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ABSTRACT health relevance [5, 17, 32], especially during the COVID-19 pan-

demic [3, 23, 35, 48]. Local differences in population density and
interaction rates can have substantial impacts on the community
risk levels [41, 42], but information about people’s locations and

We consider the problem of population density estimation based on
location data crowdsourced from mobile devices, using kernel den-
sity estimation (KDE). In a conventional, centralized setting, KDE
requires mobile users to upload their location data to a server, thus movements is clearly sensitive.

raising privacy concerns. Here, we propose a Federated KDE frame- In some cases, user’s location data is publicly available from
work for estimating the user population density, which not only administrative or social media sources [50, 51] or contributed by

keeps location data on the devices but also provides probabilistic survey participants [14]. Other cases involve the geospatial infor-
mation crowdsourced from users employing location-aware apps

privacy guarantees against a malicious server that tries to infer
such as Google maps and Waze, which frequently track users’ move-

users’ location. Our approach Federated random Fourier feature

(RFF) KDE leverages a random feature representation of the KDE ments in fine detail and without supervision. The collection of data
from such apps raises privacy concerns [22]. Potential disclosure of

geolocation data has negative impacts on both users and prospective
analysts: not only may disclosure directly harm users, but measures
taken by users (or developers, on users’ behalf) to avoid such disclo-
sures may inhibit sharing of useful information that could improve
apps’ performance, allow new services to be offered, etc. There is

solution, in which each user’s information is irreversibly projected
onto a small number of spatially delocalized basis functions, mak-
ing precise localization impossible while still allowing population
density estimation. We evaluate our method on both synthetic and
real-world datasets, and we show that it achieves a better utility
(estimation performance)-vs-privacy (distance between inferred

and true locations) tradeoff, compared to state-of-the-art baselines thus considerable interest in privacy-preserving approaches to the

(e.g., GeoInd). We also vary the number of basis functions per user, collection and analysis of crowdsourced geospatial data.

to further improve the privacy-utility trade-off, and we provide In this paper, we focus on the problem of modeling population

analytical bounds on localization as a function of areal unit size density from individual geolocations, collected e.g. from mobile

and kernel bandwidth. applications. Population density is estimated on a grid with a chosen
range and interval, where density at each coordinate is estimated

KEYWORDS from users’ locations. The estimated density surface may then be

used for visualization, or as an input to other analysis or prediction
tasks. Our objective is to perform this task in a distributed manner,
in such a way that users do not share their location with the server,

Kernel Density Estimation (KDE), Privacy, Random Fourier Fea-
tures, Federated Analytics, Population Modeling.

1 INTRODUCTION and such information cannot be inferred by a malicious server.
More specifically, we consider a federated framework, which is
today’s preeminent paradigm for distributed learning and analytics.
User’s data is stored and processed locally on the devices, and
only the result of a local computation (e.g., the model updates in
federated learning) are sent from the devices to the server [24,
31, 44]. In the context of federated population density estimation,
this enables the server to estimate the population distribution, by
aggregating all users’ updates, while any individual users can still
keep the raw geolocation data on their devices. For the purpose
This work is licensed under the Creative Commons Attribu- @ of estimating population distributions, Kernel Density Estimation
tion 4.0 International License. To view a copy of this license (KDE) [10] is a natural fit: it is non-parametric, computationally,

visit https://creativecommons.org/licenses/by/4.0/ or send a . . .
letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA. and naturally lends itself to a federated 1mplementat10n.

With the widespread use of smart phones and wearable devices in
recent years, location data has become increasingly available. This
has enabled several modeling tasks, including population density
[43], which is the focus of this paper. One application is to provide
a data-driven perspective for public transit operators, since it can
capture customer mobility patterns and inform resource allocation
in urban areas [6, 21, 29, 33]. In addition, the relationship between
population density and infectious disease is of considerable public
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Figure 1: Discrete 1D example of a feature projection. As-
sume there are 10 houses along a street, participating in
federated learning, and the server queries the user residing
in house 3 for a single (one-time) local update. A scheme
adding (spatially local) noise might randomly perturb the
user’s location, putting them in any of the houses from 1
to 5, all of which are relatively close to the user’s true loca-
tion, and will reveal the part of the street on which the user
lives (e.g., left or right half). Our projection method is akin
to revealing whether the user lives in an even or odd house.
Although the same number of houses (5) are excluded, the re-
maining set is distributed over the entire length of the street,
thus hiding the user’s relative position. In that sense, the
even and odd features, and corresponding projections onto
them, as “spatially delocalized”.

Unfortunately, even in a Federated KDE setting where users’ data
is not directly disclosed, a malicious server can still infer users’ lo-
cations, by querying users for local density information and using
it to deduce their most probable locations. A range of privacy-
preserving techniques have been developed and added onto the
basic federated learning and analytics frameworks, including dif-
ferential privacy (DP) on the mobiles and/or the server [16, 27, 34],
secure aggregation [7, 15], and combinations thereof [25], [3].

In this paper, we propose a new privacy-preserving technique
for Federated KDE, orthogonal to existing defenses, to help protect
users against location inference by a malicious server, which we
refer to as Federated RFF KDE. The idea is to project user data onto
a small number of spatially delocalized functions' in Fourier space -
from which user’s location cannot be inferred - and perform KDE
using a version of the random feature method [39] (RFF). Using
both synthetic and real-world data, we show empirically that the
proposed method is able to achieve excellent approximations to the
density surface with even a few random features, under realistic
conditions. Moreover, we also show that this is sufficient to prevent
users from being localized. These studies are complemented by
theoretical analysis proving that user locations cannot be inferred
from the spatially delocalized projections, making it impossible
for a malicious server to localize a user, even given an unlimited
number of queries.

Next, we explain the intuition of our proposed method and com-
pare it to that of local noise-adding (including DP-based) privacy-
preserving approaches for location-based applications [27, 34]. To
protect against a malicious server, most existing techniques conceal
users’ locations by adding local noise (on the data and/or updates).
However, such obfuscation is still relatively localized, since the
user’s true location will still be close to the noised version, with

1“Spatially delocalized function” here refers to a function that is spread out over space,
i.e., it spreads the high-probability locations over the entire plane.
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their expected distance depending on the noise added. Our pro-
posed method is completely spatially delocalized. Specifically, the
proposed method does not add any noise to data but abstracts in-
formation from users’ data by nonlinear projection to a set of basis
functions whose symmetry group does not allow a user’s data to
be distinguished from other data in an equivalence class that is
distributed over the entire plane. Rather than trying to hide the
user by obfuscating their data, then, we reveal only the equivalence
class to which it belongs - a class containing a potentially infinite
number of other datasets, spread out through space. Fig. 1 attempts
to illustrate the intuition of how our method works, using a dis-
crete, one-dimensional example of a feature projection. Although
our function space is richer than the simple example of Fig. 1, the
intuition generalizes: we selectively remove information in a way
that efficiently protects location over the whole map, rather than
adding local noise (which obfuscates local location but does not
efficiently conceal global location).

The remainder of the paper is organized as follows. Section 2 de-
tails the problem setting and notation, and provides brief overviews
of Kernel Density Estimation and Random Fourier Features. In sec-
tion 3, we demonstrate how our proposed method works to estimate
density and protect privacy, and we provide the theoretical anal-
ysis regarding bandwidth restriction and privacy preservation. In
section 4, we present numerical experiments on both synthetic and
real-world data to show the effectiveness of the proposed method,
and compare its privacy and performance with baseline methods
and alternatives. Section 5 discusses related work about federated
learning privacy protection schemes and location privacy, and sec-
tion 6 concludes the paper.

2 PRELIMINARIES
2.1 Notation and Problem Setting

Although our approach can be used for any density estimation
problem, for concreteness we focus on a setting in which we have
N users, each of whom is associated with a location d; (We treat d;
as a two-dimensional coordinate vector, although the majority of
our results generalize immediately to 1D or to higher dimensions).
In our setting, we assume that this location information is privately
held by the users, and is only available to the analyst (server) when
explicitly shared. For notational convenience, however, we denote
the full dataset by D = {dj,d2,...,dn}. Our problem is for a
central server to reconstruct the population density associated with
D, without having direct access to any location d;. Moreover, we
wish to prevent a malicious server from being able to infer user
locations by repeated querying.

Without loss of generality, we consider our problem on a rectan-
gular region A (Any non-rectangular region can be generalized to
a rectangular region via its bounding box). As a practical matter,
we treat the target density via levels on a P X Q grid in this area,
with G(gpq) being the density obtained at location (p, q) estimated
over all N data points. Our focus is on obtaining density estimates
that approximate G(gpq) and that can be calculated without direct
access to the elements of D (and without allowing elements of D
to be inferred). Throughout, density estimation is performed via
kernel density estimation, as described below.
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2.2 Kernel Density Estimation

Kernel density estimation (KDE) is a non-parametric method to
estimate a density function from a set of random draws from the
corresponding distribution [37]. In our setting, assuming the un-
derlying density function fx, the kernel density estimator of fx at
X is:
1 N
F&ID) = - >k (x,di) o)
i=1
where x is any vector in A, and ky, is any kernel function with
bandwidth A. In this context, a kernel function is a symmetric,
non-negative function with a unit integral over the space of x. A
common and flexible choice of k is the Gaussian kernel, kj(x,y) =
exp(— %), where A = ||x—y||§. This choice is especially convenient
for our privacy-preserving algorithm, and we use it throughout,
though generalization to other shift-invariant kernels (i.e., it satis-
fies k(x,y) = k(x —y, 0)) is possible.

2.3 Random Fourier Features

Since the Gaussian kernel is shift-invariant, it follows from Bochner’s

theorem [39] that,
k@#%i/MMJN@WszEPWW”W] ()

where p(w) is kernel k’s corresponding Fourier density. This means

that one is able to use Monte-Carlo sampling to achieve the expec-
tation in (2) with

T (e 12 T
E[e]w'l'(x y)] ~ E;e]wb(x y)

-
:E;

®)

1
1 T

b (x.y) = g2(x) " =(y)
1
where ¢, is a randomly chosen function from the Fourier basis of
k and B is the number of sampled functions. The basis functions
have the form
RG]
where @y, is a random vector sampled i.i.d from the Fourier density
p(w). Selecting B such functions then gives us the random feature
matrices

op(x,y) = [cos(con), sin(a);—x)][cos(a);y), sin(a);—y)

z(x) = [cos(w;—x), sin(a)irx), s cos(a)gx), sin(co—gx)]—r
which are the projections of the original data onto the randomly
chosen basis functions. For the Gaussian kernel, the random vector
 with bandwidth A is sampled from N (0, h_zl). We use this kernel
and random feature representation in our subsequent development.

A property of the Fourier basis that is important for our ap-
plication is that the basis functions are spatially delocalized: they
are sinusoidal functions that span the entire input space, and are
moreover invariant to translations orthogonal to their “direction of
motion” (as well as translations of integer multiples of their wave-
length along their direction of motion). Individually, such features
contain very little spatial information. This will be of use in building
a privacy-preserving federated KDE algorithm.

311

Proceedings on Privacy Enhancing Technologies 2023(1)

Algorithm 1: Federated KDE
Input: N: # clients, d;: local data, i = 1,..N

1 Server initialization: Specify an area to estimate density
with two pairs of coordinates and build a P X Q grid,
bandwidth h

2 for useri=1,2,...,N in parallel do

3 User i evaluates Gy (d;) with (5);

4 User i sends Gy (d;) back to server;

5 end for
6 Server receives and aggregates all users’ evaluations
1
Output: 5 Zf\il Gp(d;)

3 METHODS
3.1 Baseline: Federated KDE

Because the kernel density estimator is linearly separable over the
data, KDE naturally lends itself to federation. The idea is that users’
location data d; can be kept local but for a specific coordinate gy,
the work of evaluating f(gpq|D) can be distributed across users.
Each user i evaluates f(gpq/d;), and then sends it back to the server.
The server receives all users’ evaluations and obtains the density
estimate at gp4 by averaging over f(gpqld;).

More specifically, the server starts by specifying an area A and
defining a grid with the desired resolution. It shares the coordinates
P x Q of the grid and the kernel bandwidth h with all users. The
server asks all users in this area to evaluate the kernel function
values at all coordinates on the grid with a specified bandwidth.
Each user evaluates kernel function values at all coordinates on
the grid and sends them back to the server. The server averages
all users’ evaluations to derive the overall density surface over the
target area A. Formally speaking, a user i will evaluate Gy (d;) along
the P x Q grid with bandwidth h, producing

kp(di, g11) kp(di, g10)

Gp(d;) = : :

kp(di, gp1) kp(di, gpo)

where g4 is the coordinate on the grid. By receiving Gy(d;) from

all users, the overall density surface can be estimated by aggregating
% Zﬁil Gp(d;) € RPXQ. This procedure is shown in Alg, 1.

Note that as previously stated, the 2D location problem is for
concreteness, but the proposed framework can be utilized in any
dimension. In a 1D scenario, both g and d are in R, and Gp(d)
will be a vector instead of a matrix. In 3D cases, such as spatial-
temporal data, G(d) will be a 3D tensor. Higher dimensions are
possible, although as a practical matter KDE is usually used in
low-dimensional settings.

Privacy Attack. Even though Federated KDE does not directly
share users’ data with the server, a user’s function evaluation(s) may
reveal to the server that user’s location information. To illustrate the
intuition of this inference attack, Fig. 2 shows 1D and 2D examples
of a single user’s local evaluations, which are visualizations of what
a user actually sends back to the server. In Fig. 2 (a) the data is at 0,
and the kernel function is evaluated at 1000 points which are evenly
spaced over the interval [—15, 15]. With an arbitrary bandwidth
2, one can observe that the coordinate of maximum evaluation is

©)
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Figure 2: Privacy attack in Federated KDE: the server can
infer a user’s location to be close to the coordinates of max-
imum evaluation.

close to 0. Similarly, in Fig 2 (b) the user’s location is (0, 0), and the
kernel function is evaluated on a 100 X 100 grid over [—5, 5] X[-5, 5].
Again, the location of the global maximum is close to (0, 0). The
proximity of the global maximum to the user’s location is only
limited by the resolution of the grid. Assuming that the server can
specify a sufficiently dense grid, it can infer each user’s location
to arbitrary precision. This provides the intuition behind location
inference in the Federated KDE setting, while the full description
of the adversary is provided in section 3.3.

3.2 Proposed Algorithm: Federated RFF KDE

To protect against the aforementioned privacy attack, we propose
an improved method that, instead of using the exact kernel function
ky,, it approximates the kernel with the random Fourier features
(RFF) of section 2.3. In particular, instead of providing kernel evalu-
ations, each user calculates and returns an approximation obtained
by projecting their data onto a small number of random features
(possibly only one). Substituting (3) into the definition of kernel
density estimation (1), we can express our approximation f” as an
estimator of f as

1

B
N5 D D Oh e d)

b=1

M=

f&ID) ~ f'(x|D) = (6)

1

I
—_

where f” is the random feature based kernel density estimator, and
¢Z is user i’s bth basis function. Then, instead of every user i eval-
uating kernel function kj(gpq, d;) at each coordinate on the grid,
B basis functions are used to approximate each user’s evaluations.
As with Federated KDE in Alg. 1, (6) can also be implemented via
federated learning. The proposed algorithm, Federated RFF KDE, is
shown as Alg. 2 and described next.

First, the server specifies a grid over the area to be estimated.
Next, all users inside the area are queried for function evaluations
at each grid point using a specific number of random features B,
and a bandwidth h. In response, each user samples B random basis
functions with bandwidth h as requested, and returns the projection
of their location data onto these functions, evaluated at the selected
grid pairs. Note that all sampled random vectors are stored locally,
and are not accessible to either the server or to other users. (In “one
shot” applications, the vectors may further be discarded, making
them inaccessible even to one who subsequently gains access to
the user’s device.) Moreover, since both generations of random
vectors and query response are handled locally, the user can refuse
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Algorithm 2: Federated RFF KDE
Input: N: # clients, d;: local data, i = 1,..N
1 Server initialization: Specify an area to estimate density
with two pairs of coordinates and build a P X Q grid,
bandwidth h and B random features
2 for useri=1,2,...,N in parallel do

3 User i samples B random vector a);; from p(w) in (2) and
keeps them local
4 Rescale ”Z with h

5 Evaluate G’(d;) with (7)

6 Send G’(d;) back to server

7 end for

8 Server receives and aggregates all users’ evaluations
Output: ﬁ Zg\il G'(d;)

“improper” queries from the server (e.g., requests to evaluate at more
than B basis functions). Importantly, in the multiple-query cases,
a user does not re-draw random vectors between responses. This
ensures that nothing can be learned beyond its spatially delocalized
projections. An important special case of the latter is when the
server issues queries with multiple bandwidth choices (as may
occur if tuning is performed). Instead of drawing a new w, the user

only samples w from N (0, hy 2I) once, and when a server’s query
with bandwidth h comes, the user rescales the sampled value with
%w, where hy is user’s previous bandwidth. How this preserves
privacy is further discussed in section 3.5.

After drawing B basis functions, user i’s local evaluations can
then be expressed as

oo, 4l (dign) Yp_, 4L (di,g10)

G'(dy) = )

B ¢l (digp1) o, ¢4 (di,gpo)
where ¢>lb is corresponding to user i’s random vector wé as (4). The
server collects each user’s G’(d;) and adds them, obtaining the

estimated density surface with ﬁ Zfi 1G'(dy) € RPXQ.

3.3 Threat Model

The Federated KDE setting involves one server and several users.
From a utility point of view, the functional role of the server is
to define the parameters provided to the users, receive the users’
functions evaluations on all points of the grid, and estimate the
density surface via aggregation. The functional goal of the users is
to assist in the computation of the density surface while keeping
their location data local. The server must specify the following
parameters in Federated KDE: (i) the P X Q grid of query points and
(ii) the kernel bandwidth h. Each user evaluates the kernel function
at every coordinate on the grid with the bandwidth specified by
the server, and sends back to the server the function evaluation. In
addition, if Federated RFF KDE is used, the server must also specify
(iii) the number of random features B to be used by users. Each user
picks their own B features randomly (the server only controls the
number not the selection of random features), and uses those same
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features consistently to evaluate the function on the grid points,
whenever it is asked by the server.

From a privacy point of view, we consider a malicious server: in
addition to computing the density surface, it also wants to infer
the users’ locations from the received function evaluations on the
grid, whether these are exact in Federated KDE or projections in
Federated RFF KDE. We do not assume any limits on the server’s
computational resources. Users’ location data can still be inferred
by a malicious server in Federated KDE even though users’ data
are not directly disclosed, as discussed in Fig. 2. We show that
this location inference is prevented when Federated RFF KDE is
used: the users assist the computation by truthfully responding to
the server’s queries, but they use random projections to prevent
inference of their location. We assume that the server can make
one round of queries or multiple queries with different choices of
B and h. However, we also assume that users can refuse to answer
queries for values of B and h that fall outside a pre-specified policy
range (defined below) that is known ex ante to all parties (as in
Lemma 3). The need for such a policy can be appreciated by seeing
how the Federated KDE without such constraints can disclose users’
locations to the server, along the lines discussed in Fig. 2. Such policy
is proposed as an improvement to the way the protocol handles
updates (see Alg. 3). The privacy analysis is provided in section 3.5:
it shows that the malicious server cannot accurately infer the users’
location even if allowed to make an arbitrary number of queries at
any number of spatial locations.

3.4 Convergence Analysis

In this section, we demonstrate the statistical justification behind
Federated RFF KDE, and show that it provides consistent inference
under weak regularity conditions that are automatically satisfied
in real settings. Considering any coordinate gpq on the P X Q grid,
the complete-data density estimator on it is

N
FEpqlD) = 1 " ki (gpg- i) ®
i=1

Assuming the kernel k has properties stated in section 2.3, (8) can
be written as

@1 [
flgpalD) = ZE [em (gpq—dl—)]
N ©)
3 1 .
= ﬁ;w (8pq-d1)]

Define y; as an unbiased estimator of user i’s kernel evaluation. We
have already seen an example of such an estimator: the sum of i’s
data projection onto B randomly chosen basis functions. Using this
estimator then gives us

B
Bpi(pq- i) = B9 (gpq 4] = = > 94 (gmndi). (10)
b=1

Note further that convergence of y to the target expectation as B —
oo is guaranteed under the law of large numbers (the conditions
of which are satisfied for the Fourier basis of the Gaussian kernel).
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Figure 3: RFF KDE converges to KDE.

Combining (9) and (10), we obtain the local estimator

N
1
f'(gpqlD) = & ;mgpq, di) (1
Next, define I as a uniform random variable from (1,2, ..., N), and

1 as an unbiased estimator of y; such that

N
E(Epq) = Elir(gpe- D] = < D #ilepe:d)  (12)
i=1

Then by substituting (12) into (11), we get

f(gpqD) ~ f'(gpqID) = Enlgpq)

Examining (12) and (13), one notes that n has the same expectation
as y1;, and by the law of large numbers, as N — oo, f’(gpq|D)
converges to f(gpq|D). More importantly, this property always

(13)

holds so long as y is an unbiased and consistent estimator of ¢’
In particular, whatever the choice of B in (10) is (including B = 1),
convergence in N will hold. Thus, the proposed method allows us
to obtain a consistent approximation to the complete-data solution,
while using only minimal and spatially delocalized information
from each user.

Another insight from (13) is that there is a precision tradeoff
between users and basis functions. For a fixed location d, adding
an additional user or an additional basis function will have a sim-
ilar effect. On the one hand, this embodies the price that is paid
for maintaining privacy: each user contributes less information to
the final solution, and more users are hence required when B is
small. Since, however, convergence of the sample mean exhibits
diminishing returns to sample size (e.g., the 1/+/n scaling of the
standard error of the mean), we may also expect that the first few
basis functions from any given user will contribute the largest gain
in precision, and we may hence get much of the informational
benefit from user participation without using a large number of
functions. In the next section, we consider specifically how the
number of basis functions B affects privacy. In section 4, we further
show that the proposed framework is able to obtain good results
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Figure 4: User’s response surfaces for different random vectors and numbers of random features.

under realistic conditions, while still effectively concealing user
locations.

Illustration of Convergence to KDE: Beyond the theoreti-
cal analysis of the proposed method, the following 1 dimensional
example helps to further illustrate its effectiveness. In this exam-
ple, observations are sampled from three independent Gaussians
N (—10, 22), N (0, 22) and N (5, 22) with ratio 1 : 3 : 1. Density is
evaluated at 1000 points which are evenly spaced over the interval
[-15, 15]. Fig 3 shows how the number of samples and number of
random features affect the proposed method converging to KDE.
By looking at Fig 3 (a) and (b), with a small number of samples 500,
the proposed method with 1 feature cannot precisely estimate KDE
results, even though the overall estimation is reasonable. When
with 10 features, the estimation is close to KDE. Comparing Fig 3
(b) with (c), it is empirically shown that, an additional user and an
additional basis function will have a similar effect. When both the
number of samples and the number of features are high as in Fig 3
(d), the proposed method closely approximates the KDE solution.

3.5 Privacy Analysis

In our setting, users’ locations are never transmitted to the server,
and the malicious server can only infer users’ locations based on
their feature projections. Here, we show that the server cannot infer
users’ locations, even given the ability to make arbitrary numbers
of queries at any number of spatial locations.

Localization: Fig 4 shows the random feature projections whose
values are potentially returned as responses in a one-dimensional
(top) vs. two-dimensional (bottom) case. Without loss of generality,
we define the user’s true location to be at 0 and (0, 0), respectively.
Examples of individual projections are shown respectively in (a) and
(b) and (e) and (f). Note that each maps the user’s true location to
an equivalence class of possible positions, reflected in respectively
the peaks of the 1D oscillatory functions and the bands of the 2D
functions: given these choices of w, any other true location on
another local maximum would lead to the same function evaluation.
While repeated queries by the server could build up an image of
the function being used, they cannot reveal which coordinate in
the equivalence class (defined in lemma 2) corresponds to the true
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location. When multiple features per user are employed ((c), (d),
(g), and (h)), the result is still a repeating pattern, but the set of
equivalent coordinates becomes more dispersed. For an area of
fixed size, a sufficiently large number of features will lead to a
function with only one maximum in the region, and the user will
be localized. Unlike prior work, our approach thus focuses on using
few functions per user, exploiting the insight illustrated in Fig. 3
that more data points can make up for using fewer features per
point.

In this section, we provide a more formal characterization regard-
ing the above intuition for how our privacy preservation scheme
works, the impact of using multiple features per user, and the rela-
tionship of privacy preservation to bandwidth. In section 4, we will
empirically show how the number of basis functions affects estima-
tion performance and privacy loss under real-world conditions.

LEMMA 1. A malicious server seeking to estimate a user’s location
will predict that the user resides in a location yielding a maximum
on the surface formed by his/her feature projections.

Proor. In the one feature case, user i’s basis function has the
form

¢ (pq> i) = [cos(w gpq), sin(w" gpg)llcos(e " d;), sin(ew " di)] "
(14)

We observe immediately that ¢i(di, d;) = 1; since ¢i(gpq, dj) <1
for all g, it follows that a candidate g4 can be equal to d; only
if it is a maximum of ¢/(gpq. d;). Now, consider the general case
in which we have B basis functions. Each has the form of (14),
but with different w, and the user evaluation at point g4 yields
5 Zp_, 9 (8pq» di). As before, ¢! (d;,d;) = 1, and ¢} (gpg, di) < 1
for all b, gpq; thus it again follows that g,4 can be equal to d; only
if it is a maximum of the surface formed by the feature projections.
Any optimal prediction for d; will thus be on a maximum of the
projected feature surface, irrespective of B or wp. O

Is the optimal solution unique? Setting the derivative in the
single-basis case Vg, ¢'(gpg, di) to be 0, we obtain

tan (o' gpq) = tan (o' d;), (15)
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the solutions to which are candidate location predictions. However,
the solutions to (15) are non-unique, as any g that satisfies ' g =
T d; + 2tr also satisfies (15), where ¢ can be any integer. This gen-
eralizes to the multiple feature case: setting Vg, Zle ¢li7(g1’q’ d;)
to 0, then for each wyp, (15) holds. So the maxima are obtained when
(u;—g = wad,- + 2t with more than two wp,’s, b € {B}. These are the
gs that appear as “peaks” in Fig 4 (g) and (h). In (g), since there are
only two features, all peaks will have the same function evaluation;
However, in (h), different peaks consists of different number of sat-
isfied w’s, with one equivalence class (including the true location)
having the maximum value, and others having lower values. These
intersecting constraints gradually reduce the solution set, allowing
the user to be increasingly well-localized.

As this suggests, the equivalence class of coordinates having
optimal prediction solutions can be characterized. For a single basis
function, we state this as follows:

LEMMA 2. Let x be any location to be evaluated, and let D(x) be
the equivalence class of locations that cannot be distinguished by
distinct query responses for a user using a single basis function with
frequency w. Then
D(x) ={yly=x+ aﬁw +u, Ya € Z} wherewu! =0

PRrROOF. Let u be any vector which satisfies u'w = 0, and then
T (gpg +0) = ' gpq. Therefore, with (14), ¢'(x,gpg + 1) =
Pi(x, gpq) always holds. Next, let & be any integer. Obviously,

2 _ c 9
0T (gpg + amw) = W' gpq + 27ma. The?efore, by the periodic
property of trigonometric basis function, ¢'(x, gpq + aﬁw)) =
¢'(x, gpq) holds. m]

In the case of multiple features associated with frequencies
w1, . . ., wB, the corresponding equivalence class is trivially ﬂ]igzl
D;(x), where D;(x) is the equivalence class associated with fre-
quency w;. D(x) has the cardinality of the continuum, but (setting
aside cases of measure zero), its intersections are of countable size
(as illustrated e.g., in Fig. 4 (g)).

Lemma 1 and 2 show that (1) optimal predictions under unlim-
ited querying are limited to maxima of the projected feature surface,
and that (2) these maxima are in general spatially delocalized. Thus,
the server cannot in general recover users’ locations, even given
unlimited queries. That said, increasing the number of basis func-
tions per user reduces the size of the equivalence class, resulting in
ever more widely spaced maxima. When users have already been
localized to an initial polygon (i.e., the requested area), this will
eventually localize them. It is thus important to keep the number
of features small. The bandwidth is also relevant in this finite-area
case, as we now discuss.

Maximum Bandwidth: Even though the server in the single-
feature case cannot localize a user beyond a set of bands containing
possible locations, one can see in Fig. 5 that bandwidth selection
will influence the number of bands appearing in the area. Intu-
itively, with a larger bandwidth, the number of bands is smaller.
A larger number of bands translates to a larger range of possible
user locations, and hence better privacy preservation. We illustrate
this in Fig. 5, with panels (a) and (b) showing features with band-
widths 0.5 and 2 for a user located at the origin. With a smaller
bandwidth, multiple equivalent local maxima appear within the
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(a) bandwidth=0.5 (b) bandwidth=2

(<) 2D bandwidth=0.5 (d) 2D bandwidth=5

Figure 5: Maximum bandwidth for spatial delocalization.

focal region. However, only a single local maximum can be found
with the larger bandwidth, allowing the server to potentially infer
the user’s location. Panels (c) and (d) show a 2D example, here with
a user located at (4.5, 4.5), which is at top right corner of the region.
With the smaller bandwidth (0.5), multiple bands run across the
region, which makes it infeasible to determine the user’s location. A
much larger bandwidth (5) leads to a single band peaking in the top
right corner, making it clear that the user must reside in this region.
This phenomenon implies that a bandwidth that is relatively small
compared to the size of the estimation region is to be preferred
in a privacy preservation scenario. Fortunately, such bandwidths
are usually optimal from an estimation standpoint, and optimal
bandwidths decline with sample size. A maximum size does not
therefore impair convergence in the large data limit. A formal cri-
terion for determining the maximum acceptable bandwidth can be
constructed based on the risk of having a small number of bands
appear, which can be bounded in the two-dimensional case by ex-
ploiting the band structure and isotropy of the random features.
Specifically:

LEMMA 3. In the 2D, one feature case, assume the largest inscribed
square in A has side length I, and C(x) is the CDF of the chi-squared
distribution. To ensure at least j bands to appear in the area with no
less than 1 — C(y) probability, bandwidth h should be selected smaller
than i

2y

The proof of this lemma is provided in Appendix A.1. The derived
bandwidth is simple and intuitive: it is linearly bounded by both the
region’s side length and the inverse of the number of bands expected
to appear, and y is a tunable parameter to control how tight the
bound is. With a large side length or smaller number of bands, a
relatively large bandwidth can be used. On the other hand, when
the estimation region is small or more bands are expected, a smaller
bandwidth is preferred. Note that this bound is for the worst data
distribution with the worst projection vector samples. Specifically,
this protects users in corner and edge areas, such as Fig 5 (c) and (d).
If only one or two bands appear when the user is at these regions,
the server will potentially be able to localize the user at a small
area. Obviously when there are at least 3 bands, users’ locations
are well protected, since there will be at least one band across
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(a) 1Dat5

(b) 1D at 5

Figure 6: Projection surfaces for queries to a moving user.

the central area with length at least [, so j should not be smaller
than 2. In fact, this is an extreme example and real applications
are generally more favorable: numerical tests in section 4 show
that any statistically reasonable bandwidth for real application will
be enough for privacy preservation purposes. However, having
the guideline of Lemma 3 gives the user the ability to recognize
and refuse to compute solutions for bandwidths that could lead to
unacceptable risk, without that refusal revealing anything about the
user’s location (since the resulting bandwidth constraint depends
only on the target area and risk tolerance).

The proposed framework also needs to avoid privacy leakage
from any user’s projections with or without distinct bandwidths,
since the server can query users for updates multiple times whether
the user is moving or being still, or may employ different band-
widths, h. As above, we focus on policies that can be unilaterally
enforced by users.

Multiple Queries: For multiple queries to the user at the same
location d;, so long as the user employs the same random vector
o, she/he always generates the same projection surface with (7).
Thus, no matter how many queries are made, the server cannot
learn more than the user’s random feature projections. Fig 6 shows
examples of moving users responding with the same projection
vectors. In the 1D case (a) and (b), a user moves from 0 to 5. One
can observe that in (b), as the user moves, all local maxima are also
moving simultaneously. Thus, the server cannot identify the start
and end points of the user’s travel. In addition, the server cannot
even figure out the direction of the user’s travel. Therefore, it is
infeasible for the server to figure out the relative offset of the user’s
travel. In the 2D case (c) and (d), a user moves from (0, 0) to (2.5, 2.5).
Similarly, the overall pattern is moving simultaneously as the user
moves. All observations from 1D case still hold here. Therefore, for
both static and moving cases, as long as a user always uses the same
random vector, this user’s travel track and relative offset cannot be
inferred by the server.

Bandwidth Rescaling: The key to dealing with the second is-
sue (multiple bandwidth queries) is that each user generates w only
once and stores it locally and the direction of w is fixed. After rescal-
ing o with %w, only the period is changed, but not the direction.
Therefore, rescaling « has the effect of “shrinking or amplifying”
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the projection surface. With this trick, the server still cannot reveal
a user’s location by querying them for evaluations with different
bandwidths, and the worst case is that the server can locate the
band on which the user resides. This is the worst case because
the band on which the user resides will not shift, and all the other
bands may shift when using different bandwidths. If the server
makes queries with different bandwidths, the server can potentially
infer that the band that does not shift when changing bandwidth is
the one with the user’s location. To solve this problem, we require
that several invariant bands remain present on the projection sur-
faces associated with different query bandwidths, ensuring that the
server cannot reliably localize the user to a single band. We accom-
plish this by employing a bandwidth rescaling policy that requires
bandwidths to be selected from a set of specific discrete values as
shown in lemma 4 and Alg. 3. So long as w;} satisfies lemma 3 and
is derived from Alg. 3, it can be ensured that multiple invariant
bands remain across the area. This provides privacy preservation
against an attack of localizing a user on a single band, even though
one band can still provide considerable privacy protection. As with
the maximum bandwidth constraint, this is an ex ante policy that
can be enforced by the user.

LEMMA 4. In the one feature case, assume that a user samples ©
from #N(O, I), where hg is a properly small bandwidth, and the
0

number of bands with bandwidth hy is m. By rescaling bandwidth
h = (4n+1)ho wheren > 1 is an integer, there will be at least | 1757 |
bands, whose locations are overlapping with a subset of the m bands.

The proof of this lemma is provided in Appendix A.2.

Algorithm 3: Rescale bandwidth
Server:Request each user’s evaluation with different
bandwidth hy with rescaling method and 1 random
feature, where 1 < y < Y, and specify a small

enough bandwidth hy
1 for useri=1,2,...,N in parallel do
2 User i samples random vector wg from p(w) with hg in

(2) and keeps it local
3 Derive hpew with (24) by setting n = 1

4 Rescale wl.,, = hh" wé
5 Conduct any work requested by server with {w} ., }
¢ end for

Fig 7 shows both 1D and 2D examples of bandwidth rescaling
with and without Lemma 4. In Fig 7 (a), if we set the base bandwidth
as 0.5, then the next bandwidth selected by lemma 4 is 2.5. One can
observe that projection surfaces estimated with these two band-
widths have duplicate local maxima, and they appear periodically.
Therefore, if the server queries the user for projection surfaces with
two different bandwidths chosen via lemma 4, the two response
surfaces will always have several invariant bands, which makes
it impossible to further localize the user. However, if an arbitrary
bandwidth such as 1.25 is used, the server can easily eliminate the
possibility of data being at some of local maxima, since they are not
at the same location as the base case. Even though there are still
multiple bands for each bandwidth, those that shift are not effective
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Figure 8: Visualization of GeoInd-DP [1].

for protecting the user’s privacy against an attentive server. Note
that another arbitrarily selected bandwidth might lead to an even
worse case. In the 2D case of Fig 7 (b) and (c), by setting n = 1 in
lemma 4, an overlapping band appears every 5 bands. But in (d),
some of bands do not overlap with any band in (b). The server will
not localize the user to these locations, which means these bands
do not provide any protection for the user’s location.

3.6 Complexity

As a non-parametric method, Federated RFF KDE is light enough
to be implemented on edge devices. To analyze its complexity, (7)
shows B basis functions evaluated at query points gpq. So there are
a total of PQB basis functions for every user. Each basis function is
a problem with fixed size as shown in (4). So the overall complexity
on user side is O(PQB). Obviously, the complexity of a single user
conducting Kernel Density Estimation is O(PQ) on the same grid.
Therefore, when using few random feature or even only 1 feature,
the complexity of the proposed framework is almost the same as
KDE. This beats other location protecting mechanisms which are
based on adding noise, which incurs additional calculation costs.

and the proposed method. Fig 8 shows a 2D example of a local
noise (DP) method for location-service, Geo-indistinguishability
(GeoInd-DP) [1], which is the approach to which we compare Fed-
erated RFF KDE in our empirical experiments. Here we assume a
data point at (0, 0), running Geolnd-DP 50, 000 times independently,
and then visualizing the artificial noise distribution with KDE. Pa-
rameter € is set to 0.1 and 0.5 for (a) and (b), respectively. From the
figure, one can observe that even though user’s precise location is
not shared, most of processed data points are located around the
ground truth. Therefore, the server can localize the user’s location
to a smaller region instead of all over the map, as governed by the
noise parameter €.

4 EXPERIMENTS

4.1 Datasets

Federated RFF KDE method is evaluated on both synthetic and
real-world datasets.

4.1.1 Synthetic Data. We first demonstrate our method on two
synthetic population distributions, one constructed for uniformity
and the other for heterogeneity:

(1) A mixture of 9 independent Gaussians with means from all
possible pairs (i, /)T where i € {-1,0,1} and j € {-1,0,1}
and each with diagonal covariance X;; = 0.25.

(2) A mixture of 8 Gaussians arranged in an octagon with com-
ponent mean y; = (3 cos(ri/4),3 sin(rri/4)), and covariance

cos? ZTi +0.162 sin? ”Ti. (1-10.16%) sin ”Ti cos %

¥ = > :
"7 1(1-0.16%) sin Zt cos ZL sin® ZL +0.16% cos? £t
forie {1, ...,8}
The densities of these synthetic datasets are shown in Fig 9.
317
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(a) Synthetic data a Synthetlc data b

Figure 9: True function surfaces for the synthetic data.

o
L
o

4.1.2 Real-World Data. To evaluate our model on real-world data,
we use two location-based social networks, Gowalla and Brightkite
2 [11, 30]. Gowalla contains a total of 6,442,890 user check-ins
over the period of Feb. 2009 - Oct. 2010, and Brightkite contains
4,491,143 checkins over the period of Apr. 2008 - Oct. 2010. Each
check-in record consists of the location represented by a tuple
of latitude, longitude, user ID and check-in time. For population
density estimation purposes, we use only the location (latitude,
longitude) of the check-ins. To evaluate the proposed method in
realistic urban settings, we employ the downtown areas of several
major cities. For Gowalla, we selected LA, London and Chicago, and
for Brightkite, we selected LA, Tokyo and Chicago. All check-ins
within these selected areas are used to estimate the target density,
with each check-in treated as belonging to an independent virtual
user for purposes of our analysis. The detailed information about
area selection and density estimation is listed in Appendix B.1.

4.2 Model Evaluation

4.2.1 Performance. To measure estimation performance, we use
the Spearman (rank) correlation [26] to compare our estimated
density surfaces with the ground truth. After evaluating two density
surfaces at each coordinate gpq on the grid with the same set of
observations D as {f’(gpq|D)} and {f(gpq|D)} where 1 < p < P
and 1 < g < Q, we calculate rank correlation between them to
measure difference in the distributions. For the synthetic datasets,
since the ground truth function is known, it is feasible to compare
estimation directly with the ground truth. For real-world datasets,
we take the complete-data KDE to be the ground truth for evaluation
purposes, as this reflects the estimate that could be obtained by
pooling all available data, with no privacy limitations. In other
words, since the proposed method is expected to converge to KDE
in utility and protect user’s privacy at the same time, beating KDE
in utility is not our objective. As described below, we examine the
rank correlation of our method (and of GeoInd) with the ground
truth over a range of privacy settings (for our method, choices
of B, for Geolnd, choices of €); an ideal method would produce a
correlation close to 1, indicating a nearly identical match between
the shape of the inferred density and the target.

4.2.2  Privacy. Our choice of privacy metric is motivated by Fig.
4. Because the density surface available to the server is globally
delocalized, the server can only infer that the user lies on or near
the local maximum density points or ridges among the surface. Let
user i have Kj local grid maxima, having coordinate vectors g; with

Data is publicly available at https://snap.stanford.edu/data/
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jel,...
define the privacy score Z; of user i by

K;
_ 1 i i
zi-EZIejngj—d
=
e.

where e]l: = %, is anormalized weight reflecting the strength of
j=1 ¢
evidence for i residing near location g;.. Z; is thus the expected error

, K; with local density evaluations f” (g;'.|d,~) is e]l:. We then

(16)

ill2

i

(in units of distance) for the server attempting to guess d; on the
basis of i’s basis projection. We likewise score the privacy level of
the whole system by the average Privacy score: Z = % Zfi 1 Zi-We
employ normalization weights (eJ’.) in (16) to account for differences
in the height of maxima and for true maximum/grid non-alignment
(which can make the global maximum, if unique, an imperfect
predictor). However, to prevent the server from placing weight on
inferior local maxima, we filter local maxima via another parameter
€ to remove those with lower levels of f’: assuming the global
maximum on user i’s surface is el ., one local maximum will be

considered if and only if ej. > i:". In all following numerical tests,
€ is set as 1.1. Simply put, the privacy metric in (16) is the expected
error in the attacker’s prediction of the user’s location, expressed in
terms of distance. Since the server can localize the user at multiple
locations with different confidence in each, we take the weighted
average of those distances, where the weights reflect the attacker’s

uncertainty in each inferred position.

4.2.3 Baselines. To evaluate our method’s estimation and privacy
protection performance, we compare vs. the following benchmarks:

Geo-Indistinguishability. One alternative mechanism to pro-
vide strong privacy guarantees, specifically for location-based ser-
vices is GeoInd-DP [1], defined as follows: 3

DEFINITION 4.1 (GEO-INDISTINGUISHABILITY [1]). A mechanism
K satisfies e-geo-indistinguishability iff for all x, x’:

dp(K(x), K(x")) < ed(x,x) (17)

Geolnd-DP adds 2-dimensional random local noise to each user’s
location so that the server cannot distinguish the user’s exact loca-
tion with high confidence. In particular, for user i, noise is added
to d; before calculating (5), which is expected to shift the location
of the global maximum of user’s density surface. We are using the
planar Laplace mechanism [1] to achieve Geolnd. Specifically, given
the parameter € € R™, and the actual location x¢ € R2, the pdf of
our noise mechanism, on any other point x € R?, is:

e—e d(xo,x) (18)
where % is a normalization factor. We call this function planar
Laplacian centered at xo. The parameter settings in the experiments
are as follows: for synthetic data, € is from [0.6,0.7, 0.8, 1, 3, 5, 10].
And for real-world data, € takes values [10, 15, 50, 100, 500, 1000].

De(x0)(x) = 5—

3Equivalently, the definition can be formulated as K(x)(Z) < ee‘i("’X/)K(x')(Z)
forall x, x” € X, Z C Z. Note that for all points x” within a radius r from x, the
definition forces the corresponding distributions to be at most er distant. X here
means points of interest, typically the user’s possible locations and Z means a set of
possible reported values.
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Federated KDE. As a worst-case privacy baseline, the way to
conduct Federated KDE and privacy loss measurement is as Alg. 1
and (16). Obviously, a user’s evaluation in the Federated KDE method
will only have one maximum. As shown in Fig. 2, the global max-
imum of a user’s function evaluation sent to the server in Feder-
ated KDE is revealing, so the privacy loss of Federated KDE is a
baseline: no privacy is preserved. This is the worst case for privacy
preservation. As performance baseline, since Federated RFF KDE is
a approximation of Federated KDE, the latter serves as a best case.
Our goal is thus to approach the best-case estimation performance
of the zero-privacy solution while still preserving privacy.

0 Features. In this best-case privacy baseline, the user responds
to all queries with a constant. So the server cannot do better than
guessing that the user has equal probability to be located at any grid
coordinate. In this case, the privacy loss of user i is defined as the
average over distance between user i’s location d; and each coordi-
nate gyq. Clearly, no method can achieve better privacy protection
than this; however, the flat 0-feature “estimate” of the surface is
also uninformative (and thus a worst-case estimator). Our goal is
thus to approach the best-case privacy performance of the 0-feature
solution, while still maintaining good estimation performance.

4.24 Experimental Details. For bandwidth selection purposes, it is
assumed that 10% data points are randomly selected by the server.
Bandwidth is selected as the average kth nearest neighbor dis-
tances of all data points. Specifically, define k; as data point x;’s
the kth nearest neighbor, and the selected data points’ indices are
M, where [M| = %. With the selected data, the average of kth near-

est neighbor distances of all data points can be approximated by
1y Ml
™] 21

for synthetic data and 500 for real-world data will achieve reason-
able results. In other real-world applications, as long as following

[Ikm, — xM; ||. From our numerical tests, setting k as 200
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the restrictions in 3 and 4, the server can also specify whichever
bandwidth that is appropriate for downstream jobs.

For the synthetic data, we analyze how the number of users N
and the number of basis functions B affect estimation performance
and privacy preservation. Specifically, for the two synthetic patterns
in 4.1.1, we generate N € {1000, 5000, 10000, 20000} samples from
underlying functions, with the number of basis functions is varied
as B € {1,2,3,4,5,6,7,8,50}. Since the ground truth function is
known for synthetic data, rank correlation between the estimated
density surface and the ground truth function surface can be used
to measure the estimation performance. The privacy reveal of the
training set is averaged over all users’ privacy scores per (16). For
real-world data, the only difference in experimental settings is
that, since the ground truth distribution is unavailable, the rank
correlation is calculated between privacy preservation methods and
Federated KDE on the full (pooled) dataset. To evaluate the success
of a privacy preservation method, we wish the estimated density
surface to match that estimated from Federated KDE as closely as
possible, while also providing as little privacy loss as possible vis a
vis the 0-Feature baseline.

The results of the proposed method on synthetic cases (a) and
(b) are shown in Fig. 10 and Fig. 11. For synthetic data (a), a small
number of basis functions is able to achieve good estimation perfor-
mance, with the rank correlation with ground truth being greater
than 0.9 with only a single basis function. As for synthetic data (b),
a relatively large number of either features or samples is required
to achieve a reasonable result as shown in Fig. 11. This is because
of the more complex surface in (b) vs. (a). In (b), with 1000 samples,
the performance score is only over 0.9 a little even with 50 random
features. As a comparison, when there are 20, 000 samples, only one
feature can have the performance score close to 0.9. In addition, the
privacy loss is only related to the number of features and the size of
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estimation region, but not the number of samples. This observation
verifies our analysis of section 3.3: good estimation can be achieved
by more users joining even with fewer features.

As for Geolnd-DP, except for the small-N (e.g., N = 1000) case,
it typically requires a greater privacy loss to achieve the same esti-
mation performance as Federated RFF KDE (overtaking only when
the number of features per user is very high, and neither method
preserves privacy). One observation of Geolnd-DP is that, for syn-
thetic data (a), with noise leading to the same privacy preservation
as 0 features, it still gets a reasonable estimation. On the other hand,
in synthetic data (b), GeoInd-DP’s utility is significantly worse than

320

Zong et al.

Federated RFF KDE when privacy preservation is high. The reason
is synthetic data (a)’s distribution is smoother, and more uniform
in high density areas than (b). In this case, the perturbation from
artificial noise added to the data hurts (b) more than (a).

For both synthetic cases, there is a trade-off between privacy and
estimation performance: by varying the number of basis functions,
the proposed framework can balance the amount of privacy pro-
tected and estimation quality. The ideal choice can thus be tuned
based on the requirements of the application. We note in passing
that the bandwidth h is set as 0.55 for both datasets, allowing us to
demonstrate the relationship between scale and bandwidth stated
in section 3.5. With the same bandwidth, one feature privacy loss
in (a) is worse than that in (b) compared with the 0 feature case.
The reason is that, as stated in lemma 3, when the ratio between
bandwidth and scale is larger, the number of bands across the area
is usually smaller. But the width of bands is most likely the same,
so the overall locations the server can localize become less.

In all 6 real-world datasets, the trade-off trend between estima-
tion performance and privacy loss is similar to that seen in the
synthetic cases. As expected, the proposed method converges to
fully pooled Federated KDE when B — co. However, the rank corre-
lation of our estimate with the complete-data estimate is high even
with a small number of basis functions, showing that fairly minimal
projections can still show good performance in realistic conditions.
In addition, we find that the privacy loss in the one-feature case is
close to the 0-feature best case, suggesting extremely good privacy
protection. Moreover, even with 3 to 5 features, privacy protection
is still several hundred meters for these cases, a large displacement
in the context of a dense urban core. Similar to that of synthetic
data, the trade-off curve of Geolnd-DP is typically below that of
the proposed method, except for the high privacy-loss case. (We
note that in some cases the Geolnd-DP privacy scores go over the
0-feature line, due to the fact that high noise levels can displace the
user’s location outside the search area. These noise levels, however,
lead to very poor estimation performance.)

Finally, we analyze estimation performance gain per unit privacy
cost, for inclusion of multiple random basis functions after the first.
The estimation performance gain for using B features is defined as
its estimation performance measurement minus its performance
with only one feature. Similarly, its privacy cost is defined as the
privacy score with B minus that with one feature. Dividing the
performance gain with privacy cost gives us the performance gain
per unit privacy cost. As shown in Fig. 13, we generally see strongly
diminishing returns past the 2nd feature, with little gain beyond
the 3rd or 4th feature for the real-world datasets (little gain beyond
the 2nd for the simpler, synthetic cases). This pattern seems to hold
broadly across data sets, and is compatible with the convergence
of f to f as more basis functions are selected. In practice, it thus
seems likely that 2-3 basis functions will be optimal in most settings,
though B = 1 may be attractive where N is large and privacy
preservation is a top priority.

5 RELATED WORK

Federated Learning with Random Features. The most closely
related works in this area are [9, 18, 19, 38]. In [9, 19, 38], random
features are used as an approximation method for kernel learning,
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but not for privacy preservation, which is the focus of our paper.
In particular, CodedFedL [38] proposed kernel Fourier feature map-
ping of the user data in order to tackle a different (the straggler)
problem [24, 31], while its potential for privacy-preserving feder-
ated learning as mentioned only as a future direction. None of the
prior approaches employ random features in the low-rank regime
needed to preserve privacy. [38] solves the specific problem of ker-
nelized linear regression with the Gaussian kernel, while our paper
deals with kernel density estimation. [18] proposed FD-SKL — a
federated doubly stochastic kernel learning algorithm that utilized
random features to approximate the kernel mapping function, as-
suming vertically partitioned data, and proved that FD-SKL has
a sublinear convergence rate. The authors could guarantee data
privacy under the semi-honest assumption, but did not quantify the
degree of disclosure or consider basis-set restrictions to enhance
privacy, and did not analyze privacy-utility tradeoffs. To the best of
our knowledge, our paper is the first to explicitly employ projection
to small numbers of spatially delocalized random features as a pri-
vacy protection mechanism in federated learning, and characterize
the privacy-utility tradeoff with federated random feature learning
across theory, simulation, and real-world data.

Privacy-Preserving Techniques for Federated Learning. A
range of privacy-preserving techniques have been developed and
added onto the basic federated learning framework, including differ-
ential privacy (DP) on the mobiles and/or the server [27, 34], secure
aggregation [7, 25], etc. The state-of-the-art technique for adding
carefully calibrating noise [13, 40] is DP, including central DP [45]
and local DP. Central DP relies on a trusted curator to add noise
centrally [46]. Local DP removes the need for a trusted curator by
adding a perturbation to each user’s data (and/or model updates)
locally; it provides the strongest privacy guarantees at the expense
of loss in utility [2, 28]. Distributed DP with secure aggregation,
combines the best of both worlds, and has recently been applied
to location heatmaps in [3], which is most closely related to our
setting. By introducing a perturbation to the data and/or updates,
these noise-adding schemes can provide privacy guarantees against
adversaries with arbitrary background knowledge at the cost of
decreased learning efficiency. Our key intuition is that, in the spatial
setting, the added noise has been traditionally spatially localized.
Fig. 1 (lower row) provides an intuition: to add enough noise that
an adversary has little idea where a user resides, one may have to
remove most of the information content in a user’s signal. As our
work shows, this problem can be overcome by using a different
privacy-preserving scheme: adding spatially delocalized noise on
each device. In summary, this paper introduces a different and or-
thogonal idea to noise-adding and secure aggregation; it enhances
the toolbox of privacy-preserving techniques and can be combined
with some of them.

Location Privacy. With the increasing need for location-based
services (LBS), considerable prior work has evaluated location
privacy and compared various privacy-preserving techniques in
centralized [12, 27, 36] or federated [4] settings. [8] pointed out
that the utility in mobile crowdsource data lies in the measure-
ments, and not in the location itself. They evaluated state-of-the-art
location privacy techniques and showed that none is sufficient.
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In [36], the Dummy-Location Selection (DLS) algorithm was pro-
posed to achieve k-anonymity for users in Location-Based Ser-
vice (LBS) by carefully selecting dummy locations considering that
side information may be exploited by adversaries. However, the
anonymization-based mechanism cannot provide a privacy guar-
antee against attackers with arbitrary background knowledge and
differential privacy-based approaches have been applied to LBS
to provide strong privacy guarantees [20, 47, 49]. In this paper,
we use geo-indistinguishability (Geolnd) [1] as our baseline for
comparison. Geolnd is a privacy notion (see Section 4.2.3) based
on differential privacy, introduced specifically for location-based
systems and shown to be more appropriate than other notions (e.g.
local DP) in this context [27].

6 CONCLUSION

We have proposed a federated framework to estimate population
density that conceals users’ data from a malicious server. Instead of
perturbing data or adding spatially local noise, the proposed method
projects users’ locations to random spatially delocalized features in
Fourier space. We showed that the proposed method has distinct
advantages in both density estimation and privacy preservation
compared to both Federated KDE and Geolnd DP. Privacy can be
protected by using a small number of random features, and we
empirically show that when the number of users is large, few ran-
dom features are still able to achieve good estimation. In addition,
we provide theoretical guarantees for privacy-preserving band-
width selection in the one feature case, which ensures that a target
user cannot be localized by any combination of user evaluations
sent to the server. Experiments on both synthetic and real-world
data empirically show the effectiveness of the proposed method.
Our proposed privacy-by-projection technique adds to the privacy-
preserving toolbox for federated analytics, and can be used on
its own for location data or in combination with other privacy-
preserving techniques.
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PROOFS

A.1 Proof of Lemma 3

Proor. Since all bands are orthogonal to the direction of random
vector w, only consider g, along the direction of w, and the period
T along this directionis T = Hfoﬁ To ensure at least j bands appear,


http://snap.stanford.edu/data
https://arxiv.org/abs/2007.03273

Privacy by Projection: Federated Population Density Estimation by Projecting on Random Features

we need
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JT=

= <l (19)
lell2

since w is sampled from N (0, h72I) and each dimension of w is
independent from each other, ||w||2’s distribution is equivalent to
the distribution of %, [ZIZ + Zzz, where Z; is an independent random
variable sampled from normal distribution. Therefore, the sum X
of le and Zz2 follows chi-squared distribution with 2 degrees of
freedom X ~ y%(2). Then, (19) can be rewritten as

ohmi
VX > 2 (20)
The probability of (20) holding is
2
1—P(Xg(2hlﬂ) ) (21)

To quantify (21), one can simply leveraging CDF C(-) of chi-squared
distribution with 2 degrees of freedom. When (Zh#)2 <y, the

probability in (21) is no less than 1 — C(y). O

A.2 Proof of Lemma 4
PRrROOF. As stated in Lemma 3, period Ty of bandwidth hy is

21 27h
To=—= 0

el - [z .2
ZI+Z2

With a small enough hy, there will be a large number of bands across
the area. Next, to ensure new bandwidth h > hy has overlapping
bands, the period T of bandwidth A should satisfy

(22)

(23)

T can also be written as the form of (22). Substitute (22) and the
similar expression of T into (23), the new bandwidth can only be
selected with

h = (4n + 1)hg (24)

]

B MORE ON EXPERIMENTS
B.1 More Details on the Experimental Setup

In Section 4, we consider four cities: LA, London, Tokyo and Chicago.

The areas we are interested to estimate are specified by two pairs of
latitude and longitude. In particular, for each selected city, the two
pairs, bandwidth selection and number of users inside the areas
are:
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Table 1: Real-world data details

brightkite gowalla
(34.11246, | (34.11246,
-118.42099) | -118.4209)
LA (34.00617, | (34.00617,
-118.21599) | -118.21599)
h=7e-3 h=7e-3
#=59307 #=40259
(51.52708,
-0.16971)
(51.50453,
London N/A -0.10611)
h=22e-3
#=22013
(35.70064,
139.75249)
(35.65504,
Tokyo | 139 77807) N/A
h=1de-3
#=20432
(41.93045, | (41.93045,
-87.66701) | -87.66701)
, 41.85821, | (41.85821,
Chicago f87.61399) -(87.61399)
h=3e-3 h=3e-3
#=18172 #=28139

Two data sets (London for brightkite and Tokyo for gowalla)
were substantially smaller than the other datasets (by e.g. an order
of magnitude), and in the London case, the majority of data points
were in one single location (Trafalgar Square). We do not employ
them in the real-world analysis.

B.2 Additional Experiments

We repeated the experiments of the main paper, but with a smaller
number of evaluations points. The experimental details are the
same as in Fig. 10 and 11. Fig. 14 shows the results, i.e., the privacy-
performance tradeoff in synthetic data scenarios (a) and (b) with
only N = 100 samples.

One can observe that neither privacy-preserving method per-
forms well in that regime, though the DP-based method generally
shows a better performance. This is not a surprise since KDE is a
non-parametric density estimation method, and is expected to not
work well with limited data. Intuitively, bandwidths in small-n set-
tings tend to be large, which reduces the relative performance loss
from adding noise in the DP-case (since this is effectively smoothed
out). By contrast, this does not compensate for the overall loss of
information using the delocalized method. This underscores the
results of Fig. 10 and 11, showing an increasing advantage of the
projection method versus with data size. When more users join
the system, fewer random features need to be used to obtain good
resolution and more refined bandwidths become optimal, both of
which enhance privacy for the projection technique.
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Figure 14: Synthetic datasets with 100 samples
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