S′i is among the top-NC scores;
otherwise classify node i as a periphery node.

here; we will use ||Pi,∗D−1H||2 to separate the core nodes from periphery nodes. In

practice, P is again substituted by its estimate P̂ , and D is replaced with its sample
version D̂, the diagonal matrix of observed node degrees. The details are summarized
in Algorithm 2.

The major computational burden of Algorithms 1 and 2 entails on the rank-r SVD
of A. This step can be completed efficiently, especially for sparse networks and a small
r [Baglama and Reichel, 2005]. Both algorithms are thus highly scalable to large net-
works. In Section 3, we will show that these algorithms are provably accurate in core
identification.

3. Theoretical properties

We will introduce our theoretical analysis of the core identification algorithms un-
der the ER-type model first. Then the theoretical properties will be extended to the
configuration-type model.
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3.1. Theory under the ER-type model
Intuitively, the success of Algorithm 1 depends on the connection probability variation
of core nodes. To quantify this the variation, we introduce the following quantities.

h(n) = min
i∈C
‖Pi,∗H‖2 , and p∗ = max

1≤i,j≤n
Pij .

The algorithm also needs a low-rank approximation of P . As mentioned in the
previous section, we will use the rank-r truncated eigen-decomposition of the observed
adjacency matrix A as P̂ . Suppose P and A admit the following decompositions:

P =
[
U U⊥

] [Λ 0
0 Λ⊥

] [
U t

U t
⊥

]
= UΛU t +U⊥Λ⊥U

t
⊥, (4)

A =
[
Û Û⊥

] [Λ̂ 0

0 Λ̂⊥

] [
Û t

Û t
⊥

]
= ÛΛ̂Û t + Û⊥Λ̂⊥Û

t
⊥, (5)

where Λ = diag{λ1, λ2, ..., λr} and Λ⊥ = diag{λr+1, λr+2, ..., λn} consist of the eigenval-
ues of P sorted in a decreasing order of their absolute values. U ∈ On,r and U⊥ ∈ On,n−r
consist of the corresponding eigenvectors as columns, respectively. The matrices Λ̂, Λ̂⊥,
Û⊥ and Û⊥ are similarly defined for A. Recall that P̂ = ÛΛ̂Û t. For such a low-rank
approximation to work well, we impose the following assumptions:

Assumption 1 (Approximate low-rankness). |λr| � np∗√
r

, and |λr+1| ≺ |λr|.

Assumption 2 (Incoherence). ‖U‖2,∞ ≤ µ0
√

r
n , for a scalar µ0 that may depend

on n.

Assumption 1 is to ensure the low-rank approximation to be reasonable. Assump-
tion 2 ensures that the connection probabilities are not too spiky. µ0 can be as large
as
√
n in principle. However, as studied by Candès and Recht [2009] and Cape et al.

[2019], it is usually of a much lower order (e.g., O(log n) or O(1)) for many reasonable
models. Remarks 2 and 4 include such examples. The incoherence assumption is widely
used in matrix estimation literature [Candès and Recht, 2009, Chen, 2015, Fan et al.,
2018, Cape et al., 2019, Abbe et al., 2020]. It is generally considered necessary for highly
accurate entrywise or row/column-wise recovery of random matrices [Chen, 2015].

Theorem 1. Assume the network A is generated from the ER-type model, defined
by Model 1, under Assumption 1 and Assumption 2. Assume also that Algorithm 1
is used to identify the core nodes with the correct NC . Furthermore, suppose p∗ �
max

{
µ2

0r logn
n , µ

2
0r

2

n

}
, and |λ1/λr| is bounded. If

h(n) � µ0
√
r(log n+ r)p∗ + µ20r

√
p∗ + |λr+1|, (6)

then, for sufficiently large n, Algorithm 1 exactly identifies the core and periphery nodes
with probability at least 1 − (B(r) + 2)n−γ for some positive constant γ, where B(r) =
10 min{r, 1 + log2(|λ1/λr|)}.
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We present Theorem 1 under the bounded eigen-ratio |λ1/λr| condition for concise-
ness. This assumption can be dropped, resulting in an additional factor of approximately
|λ1/λr| in several terms on the righthand side of (6). This more general version of the
theorem is included in Appendix A.

Remark 1. Unlike most other approaches for core identification, we do not assume
the core subnetwork to be denser than the periphery; nor do we assume that the core size
is of the same order as the periphery size. To see these explicitly, define the core-density
and core-variance for each core node i ∈ C as

p̄iC =
1

NC

∑
j∈C

Pij , and v2iC =
1

NC

∑
j∈C

(Pij − p̄iC)2.

Let θC = NC/n be the core proportion of the network. It is not difficult to see that

h(n) =
√
nθC min

i∈C

√
v2iC + (1− θC)(p̄iC − p)2.

Even if the density-gap between the core and the periphery is zero such that (p̄iC−p)2 = 0
for all i ∈ C, and the core proportion is vanishing, giving θC → 0, (6) can still hold as
long as the variance with the core structure is sufficiently large. The above generality
renders significant advantages in practice, as demonstrated in Section 4 and 5.

Remark 2. To illustrate condition (6), take the stochastic block model (SBM) as an
example for the core structure under the ER-type model. Specifically, we consider the
following balanced assortative SBM:

B = (a− b)I + b1K1tK ,

where a > b > 0, and K is the number of blocks. The edge probability matrix is P C =
ρZBZt, where Z is the membership matrix, and Zik = 1 if and only if node i belongs to
block k. All blocks have the same size. For simplicity, we assume the periphery size to be
the same as one community. We also let the connection probabilities involving periphery
nodes be ρ · b. In this case, it can be shown that the conditions in (6) becomes

ρ � K2 log n

n
+
K3

n
. (7)

Under the SBM core, the downstream task is naturally community detection. Suppose
there are no periphery nodes. To precisely recover all community labels, a feasible ap-
proach with the best theoretical guarantee is given by the semidefinite programming (SDP)

approach of Fei and Chen [2018], requiring ρ � K logn
n + K2

n . This is slightly better than
(7) by a factor of K. The SDP approach is a model-based approach relying on exactly the
current SBM form. In contrast, our approach does not rely on such a special assump-
tion. A more generic and computationally efficient community detection method would
be the spectral clustering [Rohe et al., 2011, Lei and Rinaldo, 2015]. Among all results
about spectral clustering, the weakest requirement for strong consistency we are aware of

is ρ � K3 logn
n + K4

n from Lei [2019]. This requirement is stronger than (7). Therefore,
our core identification step imposes no stronger requirement than spectral clustering for
the downstream community detection task.
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In practice, the number of core nodes, NC , is often unknown. However, under a
stronger condition than Corollary 1, the correct NC can be recovered by cutting off the
scores in Algorithm 1 by a threshold. In particular, define p̂ = 2

n2−n
∑

i<jAij . We can
replace the NC in Step 4 of Algorithm 1 with

N̂C = |{i : Si >
√
p̂(log n)1+ε}| (8)

for some small constant ε. The same type of performance as (6) is still achievable
according to the following result.

Corollary 1. Under the conditions of Theorem 1, suppose µ0 and r are bounded
with |λr+1| ≤

√
p∗ log n. Furthermore, assume

min
1≤i,j≤n

Pij ' max
1≤i,j≤n

Pij = p∗,

and h(n) �
√
p∗(log n)1+ε for the constant ε in (8). If the N̂C defined by (8) is used

in Algorithm 1, with sufficiently large n, the core and periphery can be exactly identified
with probability at least 1− (B(r) + 4)n−γ for some positive constant γ.

In all of our experiments, we use ε = 0.05. In the supplement material, we show that
the empirical performance remains stable for reasonable range of ε.

We conclude this section with an upper bound for the number of misidentified core
nodes under much weaker assumptions than Theorem 1.

Theorem 2. Assume the network A is generated from the ER-type model, defined
by Model 1, and Algorithm 1 is used to identify the core nodes with the correct NC.
Suppose h(n) > p∗. Denote the estimated core set by Ĉ and let M be the cardinality of

the symmetric difference between C and Ĉ. For a sufficiently large n, we have

M � max{r, rank(P )} ·
(
max{

√
np∗,
√

log n}+ |λr+1|
)2

(h(n)− p∗)2
(9)

with probability at least 1− n−γ for some positive constant γ.

For illustration, consider the example in Remark 2 again with p∗ ≥ logn
n . In this case,

(9) indicates that the misidentified number is O(K2n/ log n). So if K2n/ log n = o(NC),
the misidentified proportion is vanishing to zero. This property is also called the weak
consistency. Similar to Corollary 1, the weak consistency can also be achieved by using
the data-based (8), instead of NC . Due to the space limit, such a corollary is given in
Appendix A.

It is worth noting that the difference between strong consistency and weak consistency
is not only a technical matter in our scenario. The strong consistency ensures that any
available theoretical analysis for the downstream inference can still hold as if the core
is already known, by the union probability trick. From this perspective, the strong
consistency renders a seamless connection of the data preprocessing and theories on the
core network. The weak consistency, in contrast, does not come with this advantage.
The downstream theory must consider the potential errors and dependence from the
core identification step, which usually requires a new and more challenging analysis.
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3.2. Theory under the configuration-type model
Next, we consider the configuration-type model defined by Model 2. Recall that for a
periphery node i, Pi,∗D

−1 is a constant vector except for the diagonal entry. Therefore,
the proof can be done by applying a similar strategy to the last section on the column
degree-corrected version of P . Define

h′(n) = min
i∈C
||Pi,∗D−1H||2.

Under the configuration-type model, h′(n) is the counterpart of the quantity h(n) for
the ER-type model.

Theorem 3. Assume the network A is generated from the configuration-type model,
defined in Model 2, under Assumption 1 and Assumption 2. Assume also that Algo-
rithm 2 is used to identify the core nodes with the correct NC and r. Let dmin =

min1≤i≤n
∑n

j=1Pij, and suppose dmin � log n, p∗ � max
{
µ2

0r logn
n , µ

2
0r

2

n

}
, and |λ1/λr|

is bounded. If

h′(n) � 1

dmin

(
µ0
√
r(log n+ r)p∗ + µ20r

√
p∗ + |λr+1|

)
+
∥∥PD−1∥∥

2,∞

√
log n

dmin
, (10)

then, for sufficiently large n, Algorithm 2 exactly identifies the core and periphery nodes
with probability at least 1− (B(r) + 4)n−γ, where B(r) = 10 min{r, 1 + log2(|λ1/λr|)}.

A more general version of the theorem is provided in the Appendix A.

Remark 3. An analogy of Remark 1 is available. Specifically, define the column
degree-corrected probability as P̃ij = Pij/dj. Define the core-density and core-variance
of the degree-corrected probability for each core node i ∈ C as

p̆iC =
1

NC

∑
j∈C

P̃ij , and v̆2iC =
1

NC

∑
j∈C

(P̃ij − p̆iC)2.

Let θC = NC/n is the core proportion of the network. It is not difficult to see that

h′(n) =
√
nθC min

i∈C

√
v̆2iC + (1− θC)(p̆iC −

di∑n
k=1 dk

)2. (11)

It can be seen that even if the degree-corrected density remains the same in the core
and periphery, (10) can still be satisfied, as long as the core itself has sufficiently large
variance.

Remark 4. To illustrate the condition (10), we consider the example when the degree-
corrected stochastic block model (DC-SBM) [Karrer and Newman, 2011] is the true core
model. Specifically, assume that the whole network follows the DC-SBM. The first K−1
clusters are the core, and the last cluster is the periphery. Suppose all clusters have equal
size. Let zi ∈ {1, · · · ,K} be the cluster label of node i. The model can be parametrized
by a sequence of node popularity parameters ψi, 1 ≤ i ≤ n and a K×K matrix ρB where
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B is a fixed symmetric matrix with the last row and column containing only 1’s and ρ
depends on n. The connection probability of this DC-SBM is given by Pij = ψiψjρBzizj .
Assume that each row sum of B is K. It can be verified that this model satisfies Model 2.
If r = K and ψi’s are of the same order, then (10) indicates that a sufficient condition
for strong consistency is dmin � K2 log n+K3.

When NC is unknown, a cutoff threshold of scores can be used to determine the core-
periphery separation under stronger conditions. Recall that p̂ = 2

n2−n
∑

i<jAij . We can
replace the NC in Step 5 of Algorithm 2 with

N̂ ′C = |{i : S′i >

√
(log n)1+ε

n
√
p̂

}| (12)

for some small constant ε > 0.

Corollary 2. Under the conditions of Corollary 3, suppose µ0 and r are bounded
with |λr+1| ≤

√
p∗ log n. Furthermore, assume

min
1≤i,j≤n

Pij ' max
1≤i,j≤n

Pij = p∗,

and

h′(n) �
√

(log n)1+ε

n
√
p∗

for the constant ε in (12). If the N̂ ′C defined by (12) is used in Algorithm 2, with a
sufficiently large n, the core and periphery nodes can be exactly identified with probability
at least 1− (B(r) + 6)n−γ for some positive constant γ.

Finally, an upper bound for misidentified number is available under weaker conditions.

Theorem 4. Assume the network A is generated from the configuration-type model
defined by Model 2, and Algorithm 2 is used to identify the core nodes with the correct
NC. Suppose dmin � log n, and h′(n) > dmax

(n−1)dmin
. Denote the estimated core set by Ĉ

and let M ′ be the cardinality of the symmetric difference between C and Ĉ. Then,

M ′ � max{r, rank(P )} ·
np∗ + λ2r+1 +

∥∥PD−1∥∥2
2
· dmin · log n

d2min

[
h′(n)− dmax

(n−1)dmin

]2
with probability at least 1− 3n−γ for some positive constant γ.

Similar to the ER-type model, the error bound based on the threshold (12) is available
as a corollary in Appendix A.

4. Simulation examples

In this section, we evaluate the performance of our proposed algorithms on synthetic
networks. We demonstrate the methods’ effectiveness and benefits under a few different
core models as well as density gaps between the core and the periphery.
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Table 1. Graphons for simulating network cores.
Graphon function g(µ, ν) Rank

k/7, if µ, ν ∈ ((k − 1)/6, k/6); 0.3/7 otherwise. 6
sin[5π(µ+ ν − 1) + 1]/2 + 0.5 3

1/{1 + exp [15(0.8|µ− ν|)4/5 − 0.1]} Full

In generating our networks, we always set the first NC nodes to core. To demonstrate
our methods’ flexibility with respect to the core structure, we use graphon models [Al-
dous, 1981] as the models for the core component. Specifically, the core submatrix P C is
generated as follows. Given a graphon function g : [0, 1]× [0, 1]→ [0, 1], we first generate
NC i.i.d. random variables ξi ∼ Uniform[0, 1], i = 1, · · · , NC , after which P C is set as

P Cij = g(ξi, ξj), 1 ≤ i, j ≤ NC (13)

We use three graphon functions defined in Zhang et al. [2017] as our simulation
examples. The first one gives the simplest SBM for P C with a blockwise constant
structure. The second one still has a low-rank P C but does not have a nice block
structure. The third model is even more complicated and generates a full-rank P C –
serving as a setting to verify the validity of our low-rank approximation strategy when
the model is full-rank. The three models are summarized in Table 1; heatmaps of the
P C in the three models appear in Figure 3 and Figure 4. Given P C , we fill in the other
positions of P based on periphery probabilities. For the ER-type model, we simply fill
in a constant value. For the configuration-type model, the construction involves multiple
steps. Let θCi =

∑NC
j=1P

C
ij , and sample θPi , i = 1, 2, ..., NP from a uniform distribution

between 0.5 mini∈C θi and 1.5 maxi∈C θi. Then, let θ = {θC1 , θC2 , ..., θCNC , θ
P
1 , θ

P
2 , ..., θ

P
NP
}.

The edge probability involving periphery node is set as Pij = θiθj∑NC
k=1 θ

C
k

. It is not difficult

to see that from this procedure, di =
∑n

j=1Pij =
θi

∑n
j=1 θj∑NC

k=1 θ
C
k

, and Pij = didj∑n
k=1 dk

for i ∈ P,

matching Model 2.
We then rescale the generated probability matrix, so the average edge density is

around 0.02. We will demonstrate the effects of a varying density ratio between the two
components. We focus on the settings where the core has an equal or higher density
than the periphery. Our methods also perform well even if the core is sparser than the
periphery; however, because this setting is less realistic, so it is not included. The core
size and periphery size are both 1000 in this section. In Appendix E, we also include
results for settings with imbalanced sizes. We use the Beth-Hessian method of Le and
Levina [2022] to select r from 1, · · · , n1/3, motivated by the discussion in Zhang et al.
[2017].

Several benchmark core-periphery identification methods are included in our exper-
iments. Two centrality-based methods are degree thresholding (Degree) and PageRank
[Page et al., 1999] thresholding (PageRank), which have been shown to be competi-
tive in identifying the core component in [Barucca et al., 2016, Rombach et al., 2017].
Theoretically, Zhang et al. [2015] indicated that under the SBM core-periphery model,
the degree thresholding is optimal under favorable settings. Another common method is
thresholding based on local clustering coefficients [Watts and Strogatz, 1998] (Local CC).
The k-core pruning (k-core) algorithm [Seidman, 1983] is also included in our evalua-
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tion, representing a more adaptive version of the degree thresholding; the algorithm was
shown to effectively extract meaningful subnetworks in Wang and Rohe [2016], Li et al.
[2020b,a]. The last method is from Priebe et al. [2019], where the adjacency spectral
embedding (ASE) Sussman et al. [2012] is used to capture the core-periphery structure.
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Fig. 3. Simulation results under the ER-type core-periphery model whereNC = NP = 1000. The
left figures are the core graphon functions, and the corresponding ROC curves are shown on the
right, under different degree-gaps between core and periphery. The point “∗” gives the model
selection based on Corollary 1, and “+” indicates the model selection by k-means clustering
with k = 2.

To fully characterize the core identification performance, we consider the tradeoff
between the true positive rate (TPR) and the false positive rate (FPR), defined as

TPR =
#{Correctly identified nodes}

#{Identified nodes}
and FPR =

#{Incorrectly identified nodes}
#{Identified nodes}

.

These two metrics can be depicted by the receiver operating characteristic (ROC) curve.
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For each thresholding-based method, the full ROC curve is obtained by varying the
threshold. The k-core pruning is applied with k increasing from 0 to a large integer,
producing a sequence of points in the ROC space. On the contrary, ASE only gives a
single point in the ROC space. For our method, we also include the single points based
on our recommended threshold in Corollary 1 and 2, denoted by “∗”. Empirically, we
also found that applying the k-means algorithm with k = 2 to the log-transformed scores
works well in our simulation, and we mark the points obtained this way with “+” on the
ROC curves. The code for our experiments is available at https://github.com/tianxili/
Core-Periphery.
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Fig. 4. Simulation results under the configuration-type core-periphery model where NC = NP =
1000. The left figures are the core graphon functions, and the corresponding ROC curves are
shown on the right, under different degree-gaps between core and periphery. The point “∗”
gives the model selection based on Corollary 2, and “+” indicates the model selection by k-
means clustering with k = 2.

Figure 3 shows the results under the ER-type model. The easiest setting is when the

https://github.com/tianxili/Core-Periphery
https://github.com/tianxili/Core-Periphery
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core is much denser than the periphery. In this case, most of the approaches perform
reasonably well. Though our method is more effective, its advantage is moderate. Yet
as the density between the core and the periphery becomes more similar, the problem
becomes more difficult, and most benchmark methods suffer from serious degradation
and become close to a random guess. However, our method still maintains strong perfor-
mance with its advantage over other methods becoming more pronounced. This outcome
is expected because many of the benchmarks rely on the density gap between the two
components whereas our method does not. Upon comparing the results across different
core models, some of the benchmark methods perform well under one model but fail
under another; our method remains the best one in all settings owing to its generality.
Finally, the thresholds given by our theory (∗) and k-means clustering (+) render sound
model selections in the ROC space.

Figure 4 shows the results under the configuration-type model. The pattern is sim-
ilar to that of Figure 3. Overall, the simulation examples indicate that our methods
outperform the benchmark methods in the core identification accuracy across multiple
core models and various core-periphery degree gaps. We also evaluate the robustness of
our methods. These examples are included in supplementary material Section C; our
methods continue to performance robustly even when the periphery connections deviate
from our models due to random perturbations.

5. Core extraction in a statistics citation network

In this section, we demonstrate the impact of our core extraction method on the down-
stream community analysis of a paper citation network collected by Ji et al. [2016]. Each
node in the network is a paper, and two nodes are connected if one paper cited the other
(ignoring the citation direction). We focus on the largest connected component of the
network. This network has 2248 nodes with an average node degree of 4.95. Wang and
Rohe [2016] applied the 4-core pruning to the network, resulting in a core of 635 nodes
for their downstream analysis. In this example, we compare several methods in Section 4
and evaluate their performance by comparing the validity of the hierarchical community
detection results for the extracted cores.

In Figure 5, we show the 2248 Si scores of our two algorithms against the node de-
grees, eigenvector centrality scores, and the local clustering coefficients. Despite positive
correlations between our scores and the other network statistics, the core nodes selected
by our algorithms span the entire range of node degrees, centrality scores and clustering
coefficients, highlighting the distinctions of our methods. In our evaluation, we also
include the core selection based on degree centrality, eigenvector centrality, PageRank
centrality, and local clustering coefficient as benchmarks. For fair comparisons, we re-
strict all methods to procedure core sizes of 1103 and 635, to match the respective 3-core
and 4-core pruning algorithms of Wang and Rohe [2016].

Given the induced subnetwork of the selected core nodes, we apply the HCD algorithm
of Li et al. [2020a]. This algorithm automatically determines the number of communi-
ties and identifies the community membership and the hierarchical relations between
the communities as a binary tree. Each detected community is a leaf of the tree, while
the internal nodes are interpreted as mega-communities – the union of multiple closely
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connected leaf communities. Compared with regular community detection methods, the
advantage of the HCD algorithm is that the hierarchy gives the relation between commu-
nities. The hierarchical relations can be represented by a K×K similarity matrix S with
K representing the number of communities. Skk′ is calculated by the level of the first
depth of the smallest mega-community containing both the kth and k′th communities.
Therefore, Skk′ is the similarity between community k and k′ based on their position in
the hierarchy of communities. If two communities are split at a lower level of the hier-
archy, they are more similar to each other with denser between-community connections.
Our target in this example is to find an interpretable hierarchical decomposition of the
network. Intuitively, as already studied in previous works [Ji et al., 2016, Wang and
Rohe, 2016, Li et al., 2020a], communities in this network may provide research topic
interpretations.
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Fig. 5. Spectral scores and local statistics based on two models on the citation network. The
red line is the cutoff for 635 core nodes.

In particular, we will measure the meaningfulness of the hierarchy based on the ab-
stracts of the papers collected by Wang and Rohe [2016]. We represent each abstract as a
term-frequency vector and apply the standard text mining processing, such as stemming
and removing stop words (including punctuations and numbers). Term frequency-inverse
document frequency (TF-IDF) weighting [Rajaraman and Ullman, 2011] is then applied
to each word. We remove words that appear in less than 1% of the papers; 966 words
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Table 2. Correlation between S and T for different
core identification methods.

Methods
Correlation

NC = 635 NC = 1103

Degree 0.099 0.089
k-core 0.167 0.108

PageRank 0.013 0.106
EigenVec 0.143 0.050
Local CC 0.058 0.045
Ours (ER) 0.340 0.164

Ours (Config) 0.350 0.155

remain after processing. The cosine similarity between each pair of papers is calculated,
and a community-level text similarity matrix T is constructed where Tkk′ is the average
cosine similarity between papers from community k and community k′. Notice that,
given the same community partition, S is the community similarity calculated based on
the hierarchy of the communities, based on network structures, while T is community
similarity based on the abstract data. How well the two similarities match each other
indicates how well the hierarchical structure discovered by HCD matches the similarity
derived from the abstracts. We calculate the Spearman correlation between S and T as
the final metric. Given the community labels, if the hierarchy has no association with
the research topics, we would expect a small correlation between S and T . Therefore,
the magnitude of the correlation reflects the consistency between the identified hierar-
chy and the topic similarity. The results for cores extracted via different methods are
summarized in Table 2.

The cores extracted by our two models produce significantly more meaningful hi-
erarchies than the other benchmarks. The difference between the ER-type model and
the configuration-type model is negligible. Also, the results of both models lead to the
same hierarchical structure with marginal differences. The communities are highly inter-
pretable by human judgment as well. The figures of the final hierarchy of communities
and the table of keywords of all communities are included in the supplementary mate-
rial Section F. For completeness, though, we identify the cuts in our method to match
the k-core algorithm for a fair comparison. We can still use our recommended cut-off
to identify the core. In particular, using ε = 0.05 would result in a core size of 846
under the ER-type model with S − T correlation 0.361, and a core size of 712 under
the configuration-type model with S − T correlation 0.320. The code for this example
is available at https://github.com/tianxili/Core-Periphery.

6. Discussion

We have proposed two core-periphery models for extracting informative structures from
networks with efficient algorithms for core identification. We do not assume a specific
form for the core component; as such, our methods can be used for preprocessing in
general downstream network analysis tasks. The proposed algorithms have theoretical
guarantees of correctly identifying the core nodes under mild conditions. The implemen-
tation of our methods are available from the R package randnet [Li et al., 2022].

https://github.com/tianxili/Core-Periphery
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The proposed method comes with a few limitations and these limitation also present
fruitful directions for future research. One limitation of our methods lies in the low-rank
denoising step. We believe that most interesting network models are approximately
low-rank; however, low-rank models may not have covered all possible core structures.
Recently, Seshadhri et al. [2020] observed that low-rank network models may not fit well
for triangle structures between low-degree nodes. It would be interesting to investigate
if this gap could be eliminated by certain type of “approximate low-rank”. The low-rank
approximation also requires good concentration to work well. Therefore, they may not
handle extremely sparse networks in theory (e.g., network models with bounded node
degrees). However, these limitations may be overcome by substituting the low-rank
approximation step with methods that are more suitable for nontrivially full-rank models
[Chan and Airoldi, 2014, Gao and Ma, 2021, Li and Le, 2021] or sparse networks [Le
et al., 2017, Montanari and Sen, 2016, Fei and Chen, 2018]. A tradeoff also exists between
the modeling performance and computational efficiency. Another limitation is that our
assumed ER-type and configuration-type periphery is for generic data processing. In
specific analysis, people may have other special type of “noninformative” structures to
remove. Our method may not be directly applicable, and some case-based methods
would be needed. Furthermore, we use the inhomogeneous Erdös-Renyi framework in
our study which assumes that all edges are conditionally independent given P . In the
core-periphery context, it is also possible to assume that the core and periphery admit
different types of dependence structure, which may generate a different type of modeling
strategy. Extensions in this direction may call for nuanced definitions of uninteresting
structures in novel scenarios and possibly new model-fitting tools.
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