
Federated Learning via

Indirect Server-Client Communications

Jieming Bian

Department of ECE

University of Miami

Coral Gables, FL 33146

jxb1974@miami.edu

Cong Shen

Department of ECE

University of Virginia

Charlottesville, VA 22904

cong@virginia.edu

Jie Xu

Department of ECE

University of Miami

Coral Gables, FL 33146

jiexu@miami.edu

AbstractÐFederated Learning (FL) is a communication-efficient
and privacy-preserving distributed machine learning framework
that has gained a significant amount of research attention recently.
Despite the different forms of FL algorithms (e.g., synchronous
FL, asynchronous FL) and the underlying optimization methods,
nearly all existing works implicitly assumed the existence of a
communication infrastructure that facilitates the direct commu-
nication between the server and the clients for the model data
exchange. This assumption, however, does not hold in many real-
world applications that can benefit from distributed learning but
lack a proper communication infrastructure (e.g., smart sensing in
remote areas). In this paper, we propose a novel FL framework,
named FedEx (short for FL via Model Express Delivery), that
utilizes mobile transporters (e.g., Unmanned Aerial Vehicles) to
establish indirect communication channels between the server
and the clients. Two algorithms, called FedEx-Sync and FedEx-
Async, are developed depending on whether the transporters
adopt a synchronized or an asynchronized schedule. Even though
the indirect communications introduce heterogeneous delays to
clients for both the global model dissemination and the local
model collection, we prove the convergence of both versions of
FedEx. The convergence analysis subsequently sheds lights on how
to assign clients to different transporters and design the routes
among the clients. The performance of FedEx is evaluated through
experiments in a simulated network on two public datasets.

I. INTRODUCTION

In recent years, Federated Learning (FL) has emerged as

a popular distributed machine learning framework where a

number of distributed clients can collaboratively train a common

machine learning model under the coordination of a parameter

server without exposing their own data to another party. With an

unprecedented amount of data being generated on edge devices

such as smart phones and Internet-of-Things (IoT) devices as

well as the rising privacy concerns associated with uploading

this data to the cloud, FL is now widely considered as the

next-generation machine learning paradigm to power a broad

variety of applications, ranging from healthcare to agriculture,

transportation, industrial IoT and mobile applications due to its

distributed nature and privacy-preserving advantage.

A main aspect that makes FL stand out from other distributed

learning frameworks is its specific consideration on the com-

J. Bian and J. Xu are supported in part by NSF under grants 2006630,
2033681, 2029858 and 2044991. C. Shen is supported in part by NSF under
grants 2033671 and 2143559.

Global Model
Dissemination

(Download)

Local Model
Collection
(Upload)

Parameter
Server

Smart Sensor
(Client)

UAV
(Mobile Transporter)

Fig. 1. Illustration of FedEx applied to smart sensing in remote areas with no
communication infrastructure.

munication efficiency between the clients and the server. Par-

ticularly, the local stochastic gradient descent (SGD) algorithm

[1] and the FedAvg algorithm [2] let clients perform multiple

local SGD iterations on their own datasets before uploading

the results to the parameter server for aggregation. Compared

with earlier distributed learning algorithms such as distributed

SGD [3] where local computation results must be uploaded to

the server after every iteration, local SGD (or FedAvg) has

a clear advantage in terms of the communication efficiency

while still enjoying guaranteed convergence. This idea inspired

many follow-up FL algorithms developed based on different

optimization methods and makes FL the favorite choice in

communication-constrained learning settings where either the

bandwidth between the clients and the server is limited or the

communication pattern is random and sporadic.

Despite the differences in the adopted optimization methods

and the focused settings, nearly all existing works implicitly

assumed that the clients can directly communicate with the

server. In the asynchronous FL category, the communication

assumption is relaxed in some works [4], [5] so that clients

may have random and sporadic communication patterns with

the server, but clients can still directly communicate with

the server, albeit less regularly. However, in many real-world

systems, clients may not be able to directly communicate with

the server at all due to the lack of a proper communication

infrastructure. It is thus imperative to understand whether FL

can still work without direct server-client communications and

978-1-6654-5181-9/23/$31.00 ©2023 IEEE

20
23

 5
7t

h
An

nu
al

 C
on

fe
re

nc
e

on
 In

fo
rm

at
io

n
Sc

ie
nc

es
 a

nd
 S

ys
te

m
s (

CI
SS

) |
 9

78
-1

-6
65

4-
51

81
-9

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

CI
SS

56
50

2.
20

23
.1

00
89

78
3

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

how to optimize the FL algorithms in these settings.

In this paper, we propose a new FL framework, called

FedEx (Federated Learning via Model Express Delivery), for

the considered FL system with no direct server-client commu-

nications. To address the no direct communication challenge,

FedEx devises an active mobility mechanism, which utilizes

mobile transporters (e.g., Unmanned Aerial Vehicles / UAVs) to

establish indirect communication channels between the server

and the clients to facilitate the model information exchange. In

other words, the mobile transporters serve as an intermediary

between the server and the clients to disseminate global models

and collect local model updates, analogous to delivery trucks

in a traditional parcel express delivery system. Fig. 1 illustrates

the application of FedEx to smart sensing in remote areas with

no communication infrastructure.

However, the indirect communication also brings significant

new challenges to the convergence analysis and optimization of

FedEx. First, in both the global model dissemination phase and

the local model collection phase, delay is inevitably introduced

by the indirect communication as it takes time for the mobile

transporters to move from one location to another. It is unclear

whether FedEx can still converge under this delay and if so, how

fast. Second, depending on the transporter scheduling policy,

learning can be either synchronized or asynchronized at the

transporter level, thereby further complicating the convergence

analysis of FedEx. Third, clients experience heterogeneous

delays depending on their locations and the routes chosen

by the transporters. Thus, the performance of FedEx is also

contingent on how clients are assigned to the transporters and

how the transporters design their routes. We summarize the main

contributions of this paper below.

• To our best knowledge, we propose the first FL framework

via indirect server-client communications. Two algorithms,

coined FedEx-Sync and FedEx-Async, are proposed de-

pending on whether the transporters synchronize their tours

among the assigned clients.

• We prove the convergence of both FedEx-Sync and FedEx-

Async using a virtual sequence technique.

• Based on the specific forms of the convergence bounds,

a bi-level optimization algorithm is proposed to solve the

joint client assignment and route design problem.

• The experiments results using two public datasets validate

the efficacy of FedEx and are consistent with our theory.

II. PROBLEM FORMULATION

We consider an FL system with one parameter server and N
clients, which are distributed over a large area without direct

communication capabilities. In other words, no client has a

direct communication channel with the server and any pair

of clients do not communicate with each other. For notation

simplicity, we index the server as 0 and the clients by the set

N = {1, 2, · · · , N}. The server and the clients are deployed in

fixed locations and do not move. Given the location coordinates

of the server and the clients, one can easily calculate the

(symmetric) distance matrix D ∈ R
(N+1)×(N+1) that describes

the distance between any two devices. Specifically, D0i = Di0

is the distance between the server and client i and Dij = Dji

is the distance between clients i and j.

Each client i has a dataset and the clients must together train

a machine learning model under the coordination of the server

by solving the following distributed optimization problem:

min
x

f(x) =
1

N

N∑

i=1

fi(x) =
1

N

N∑

i=1

Eζi [Fi(x, ζi)], (1)

where fi : Rd → R is a non-convex loss function for client

i, Fi is the estimated loss function based on a mini-batch data

sample ζi drawn from client i’s dataset and x ∈ R
d is the model

parameter to learn.

To train such a machine learning model, conventional FL

frameworks require periodic/non-periodic communications be-

tween the clients and the server. However, in our considered

setting, all direct communication channels between the clients

and the server are absent and hence, these FL frameworks all fail

to work. In the next section, we propose a novel FL framework

to enable FL in such extreme communication scenarios (i.e., no

direct communications).

III. FEDEX: FL VIA MODEL EXPRESS DELIVERY

To address the lack of direct communications between the

clients and the server, our idea is to leverage mobile transporters

(e.g., UAVs) to build indirect communication channels between

the server and the clients. These mobile transporters transport

global/local models between the server and the clients, just like

delivery trucks transport parcels between the warehouse and the

customers. We call this new FL framework FedEx, short for FL

via Model Express Delivery.

Consider that K mobile transporters can be used in FedEx.

The specific value of K depends on the available system

resources and we consider it as given in this paper. Without

loss of generality, we assume that all clients have the same

computing speed and all transporters have the same moving

speed. We discretize time into slots, indexed by t = 0, 1, 2, · · · ,

where each time slot corresponds to the duration of completing

one local training step by a client. Furthermore, with a slight

abuse of notation, we let the matrix D represent the time (in

terms of time slots) needed for the mobile transporter to travel

from one location to another instead of the distance to simplify

our notations.

FedEx works by first partitioning the clients into K non-

overlapping subsets and assigning each subset to one mobile

transporter. Let Rk ⊂ N represent the subset of clients that

are covered by transporter k. We have Rk ∩Rk′ = ∅, ∀k ̸= k′

and ∪K
k=1Rk = N . Moreover, let Rk = |Rk| be the number

of clients in subset Rk. For each transporter k, it determines

a round-trip tour among the server and the clients in Rk. Let

zij , ∀i, j ∈ Rk ∪ {0} be a binary variable indicating whether a

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

path from device i to device j is included in the tour, then the

round-trip time (RTT) can be easily calculated as

∆k =
N∑

i=0

N∑

j ̸=i,j=0

Dijzij . (2)

To make sure that the tour covers all devices exactly once, we

have the constraints that each device has exactly one incoming

path and one outgoing path, which can be expressed as 2(N+1)
linear equations:

N∑

i=0,i ̸=j

zij = 1,
n∑

j=0,j ̸=i

zij = 1, ∀j = 0, · · · , N. (3)

Finding the shortest tour for a given set of clients Rk is

essentially a travelling salesman problem and we defer the

optimization of client assignment among the transporters to

Section V after understanding the convergence behavior of

FedEx. For now, we treat Rk, ∀k = 1, · · · ,K as already

decided along with the corresponding tour RTT ∆k.

A. FedEx-Sync

In the synchronized version of FedEx, namely FedEx-Sync,

the transporters depart from the server at the same time every

time they start a new tour among their assigned clients. Because

the transporters have different tour RTTs, the ones with shorter

RTT need to wait for the others with longer RTT to come

back to start the next tour. Therefore, FedEx-Sync is naturally

composed of synchornized learning rounds, with each round

having ∆ ≜ maxk ∆k time slots. In each round (denote the

first slot of this round as t0), the following events occur.

• At the beginning of each round, each transporter down-

loads the current global model xt0 from the server. The

transporters then start a tour among their assigned clients

according to the pre-determined client visiting order.

• When a transporter (say transporter k) meets a client (say

client i) at time t > t0, client i downloads the global

model, i.e., xt0 , that transporter k currently carries. Then

the transporter leaves and client i uses xt
k = xt0 as the

initial model to train a new local model using its own

local dataset until the next time it meets the transporter.

Because the transporter takes ∆ time slots to revisit client

i, the local training will last ∆ time slots. The local training

uses a mini-batch SGD method:

xs+1
i = xs

i − ηgsi , ∀s = t, · · · , t+∆− 1, (4)

where gsi = ∇Fi(x
s
i , ζ

s
i) is the stochastic gradient on a

randomly drawn mini-batch ζsi and η is the learning rate.

Let mt
i ∈ R

d be the cumulative local updates (CLU) of

client i at time s since its last meeting with the transporter,

which is updated recursively as follows

ms
i =

s−1∑

s′=t

ηgsi , ∀s = t, · · · , t+∆. (5)

• When a transporter (say transporter k) meets a client (say

client i) at time t > t0, client i also uploads its current CLU

to transporter k. Note, however, that this CLU is obtained

based on the global model from the previous round, i.e.,

xt0−∆. Transporter k maintains an aggregated CLU ut
k

during the current tour to save storage space and updates

it whenever a new client CLU is received according to

ut
k = ut−1

k +mt
i. (6)

• When the transporter returns to the server, the aggregated

CLU is used to update the global model. In FedEx-Sync,

the global model is updated synchronously at the end of

each round as follows

xt0+∆ = xt0+∆−1 −
1

N

K∑

k=1

ut0+∆−1
k . (7)

B. FedEx-Async

The synchronization in FedEx-Sync is achieved by asking

faster transporters to wait for slower transporters. This, however,

introduces extra delays for faster transporters. In the case where

the slowest transporter takes a tour with a very large RTT, then

all the other transporters will have to wait for a long time

before starting their next tour. In FedEx-Async, we remove

such waiting time by letting the transporter start a new tour

immediately after finishing the previous tour. In this way,

more clients will be able to perform more frequent global/local

model exchanges with the server. FedEx-Async share many

similarities with FedEx-Sync and the biggest difference is that

each transporter will have individualized learning rounds not

necessarily synchronized with others. For transporter k, its

learning round lasts ∆k time slots and the following events

occur in each round (denote the first slot as t0).

• At the beginning of each round, transporter k downloads

the current model xt0 from the server. Then it starts its

tour among the assigned clients.

• When transporter k meets client i at time t > t0, client i
downloads xt0 from transporter k and uses xt

k = xt0 as the

initial model to train a new local model until the next time

it meets the transporter. Different from FedEx-Syncs, the

local training will last ∆k time slots, which are different

across transporters.

• When transporter k meets client i at time t > t0, client i
also uploads its current CLU, which is obtained based on

the previous round global model xt0−∆k , to transporter k.

Transporter k then updates its aggregated CLU ut
k.

• When the transporter returns to the server, the global model

is updated as follows

xt0+∆k = xt0+∆k−1 −
1

N
ut0+∆k−1
k . (8)

Again, this is different from FedEx-Sync since the server

does not have to wait for all transporters to update the

global model. Note that it is possible that multiple trans-

porters can return to the server in the same time slot (say

t). In this case, the global model update rule is changed to

xt0+∆k = xt0+∆k−1 −
1

N

∑

k′∈St0+∆k

ut0+∆k−1
k′ , (9)

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

where St0+∆k−1 is the set of clients that return to the

server at time slot t0 +∆k − 1.

IV. CONVERGENCE ANALYSIS

In this section, we analyze the convergence of FedEx. Be-

cause FedEx-Sync can be considered as a special case of FedEx-

Async where all ∆k, ∀k take the same value, we will focus on

the convergence analysis of FedEx-Async.

A. Aligning Client Training

Before analyzing the convergence of FedEx, we first describe

an equivalent view of FedEx that aligns the local training

of clients in the same subset. Consider a learning round of

transporter k that carries the global model xt0 . Because of the

different locations of clients in Rk, the clients receive xt0 and

start their new round of local training at different time slots.

Once they finish the current round of local training, their CLUs

based on xt0 will be uploaded via the transporter to the server

at time slot t0 + 2∆k. At that moment, the global model gets

an update using these CLUs.

The unaligned local training of clients, even if covered by the

same transporter, would create a major challenge for the conver-

gence analysis of FedEx. Fortunately, there is an equivalent (but

imaginary) client training procedure that produces exactly the

same global model sequence. Specifically, imagine that clients

in Rk receive the global model xt0 immediately at time slot t0
and perform their local training for ∆k time slots. Then their

CLUs are delayed one round to be uploaded to the server. That

is, at time slot t0 +2∆k, the global model gets an update. It is

clear that the global model update is not affected at all by this

change but the local training among clients in the same subset

Rk is now perfectly aligned. Since we are interested in the

convergence of the global model, we consider the equivalent

aligned client training procedure in our convergence proof.

Where the local training of the clients is aligned while the global

model evolution is unaffected. Essentially, the alignment moves

the download delay to the upload phase, but the total delay

remains the same. With this change, FedEx-Sync becomes a

familiar synchronous FL algorithm but with one round CLU

upload delay. In addition to the CLU upload delay, Fed-Async

still features asynchronized learning across the client subsets.

B. Assumptions

Our convergence analysis will utilize the following standard

assumptions.

Assumption 1 (Lipschitz Smoothness). There exists a constant

L > 0 such that ∥∇fi(x) −∇fi(y)∥ ≤ L∥x − y∥, ∀x, y ∈ R
d

and ∀i = 1, · · · , N .

Assumption 2 (Unbiased Local Gradient Estimate). The local

gradient estimate is unbiased, i.e., EζFi(x, ζ) = ∇fi(x), ∀x
and ∀i = 1, · · · , N .

Assumption 3 (Bounded Gradient). There exists a constant

G > 0 such that E∥∇Fi(x, ζ)∥
2 ≤ G2, ∀x ∈ R

d and

∀i = 1, · · · , N .

Assumption 4 (Bounded Variance). There exists a constant σ >
0 such that Eζ∥∇Fi(x, ζ) − ∇fi(x)∥

2 ≤ σ2, ∀x ∈ R
d and

∀i = 1, · · · , N .

C. Convergence Bound

Our convergence analysis relies on understanding the rela-

tionship between and the evolution of two sequences of the

global model. The real sequence of the global model is the

actual global models maintained at the server over time, which

can be calculated as follows according to FedEx:

xt = x0 −
1

N

N∑

i=1

ϕi(t)∑

s=0

ηgsi , ∀t, (10)

where we define ϕi(t) as the time slot up to when all corre-

sponding gradients of client i have been received at time t. In

other words, at time slot t, the server has received gradients

g0i , · · · , g
ϕi(t)
i from client i (via the transporter). In FedEx-

Sync, all clients have the same indirect communication patterns

with the server and hence ϕi(t) = ϕj(t), ∀i, j ∈ N . In FedEx-

Async, clients belonging to the same transporter have the same

indirect communication patterns with the server and hence,

ϕi(t) = ϕj(t), ∀i, j ∈ Rk, ∀k.

The virtual sequence of the global model is defined in the

imaginary case where all client gradients are uploaded to the

server immediately after they have been calculated. Similar

virtual sequences have been utilized in [6]. However, our

convergence proof is tailored to the specific problems in our

paper and different than all prior works. Specifically, the virtual

sequence is defined as

vt = x0 −
1

N

N∑

i=1

t−1∑

s=0

ηgsi , ∀t. (11)

Clearly, there is a discrepancy between the real sequence and

the virtual sequence due to the delayed upload of the client

gradients. For FedEx-Sync, this delay is bounded by

(t− 1)− ϕi(t) ≤ 2∆, ∀i ∈ N . (12)

For FedEx-Async, the delay is bounded by

(t− 1)− ϕi(t) ≤ 2∆k, ∀i ∈ Rk, ∀k. (13)

Lemma 1. The difference between the real global model and

the virtual global model can be bounded as follows

E∥vt − xt∥2 ≤
4η2G2

N

K∑

k=1

Rk∆
2
k. (14)

The average difference between all clients’ local models and

the virtual global model is bounded as follows

1

N

N∑

i=1

E∥vt − xt
i∥

2 ≤
18η2G2

N

K∑

k=1

Rk∆
2
k. (15)

Theorem 1. By setting the learning rate 0 < η ≤ 1/L, we have

1

T

T−1∑

t=0

E∥∇f(xt)∥2

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

≤
4

ηT
(f(x0)− f∗) +

44η2G2L2

N

K∑

k=1

Rk∆
2
k +

2Lησ2

N
. (16)

Remark 1. For T ≥ N3, by setting the learning rate as

η =
√
N

L
√
T

, the convergence bound recovers the same O(1√
NT

)
convergence rate of the classical synchronous FL [7].

Remark 2. For FedEx-Sync, the convergence bound can be

tightened a little bit because the real sequence and the virtual

sequence periodically coincide with each other. In addition,

because the effective RTT of all transporters is maxk ∆k, the

convergence bound reduces to

2

ηT
(f(x0)− f∗) + 18η2G2L2(max

k
∆k)

2 +
Lησ2

N
. (17)

V. CLIENT ASSIGNMENT AND ROUTE DESIGN

In this section, we study the joint client assignment and route

design problem to optimize the convergence bound of FedEx.

A. Problem Formulation

We consider a typical setting where the number of clients is

much larger than the number of transporters, i.e., N ≫ K, due

to the limited transporter availability and potentially massive

deployment of IoT devices. Let ai ∈ {1, · · · ,K} be the

assignment variable of client i, indicating which transporter it

is assigned to. We also collect the assignment variables of all

clients in a = (a1, · · · , aN). Clearly, Rk = {i : ai = k}.

Given the assigned clients Rk for each transporter k, we

can design a route to minimize the RTT. Let ∆k(Rk) be

the minimum RTT given a set of client Rk. Alternatively,

∆k(Rk) can also be written as ∆k(a) since Rk is determined

by a. Client assignment is to solve the following optimization

problems

FedEx-Sync : min
a

max
k

∆k(a), (18)

FedEx-Async : min
a

∑

k

Rk(a)∆
2
k(a). (19)

The above problem is a difficult combinatorial optimization

problem. Next, we propose a new algorithm to solve this

problem.

B. Bi-level Optimization

We develop a bi-level optimization algorithm, called CARD

(short for Client Assignment and Route Design).

1) Inner-level optimization: The inner-level optimization is

to solve the minimum RTT given a set of client Rk, for each

transporter k, namely computing ∆k(a) for a given a. This

is a classical traveling salesman problem (TSP) [8], [9], [10].

Considering the high complexity of dynamic programming (i.e.,

O(2nn2) where n is the number of nodes), we use a heuristic

algorithm 2-OPT [11], which has a time complexity of O(n2),
to compute ∆k(a) for a given a in our implementation.

2) Outer-level optimization: To solve the outer-level opti-

mization problem to determine the optimal client assignment,

we resort to Gibbs Sampling. For notation simplicity, we

use a unified cost function C(a), which equals maxk ∆k(a)
for FedEx-Sync and

∑
k Rk(a)∆

2
k(a) for FedEx-Async. The

CARD algorithm visits each client according to a pre-defined

sequence, generates a probability distribution of its assignment

decision while holding other clients’ assignment decision un-

changed, and samples a new assignment decision according to

this distribution. Repeating this process for sufficiently many

iterations ensures that the assignment converges to the optimal

solution with high probability.

VI. EXPERIMENTS

In this section, we evaluate the performance of FedEx using

a simulated network environment and standard public datasets.

A. Experiment Setup

Network. We simulate a network with no direct communica-

tions where one parameter server and 40 clients are distributed

over an area as shown in Fig. 2. The whole area is first divided

into 10 blocks of equal size (i.e., 4 units × 10 units), and 4

clients are randomly distributed in each block. We simulate

K = 4 mobile transporters in most of our experiments, which

have the same moving speed of 4 units per time slot.

DNN Model and Dataset. We conduct the FL experiments

on two public datasets, i.e., FMNIST [12] and SVHN [13]. For

both datasets, we utilize LeNet [14] as the backbone model.

Dataset Splitting. For the FMNIST experiments, each client

possesses 60 training data samples. For the SVHN experiments,

each client possesses 800 training data samples. Two data

distributions are simulated.

• IID: The clients’ data distributions are i.i.d.

• Non-IID: We use the Dirichlet method to create non-i.i.d.

datasets, which is widely applied in FL research, e.g., [15].

We use a Dirichelet distribution with parameter 0.3 in the

FMNIST experiments and 0.5 in the SVHN experiments.

Transporter Routes. We evaluate different transporter route

designs that uses different objective functions to solve the client

assignment problem:

• Min-Max: maxk ∆k(a).
• Sum-of-Weighted-Squared (SWS):

∑
k Rk(a)∆

2
k(a).

• Shortest-Total:
∑

k ∆k(a).

B. Results

FedEx-Sync v.s. FedEx-Async under i.i.d. data. We

first compare the performance of FedEx-Sync (with Min-Max

routes) and FedEx-Async (with SWS routes) under i.i.d. data.

Fig. 3 and Fig. 4 demonstrate their convergence curves on

FMNIST and SVHN, respectively. As can be seen, under i.i.d.

data, both algorithms converge but FedEx-Async outperforms

FedEx-Sync. This makes sense since FedEx-Sync spends extra

time in waiting for the slowest mobile transporters.

FedEx-Sync v.s. FedEx-Async under non-i.i.d. data. Next,

we compare FedEx-Sync and FedEx-Async non-i.i.d. data. Fig.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

Fig. 2. Network Illustration Fig. 3. FedEx under i.i.d data on FMNIST Fig. 4. FedEx under i.i.d data on SVHN

Fig. 5. non-i.i.d on FMNIST Fig. 6. non-i.i.d on SVHN Fig. 7. Impact of Routes (Async) Fig. 8. Impact of Routes (Sync)

5 and Fig. 6 show that FedEx-Sync performs similarly to FedEx-

Async. Although individual clients’ data can be very non-i.i.d.,

the overall client data of a transporter can still be similar to the

entire data distribution when there are sufficiently many clients

on the transporter’s route.

Impact of Routes. We empirically investigate the impact

of different transporter route designs. Fig. 7 compares the

convergence of FedEx-Async under different route designs. The

result is consistent with our theoretical analysis in Theorem 1

that the SWS design achieves the best convergence performance.

Fig. 8 shows the results for FedEx-Sync. In this case, the longest

individual RTT obtained in SWS is the same as that obtained in

Min-Max, and hence SWS is also another solution of Min-Max.

Therefore, Min-Max routes and SWS routes achieve similar

convergence performance and outperform Shortest-Total, in

accordance to the theoretical analysis in Theorem 1.

VII. CONCLUSION

In this paper, we have developed a new FL framework

via indirect server-client communications to support distributed

machine learning in scenarios without a communication infras-

tructure. Two novel algorithms have been proposed that utilize

mobile transporters to disseminate global models and collect

local models via device-to-device communications. We have

carried out a novel convergence analysis of these algorithms

under arbitrary transporter routes, for non-convex loss functions

and non-i.i.d. data distributions. The result offers a principled

guideline for the joint client assignment and route design.

REFERENCES

[1] S. U. Stich, ªLocal sgd converges fast and communicates little,º arXiv

preprint arXiv:1805.09767, 2018.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
ªCommunication-efficient learning of deep networks from decentralized
data,º in Artificial intelligence and statistics. PMLR, 2017, pp. 1273±
1282.

[3] M. F. Balcan, A. Blum, S. Fine, and Y. Mansour, ªDistributed learning,
communication complexity and privacy,º in Conference on Learning

Theory. JMLR Workshop and Conference Proceedings, 2012, pp. 26±1.
[4] D. Avdiukhin and S. Kasiviswanathan, ªFederated learning under arbi-

trary communication patterns,º in International Conference on Machine

Learning. PMLR, 2021, pp. 425±435.
[5] D. Basu, D. Data, C. Karakus, and S. Diggavi, ªQsparse-local-sgd:

Distributed sgd with quantization, sparsification and local computations,º
Advances in Neural Information Processing Systems, vol. 32, 2019.

[6] K. Yuan, Q. Ling, and W. Yin, ªOn the convergence of decentralized
gradient descent,º SIAM Journal on Optimization, vol. 26, no. 3, pp. 1835±
1854, 2016.

[7] H. Yu, S. Yang, and S. Zhu, ªParallel restarted sgd with faster convergence
and less communication: Demystifying why model averaging works for
deep learning,º in Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 33, no. 01, 2019, pp. 5693±5700.
[8] S. Lin and B. W. Kernighan, ªAn effective heuristic algorithm for the

traveling-salesman problem,º Operations research, vol. 21, no. 2, pp. 498±
516, 1973.

[9] M. M. Flood, ªThe traveling-salesman problem,º Operations research,
vol. 4, no. 1, pp. 61±75, 1956.

[10] M. JÈunger, G. Reinelt, and G. Rinaldi, ªThe traveling salesman problem,º
Handbooks in operations research and management science, vol. 7, pp.
225±330, 1995.

[11] G. A. Croes, ªA method for solving traveling-salesman problems,º Oper-

ations research, vol. 6, no. 6, pp. 791±812, 1958.
[12] H. Xiao, K. Rasul, and R. Vollgraf, ªFashion-mnist: a novel image

dataset for benchmarking machine learning algorithms,º arXiv preprint

arXiv:1708.07747, 2017.
[13] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and A. Y. Ng,

ªReading digits in natural images with unsupervised feature learning,º
2011.

[14] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, ªGradient-based learning
applied to document recognition,º Proceedings of the IEEE, vol. 86,
no. 11, pp. 2278±2324, 1998.

[15] H.-Y. Chen and W.-L. Chao, ªFedbe: Making bayesian model ensemble
applicable to federated learning,º arXiv preprint arXiv:2009.01974, 2020.

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 12,2023 at 12:53:09 UTC from IEEE Xplore. Restrictions apply.

