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ABSTRACT: A major uncertainty in reconstructing historical sea surface temperature (SST) before the 1990s in-
volves correcting for systematic offsets associated with bucket and engine-room intake temperature measurements.
A recent study used a linear scaling of coastal station-based air temperatures (SATs) to infer nearby SSTs, but the
physics in the coupling between SATs and SSTs generally gives rise to more complex regional air–sea temperature
differences. In this study, an energy-balance model (EBM) of air–sea thermal coupling is adapted for predicting
near-coast SSTs from coastal SATs. The model is shown to be more skillful than linear-scaling approaches through
cross-validation analyses using instrumental records after the 1960s and CMIP6 simulations between 1880 and 2020.
Improved skill primarily comes from capturing features reflecting air–sea heat fluxes dominating temperature vari-
ability at high latitudes, including damping high-frequency wintertime SAT variability and reproducing the phase
lag between SSTs and SATs. Inferred near-coast SSTs allow for intercalibrating coastal SAT and SST measurements
at a variety of spatial scales. The 1900–40 mean offset between the latest SST estimates available from the Met
Office (HadSST4) and SAT-inferred SSTs range between 21.68C (95% confidence interval: [21.78, 21.48C]) and
1.28C ([0.88, 1.68C]) across 108 3 108 grids. When further averaged along the global coastline, HadSST4 is signifi-
cantly colder than SAT-inferred SSTs by 0.208C ([0.078, 0.358C]) over 1900–40. These results indicate that historical
SATs and SSTs involve substantial inconsistencies at both regional and global scales. Major outstanding questions
involve the distribution of errors between our intercalibration model and instrumental records of SAT and SST as
well as the degree to which coastal intercalibrations are informative of global trends.

SIGNIFICANCE STATEMENT: To evaluate the consistency of instrumental surface temperature estimates before
the 1990s, we develop a coupled energy-balance model to intercalibrate measurements of sea surface temperature
(SST) and station-based air temperature (SAT) near global coasts. Our model captures geographically varying physical
regimes of air–sea coupling and outperforms existing methods in inferring regional SSTs from SAT measurements.
When applied to historical temperature records, the model indicates significant discrepancies between inferred and ob-
served SSTs at both global and regional scales before the 1960s. Our findings suggest remaining data issues in historical
temperature archives and opportunities for further improvements.
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1. Introduction

Sea surface temperature (SST) estimates are crucial for a
wide range of climate studies but historical estimates before
the 1960s are subject to systematic uncertainties of several
tenths of a degree Celsius that are comparable in magnitude
to the global climate change signal. These uncertainties arise
mainly from systematic offsets between bucket and engine-
room intake temperatures (Kent and Taylor 2006; Kent et al.
2010; Kennedy et al. 2011; Kent et al. 2017; Hausfather et al.
2017; Kennedy et al. 2019a; Kent and Kennedy 2021; Chan
2021). Physical methods are available to estimate biases (e.g.,
Folland and Parker 1995), but a lack of reliable metadata

necessitates assumptions regarding instrumentation and mea-
surement protocols (Folland and Parker 1995; Kennedy et al.
2011, 2019a) that are themselves inevitably uncertain.

Other corrections seek external constraints and correct SSTs
against reference temperatures. For example, nighttime marine
air temperatures (NMATs) are widely used (Smith and Reynolds
2002; Huang et al. 2017), despite being biased because of increas-
ing ship height (Kent et al. 2013) and wartime practices of read-
ing temperatures inside ships (Folland et al. 1984). Moreover,
after data collection, NMATs are often postprocessed together
with SSTs, which could lead to covarying biases due to systematic
data-management issues (Chan et al. 2019). Another reference
is the uppermost temperatures from marine profiles (MPs;
Kennedy et al. 2019a), but profile data have limited coverage be-
fore the 1940s (Meyssignac et al. 2019). Although NMATs and
MPs are practical ways of correcting SSTs, their limitations make
exploring alternative references or methodologies worthwhile.

A method for correcting historical SSTs was proposed by
Cowtan et al. (2018) that involves referencing SSTs against air
temperatures from coastal weather stations. Although station-

Supplemental information related to this paper is available at
the Journals Online website: https://doi.org/10.1175/JCLI-D-22-
0569.s1.

Corresponding author: Duo Chan, duo.chan@whoi.edu

DOI: 10.1175/JCLI-D-22-0569.1
Ó 2023 American Meteorological Society. For information regarding reuse of this content and general copyright information, consult the AMS Copyright
Policy (www.ametsoc.org/PUBSReuseLicenses).

C HAN E T A L . 22051 APRIL 2023

�"!B��A�A!�(!B�3(��2"C2"���:3"2"(�� 7!"�2A:! �2 ��06�� :�2��/6"C:�6#�)�1 2BA�6 A:�2A6��)�
!D �!2�6�� �������� �	 ��
��10�

https://orcid.org/0000-0002-8573-5115
https://orcid.org/0000-0002-8573-5115
https://doi.org/10.1175/JCLI-D-22-0569.s1
https://doi.org/10.1175/JCLI-D-22-0569.s1
mailto:duo.chan@whoi.edu
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses
http://www.ametsoc.org/PUBSReuseLicenses


based air temperatures (SATs) could be biased due to urbaniza-
tion (Karl et al. 1988) or changes in instrumentation (Trewin
2010), they are generally estimated to have higher quality than
early oceanic measurements because SATs have more consis-
tent measurement techniques (Jones 2016). We expect SATs to
be indicative of nearby SSTs, but the two temperatures could di-
verge for many reasons, including but not limited to differences
in radiative absorption and emission, evaporation, heat capacity,
and sampling height. Orography and patterns of atmospheric
circulation could also influence differences between SATs and
SSTs. To account for such differences, Cowtan et al. (2018)
scaled SATs linearly using a globally uniform factor, estimated
by matching global-mean trends of their corrected SSTs and
HadSST3 (Kennedy et al. 2011) after the 1970s. Although such
a simple scaling factor may be feasible for global mean esti-
mates, it is likely insufficient to account for regional differences
between SATs and SSTs. Moreover, different heat capacities be-
tween air and water imply a frequency dependence in the ratio
of variability between SATs and SSTs (Barsugli and Battisti
1998).

These considerations suggest that an energy-balance model
(EBM) could be a useful way of inferring SSTs from SATs.
Barsugli and Battisti (1998) proposed a linearized model to
study the power spectra, total variance, and lag covariance be-
tween MATs and SSTs in midlatitudes. This model was also
extended to account for wind-driven forcing (Lee et al. 2008)
and advective processes (Saravanan and McWilliams 1998).
These coupled EBMs provide a simple but physical frame-
work for intercalibrating SSTs and air temperatures. In this
paper, we explore the degree to which such a physically based
model of air–sea coupling improves the inference of SSTs
from nearby coastal SATs. Comparing SAT-inferred SSTs
with the most up-to-date SST estimates, we also explore im-
plications for further improving the quality of historical Earth
surface temperatures at global and regional scales.

2. Data and methods

a. Data

1) OBSERVATIONAL STATION TEMPERATURES

Station-based land air temperatures (SATs) are from weather
stations compiled within the monthly resolution Global Histori-
cal Climatology Network (GHCNm) version 4 (Menne et al.
2018a). These stations have undergone a homogenization pro-
cess (Menne and Williams 2009) involving comparison of obser-
vations relative to neighboring stations (Menne et al. 2018b), but
we also analyze the sensitivity of results using the unhomogen-
ized version. We identify stations that are within 10 km of the
nearest coast using the GHCN metadata compiled by Cowtan
et al. (2018). Arctic stations poleward of 608N and stations in the
Baltic and Mediterranean region (288–908N, 08–528E) are ex-
cluded on account of not being representative of open ocean
conditions (Cowtan et al. 2018). In total, we identify 3111 coastal
stations that are, on average, 2 km inland from a coast (Fig. 1).

SAT anomalies are computed relative to a climatological
period of 1982–2014, an interval coinciding with the availabil-
ity of a high-resolution SST climatology (Reynolds et al.

2007). Anomalies are calculated if an SAT station has at least
16 years of data that each contains at least 6 months of data
during the climatological period. In total, there are 1700 sta-
tions whose SATs satisfy these criteria, which we call tier-1
stations (Fig. 1a). Anomalies for other land-temperature sta-
tions are estimated using a technique adapted from a station
homogenization protocol (Menne and Williams 2009) that is
detailed in appendix A. Using this method, we calculate
anomalies for 1340 more stations, which we call tier-2 stations
(Fig. 1b).

2) OBSERVATIONAL SSTS

Observational SSTs are from HadSST4 (Kennedy et al.
2019b), a dataset containing estimates of monthly SST anom-
alies at 58 resolution. HadSST4 uses marine profile measure-
ments to adjust SST biases after the 1940s (Kennedy et al.
2019a), although these estimates are subject to uncertainties
in marine profiles (Meyssignac et al. 2019). We use the me-
dian of a 200-member HadSST4 ensemble to estimate param-
eters of an EMB that we then use to infer near-coast SSTs
from SATs (see section 2b). Estimating EBM parameters re-
quires matching HadSST4 with GHCNmV4 SAT data after
1960. Specifically, we sample HadSST4 at the grid box con-
taining each SAT station. If an SST estimate is not available,
we infill using the nearest neighbor SST grid or, if no adjoin-
ing grid box has available data, set SSTs as missing.

FIG. 1. Coastal stations used in this study. Coastal weather sta-
tions from GHCNmV4 are grouped into two tiers. (a) Tier-1 sta-
tions (blue) have sufficient data coverage between 1982 and 2014,
and we calculate their temperature anomalies by subtracting the
climatological average over 1982–2014. (b) Tier-2 stations (orange)
have insufficient data coverage during the climatological period,
and we evaluate their anomalies by pairing and matching tempera-
ture anomalies with nearby neighbors during overlapping months.
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When comparing SAT-inferred SSTs with HadSST4 along
global coasts (see section 4a), quantifying uncertainty in each es-
timate becomes crucial, especially before the 1940s when uncer-
tainties associated with bias corrections are high. In addition to
the bias correction uncertainties represented in the HadSST4
200-member ensemble, we also account for uncertainties arising
from sampling and random measurement error by perturbing
each member once using independently drawn samples from a
zero-mean Gaussian distribution, where standard deviation esti-
mates are provided for each grid box at monthly resolution
(Kennedy et al. 2019b). Further, uncertainties associated with
ship-level biases are accounted for by drawing spatially corre-
lated uncertainties using monthly resolution covariance matrices
(Kennedy et al. 2019b).

3) CLIMATE MODEL SIMULATIONS

Simulations from the Coupled Model Intercomparison
phase 6 (CMIP6; Eyring et al. 2016) are used to evaluate the
skill of our proposed methodology and estimate uncertainties
of inferred near-coast SSTs. Specifically, we use surface air
temperature (tas) and sea surface temperatures (tos) from the
r1i1p1f1 member of 17 models: ACCESS-CM2, CAMS-CSM1-0,
CMCC-CM2-SR5, E3SM-1-1, EC-Earth3, EC-Earth3-Veg, EC-
Earth3-Veg-LR, FGOALS-f3-L, FGOALS-g3, FIO-ESM-2-0,
INM-CM4-8, INM-CM5-0, MIROC6, MRI-ESM2-0, NESM3,
NorESM2-LM, and NorESM2-MM. Historical all-forcing and
SSP5.85 experiments are concatenated to cover 1850–2020. Sim-
ulations, whose original resolution ranges from 0.78 to 2.58 for
the atmosphere and from 0.258 to 18 for the ocean, are regridded
to a common 18 resolution using bilinear interpolation and sam-
pled at locations of coastal weather stations. Sampled SATs and
SSTs are further masked to have the same coverage as found in
corresponding observations.

b. Coupled air–sea model

For purposes of inferring SSTs from SATs, we consider a
coupled EBM framework based on Barsugli and Battisti (1998),

T′
a " bT′

s ,

ga
­T′

a

­t
" 2laT

′
a + ka(T′

o 2 T′
a) + F′,

go
­T′

o

­t
" 2loT

′
o + ko(T′

a 2 T′
o) + kF′,

(1)

where Ts, Ta, and To denote, respectively, station air tempera-
ture, marine air temperature, and sea surface temperature;
F represents stochastic heating from radiation or dynamical
forcing; primed quantities, i.e., X′, denote anomalies relative
to a climatological state; and g, l, and k denote heat capacity,
damping, and thermal coupling efficiency, respectively.

This model differs from that of Barsugli and Battisti (1998)
in two respects. First, to account for the possibility that temper-
ature anomalies are amplified over land (Byrne and O’Gorman
2018), we distinguish Ts over the land from Ta over the ocean
and assume that anomalous Ts and Ta variations are proportional
to each other with coefficient b. Second, we append a kF′ term
to the SST equation, equivalent to that used by Lee et al. (2008)

to represent dynamical fluxes associated with wind-induced
Ekman transport. In the present context, kF′ represents radiative
forcing acting on both land and ocean that have different albedos
and evaporative cooling, or a dynamical heat flux convergence
that is correlated between the atmosphere and the ocean, though
not necessarily of the same magnitude.

Combining terms and rearranging Eq. (1) gives an expres-
sion for the time rate of change of T′

o,

­T′
o

­t
" A

­T′
s

­t
2 BT′

o + CT′
s , (2)

whereA5 bkga/go is the relative sensitivity of stochastic external
forcing between air and sea temperatures,B5 (lo1 ko1 kka)/go
is effective thermal restoring, and C 5 b(kla 1 ko 1 kka)/go is
effective ocean–atmosphere heat exchange.

Our overall approach is fitting Eq. (2) to recent observa-
tions and using estimated parameters A, B, and C to infer
coastal SSTs from nearby station temperatures throughout
the historical period. Specifically, we use data from the
1960s to fit parameters because we expect HadSST4 to be
more reliable after conductivity–temperature–depth (CTD)
profiles became available (Meyssignac et al. 2019). The fit-
ting minimizes the mean squared difference between
HadSST4 and predicted SSTs using Eq. (2). Details of how
to integrate Eq. (2) using monthly SATs are in appendix B.
Observational temperatures are binned to 108 resolution be-
fore fitting. Although fitting to individual stations is noisier
because of observational error and missing values, results
from individual stations give consistent estimates after fitted
parameters are averaged to 108 grids.

3. Results

a. Exploring the behavior of the intercalibration model

There are two instructive limiting cases associated with Eq. (2).
If A is large such that A(­T′

s/­t) dominates over 2BT′
o +CT′

s ,
SATs are forced by heat fluxes from the ocean and closely
follow SSTs because of the air’s small heat capacity. Under
this limit, Eq. (2) predicts SSTs as a linear rescaling of SATs,
consistent with the method used by Cowtan et al. (2018).
This limiting case is more prevalent at lower latitudes, for ex-
ample, in the eastern equatorial Pacific (EEP; Fig. 2a) where
SATs and SSTs (black and gray) show a nearly one-to-one cor-
respondence. The best fit of Eq. (2) to observed temperatures
at this site yields an A of 0.65, whereas B is 2.5 3 1027 s21 and
C is 2.4 3 1027 s21. As expected for this regime, EBM-fitted
SSTs (orange) are consistent with linearly scaled SATs (blue).

In the other limiting case, A is small, and Eq. (2) takes the
form of a Hasselmann-type model (Hasselmann 1976). In our
model, this regime is associated with atmospheric driving of SST
anomalies, where the thermal inertia of the ocean mixed layer
leads to an increasing ratio of spectral energy between SATs and
SSTs with increasing frequency. This regime is more representa-
tive of high latitudes, as seen, for example, in coastal Alaska
(Fig. 2c), where SATs have a variance that is 5.9 times that of
SSTs. The best fit yields an A of 0.04, B of 0.8 3 1027 s21, and
C of 0.5 3 1027 s21. EBM-fitted SSTs (orange line in Fig. 2c)
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correlate with observed SSTs (gray line) with a Pearson’s r of
0.79, as compared to r 5 0.49 for linearly scaled SATs (blue
line). Fitted SSTs also capture the observed 2-month lag between
SATs and SSTs (p/3 phase lag at the period of a year, Fig. 2d),
in contrast to the near in-phase behavior found at the eastern
equatorial Pacific site (Fig. 2b). Phase estimates are made using a
multitaper coherence technique (Percival et al. 1993). This abil-
ity of our EBM to resolve phase differences is another ad-
vance over the linear scaling method. Note, however, that
distinct from the original Hasselmann model where SST
phase lags increase monotonically with frequency, the lag of
SST behind SAT in our model peaks near a period of six
months because A is not strictly zero and the component
that SSTs are in phase with SATs, i.e., the small linear scal-
ing solution, dominates the dampened Hasselmann-model
solution at very high frequency.

We note a limitation of our model associated with the fact
that we prescribe a single fixed ocean heat capacity, whereas
ocean mixed layer depth varies, leading to differences in heat
storage and air–sea exchanges (Deser et al. 2003). This limita-
tion is somewhat mitigated, however, in that winter conditions
at high latitudes show anomalies having larger variance and
appear to be more important than summer conditions in terms

of determining annual average anomalies. At the Alaska site,
wintertime SAT variance is 10.4 times larger than the summer-
time counterpart (Fig. 2c). Moreover, the autocorrelation of
observed SSTs (HadSST4) remains higher than 0.5 subsequent
to the winter season and then decreases starting the next win-
ter season (Fig. 3a), consistent with large wintertime SAT
anomalies resetting the memory of the coupled air–sea tem-
peratures. To further demonstrate the important role of winter-
time SAT anomalies, we predict SSTs using SATs in only warm
(15 March to 15 October) or cold (15 October to 15 March of
the next year) months. When using cold-month SATs, we set
SATs in warm months equal to their value on 14 March in the
corresponding year, and vice versa. SSTs predicted using cold-
month SATs (blue in Fig. 3b) have a Pearson’s correlation (r)
of 0.79 with the full model prediction (EBM-fitted SST; gray), a
value that is significantly higher (p, 0.05) than the correlation
of 0.51 for warm-month predictions (orange). That winter-
based predictions are more skillful is also clear in individual
calendar months (Figs. 3c,d).

b. Testing model skill using CMIP6 simulations

Before applying the EBM to infer SSTs from observed
SATs, we examine its skill in the context of CMIP6

FIG. 2. Two limiting cases of SAT–SST coupling. (a) Observed coastal SAT (black, CHGNmV4) and SST (gray,
HadSST4) anomalies in a 108 grid box centered on 158S, 758W (near the eastern equatorial Pacific). Also shown are
SAT-inferred SSTs using linear scaling (blue) and our EBM [Eq. (2); orange]. Anomalies are relative to 1982–2014
climatology and offset vertically for visibility. (b) Phase lags between monthly SST and SAT anomalies. Individual
curves show lags for observed SSTs (black), linearly scaled SATs (blue), and EBM-based SAT-inferred SSTs
(orange). Shadings show corresponding 95% c.i. (c),(d) As in (a) and (b), respectively, but for a grid box near
Alaska (centered on 558N, 1558W).
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simulations. Fitting our model to CMIP6 simulations between
1960 and 2020, we first consider the spatial pattern of fitted pa-
rameters. Parameter A decreases from approximately 0.5 in the
deep tropics to 0.1 in the extratropics (Figs. 4a,d), indicating a
shift from the Cowtan et al. (2018) limit in lower latitudes to the
Hasselmann limit in extratropics (Fig. 2). Parameters B and C
have lower values in both the extratropics and the deep tropics
(Figs. 4e,f). Such a latitudinal dependence of parameters B and
C can be understood, at least partly, in the context of an air–sea
bulk formula, where the product of wind speed and humidity
deficit determines the efficacy of latent heat exchanges and has
the highest values in subtropics.

Consider the parameter B, which equals (lo 1 ko 1 kka)/go.
Air–sea interaction terms containing k are generally an order
of magnitude higher than direct radiative damping, lo (Barsugli
and Battisti 1998), and air–sea exchange is generally dominated
by latent, as opposed to longwave radiative or sensible heat
fluxes. Using the bulk formula (Businger 1975), evaporation
can be parameterized using a transfer coefficient (C), surface
wind speed (U), and differences in the specific humidity at the
air–sea interface (qa 2 qo),

E " CU(qa 2 qo): (3)

Although the transfer coefficient C depends on background
stability and surface roughness (Edson 2008), we make sev-
eral simplifying assumptions. First, it is not unreasonable to
assume a constant C when the monthly wind speed is below
20 m s21, as is generally the case. Second, assuming constant

relative humidity allows for inferring specific humidity from
temperature using the Clausius–Clapeyron equation (e.g.,
following the formula provided by Bolton 1980). Finally, av-
eraging U allows representing anomalous latent heat flux
E′ as

E′ ~ U
­q*
­T

∣∣∣∣
T
(T′

a 2 T′
o), (4)

where U­q*/­T|T is an approximation of k, and ­q*/­T|T
denotes the sensitivity of saturation specific humidity to
temperature evaluated at mean temperature T . Whereas
­q*/­T|T decreases with latitude as the mean temperature
drops, U increases with latitude as a consequence of
atmospheric storminess. A combination of relatively high
temperature and surface wind speed maximizes E in the
subtropics, whereas lower winds explain a dip in fitted B
and C parameters in the deep tropics. Also note that in the
Northern Hemisphere extratropics the estimated values of
parameters B and C, 1–2 3 1027 s21 (Figs. 4b,c), are consis-
tent with the midlatitude values diagnosed by Barsugli and
Battisti (1998) from a two-layer GCM.

A cross-validation technique is used to evaluate the skill of
Eq. (2) in predicting out-of-sample SSTs simulated by CMIP6
models. Specifically, for each 108 grid box, we leave out
21 years of data (1960–80 or 2000–20) and infer SSTs using
parameters that are fitted on the remaining 40 years (1981–2020
or 1960–99). We quantify predictive skill using the mean
squared error (MSE) and the squared Pearson’s correlation (r2)

FIG. 3. Large wintertime SAT perturbations drive high-latitude SST variations. (a) The autocorrelation of SSTs
(HadSST4) near the Alaska site in Fig. 2c as a function of calendar months (x axis) and lag in time (y axis). (b) SSTs
predicted using cold-month SATs (blue), warm-month SATs (orange), and all-year SATs (full model, gray). (c) Scat-
ter of predicted SSTs using cold-month SATs only (y axis) vs using all-year SATs (x axis) in January (blue) and July
(red). (d) As in (c), but for using warm-month SATs only.
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between SAT-inferred and simulated SSTs. Compared with us-
ing raw SATs, our EBM decreases MSE by an average of 49%,
ranging from 18% in the deep tropics to 80% in the Northern
Hemisphere extratropics (Figs. 5a,c). Increases in r2 are largest
in the Northern Hemisphere extratropics, where values increase
by an average of 50% (Figs. 5b,d).

A concern is that the skill of Eq. (2) could degrade during ear-
lier periods because parameters may change with climate. For
example, processes involving ocean warming and wind stilling
could affect ocean mixed layer depth and the sensitivity of SSTs
to air–sea heat fluxes (Kjellsson 2015). Other changes in atmo-
spheric circulation could also affect air–sea coupling (Thomas
et al. 2008; Vautard et al. 2010). We compare parameters fitted
to CMIP6 simulations between 1900–60 and 1960–2020 and find
that they lie near a one-to-one relationship, with a spread that is
consistent with the uncertainty estimated by bootstrapping grid

boxes (Figs. 4g–i). We also use parameters fitted to 1960–2020
simulations to infer earlier SSTs (Fig. 6). The multimodel mean
difference in the warming rate between coastal-mean SAT and
SST is 0.078C ([0.058, 0.088C]) century21 from 1880 to 1960,
whereas this difference is only 0.0068C ([20.0038, 0.0148C])
century21 between SAT-inferred and simulated SSTs (Figs. 6a–c).
Numbers in brackets report 95% confidence intervals (c.i.) if
not otherwise noted. The variance of detrended multimodel
mean air–sea temperature differences is also reduced by 67% in
the early twentieth century. These results support the appli-
cation of parameters fitted from recent observations to infer
historical SSTs.

Analyses of CMIP6 simulations also permit estimating the
uncertainties in SAT-inferred SSTs relative to simulates SSTs.
This evaluation allows for errors associated with the simplicity
of our EBM, including components in SSTs that cannot be

FIG. 4. CMIP6-based EBM parameters. (a)–(c) Multimodel medians of fitted parameters (a) A, (b) B, and (c) C in Eq. (2). Parameters
are estimated using 1960–2020 simulations. (d)–(f) Latitudinal variations of corresponding EBM parameters in (a)–(c). Boxplots show dis-
tributions of multimodel medians across longitudes, where the box denotes interquartile range (IQR), whiskers go from the end of IQR
to the furthest observation within the whisker length (1.5 3 IQR), and markers denote outliers. The color shading indicates values of the
x axis. (g)–(i) Parameters based on 1960–2020 simulations (y axes) vs those based on 1900–60 simulations (x axes). Markers are multimo-
del median values at individual 108 boxes, and error bars are interquartile ranges across CMIP6 GCMs. Solid lines are ordinary least
squares fits, and shadings denote the 95% c.i. estimated by a bootstrapping technique that resamples 108 boxes 100 times with replace-
ment. Red dashed lines denote the one-to-one relationship.
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fully explained by SATs such as ocean heat flux convergence.
The average uncertainty of inferred SSTs, evaluated at 108 reso-
lution, is 0.368C (one standard deviation) at monthly resolution
and 0.238C at annual resolution. When averaged over the global
coastline, the standard error at annual resolution shows clear
spikes exceeding 0.18C (one standard deviation) between 1850
and 1880 and then decreases to lower than 0.058C after the
1880s (Fig. 6d). This error scales inversely with the square root
of the number of grid boxes with observations, indicating that
the interannual error structure is mainly a function of station
coverage. Such an estimate indicates the intrinsic limit of using
coastal and island station temperatures under historical station
coverage, even given sufficiently accurate data. This result sug-
gests that global SST estimates are potentially achievable at an
accuracy of better than 0.058C, a goal set by Kent and Berry
(2008), if coastal inferences could be used to estimate SST
biases over the open ocean. Before the 1880s, however, it ap-
pears that such a goal could not be met unless more historical
station records are rescued. Note that such an error estimate is
a lower bound because SAT records remain uncertain (to be
discussed in section 4b). Moreover, propagating coastal esti-
mates of SST biases into the ocean interior introduces
additional uncertainty, which is relevant for quantifying the un-
certainty of global mean temperatures, but is beyond the scope
of this current paper.

c. Observational inference of SSTs

We next fit our model using homogenized SATs and
HadSST4 observations after averaging coastal data in 108 3 108
boxes (Fig. 7). Observationally inferred parameters show consis-
tent patterns with those obtained from CMIP6 simulations
(cf. Fig. 7 to Fig. 4), but the magnitude of observational-inferred
values of A and C are, on average, 26% smaller. Although this
discrepancy in the magnitude of parameters could arise from ob-
servational noise and associated regression dilution effects
(Fuller 2009), we favor an explanation involving the difference
between local air temperature measured by stations and grid
averages simulated by CMIP6 CGMs.

In Eq. (1), we assumed Ta 5 bOBSTs, where the subscript
“OBS” denotes quantities for observational data, and we ex-
pect bOBS to be smaller than one on account of land–sea con-
trast (Byrne and O’Gorman 2018). In CMIP6 simulations,
Ts is a grid average of SAT and marine air temperatures, such
that the effective b is bCMIP 5 bOBS/[f 1 (12 f)bOBS], where
f is the land fraction adjacent to a station. We thus expect
bCMIP6 to be closer to one and hence fitted A and C parame-
ters to be higher than observational estimates. The differ-
ence between bOBS and bCMIP6 also explains the fact that
the ratios of AOBS to ACMIP6 and COBS to CCMIP6 increase
with land fraction, f (solid lines in Fig. 8a). Using a bOBS of

FIG. 5. Prediction skill of the EBM when applied to CMIP6. Out-of-sample predictions are performed using a
cross-validation technique, and predictive skills are quantified using (a),(b) MSE and (c),(d) r2 for monthly tempera-
tures. Statistics are averages over the two cross-validation members and the 17 CMIP6 models. Panels show maps of
(a),(c) absolute changes and (b),(d) fractional changes across latitudes. Boxplots in (b) and (d), as in Fig. 4d, show dis-
tributions across longitude bands.
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0.65 (dashed line in Fig. 8a) qualitatively reproduces the di-
agnosed relationship between parameter ratio and the land
fraction. This explanation is also consistent with the fact
that parameter B, whose definition does not involve b,
is consistently inferred between observations and CMIP6
simulations.

The comparison between fitting our model to observed and
simulated temperatures has implications for properly inferring
SSTs from SATs. Cowtan et al. (2018) used f to calculate a lin-
ear scaling factor S for station temperatures: S 5 0.86 2 0.25f.
But, whereas the ratio of SAT and SST warming increases
with f in GCM simulations (Cowtan et al. 2018), we do not ex-
pect for an f corresponding to a model-based gridding conven-
tion to apply to observations. Indeed, we find no relationship
between the observed air–sea warming ratio and f in observa-
tions (Fig. 8d). That said, more detailed modeling accounting
for proximity to the coast, topography, and other local meteo-
rological factors would presumably further improve inferences
of SSTs, but this level of detail is beyond the scope of the pre-
sent analysis.

Applying the same cross-validation analysis as in section 3b
to 1960–2020 observations gives improved MSE and r2

relative to comparing SATs and SSTs directly (Fig. 9), and
whose patterns and magnitudes are consistent with CMIP6
(Fig. 5). We also evaluate improvements relative to the linear
scaling used by Cowtan et al. (2018). Linear scaling decreases
MSE relative to raw SATs by an average of 24%, with a range
of 11%–42% across latitude bands (Figs. 9a,d). Equation (2)
further decreases MSE relative to linear scaling by an average
of 24% (Figs. 9b,e). Improvements primarily occur in the
Northern Hemisphere extratropics, where the Hasselmann
limit of our model better applies, reducing MSE by more than
60% beyond that obtained by linear-scaled SATs. Smaller im-
provements in MSE of 6% are found in lower latitudes, where
air–sea coupling approaches the Cowtan et al. (2018) limit
(Fig. 2a).

4. Discussion

Inference of SSTs from SATs provides an opportunity to
compare patterns of differences in near-coast SSTs between
HadSST4 and those inferred from coastal SATs. These pat-
terns will, however, be shown to be sensitive to the use of ho-
mogenized versus unhomogenized coastal SATs. Although

FIG. 6. Coastal-mean air and sea temperature anomalies in CMIP6 simulations. (a) Simulated
SATs (green) and SSTs (blue) averaged over global coasts for multimodel means (curves) and
the range across CMIP6 GCMs (shading). Anomalies are relative to 1982–2014 climatology.
(b) As in (a), but for SAT-inferred SSTs (green) and simulated SSTs [blue, the same as (a)].
The inference of SSTs before the 1960s uses parameters estimated from 1960 to 2020 simula-
tions. (c) As in (a), but for SATminus SST differences. Our EBMmethod (orange) successfully
removes differential air–sea warming and variability (gray). (d) The standard uncertainty
(black) of temperature differences between SAT-inferred and simulated SSTs across CMIP6
GCMs. Also shown is the inverse of the square root of the number of monthly grid boxes hav-
ing SAT observations in a year (1/

"""
N

√
; blue).
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SATs and SSTs are both subject to systematic uncertainties,
sources of these uncertainties are distinct, and it appears feasi-
ble to intercalibrate temperatures within and across SAT and
SST archives simultaneously to provide more accurate esti-
mates of global temperature variability.

a. Patterns of offsets between near-coast HadSST4 and
SSTs inferred from homogenized SATs

Coastal average SSTs inferred from observational SATs
are consistent with HadSST4 after the 1960s, but these esti-
mates are inconsistent prior to 1960 (blue and black curves in
Fig. 10). The RMSE between annual coastal-mean observa-
tional SSTs and inferred near-coast SSTs based on homoge-
nized SAT records is 0.038C after 1960, whereas between 1880
and 1960 the RMSE is 0.138C (Fig. 10). During World War II
(1941–45), coastal HadSST4 shows a warm anomaly of 0.218C

([20.048, 0.498C]) compared with the surrounding 10 years.
Such a warm anomaly is not seen in SAT-inferred coastal
SSTs and has been shown to arise from uncorrected biases
associated with shifting instruments between buckets and
engine-room intakes (Thompson et al. 2008; Chan and Huybers
2021). Nighttime bucket SSTs during World War II also appear
overly warm, possibly on account of reading bucket water tem-
peratures indoors to prevent detection by enemy vessels
(Folland et al. 1984; Chan and Huybers 2021). Systematic
offsets are also found in the early twentieth century, with SAT-
inferred SSTs being 0.098C ([0.018, 0.178C]) warmer than indi-
cated by HadSST4 during 1900–40.

Coastal HadSST4 and SAT-inferred SSTs also show a vari-
ety of regional discrepancies, including the margins of the
North Atlantic (NA) and equatorial Pacific (EP). Over 1900–
40, coastal HadSST4 is, on average, 0.258C ([0.148, 0.368C])

FIG. 7. Observation-based EBM parameters. (a)–(f) As in Fig. 4, but for parameters estimated from observational
temperatures.
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warmer than inferred SSTs along NA coastlines (Fig. 11c).
NA coastal SSTs in HadSST4 show consistent evolution
with the so-called Atlantic multidecadal variability (AMV;
Schlesinger and Ramankutty 1994). If we define a coastal
AMV index as the detrended difference in the mean SST be-
tween NA coasts and global coasts, this coastal index in
HadSST4 has a correlation of 0.81 with an AMV index typically
defined using HadSST4 including open oceans (Trenberth and
Shea 2006). For this calculation both the NA and global times
series are smoothed using an 11-yr running average and the be-
ginning and ending 5 years are excluded. Note that both the
coastal and the full AMV index calculated from HadSST4 have
standard deviations of 0.118C over 1886–2015, again with 11-yr
smoothing. Calculating the AMV index using SAT-inferred
coastal SSTs, however, results in an index with a standard devia-
tion of only 0.068C, suggesting less pronounced Atlantic multi-
decadal SST variability. The present findings appears consistent
with other SST corrections that lead to decreased warming over
the North Atlantic using the early twentieth century (Chan et al.
2019). Results are also qualitatively consistent with decadal
variations in North Atlantic SSTs during the past millennium

being mainly forced by volcanic eruptions, suggesting a lower
contribution from internal variability than previously estimated
(Mann et al. 2021).

The detected differences in the EP may also have implica-
tions for trends in equatorial Pacific SST gradients (Fig. 11a).
Whereas differences between inferred SSTs and HadSST4
along the western EP are indistinguishable from 08C [20.168,
0.178C] over 1900–40 (95% c.i.; Fig. 11d), inferred SSTs are
0.588C ([0.318, 0.878C]) warmer along the eastern EP (Fig. 11e),
suggesting a possible bias in HadSST4 toward a more La Niña–
like state during the early twentieth century. Furthermore,
our inferred near-coast SSTs based on homogenized SATs
are better in line with CMIP6 simulations along the eastern
EP (Fig. 11). Existing estimates of observed SSTs show a
strengthened west-minus-east SST gradient across the equatorial
Pacific throughout the twentieth century that is counter to trends
in general circulation model simulations (Coats and Karnauskas
2017). Seager et al. (2019) suggested that a cold bias in the equa-
torial cold tongue in general circulation models could explain the
discrepancy in trends. If the difference we find along the eastern
EP is informative of SST biases in the Niño-3.4 region, our

FIG. 8. Differences in fitted parameters between observations and CMIP6 simulations. (a) The ratio between
observational and CMIP6-based parameter estimates (y axis) generally increases with land fraction adjacent to
a station (f, x axis). Individual curves are for parameters A (orange) and C (blue), and shadings are the inter-
quartile range across 108 grid boxes within 10% bins of f. (b) The ratio between observational and CMIP6-
based estimates of parameter A (shown in log scale). (c) The mean f within each 108 grid box. (d) Warming
ratio between annual SST and SAT as a function of f. Warming is the average of linear trends over 121 combi-
nations of starting and ending years, where the starting year ranges between 1960 and 1970 and the ending year
between 2010 and 2020. Shown are the median across all stations within a 10% bin of f (curve) and the associ-
ated interquartile range across stations (shading). Bars at the bottom indicate the number of stations within
each bin.
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results of a historically warmer eastern EP would suggest an
even greater difference between models and observations.

The degree to which corrections to SSTs along the EP coast-
line have implications for SSTs in the interior EP is unclear.
Even if the discrepancy between coastal temperatures reflects
biases in HadSST4, boundary currents and nearshore upwell-
ing dynamics may generate local environments that are dis-
tinct from interior ocean conditions. Moreover, SST biases
also depend on bucket types and measurement protocols
(Kent et al. 2010) and could be ship specific (Kennedy et al.
2012). The eastern EP is historically sparsely sampled, with
the Niño 3.4 region primarily observed by ships traveling from

coastal California around South America. SST observations
along coastal South America are primarily from ships whose
paths are more localized (Freeman et al. 2017). A detailed
analysis of coastal biases and ship tracks is warranted for pur-
poses of better understanding trends in the Niño-3.4 region.

b. Homogenized versus unhomogenized SATs

Our main line of analysis is sensitive to whether homogenized
or unhomogenized SATs are used. Homogenized SATs, as used
previously throughout this work, refer to station records that are
adjusted against neighboring stations through an algorithm that

FIG. 9. Prediction skill of the EBM when applied to observational records. As in Fig. 5, except (a)–(d) MSE de-
creases are shown in two steps}(a),(b) changes from using raw SATs to linearly scaled SATs and (c),(d) further
changes from using linearly scaled SATs to EBM-based SAT-inferred SSTs. (e),(f) Changes in r2. Note that Dr2 are
only shown as differences between using raw SATs and EBM-based SAT-inferred SSTs because raw and linearly
scaled SATs yield the same r2.
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detects stepwise changes in time series (Menne and Williams
2009), whereas unhomogenized station temperature records in-
volve error and outlier exclusion but no check for heterogeneity
across stations. Adjustments are inferred to correct for the
effects of urbanization, as well as changes in measurement pro-
tocols from reading temperatures at fixed hours in a day to
once-per-day readings of maximum and minimum temperature
during the past 24 h. Homogenized and unhomogenized records
are similar since 1960, but continental mean temperature esti-
mates from homogenized records are 0.28–0.38C colder during
the early twentieth century than unhomogenized records
(Menne et al. 2018b). Note that the larger discrepancies in the
earlier interval may also related to the fact that records are nor-
malized to zero mean between 1982 and 2014.

Cowtan et al. (2018) suggested that the SAT homogenization
algorithm could artificially increase coastal trends on account of
coastal regions warming less than inner continental regions. Our
analysis of GHCNmV4 adjustments, however, shows no depen-
dence between adjustment magnitudes and distance to coast
(Fig. S1 in the online supplemental material). Rather, differ-
ences in temperature trends between 1900 and 2020 be-
tween homogenized and unhomogenized SATs are largest
in the tropics and midlatitudes, especially in parts of the
United States and China (Fig. S1). As further points of com-
parison, we note that the continental-mean SAT estimates
from Berkeley Earth (Rohde et al. 2013) and CRUTEM5
(Osborn et al. 2021) give continental-mean SAT anomalies
during 1900–40 that are, respectively, 0.058 and 0.158C
warmer than homogenized GHCNmV4 estimates and, thus,
reside midway between the homogenized and unhomogen-
ized GHCNmV4 versions. A more detailed comparison of
land station temperatures, which involves reexamining charac-
teristics of individual stations and networks, appears useful for
further reducing systematic uncertainties in land temperature es-
timates at global and regional scales. Although such an analysis
is beyond the scope of this study, systematic differences across
individual continental temperature estimates of as much as 0.
28C shows that calibrating SSTs to current versions of SATs will
not, of itself, substantially decrease systematic uncertainties.

It follows that SSTs inferred using homogenized or unho-
mogenized SATs are consistent after the 1960s, but SSTs
based on the unhomogenized GHCN records are warmer by
an average of 0.208C from 1900 to 1940, implying even larger
discrepancies with HadSST4 (red versus blue in Fig. 10). Some
conclusions regarding SST trends are nevertheless possible re-
gardless of calibration using homogenized or unhomogenized
SATs. Both versions of inferred SSTs are warmer during the
early twentieth century than HadSST4. Notable is that inferred
SSTs show warming from 1880 to 1910 at a rate of 0.628C ([0.418,
0.898C]) century21 for homogenized and 0.238C ([0.028, 0.508C])
century21 for unhomogenized SATs, whereas HadSST4 shows a
cooling trend of 21.038C ([21.188, 20.778C]) century21. If the
SAT estimates are less biased than those directly from SSTs,
they imply a smaller contribution from internal variability to
global mean temperature, a conclusion in keeping with other re-
cent assessments of historical temperature trends (Folland et al.
2018; Haustein et al. 2019).

It is also possible to make some inferences regarding pat-
terns of SST trends. The variability in the coastal AMV index
(discussed above) also decreases to 0.068C when using unho-
mogenized SATs. EEP SSTs inferred from unhomogenized
SATs indicate mean coastal EEP SST over 1900–30 is 0.338C
([0.048, 0.628C]) warmer than 1990–2020 (Fig. 10f). On account
of the overall forcing associated with increasing greenhouse
gases, unhomogenized coastal EEP SATs during the early
twentieth century may appear to be too warm. In CMIP6 mod-
els, coastal EEP SST anomalies over 1900–30 range from 0.308
to 0.778C colder than 1990–2020 averages. More generally, dif-
ferences relative to HadSST4 using homogenized or unhomo-
genized inferences of SSTs between 1900 and 1940 have a
spatial correlation of 0.66 (Figs. 11a,b), indicative of the fact
that using either version of SATs leads to consistent patterns
of offsets.

5. Conclusions

We show that a coupled EBM framework allows for the
inference of near-coast SSTs using air temperatures from

FIG. 10. Coastal mean HadSST4 and SAT-inferred SSTs. HadSST4 (gray) and EBM-based
SAT-inferred SSTs (colors) generally agree after the 1960s but diverge before the 1950s. Inferred
SSTs are based on homogenized (blue) or unhomogenized (red) GHCN station temperatures.
Shading denotes one standard deviation errors. Also shown are 17 CMIP6 simulation (thin gray
lines). Anomalies are relative to 1982–2014 climatology.
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coastal weather stations. Our method captures the dynamics
of regimes of air–sea temperature coupling, and is skillful
when tested on CMIP6 simulations and recent observations.
SAT-inferred SSTs are, however, inconsistent with near-coast
HadSST4 estimates at both global and regional scales. These
results provide a basis for better intercalibrating SATs and
SSTs, although several caveats, discussed below, are worth
highlighting.

Our EBM method has not yet accounted for seasonality.
Seasonal variations in the mixed layer depth, atmospheric
circulation, and local temperatures could vary parameters in
Eq. (2) and hence the inferred SSTs. For example, summer-
time extratropical SSTs warm faster than their wintertime
counterparts because of a shallower mixed layer. Although
our current method brings the trend of annual-mean SATs
into consistency with nearby SSTs, it does not capture the
seasonality in air–sea temperature differences. In future
work, it would be worthwhile to extend the EBM to account

for seasonality in order to obtain accurate long-term trends
in the seasonal cycle of SSTs.

The quality of the SST archive is heterogeneous because
different agents measure different parts of the ocean at
different times. That is, regionally varying SST biases
could arise from changing nations or groups of ships
that have distinct measurement characteristics (Chan and
Huybers 2019). To better estimate global temperatures, it
would be useful to diagnose systematic errors among indi-
vidual ships and land-based weather stations. A further
step in this direction would involve combining SAT-
inferred SSTs with a groupwise intercomparison method
(Chan and Huybers 2019, 2020). It may also be possible to
use the amplitude of the diurnal cycle of SST measure-
ments (Carella et al. 2018; Chan and Huybers 2021) and in-
dependent proxy records from corals (Pfeiffer et al. 2017)
to further constrain early-twentieth-century temperature
anomalies.

FIG. 11. Regional coastal HadSST4 and SAT-inferred SSTs. (a),(b) Maps of the differences between HadSST4 and
SAT-inferred SSTs over 1900–40, based on, respectively, homogenized and unhomogenized GHCN temperatures.
Differences that are insignificant from zero (p . 0.05) are crossed out. (c)–(e) As in Fig. 10, but for regional averages
over (c) the North Atlantic, (d) the western equatorial Pacific, and (e) the eastern equatorial Pacific.
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Finally, the systematic differences between SSTs inferred
from SATs and HadSST4 along coasts, together with an ap-
parent uncertainty associated with SAT homogenization of
0.28C at the global scale, indicates the need for further analy-
sis of systematic errors in SATs. Analysis and homogenization
of SSTs and SATs have generally been treated as independent
topics, but their proximity along the coast suggests that the
homogenization of both data sources could be performed
jointly in order to better estimate long-term warming rates
and constrain uncertainty in these estimates.
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APPENDIX A

Calculating Land Station Temperature Anomalies

SAT anomalies are computed relative to the climatologi-
cal period of 1982–2014. In addition to the availability of
high-resolution SST climatology, as stated in the main text,
this choice of climatological period also maximizes the num-
ber of tier-1 stations, for which anomalies are calculated
relative to the climatological mean of the target station
without referring to neighboring stations. The criteria of
tier-1 stations include having at least 16 years of data that
each contains at least 6 months of data during the climato-
logical period. The numbers of identified tier-1 stations are
1659, 1648, 1700, and 1651 for the period of 1960–90, 1970–
2000, 1982–2014, and 1990–2020, respectively.

Climatological anomalies for other land-temperature sta-
tions are estimated using a pairing-and-adjusting method
and are referred to as tier-2 stations. Specifically, we first
identify neighboring tier-1 stations within 300 km of a tar-
get tier-2 station. Monthly anomalies of the target tier-2 sta-
tion are adjusted to have the same average as the mean of
neighboring stations during overlapping years. Adjusted

tier-2 stations can serve as neighbors for unadjusted tier-2
stations, and our algorithm iterates between pairing and ad-
justing, thus allowing for estimating the mean of 1340 tier-2
stations. Applying the algorithm to CMIP6 simulations, we
estimate adjustment uncertainties for tier-2 stations to be
0.138C (one standard deviation), a value similar to that for
tier-1 stations (0.138C) because of noise suppression associ-
ated with averaging across multiple neighbors for most
tier-2 stations. Our results are qualitatively insensitive to the
choice of threshold for identifying neighbors. Using 200 or
400 km, respectively, results in using 72 fewer or 31 more sta-
tions. Differences in estimates of monthly anomalies for tier-2
stations that are common among all analyses have a standard
error of 0.118C.

APPENDIX B

Integrating SSTs from Monthly SATs

Fitting the model requires predicting SSTs given monthly
SATs. To better capture potential phase differences be-
tween SATs and SSTs, we integrate the model using a small
time step. Specifically, we first linearly interpolate monthly
SATs to infill missing values. The model is then integrated
at a nominal 12-h time step, which requires 12-hourly SAT
anomalies that are continuous in time and have the same
monthly values as the original monthly SAT anomalies.
Such high-resolution time series are obtained using a so-
called diddling procedure, whereby a series of linear equa-
tions in the form of T*

i " (Ti21 + 6Ti +Ti+1)/8 are solved,
where T*

i denotes monthly average SAT in month i, and Ti

denotes SATs that are linearly interpolated to 12-h resolu-
tion at the center of month i. The diddling procedure is com-
monly used to interpolate monthly SSTs and sea ice when
specifying surface boundary conditions for atmospheric general
circulation model simulations (Taylor et al. 2000). B-spline in-
terpolation would also be possible and could have additional
advantages such as guaranteeing continuous first- and second-
order derivatives, although these are not required in our pre-
sent context. The integration results in 12-hourly SSTs, which
are then averaged back to have a monthly resolution. A final
step discards months without observed SATs, yielding the final
estimate of SAT-based SSTs.
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