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Abstract—Signal maps are essential for the planning and operation of cellular networks. However, the measurements needed to
create such maps are expensive, often biased, not always reflecting the performance metrics of interest, and posing privacy risks. In
this paper, we develop a unified framework for predicting cellular performance maps from limited available measurements. Our
framework builds on a state-of-the-art random-forest predictor, or any other base predictor. We propose and combine three
mechanisms that deal with the fact that not all measurements are equally important for a particular prediction task. First, we design
quality-of-service functions (Q), including signal strength (RSRP) but also other metrics of interest to operators, such as number of
bars, coverage (improving recall by 76%-92%) and call drop probability (reducing error by as much as 32%). By implicitly altering the
loss function employed in learning, quality functions can also improve prediction for RSRP itself where it matters (e.g., MSE reduction
up to 27% in the low signal strength regime, where high accuracy is critical). Second, we introduce weight functions (W) to specify the
relative importance of prediction at different locations and other parts of the feature space. We propose re-weighting based on
importance sampling to obtain unbiased estimators when the sampling and target distributions are different. This yields improvements
up to 20% for targets based on spatially uniform loss or losses based on user population density. Third, we apply the Data Shapley
framework for the first time in this context: to assign values (¢) to individual measurement points, which capture the importance of their
contribution to the prediction task. This can improve prediction (e.g., from 64% to 94% in recall for coverage loss) by removing points
with negative values and storing only the remaining data points (i.e., as low as 30%), which also has the side-benefit of helping privacy.

We evaluate our methods and demonstrate significant improvement in prediction performance, using several real-world datasets.

Index Terms—Cellular networks, LTE/5G/6G, signal strength, coverage, quality-of-service, signal maps, coverage maps,

spatiotemporal maps, Data Shapley.

1 INTRODUCTION

ELLULAR operators rely on key performance indicators

C (a.k.a. KPIs) to understand the performance and cover-
age of their network, as well as that of their competitors,
in their effort to provide the best user experience. KPIs
usually include wireless signal strength measurements (e.g.,
LTE reference signal received power, a.k.a. RSRP), other
performance metrics (e.g., throughput, delay) and other
information (e.g., frequency band, location, time, call drop
probability etc.). Cellular performance maps (a.k.a. signal
maps) consist of a large number of KPIs in several locations.
Traditionally, cellular operators collected such measure-
ments by hiring dedicated vans (a.k.a. wardriving [1]) with
special equipment, to drive through, measure and map
the received signal strength (RSS) in a particular area of
interest. However, in recent years they increasingly out-
source the collection of signal maps to third parties [2].
Mobile analytics companies, such as OpenSignal [3] and
Tutela [4], crowdsource measurements directly from end-
user devices, via standalone mobile apps, or measurement
SDKs integrated into other apps, such as games, utilities
or streaming apps. Either way, signal strength maps are
expensive for both operators and crowdsourcing companies
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to obtain, and may not be available for all locations, times,
frequencies, and other parameters of interest. The upcoming
dense deployment of small cells at metropolitan scales will
only increase the need for accurate and comprehensive
signal maps to enable 5G network management [5], [6].

For these reasons, there has been significant interest in
signal map prediction techniques based on a limited num-
ber of spatiotemporal cellular measurements. These include
propagation models [7], [8], data-driven approaches [9],
[10], [11] and combinations thereof [12]. Increasingly so-
phisticated machine learning models are being developed
to capture various spatial, temporal and other characteristics
of signal strength [2], [13], [14] and throughput [15], [16]. In
this paper, we build on a state-of-the-art RFs-predictor from
[2] as our base “workhorse” ML model, and we develop a
framework on top of it, to deal with the fact that not all
measurements are equally important.

We observe that three different factors affect the impor-
tance of measurement data points when those are used for
training ML predictors. First, what KPI we predict: operators
are typically interested in performance metrics such as cov-
erage, call drop probability, number of bars; these depend
on but go beyond raw signal strength (RSRP). Second, where
we make the prediction: the operators may be interested
in predicting performance better in some locations (e.g.,
those with weak coverage or at important sites), while
they may have no control on how crowdsourced mobile
measurements are distributed. Third, since measurements
are expensive and may pose privacy risks, we may want to
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Fig. 1: Overview of our framework: the goal is to predict cellular values §, based on features x, while training on
available (and unequally important) measurements. As base workhorse ML model, we use our state-of-the-art RF-predictor
(Sec. 3.2.3), but any other predictor would do as well. Our framework builds on top of the base predictor and deals with
the different importance of data points in three distinct ways. (1) We use quality-of-service functions () to predict directly
KPIs of interest; these depend on but are different from raw signal strength RSRP (Sec. 3.3). (2) We use weight functions W
to target the mismatch between sampling and target distributions (Sec. 3.4). (3) We apply the Data Shapley framework to
assess the importance (i.e., predictive value) ¢ of the measurements w.r.t. the prediction task at hand (P, W) (Sec. 3.5).

identify those data points with the highest predictive value
and discard outliers or redundant measurements.

We develop a unified framework for predicting cellular
performance maps, which provides cellular operators and
mobile analytics companies with knobs to express and deal
with the unequal importance of available cellular measure-
ments. We define two classes of functions ) and W, that
jointly define the performance of the signal maps prediction
problem P = (Q,W). These functions tackle the mismatch
between: (1) the operators” quality (QoS) metrics of interest
and the raw signal strength (RSRP) and (2) the sampling and
target distributions, respectively. Thus, operators can pre-
dict maps optimized beyond the standard MSE. In addition,
(3) we compute the data Shapley values (¢) of measurement
data points that capture their importance for training a
predictor for the particular cellular map prediction problem
P = (Q,W) at hand. Our three contributions are summa-
rized on Fig. 1 and are further elaborated upon next.

(1) Quality Functions (). We consider quality-of-service
functions (()), based on signal strength, which specify what
metric operators and users care about, such as mobile cov-
erage indicators (Q).), call drop probability (Qcpp), and
number of bars (() p). Prior work exclusively minimizes the
MSE for signal strength (RSRP) [9], [11], [12], [14], which
does not directly optimize prediction for the aforementioned
metrics. In contrast, we show that learning directly on the
Q domain can significantly improve performance vs. state-
of-the art, including: (i) recall gains from 76% to 92% and
balanced accuracy gains from 87% to 94% for predictions of
coverage loss (where false negatives are costly to operators);
and (ii) reductions in relative error in predicted CDP by
up to 32% (in the high CDP regime of greatest concern
to cellular operators). Even for predicting signal strength
(RSRP) itself, accuracy is often more critical in the low than
in the high signal-strength regime. Specifying objectives
via quality functions implicitly tunes the loss function, and
allows operators to put more emphasis on values and use

cases of signal maps that matter most. For example, we
show improvement of prediction of RSRP itself in the low
signal strength regime, of up to 27% (3dB in RMSE).

(2) Weight functions W. Sampling bias is inherent in
crowdsourced data due to the non-uniform population den-
sity, as well as the commute and usage patterns. An operator
may be interested in knowing KPIs at particular locations (as
well as times, frequencies, and other features). Examples of
target locations of interest for prediction include: locations
where there is poor coverage, locations with dense user
population, origins of calls to 911 dispatchers, client sites
during working hours. However, these target locations may
differ from the sampling locations where measurements are
available, thus optimization to available data can lead to
biased inference. This mismatch of the sampling distribution
with the target distribution is also known as the dataset
shift problem [17] in ML. To tackle this mismatch, we
propose a re-weighting method, rooted in the framework of
importance sampling, which leads to unbiased error. We in-
troduce weight functions (W) that allow operators to express
where (e.g., in which particular locations, times, efc.) they
are interested in predicting performance most accurately.
We demonstrate improvement up to 20% for two intuitive
target distributions: uniform loss across a spatial area and
loss proportional to population density. Combining weight
targeting and quality functions improves further, e.g., up to
5% more for estimating CDP on targeted spatial losses.

(3) Data Shapley ¢. We recognize and exploit the fact
that not all measurements are equally important for predict-
ing the metric of interest at the location of interest. We apply,
for the first time in the context of signal maps, the Data
Shapley framework, originally defined in economics and
recently adapted to assign value to training data in ML [18].
Our Data Shapley framework takes as input the available
cellular measurements, the ML prediction algorithm, and
the error metric, re-weighted for the particular prediction
problem P = (Q, W); it then computes the Shapley values
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(¢) of individual measurements used for training the ML
model. The latter (i) enables us to remove measurements
with negative or low Shapley values (e.g., outliers), so as
to train a better model and improve predictions; and (ii) can
also minimize the amount of training data stored, which also
has the side effect of enhancing privacy. For example, we
show that we can remove up to 65-70% of data points, while
simultaneously improving the recall of cellular coverage
indicator from 64% to 99%.

Throughout the paper, we leverage two types of large,
real-world LTE datasets to gain insights and evaluate predic-
tion performance: (i) a dense Campus dataset, we collected
on our own university campus; and (ii) several sparser city-
wide (in NYC and LA) datasets, provided by a mobile data
analytics company.

The rest of the paper is organized as follows. Section
2 reviews related work. Section 3 presents our prediction
framework, including the baseline predictor (Sec. 3.2.3)
and the methodologies that deal with unequal importance
of measurements, i.e., the quality functions (Sec. 3.3), the
weight functions (Sec. 3.4), and the data valuation (Sec. 3.5).
Section 4 presents evaluation results. Section 5 concludes the
paper. The Appendix (uploaded as “Supplemental Materi-
als”) provides details on: the datasets (A1), the Data Shapley
formulation (A2), comparison of our base predictor to other
state-of-the-art (A3), and additional results (A4).

2 OUR WORK IN PERSPECTIVE

Broadly speaking, signal strength can be predicted by
propagation models or data-driven approaches, including
geospatial interpolation, (e.g., [9], [12]) and machine learn-
ing (e.g., [2], [14]); or combinations thereof: [12].

Propagation models. State-of-the-art propagation and path
loss (equation-based) models include WINNER I/1I [8], Ray
tracing [7] and others. However, this family of models
requires a detailed map of the environment and fine grained
tuning of model’s parameters [2]. A simple yet widely used
propagation model is LDPL [19] and its indoor variant [20].

Geospatial interpolation [9], [10], [12]. Methods such as
Ordinary Kriging (OK) and OK Detrending [12], which are
used by the ZipWeave [9] and SpecSense [10] frameworks,
cannot naturally incorporate additional features beyond lo-
cation (such as time, frequency, hardware efc. ), as our ML
models do (both in this paper and in our prior work [2]).

Machine learning: DNNs. Examples of RSRP/RSS predic-
tion include [14] and [11]. Work in [14] uses DNNs along
with detailed 3D maps from LiDAR and work in [11] uses
Bayesian Compressive Sensing (BCS). ML models for the
signal strength likelihood for user localization have also
been developed by prior art [13], [21], [22]. Krijestorac et
al. [23] propose state-of-the-art CNNs for estimating signal
strength values and utilize a 3D map of the environment as
features. In particular, they treat signal strength as a Gaus-
sian random variable and predict its mean and variance.
The evaluation is based on simulated data via ray-tracing
software, which allows continuous infill of regions. How-
ever, when trained and evaluated on real-world datasets,
this approach faces the limitation of sparse data. [24] uses
autoencoders for predicting signal strength, but similarly
their method is limited to simulated data.

3
Features Environment, Scale, Data |Evaluation
. LiDar, . . Quality
Spatial Timel 1 3D Maps 0 ot Dora Beyon
Agnostic g RSRP
Log-Distance
Path-Loss X X X X
(LDPL)
COST-231/
WINNER I-1I/ X X X X X
Ray Tracing
Geostatistics X X X X X
Specsense [10]
BCS [11] X X X X
DNNs
(RAIK [14]) x| X X X X
CNNs [23] X X X X X X
Auto-
Encoders [24] X X X X X X
Our Framework
TABLE 1: Comparison of our framework to other ap-

proaches for signal map prediction.

Machine learning: Random Forests. In our prior work [2],
we proposed random forests (RFs) for predicting signal
strength (RSRP) based on a number of features, including
but not limited to location and time (see Sec. 3.2.3). We
demonstrated that RFs can outperforms prior art (includ-
ing model-based and geospatial methods) because they
can inherently capture spatial and temporal correlations,
while also naturally extending to features beyond location
(geospatial predictors can only handle location features).
In Sections 3.2, 4.3 and Appendix A3, we expand on the
description and evaluation of state-of-the-art geospatial in-
terpolation methods (e.g., [9], [10];) we also compare RFs to
recent DNN and CNN-based predictors, and we demon-
strate that RFs outperforms them when training on the
(limited) available measurements.

Other Metrics - Dealing with unequal importance. Recent
work in QoS has considered how RSRP measurements could
be used as proxy to predict Quality of Experience (QoE) [25]
or reinforcement-learning prediction techniques for video
playback [26]. Apart from signal strength, prior work con-
sidered mobile traffic volume maps (ie., KPI through-
put) [15], [16], [27], but solely focusing on the underlying
ML model and MSE minimization. Importance sampling
for deep neural network training is considered in [28]. The
mismatch between sampling and target distributions is also
related to the dataset shift problem [17] in machine learning.

Contributions. In this paper, we use our own implementa-
tion of RFs-predictor as a state-of-the-art “work horse” sig-
nal map predictor. For completeness, we present the method
and its evaluation in Sec. 3.2.3 and Appendix A3. However,
our focus here is orthogonal: we propose a framework that
combines three methodologies (@), W, ¢) to deal with the un-
equal importance of available measurements for a particular
prediction problem P = (Q,W). Our framework builds
on top of RFs, but could also utilize any other underlying
ML algorithm minimizing a squared-error loss. To the best
of our knowledge, this is the first paper to leverage QoS
to improve prediction of RSRP and other error metrics in
regimes where it matters; and to develop a (@), W)-specific
data Shapley valuation.

State-of-the-art approaches for signal map prediction
are summarized in Table 1. Location privacy, including
applications to signal strength, radiation maps, etc. [29],
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y abel - ey Performance Indicator for all points = =

Data {y?, y?, y“}|KPIs in this Paper — P - v~ Q) Q) ~ Q)
yt RSRP: Received Signal Reference Power tramlmg weights w I/D\ =, VK)\ b =(Q, W)
y! RSRQ: Received Signal Reference Quality (Table 4) Jw = Q(Tw) Qy) = Q™ (y)
y© CQI: Channel Quality Indicator . o
Network | Q(y) Network Quality Function TABLE 3: Overview of prediction problems P = (Q,W).
Quality Q") Mobile Coverage Indicator One can perform prediction on the y (signal) or on the
Functions  [Qcqp(y) Call Drop Probability _ Q (quality) domain. One can assign the same or different
Error / Loss|L(y, y) Loss function; squared loss in this work iohts to diff t point
Scores £p Reweighted Error Metric for Target p(x) WeIghts 1o ditterent pomnts.
p(x) Target distribution
5(x) Sampling Distribution
Importance [d(x) Population Distribution LY 1z Y. , . .
Sampling  [u(x) Unifor Distibution *Location: 1; = (I¥,17): GPS’s latitude and longitude.
Framework [W(x) Weighting Function eTime: t; = (d,h), where d is the weekday and h the
Wy Importance Ratio for Uniform p(x) hour the measurement was collected.
wq Importance Ratio for Population p(x)

TABLE 2: Terminology and Notation.

is an active research area and out-of-scope for this paper.
Here we focus on optimizing prediction, in a centralized
setting, given measurements of unequal importance. This
being said, the Shapley framework also allows us to throw
out some datapoints and store the minimum amount of data
to train a good predictor, which saves storage and has the
side-effect of data minimization (albeit after, not during,
data collection).

3 PREDICTION FRAMEWORK
3.1 Signal Maps Prediction
3.1.1 Definitions and Problem Space

An observed signal map is a collection of N measurements
(xi, ), 1 = 1,2...N, where y; = {y*, y!, y©} denotes the
KPI of interest given the feature vector x; (e.g., location
etc.) w.r.t. which the signal is to be mapped. In general,
an operator’s interest is not only in the observed signal
strength map, but in an underlying “true” signal strength
map, defined by the conditional distribution Y|x for an
arbitrary x € X, where Y is the (generally unobserved)
KPI at x and X specifies a region of interest (e.g., an areal
unit, time period, etc.). This suggests approximation of the
true signal strength map by machine learning (ML), where
our goal is to answer queries regarding Y|x, or functions
thereof, by training a predictor on the observed data.

y: Key Performance Indicators (KPIs). There are many
KPIs for LTE defined by 3GPP:

*RSRP (yF'): The reference signal received power is the
average over multiple reference and control channels, re-
ported in dBm. It is of great importance for LTE and utilized
for cell selection, handover decisions etc.

*RSRQ (y!): The reference signal received quality is a
proxy to measure channel’s interference.

*CQI (y): The channel quality indicator is a unit-less
metric (y“= {0,---,15}) of the overall performance. It is
worth noting, that all prior work focused exclusively on
predicting RSRP. Therefore, we use y = yP , to refer to
prediction of RSRP, unless otherwise noted.

x: Measurement Features. For each measurement 7 in
our datasets, we use several features available via An-
droid APIs [2]. xf"!! = (12,17 d, h,cID,dev,out,||lps —

1;||2, frega;). We consider the following features:

*Cell ID and LTE TA: KPIs are defined per serving LTE
cell, which is uniquely identified by the CGI (cell global
identifier, cell ID or c¢I D) which is the concatenation of the
following identifiers: the MCC (mobile country code), MNC
(mobile network code), TAC (tracking area code) and the
cell ID. LTE also defines Tracking Areas, LTE TA, by the
concatenation of MCC, MNC and TAC, to describe a group
of neighboring cells, under common LTE management.

*Device hardware type (dev): This refers to the device
model (e.g., Galaxy s21 or iPhone 13) and not to device
identifiers. In [2], we considered all features and showed
the most important ones to be location, time, cell c/D and
device hardware information dev. In this paper, we consider
x to be the full set of features, unless otherwise noted.

Signal Map Prediction. Our goal is to predict an un-
known signal map value 7 at a given location and other
features (x € X), based on available spatiotemporal mea-
surements with labeled data (x;,y;), ¢ = 1, ...N, either in the
same cI D or in the same LTE TA. The real world underlying
phenomenon is a complex process y = f(x) that depends on
x, and characteristics of the wireless environment.

It is important to consider the loss to be minimized
by the choice of predictor: certain loss functions improve
performance for certain objectives, while degrading it in
others. We consider two factors relating to the choice of
loss. First, an operators’ interest is not always in KPI y
itself, but in some quality of service function, Q(y); see Sec-
tion 3.3 for concrete examples. While conventional training
schemes focus on predicting y (e.g., w.r.t. mean squared
error, or MSE), we consider signal map prediction that
minimizes error in the predicted value of Q(y) itself. We
demonstrate that the nonlinear dependence of quality-of-
service on raw signal strength makes this direct approach
superior for many practical applications. Second, the op-
erator may wish to weight accuracy for some values of
x more heavily than others. While conventional training
schemes implicitly assume that importance corresponds to
data sampling frequency, we instead consider optimization
w.r.t. an application-specific weight function W (x) that may
or may not closely correspond to the distribution of sampled
observations; see Table 3 and Section 3.4 for details.

Prediction Problem Space: P = (Q,W). With the
above motivation, we may formalize the prediction problem
as follows. Let Y be the space of potential KPI values.
Q € Q : Y — Ris a quality function, as described above.
Similarly, W € W : X = Ry is the above described weight
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function. We define the prediction problem space as P = Qx W,
whose elements P = (Q, W) € P are prediction problems.

This representation provides a simple unifying formal-
ism for a range of different problems. For instance, note the
base problem Pp = (I, k) where [ is the identity function and
k is a constant function, which amounts to the conventional
learning problem assumed in the prior literature. Here, we
develop not only predictors which minimize loss under Pg,
but also or other arbitrary P € B. In practice, this amounts
to finding predictors § = f,(x) for signal strength (e.g., LTE
RSRP) as well as A@(y) = ]?Q (x) for quality functions @,
where f,(x) and fg(x) are optimized w.r.t. an appropriate
weight function W (x). Table 3 provides a taxonomy of all
the prediction problems our framework can address. Table 2
summarizes the terminology and notation.

Transformation between problems. Any method for
solving the base problem Pp = (I,k) can be transformed
to solve an alternative prediction problem, P = (Q, k), by
training on Q(y) instead of y; we pursue this in Sec. 3.3.
Likewise, we can transform a procedure for solving Pp to a
procedure for solving P = (I, W) by applying importance
sampling, as described in Section 3.4. In addition, given a
problem P = (Q, W), we may transform any procedure for
solving Pp to a procedure for solving P by (i) training on
Q(y) via the methods of section 3.3 and (ii) applying the
importance reweighting of section 3.4 using W.

3.2 Base Predictor Pp = (I,k)
3.2.1 Model-Based Prediction LDPL

As a representative baseline from the family of model-
based predictors, we consider the Log Distance Path Loss
(LDPL) propagation model [30], which is simple yet widely
adopted in the literature (e.g., [19], [10]). LDPL predicts the
power (in dBm) at location 1; at distance ||lgs — L;||2 from
the transmitting basestation (BS a.k.a. cell tower), as a log-
normal random variable (i.e., normal in dBm) [19]:

y; (t) = Po(t) — 10n;1ogyq ([lss — L||2/do) + w;(t). (1)

We consider two cases regarding path loss exponent (PLE)
n;. (1) Homogeneous LDPL: Much of the literature as-
sumes that the PLE n; is the same across all locations.
We can estimate it from Eq. (1) from the training data
points. (2) Heterogeneous LDPL: Recent work (e.g., [10],
[19]) considers different PLE across locations. We considered
several ways to partition the area into regions with different
PLEs, and we present knn regression, where we estimate
n; from its k nearest neighbors, weighted according to their
Euclidean distance, which we defer to as “LDPL-knn”.

3.2.2 Geospatial Interpolation

State-of-the-art approaches in data-driven RSS prediction
[10], [31] have primarily relied on geospatial interpolation,
which however is inherently limited to only spatial features
(I7,1¥). The best representative of this family of predictors
is ordinary kriging (OK) [31] and its variants [10], e.g., OKD,
which are used as baselines for comparison in this paper.
Ordinary Kriging (OK): It predicts RSS at the testing
location 1; = (I%,1Y) as a weighted average of the K nearest
measurements in the training set: y; = Zfil w;y;. The

5
0.009 . g i
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Fig. 2: Example of decision boundaries chosen by RFs,, ,, for
Campus cell x306. We can see that RFs can naturally
identify spatially correlated measurements, i.e., regions with
similar wireless propagation properties (e.g., note how the
model identifies the antenna’s directionality /backlobe).

weights w; are computed by solving a system of linear
equations that correlate the test with the training data via
the semivariogram function (k) [10].

Ordinary Kriging Detrending (OKD) [10], [12]: OK
assumes spatial stationarity, which does not hold for RSRP.
OKD incorporates a version of LDPL in the prediction in
order to address this issue [10].

Both for the model-based as well as the geospatial inter-
polation, we refer to Appendix A3 for further details.

3.2.3 Proposed Predictor: Random Forests (RFs)

For the purposes of this paper, we use a state-of-the art
signal map predictor, weintroduced in [2]: Random Forest
(RFs) regression and classification. This predictor is an
ensemble of multiple decision trees [32] and provides good
trade-off between bias and variance by using bagging [32].

Why RFs for data-driven prediction: RFs naturally
incorporate multiple features vs. just location in geostatistics
and automatically produce correlated areas in the feature
space with similar wireless propagation properties. RF's are
scalable, need minimal hyper-parameter tuning, they do
not overfit and they require minimum amount of data.
For example, decision boundaries produced by RFs, , (for
LTE RSRP data) are depicted in Fig. 2. One can see the
splits according to the spatial coordinates (lat, Ing) and the
produced areas agree with our knowledge of the placement
and direction of antennas on UCI campus (e.g., notice the
backlobe of the antenna). Essentially, these axis-parallel
splits assume that measurements close in space and time
most likely should be in the same tree node, which is a rea-
sonable assumption for signal strength statistics. Automati-
cally identifying these disjoint regions with spatiotemporal
correlated RSRP comes for free to RFs, and is particularly
important due to wireless propagation properties. In con-
trast, prior art (e.g., OKP, [9], [10]) requires additional pre-
processing for addressing this spatial heterogeneity.

In [2], we introduced this predictor for the first time for
signal maps, and we showed that it outperforms state-of-
the-art predictors including model-based, spatiotemporal;
see Section 4.3 in this paper. RFs also outperform DNNs
when a limited number of measurements are available,
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Fig. 3: Call Drop Probability (CDP) Q(y) as a function of KPIs.

which is usually the case in the context of mobile ana-
lytics companies. DNN predictors, require a vast number
of measurements per cell / small geographic area [14].
Moreover, RFs offer interpretability, as discussed in Fig. 2(a).
In this paper, we use RFs as the underlying ML model
for our framework. However, we emphasize that the ideas
of our framework build on top and can be combined with
any other learning strategy that can be applied on square-
integrable real functions.

RFs predictor: Under the base problem, Ppg, signal map
value y € Y to be estimated can be modeled as follows,
given a set of feature vectors x € X. y|x ~ N (RF's,(x),02),
where RF's,, (x), RFs,(x) are the mean and standard devi-
ation respectively of the RFs predictor (= fy(x)). The total
variance of the prediction is 02 = RF's,(x) + 0%, where
0% s is the error from the construction of the RF's itself.
The final prediction § = f,(x) = RF's,(x) is the maximum
likelihood estimate.

3.3 Quality of Service Functions (Q(y))

As described above, QoS function, (), is a function of KPI
y that reflects an outcome that depends on y. Examples of
QoS of interest to cellular operators include the following.

Call Drop Probability (CDP). One of the most important
cellular network quality metrics is the call drop probability.
We model CDP with the exponential function, Qeqp(y) =
ae~ + ¢, with parameters a, b, c estimated using empirical
data from the literature [33], [34]. An example of CDP vs.
KPIs (RSRP and CQI) is shown on Fig. 3. It is immediately
apparent that nearly all of the variation in CDP occurs
at signal strengths below —100 dBm, implying that signal
strength errors at high dBm will have far less impact on
predictions of ().qp than errors of equal size at low dBm.
As a continuous outcome, call drop probability estimation
Qcap(y) can be treated as a ML regression problem.

LTE Signal Bars. Absolute RSRP values y are translated
to the widely used signal bars QQg(y) on mobiles’ screens.
Mobile analytics companies usually produce 5-colors map
to visualize signal bars [3]. See Appendix Al.2 for typical
values of @ p(y) for i0OS and Android devices.

Mobile Coverage. Detecting areas with weak/no signal
(i.e., bad coverage) is a major problem for cellular operators,
and is essentially a binary classification. We define the
mobile coverage indicator as a function of LTE RSRP [35]:

0 ify” <= —115dBm, ie., 0 or 1 bar
1 otherwise

Q. (y) = { 2
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The rationale is that the call drop probability increases ex-
ponentially and the service deteriorates significantly below
—115dBm [33]. We want to detect areas of bad coverage
because undetected Q.(y) = 0 could impact the operator’s
reputation, revenue and overall performance.

Minimizing the error that matters, not MSE. We show
that prediction can be improved by training models directly
on QoS observations Q(y) and predicting Q(y) instead of
using the proxy Q(¥); in other words, we minimize the
error of fo(x) instead of minimizing the error of f(x).
This is equivalent to transforming the prediction problem
from Pp to some alternative P; intuitively, we are implicitly
modifying the loss function used in estimation from one that
treats errors at all y values equally to one that emphasizes
errors with practical consequences for cellular operators
such as mis-identifying bad coverage areas or failing to
predict areas with high call drop probability (e.g., see Fig. 3,
y¥<= —100dBm). Our experimental results in Section 4
show how the prediction of bad coverage (Q.(y) = 0) can
be improved for these regions that matter the most.

Prediction of Q using Random Forests. We use RFs to
predict @), similarly to predicting § in the previous sec-
tion. Given prediction problem P = (Q.k), Q(y)|x ~
N(RFs),(x),0%), where RFs) is trained on quality-
transformed observations (x;, Q(y;)) instead of raw sig-
nal strength observations (x;,y;). This simple procedural
modification (using Q(y) in place of Q(§(x))) allows us to
transform the base problem to any element of P involving
constant weight function; this last restriction is lifted below.

3.4

We have argued above that not all values of y are equally
important from a QoS perspective. Similarly, not all inputs x
are necessarily equally important. For instance, an operator
may be particularly interested in accurate predictions in
some times or locations, e.g., 911 locations, health facilities,
areas with high revenue or competitive advantage during
business hours, areas with dense user population etc. We
generally refer to points in the input space generically as
“locations”; however the dimensions involved may include
space, time, frequency, device, efc.

Prior work [10], [14] has primarily minimized MSE
for predicted signal strength via cross-validation (CV), i.e.,
report the error on held-out test data, after training on
a sample of signal strength measurements. This implicitly
assumes that all observations are equally important for both
learning and evaluation, and, further, that the importance
of error minimization in some subset of X is proportional
to the number of observations in it. These are strong as-
sumptions that are often violated in practice. For example,
an operator might consider all locations within an areal
unit having equal importance. If, however, the available
data is distributed according to population (which is highly
uneven), then the weighting implicitly used in the analysis
will be far from the desired (uniform) distribution. By turns,
an operator interested in population-weighted error may
encounter problems when using data intensively collected
by a small subset of users with residential locations or
commuting patterns that are not reflective of the customer
base. Such mismatches between the sampling distribution of

Importance Sampling (Weights 17)
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TABLE 4: Importance sampling for operators(examples)

Target Distribution Importance Ratio
(Cellular Operator Objective) (Weights w;)
Uniform distribution u(x) Wu X oy
Population distribution d(x) wq X fg;
Operator’s custom target distr. p(x) | we o< £ g;

signal strength observations in X and the target distribution
that captures the operator’s desired loss function can be
viewed as mismatches of the desired prediction problem
P(Q, W) versus the base problem Pg; to remove prediction
bias, we show how direct estimation of P = (Q, W) can be
performed using techniques from importance sampling.

3.4.1

We are interested in assessing performance via error metric
corresponding to an operator-defined objective, which is
some measure of expected prediction error (i) integrated
over the feature space X, (ii) with some weight function
that expresses how much the operator cares about differ-
ent points in that space. Consider the modified prediction
problem P = (I, W) (where, for now, we leave ) = I). The
expected prediction error over the target data distribution
of interest p(x) can for this problem be written as:

Importance-Reweighted Prediction Error

ey = Wgiy) = [ W0 [L (Fx) = 7(0) ] ax @

where, W (x) — RT is the weighting function for impor-
tance sampling, L is the loss function, f(x) = y — RY
and [, W (x)dx < oo. If we knew E [L((f(x) — f(x)))d},
we could directly evaluate this integral, however we do
not. We can sample from x and compare our predictions to
true values under e.g., cross-validation (CV). However, the
mean CV error itself will not in general give us €, because
CV is based on the sampling distribution of the data s(x),
which may look nothing like W (x),x ~ p(x) (which we
can interpret as target distribution). In order to deal with
the mismatch of the sampling and the target distributions,
we use importance sampling techniques.

N ) N 2
i=1 v

where N is the number of sampled data points, s (x;) is
the sampling distribution, p (x;) is the target distribution
and the adjustment factor W (x;)/s(x;) is the importance
ratio. Thus, we are able to estimate an error weighted by
W (x), x ~ p(x), with data generated from the distribution
s(x). This procedure allows us to transform any method
for solving Pp into a method for solving P = (I,W).
The base problem weighting function is inappropriate for
many practical tasks. Some intuitive examples of alternative
choices of W are summarized in Table 4 and described next.

(1) €, uniform over X. This is equivalent to the expected
loss evaluated at a random location in X, reflecting that
the operator is equally concerned with performance over
all portions of the target area. To obtain this objective
function, we need W (x) proportional to a constant, i.e., the
uniform distribution u(x; ). This leads to an importance ratio
Wy ~ ﬁ: we weigh each data point inversely by how often

7

its region of the space is sampled, i.e., the inverse of the
weights implicitly used by naive estimation.

(2) g4 proportional to population density. An intuitive
target for operators is loss averaged over the user popula-
tion, denoted by d(x) at point x of the input space. We then
want W(x) ~ d(x), thus importance ratio wg ~ %. This
means that observations from parts of the user population
that are rarely sampled need to be given more weight and
those that are oversampled should be given less weight. It
should be noted that if our sample is representative of our
user population, then the naive error estimator is already
an approximation of the target. However, if some groups
of users are under or oversampled then the naive estimator
may not perform well. Crowdsourced data collection is in-
herently biased due to human mobility and usage patterns.

Estimating the sampling distribution s(x). Our ob-
served signal strength data may have come from a known
or unknown sampling design s(x), in which case s must
generally be inferred. In the experimental results Section 4
we estimate s(x) via adaptive bandwidth kernel density
estimation (KDE) [36] on the 2D spatial space and the
importance ratio is w, % Our experimental results
show that the main source of bias is location of devices.

Training Weighted Random Forests.The RF's algorithm
splits each node utilizing a random set of features. The
criterion of each split is to maximize the Information Gain
(for classification), or to minimize the MSE (for regres-
sion). For N training samples, weighted RFs [37] adjust
MSE for each split according to the samples weight vector
w = (w1, ,wn), (ie, implicitly turning loss function to a
wM SE) while the default setting would be w; = 1.

3.5 Shapley Values of Cellular Measurements

The Shapley Value [38] is a celebrated framework in co-
operative game theory, used to assign value to the contri-
butions of individual players. Recently, it has inspired data
Shapley [18], which quantifies the contribution of training
data points in supervised ML. More precisely, data Shapley
provides a measure of the value ¢; of each training data
point (a.k.a. datum) (x;,y;), for a supervised ML setting
which consist of: (i) a training data set Dyyqin = {(x:, i)}
, (ii) a learning algorithm A that produces a predictor
y = fy(x) or fo(x) and (iii) a performance metric V (D, A).
The prediction of the ML algorithm, and thus the value of
the training data depend on all three. More precisely, the
goal is to compute the data Shapley value ¢,(D, A, V) =
(V) = ¢ € R Vi,(X4,9i) € Dirain, which follows
the equitable valuation properties (null property, symmetry,
summation and linearity); see Appendix Al, [18] for details.

Intuition and Computation. Intuitively, a data point
interacts and influences the training procedure, in con-
junction with the other training points. Thus, conditions
which formulate the interactions among the data points and
an holistic data valuation should be considered. A simple
method is leave-one-out, which calculates the datum value
by leaving it out and calculating the performance score, i.e.,
PHO0 = V(D) -V (D —{i}). However, this formulation does
not consider all subsets the point may belong to, thus does
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not satisfy the equitable conditions [18]. According to [18],
the data Shapley value must have the following form:
soc 3 VU -V(D)
D—{i} ( |D| )

In other words, the data Shapley value is the average of
the leave-one-out value (a.k.a. marginal contributions) of all
possible training subsets of data in Dy,4n. Data Shapley,
in its closed form in Eq. (7), would require an exponen-
tial number of calculations. An approximation - truncated
Monte Carlo algorithm (TMC-Shapley) is provided by [18].
We adapt and extend the library for our custom error met-
rics, in order to estimate the data Shapley value ¢; of each
training data point (x;,y;). More specifically, we augment
it with the recall Ry performance metric for classification,
RF's regression and our reweighted-spatial uniform error
ey for the performance metric V, as defined in Sec. 3.4.

Application to Cellular Measurements and Prediction.
In [18], the Data Shapley value was tacitly defined for
classification of medical data. In this paper, we apply, for
the first time, Data Shapley valuation to mobile performance
data, and not only for the base problem Pg but also for the
general problem P = (Q, W). The input to data Shapley in
our context is: (i) the available cellular measurement data
used for training (ii) the ML prediction algorithm (RF's) and
(ii) the performance metric V/, which in our case we define
as the re-weighted error based on the operators” objectives,
presented earlier in the paper. The output is a value assigned
to each individual measurement training data point, used
for the training for the particular prediction task (Q, W).

Data Shapley vs. Weight Functions: We have already
described how both the choice of a loss function and of
the evaluation metric really matter (Sec. 3.3 and 3.4.1). Data
Shapley and weight functions share common characteristics
but also differ, and can complement each other creating a
powerful framework. Each framework independently can
inform us whether the data are scarce and valuable for our
objective, hence can inform how to acquire future data to
improve the predictor. However, weight functions on their
own do not not quantify the contribution of training data
points, e.g., if a training data point is an outlier. On the
other hand, data Shapley inherently requires a performance
score to evaluate the test data. There is no universal data
valuation and for different learning tasks (i.e., objectives)
some data points might be more valuable than other. Hence
our (Q, W) framework define the reweighted error, which
provides the performance score for the data Shapley value.

Preview of results. After computing the Shapley values
of our cellular measurements, we can then use them to
remove those with negative or low Shapley values, in order
to both (i) train a better model and improve prediction and
(if) minimize storage of the dataset, which has the side-
benefit of enhancing privacy. The results in Section 4.7 show
that we can remove up to 65-70% of data, while improving
recall for coverage from 64% to 99%.

©)

4 PERFORMANCE EVALUATION
4.1 Data Sets

We evaluate our framework using two types of real-world
LTE datasets obtained in prior work [2], the characteristics
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of which are summarized on Table 5. Both datasets include
cellular measurements, and we use the same subset of in-
formation from all datasets, e.g., RSRP, RSRQ or CQI values
and the corresponding features defined in Section 3. User
identifiers were neither collected nor stored for this study.

Data Format. We use the same subset of information
from all datasets, e.g., RSRP, RSRQ or CQI values and the
corresponding features defined in Sec. 3. An example, with
some of the KPIs fields (obfuscated) is shown below:

{"type”: ”Feature”, "properties”: {
“timestamp”: ”2017-09-11T17:54:35EDT”,

”lteMeasurement”: {”rsrp”: -89, “rsrq”: -20,
“cqi”: 9, "pci”: 169, "earfcn”: 9820},
“cell”: { 7ci”: xxxxx710, “mnc”: 410, "mcc”: 310,
“tac”: xx22, “networkType”: 4},
”"device” : {”manufacturer”:”samsung”,

”"model” : "SM-G935P”, ”o0s”:”android70”},
”locationMetaData”: {”city”: "New.York”,

“accuracy”: ”x”,”velocity”:”"x"}},
”geometry”: {”type”: ”Point”,”coords”: [-73.9x,40.7x]}}

Listing 1: GeoJSON example with LTE KPIs and location, in
MongoDB (obfuscated for presentation).

Properties of Datasets.

* Data Density: Measurements per unit area (N/m?).

e Cells Density: Number of unique cells per unit area,
|C|/km?. The higher it is, the more cI D helps as a feature.

¢ Dispersion: In order to capture how concentrated or
dispersed are the measurements in an area, we use the
Spatial Distance Deviation (S'D D) metric [39], defined as the
standard deviation of the distance of measurement points
from the center.

Campus Dataset. We collected the first dataset on our
university campus, via a user-space Android app we de-
veloped ourselves and used to collect data from volunteers
[40]. This Campus dataset is relatively small: 180, 000 data
points, collected by seven Android devices that belong to
graduate students, using 2 cellular providers, and moving
between student housing, offices and other locations on
campus (approx. 3km?). However, this is a dense dataset,
with multiple measurements over time on nearby locations.
Due to space limitations, we refer to [2], [40] for details. 1

NYC and LA datasets. These were collected by a major
mobile crowdsourcing and data analytics company and
shared with us.2 They contain 10.9M measurements, cov-
ering approx. 300km? and 1600km? in the metropolitan
areas of NYC and LA, respectively, for a period of 3 months
with tens of thousands of unique cells (i.e., unique cID).
An example of the NYC neighborhood in East NYC is

1. This study was deemed "non human-subjects research” by IRB
in our institution, since the dataset did not include user or device
identifiers. However, the dataset did include pseudo-ids, that are useful
in other studies that need multiple measurements from the same user.
In the context of this paper, no PlIs os pseudo-ids were processed and
only the fields summarized in the GeoJSON example were used.

2. Each measurement datapoint in the dataset contained 4 categories
of data: (1) device data (2) connection data (3) quality data and (4)
application data. From all the available fields, we only used those listed
in the example GeoJSON above. The datasets were “anonymized” in
the sense that there were no device or user identifiers provided to us.
However, it is well- known that a combination of other fields (e.g.,
device model, OS, applications installed, etc., can -in principle- be used
as quasi-identifier to eventually de-anonymyze a dataset.
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TABLE 5: Overview of datasets used throughout the paper. Campus is collected by us on our university campus. NYC

and LA were provided by a Mobile Analytics Company

[Dataset  [Period  [Areas [Type of Measurements [ Characteristics |
LTE KPIs: RSRP, [RSRQ] No.Cells = 29
) s: ) . No. Meas = 180K
Campus 82/ ig/ i; -|Univ. Campug Context: GPS Location, timestamp, dev, cid. Density (-2, )

/18/17 |Area = 3km Features: x = (17,1¥,d, h, dev, out, [|lss — fj\b) Per Cell: 0.01 - 0.66 (Table 6)

Overall Density: 0.06

. No. Meas NYC = 4.2M

v & La |09701/17- RIYC i/[e;g‘(’)i"htf“ LTE KPIs: RSRP, RSRQ, CQL. No. Cells NYC = 88k
11/30/17 |2 = "M | Context: GPS Location, timestamp, dev, cid. EARFCN. Density NYC-all & 0.014%

. x = (1% 1Y ; ) MNins — Ui lla. No. Meas LA = 6.TM

LA metopoltan, Featuresix = (15,17, d, h, cid, dev, out, ||los — I |2, freqa ) No-Meas LA = 67N
rea & 1600km Density LA-all & 0.0042-%

depicted in Fig. 14. Examples of representative LTE TAs
from NYC and LA datasets used in our evaluation are
summarized later in Table 10. These are large datasets in
terms of any metric, such as number of measurements, ge-
ographical scale, number of cells etc. As such, they provide
novel insight into the problem at a scale that is relevant to
operators and mobile analytics companies.

Anonymization issues. In this study, we did not use user
or device identifiers from either dataset, we used only the
fields of the GeoJSON in Listing 1. (Accordingly, we also
applied for and obtained an IRB exemption.) However, in
principle, it is still possible that other fields in each mea-
surement can be used in conjunction as a “quasi-identifier”
to map different measurements to the user they belong. Fur-
thermore, quasi-identifiers can be linked to external datasets
to de-anonymize users. Therefore, we have conservatively
chosen to not release neither our own UCI Dataset (we are
not liberty of releasing the company dataset anyway) nor
trained models that might memorize sensitive features. This
being said, we have established a process for researchers to
request and obtain access to our UCI Campus dataset.

4.2 Evaluation Setup

RF's predictor. We train Random Forest (RFs) to predict the
KPI y; then we compute Q(%)) or Qy) directly. We used the
Python scikit-learn/SKLEARN packages [41]. We use state-
of-the-art RF's [2] as the underlying predictor, but it could
be replaced by other ML models.

The most important hyper-parameters for RFs are the
number of decision trees (i.e., Nyrees) and the maximum
depth of each tree (i.e., maxgeptn). We used a grid search over
the parameter values of the RFs estimator [41] in a small
hold-out part of the data to select the best values. For the
Campus dataset, we select n4yees = 20 and maxgepy, = 20
via 5-Fold CV; larger maxgqep:p, values could result in over-
fitting of RFs. For the NYC and LA datasets, we select
Nirees = 1000 and maxgeptn = 30; more and deeper trees
are required for larger datasets.

An important design choice is the granularity we choose
to build our RF's models. As we demonstrated in [2], using
a model per cell (i.e., train a separate RFs model per cell
cID with XJTCID ={z 2 exf"~ ¢ {cID}}) is
beneficial for large number of measurements per c/D. In
sparser data, such as NYC and LA datasets, it is better
to train a model per LTE TA using x}"“”. In this paper, we
utilize models per cI D for the Campus dataset and per LTE
TA models for NYC and LA datasets as [2]. Essentially, our

framework can also learn the signal environment from the
overlapping or neighboring cells, using cI D as a feature.

To improve the reweighted prediction error €, according
to operators’ objectives (Section 3.4), we train weighted
random forests RFs,,, with w; = {w,,, w4, } proportionally
to the target distribution (see Table 4). In essence, the ML
training weights are set equal to the importance ratio of each
sample [28]. We compare RFs,, with the default RF's, where
all samples are weighted equally.

Data Shapley Setup. For (;/5\1 estimation with the TMC-
Shap algorithm, work in [18] sugg%sts a convergence (stop-

ping) criterion of = 3" | % < 0.05 with an obser-
vation that the algorlthm usually convergences with up to
3Nirain iterations. However, our datasets are significantly
larger; [18] use approx. up to 3000 points and on the
contrary the cell X901 demonstrated later contains approx.
15000 measurements. Thus, we relax the convergence crite-
rion to save execution time and we set a 30% convergence if
we exceed 2N qin iterations.

Splitting Training vs. Testing. We select randomly 70%
of the data as the training set Dyyqin = {Xtrain, Yirain } and
30% of the data as the testing set Diest = {Xtest, Yeest } for
the problem of predicting missing signal map values (i.e.,
KPIsy = {y*, y!, y“} or QoS Q.(y), Qeap(y))- The reported
results are averaged over S = 10 random splits.

Our choices differ for data Shapley where we split
the data as following: 60% of the data for Dipgin, =
{Xtraina thm}, 20% for Dyest = {Xtest7 ytest} and 20% for
the held-out set Dyeld-out- Data Shapley values ¢; are being
calculated per training point (x;,y;) w.r.t. the performance
score V' of the prediction on Dies;. We use the Dhelg-out
dataset to report the final data minimization results, i.e., use
some completely unseen data since D;.s; was used for the
data Shapley ¢; itself.

Evaluation Metrics - Coverage Classification. We evalu-
ate the performance of Q.(y) in terms of binary classification
metrics, i.e., recall, precision, F1 score and balanced accuracy.
Recall is defined as R = 7 7_; 7~ where T}, is the true positive
rate and F, is the false negatlve rate, for the class of interest.
Precision is defined as Pr = = qu 7, - F1 Score is the weighted
average of precision and recall and Balanced Accuracy the
average of recall for each class.

Evaluation Metrics for Regression. (I) Root MSE
(RMSE). If y is an estimator for y, then RMSE(y) =
VMSE(y) VE((y—7)?), in dB for RSRP y”and
RSRQ y’and unitless for CQI y©. (II) Absolute Relative Im-
provement (ARI): This captures the improvement of each
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TABLE 6: Campus dataset: Comparing predictors the Base
Problem, P = (I, k), for all cells ((cID) of the Campus dataset.
One can see that our RFs predictor, in the last column(s),
achieves lower MSE than all alternative predictors: model-
based (LDPL, LDPL-knn), geospatial(OK, OKD), and DNN.
This holds for all cells and densities (N/m?) and dispersion
(SDD) observed.

Cell
cID

Cell Characteristics
N ‘ % E[y]| o

x312|10140(0.015{941|-121] 12
x914| 3215/0.007|791| -94| 96{|13.3
x034| 1564|0.010{441|-101|338]|19.5
x901|16051|0.162|355|-108| 82| 8.9| 4.60[4.72|3.04| 5.69| 4.54| 1.73
x204 55566 |0.666(325| -96| 24|| 6.9| 3.84|3.85|2.99| 4.44| 3.83| 2.30
x922| 3996|0.107|218|-103| 30|| 5.6] 3.1/3.16/2.01| 4.51| 3.10| 1.92
x902|34193|0.187(481|-112] 8 2.60(2.47|1.64| 28| 250 1.37
x470| 7699(0.034|533|-107| 17 3.64|2.73|1.87| 3.33] 2.78| 1.26
x915| 4733|0.042|376|-111|204 7.5417.39|4.25| 9.94| 7.31| 3.29
x808|12153|0.035{666|-105| 8 241(2.42]1.60| 2.84| 2.34| 1.75
x460| 4077|0.040{361| -88| 33 2.35]2.28]1.56| 3.60| 2.31| 1.84
x306| 4076/0.011{701| -99|133 4.854.30]2.80| 7.07| 3.94] 3.1
x355|30084|0.116|573| -94| 43|| 9.3| 2.42|2.31|1.85| 3.28| 2.26| 1.79

Prediction Error RM SE (dB)

LDPL RFs|RF's
kNN 0y |@,y,t
1.63|1.70({1.37| 2.05| 1.58| 0.93
3.47(3.59(2.28| 6.48| 3.43| 1.71
7.8217.44|5.12|11.59| 7.56| 3.82

LDPL

hom

17.5

RF's
all

0.92
1.67
3.84
1.66
2.27
1.82
1.37
1.26
3.15
1.59
1.84
3.06
1.79

SDD OK [OKD [DNN

predictor over the variance in the data: ARI = 1 —
(1/IC|) > iec(MSE; /Var;), where |C| is the number of the
different cells in the dataset, and Var; is cell ¢’s variance.

(III) Mean Decrease Impurity (MDI), a.k.a. Gini Importance:
It captures how often a feature is used to perform splits in
RFs. It is defined as the total decrease in node impurity,
weighted by the probability of reaching that node, averaged
over all trees in the ensemble [41].

(IV) Reweighted Error €, for a target distribution p(x).
According to Eq. (4), ¢, = L Zfil w; (i — yi)z, with
w; = {Wy;,wa,} X {S(L) , f&?j}, as defined in Table 4,
where w,, corresponding to the importance ratio for error in
a random location in X and wp the weighting proportional
to population density. We use only location density s(1) to
calculate the (i) uniform error ¢,, or (ii) wq, over the space X,
but our methodology is applicable to an arbitrary space X.

4.3 Results for Base Problem P = (I, k)

Prior work has exclusively focused on RSRP prediction
minimizing MSE. Evaluating RFs for this base problem
demonstrates that our framework outperforms existing so-
lutions, learns the signal environment and produces a good
signal map from limited measurements. Furthermore, we
show that Random Forests [2] are a good choice for the
underlying “workhorse” /baseline ML predictor for a range
of spatiotemporal densities on top of which, we can de-
velop our extended P = (Q,W) framework. We com-
pare RF's against several baselines: model-driven (LDPL-
knn and LDPL-hom), geospatial interpolation (OK and
OKD), and a multilayer DNN (trained with {”, Y features).

4.3.1 Random Forests vs. Other Predictors

a. Campus dataset: Table 6 compares all predictors for the
cells in the Campus dataset, for the default 70-30% split.
For each cell, it reports the measurement characteristics
(number of measurements N, density N / m2, dispersion
(SDD), average signal strength value E[y]), and the predic-
tion error (RM SE) for various predictors. We observe that
our RFs-based predictors (RFs;y:, RFsqy) outperform
model-based (LDPL) and other data-driven (OK, OKD), or

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

RSRP
(dBm)
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(a) Example cell x204: high density (b) Example cell x355: small
(0.66), low dispersion (325). density (0.12) higher disper-
sion (573).

Fig. 4: LTE RSRP Map Example from the Campus dataset.

Feat. Importance Campus - CID: x204 Feat. Importance Campus - CID: x355 Feat. Importance - NYC Manhattan Midtown

3

|
I
I
|

n Decrease Impurity)

S
L
DI (Mea QD

MDI (Mear

i Plligs —illah dev d out T cd de
RFs Feat RFs Features

(a) Cell x204 (b) Cell x355

(c) Manhattan
Midtown

Fig. 5: Campus dataset (a): Feature Importance for cell x204 (dense)
and (b) Feature importance for cell x355 (sparse); both cells’ data are
depicted in Fig. 4. NYC dataset: (c) M DI score for one LTE TA of
MNC-1, in midtown Manhattan.
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Tra:in DataA Size (%)
Fig. 6: Campus dataset: RMSE vs. Training Size. vs. Measurement
density N/m?2. Our methodology (RFs with more than spatial features,
i.e., RFsz y,t, RFsgy) significantly improves the RMSE-cost tradeoff:
it can reduce RMSE by 17% for the same number of measurements
compared to state-of-the-art data-driven predictors(OKD); or it can
achieve the lowest error possible by OKD (~ 2.8dB) with 10% instead
of 90% (and 80% reduction) of the measurements.

DNN predictors, for each cell and across all different mea-
surements densities and dispersion. Fig. 9 also compares
all methods, calculating RMSE over the entire Campus
dataset, instead of per cell.

Fig. 6 shows the RM SE as a function of the training size
(as % of all measurements in the dataset) as well as absolute
density (N/m?). We note that the performance of OK and
RFs;,, is almost identical, as it can be seen for RM SE over
all measurements (Fig. 6 and Fig. 9) and RMSE per cell
(Table 6). This result can be explained by the fact that both
predictors are essentially a weighted average of their nearby
measurements, although they achieve that in a different
way: OK finds the weights by solving an optimization
problem while RFs, , uses multiple decision trees and data
splits. In addition, considering additional features can sig-
nificantly reduce the error. For the Campus dataset, when
time features t = (d,h) are added, RFs, ,; significantly
outperforms OKD: it decreases RMSE from 0.7 up to 1.2
dB. Alternatively, in terms of training size, RFs; , ; needs
only 10% of the data for training, in order to achieve OKD's
lowest error (~ 2.8dB) with 90% of the measurement data
for training. Our methodology achieves the lowest error of
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Fig. 7: NYC and LA datasets: CDFs for RMSE per cID for two
different LTE TAs, for the same operator. RFs,;; offer 2dB gain over
the baselines (90th percentile).

CDF: P(E <
COF: P(E < ¢)

“Methods

Methods Methods

(a) MNC-1, NYC Man- (b) MNC-1, East Brook- (c) MNC-2, Southern LA
hattan Midtown (urban) lyn (urban/suburban)  (suburban)
Fig. 8: RMSE in NYC and LA datasets. This figure compares: (1)
urban vs suburban LTE TAs; (2) cID as feature vs. training a different
RFs model per c¢ID; (3) operatorsMNC-1 vs. MNC-2.

state-of-the-art geospatial predictors with 80% less measure-
ments. The absolute relative improvement of RFs, , ; com-
pared to OKD is 17%, shown in Fig. 9(b). This RMSE-data
size tradeoff can be used to imply the minimum sample size
to meet an acceptable error as well as the objective of the
operators (the reweigthed error ¢, in Section 4.5) and the
data quality (see Section 4.7.1). Last but not least, RFs can
naturally handle different data densities, as shown in Fig. 6,
by automatically selecting the most important features (see
also discussion and results in 4.3.2).

b. NYC and LA datasets: Fig. 8 shows results for
different LTE-TAs for RFs per cID or with cID used
as a feature. We can see that the higher the cells density
(e.g., urban) the more useful cID is as a feature; if there are
many data available per cell, a model per cell is preferable.
Fig. 7 shows the error for two different LTE TAs, namely
for NYC Manhattan Midtown (urban) and for southern LA
(suburban), where RFs have been trained per cID. CDFs
of the error per cID of the same LTE TA are plotted for
different predictors. Again, OK performas very close to
RFs, ,, because they both exploit spatial features. However,
RF's,;; with the rich set of features improves by approx. 2dB
over the baselines for the 90th percentile, in both LTE TAs.
Interestingly, the feature dev is important, which is expected
since this data has heterogeneous devices reporting RSRP.

There are multiple reasons why RFs,; outperform
geospatial interpolation predictors. The mean and variance
of RSRP depend on time and location, other features (dev,
cI D) and the complex propagation environment, which can
be inherently captured by RFs as we explained in Fig. 2 and
Sec. 3.2.3. OK also relies on some assumptions (same mean
over space, semivariogram depending only on the distance
between two locations), which do not hold for RSRP. Even
hybrid geospatial techniques (OKD) cannot naturally incor-
porate additional features (e.g., time, device type, etfc. ).

Similarly, the RFs-based predictors outperform the
DNN-based predictor. First, DNNs cannot handle efficiently
the disjoint regions and discontinuous RSRP values as
RFs inherently do (e.g., in Fig. 2). Second, DNNs need a
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0.6
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02 — Model-Driven
= Geostatistics
== Random Forests.
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Forye
Methods LDPLyw, OK OKD RFSy RFSy: RFsyy DNN DNNyss

Absolute Relative Improvement
(ARI)

Fig. 9: Comparison of all predictors over the entire Campus dataset.
Left (a) RMSE(dB) under various scenarios, Right (b) ARI over all
data points. Our Approaches (RFsy y,¢, RFsq;) outperform prior art in
all scenarios. Higher ARI is better.

huge amount of data in order to perform well with dis-
continuous and non smooth functions. Furthermore, more
complex DNNs architectures would be needed along with
very expensive to obtain features such as Li-DAR data or
3D maps etc. [14]. Finally, cannot support both categorical
(e.g., cID) and continuous features (e.g., lat).

4.3.2 Effect of the spatial and temporal density

We have already shown that RF's achieves lower MSE when
all data or a randomly sampled fraction of the data are used.
In the following, we show that our methods achieve lower
MSE also under different spatial and temporal densities.

4321 Examples of dense measurements from
Campus dataset: We train one RFs model per cID for
the set of features x = (l;”,l;ﬂd,h, ||E35 - fj||2,0ut,dev).
Results w.r.t. M DI are shown on Fig. 5. We observe that,
in cells with high data density and low dispersion, the most
important features w.r.t. M DI are the time features (d, h).
An example of such a cell is x204, depicted in Fig. 4(a),
which has SDD = 325, density=0.66 points/m? and its
M DI is shown in Fig. 5(a).

4.3.2.2 Examples of sparse and dispersed measure-
ments: First, in the Campus dataset, an example such cell is
x355, with SDD = 573, density = 0.116N/m? in Fig. 4(b);
in this case, the location features (l”” ly) have higher M DI
(Fig. 5(b)). Second, the NYC and LA datasets are also
sparse and contain thousands of cells. As a representative
example, we report the feature importance, in Fig. 5(c), for
the LTE TA of a major mobile network carrier located in
NYC Midtown Manhattan and depicted in Fig. 20 in the
Appendix (see supplemental materials). The most important
features turn out to be the spatial features (I7,17) as well as
the cell ¢/ D and dev. This is because the data are sparse and
the whole LTE TA is served by geographically adjacent or
overlapping cells.

43.23 Location density and overfitting: Our
RFs predictors outperform the geospatial predictors for
cells of all densities in Table 6. We also noticed that a
significant fraction of the data comes from a few locations,
e.g., from participants’ home and work, which begs the
question whether this leads to overfitting. We investigated
this question and found that our RFs predictors neither get
a performance boost nor overfit.

To that end, we applied HDBSCAN [42], a state-of-the-
art clustering algorithm, to identify very dense clusters of
measurements. We refer to data in those clusters as “dense”
and to the remaining ones as “sparse-only” data. Fig. 9(a)
reports the RM SE of different methods when training and
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Recall Precision |F-1 Accurac Balanced Recall |Precision|F-1 Accurac Balanced
Class Label |0 1 0 1 0 1 Y Accuracy Class Label[0 [T [0 I 0 1 y Accuracy
Q:(®) 0.762[0.978[0.910[0.934[0.830[0.956[0.930 0.870 MNC-1, LTE-TA: x552, Eastern Brooklyn
Qc(y) 0.917(0.952(0.847(0.975(0.881|0.963]0.944 0.935 Qc(¥) 0.55[0.98]0.80{0.93 |0.65|0.96]0.93 0.77
Qc(y) 0.67(0.95/0.70(0.95 |0.68{0.96|0.93 0.81

TABLE 7: Campus Coverage Qc(y) results: (i) Recall for Class-0
(No-Coverage) 76% — 92%, (ii) Accuracy and (iii) Balanced Accuracy
Improve. The improved Recall (Rg) is of immense importance for
Cellular Providers; higher Ry means less false negatives for Q.(y) (i.e.,
miss-classifications of bad coverage to good coverage).

testing is based on (i) all-data, (ii) sparse-only data and (iii)
sparse data with a 5% random samples from the dense
data. Our RFs;,; and RFs,; have similar performance
in all scenarios and consistently outperform baselines in
all scenarios. Please note that OK and LDPL-knn's errors
slightly decrease for “sparse-only”; OK cannot handle re-
peated locations and LDPL-knn may overfit. These findings
are similar to the results per cell, in Table 6.

4.4 Results for QoS functions P = (Q, k)
4.4.1

This setup is a typical binary classification problem, where
class 0 corresponds to bad coverage and class 1 corresponds
to good coverage. As a baseline, we train the RF's regression
models, we predict § and compute the proxy Q(y). We
compare that with our proposed approach, which is to
train RFs classifiers, with the same features, on quality-
transformed observations (x;,Q(y;)) and predicting Q(y).
For coverage indicator, we employ y =y since it is defined
on RSRP. RFs use the default training (Vi, w; = 1).

In this setup, bad coverage (class-0) misclassified as good
coverage areas (class-1) impact reputation, revenue, and
overall performance.Therefore, from the operators’ perspec-
tive, it is desirable to maximize the Recall for class-0 Ry
because higher Recall means fewer false negatives, i.e., our
algorithm did not classify a bad coverage (Q(y) = 0) as a
good coverage area Q(y) =1).

(a) Campus dataset: Fig. 10 illustrates the improvement
in the Campus dataset from utilizing our predictor Q(y)
instead of the naive proxy Q.(¥) for bad coverage spots. For
this example, we discover 1939 bad coverage sites that the
baseline did not detect (16% of the total 12418 bad coverage
points). Moreover, Fig. 10(c) shows how the bad coverage
spots which were mis-classified as good coverage spots
have been reduced by our predictor Q.(y), especially in
areas of densely sampled data and commute traces (note the
road and path trajectories). The confusion matrix for these
results is shown in Fig. 11, where we can see again the shift
of points incorrectly classified as “good coverage” by the
baseline Q).(y) predictor to the “bad coverage” class under
our predictor. The overall classification results, in terms of
the binary classification metrics, are shown in Table 7. We
see an improvement of 16% for Recall Ry, per Fig. 10, as
well an improvement in balanced accuracy from 87% to
94%. These improvements do not come at the expense of
F1 and Accuracy, which improve by approx. 1%.

(b) NYC and LA datasets: Table 8 lists the classification
results for some examples from NYC and LA datasets.
We see a similar increase up to 12% in terms of Ry for our
predictor Q.(y) compared to the baseline proxy.

Coverage Domain, P = (Q., k)

MNC-1, LTE-TA: x641, LA, Covina - Hacienda Heights
Q:(Y) 0.58(0.90(0.73{0.82 |0.65[0.86{0.80 0.74

Qc(y) 0.70(0.86|0.70|0.86 {0.70]0.86|0.81 0.78

TABLE 8: NYC and LA datasets Coverage Q.(y) results. Recall
Ry improves up to 12%. Operators would ideally minimize the false
negatives of class-0. Similar results observer in other LTE TAs .

4.4.2 Call Drop Probability Domain, P = (Qcap, k)

CDP Q.qp(y) estimation is a continuous value prediction
problem on the [0,1] interval. As with the coverage domain,
we train RFs models in order to predict § and use the proxy
Qcap(y) as a baseline. We compare that with our approach,
which is to train RFs, using the same features, on quality-
transformed observations (x;, Q(y;)) and predict Qcap(y).
We report the relative reduction in RM SE.

(a) Campus dataset: In Fig. 12, we report results for
estimating CDP, when using the proxy baseline vs. predict-
ing CDP directly. Fig. 12(a) shows the relative reduction in
RMSE error of CDP estimation vs. RSRP, which confirms
our design choice. Our estimation Q.4 (y) reduces the rela-
tive estimation error up to 27% in the lower reception regime
(0-1 vars, yP < —115dBm), where the error function being
minimized is highly sensitive to predictive performance.

4421 Transform Qcap(y) to the RSRP y* = y domain
(ie., P = (Q,k) — Pp = (I,k)):: It is important to high-
light that our QoS domain methodology can also improves
RSRP prediction itself for values with high CDP that matter
the most. An example is shown in Fig. 12(b): we compare the
prediction error of y values (RSRP) themselves, vs. inverting
Qcap(y) to return back to the original y space. We group
the error by signal bars and we observe that the change in
learning objective shifts the effort to reducing error where it
is most critical (in lower signal strength range). We basically
exploit the fact that we can tolerate higher uncertainty at
high RSRP (where a large error has little impact on predicted
CDP). We can hence view our procedure as allowing us
to train on an application-specific loss function, without
modifying our underlying learning algorithm.

(b) NYC and LA datasets: We also present results for
CDP prediction on the NYC and LA datasets, and using
RSRQ y’and CQI y“data in addition to RSRP 3. Fig. 13(a)
and Fig. 13(b) show RM SE of CDP estimation with RSRQ
y’and CQI yCrespectively. The different KPIs and the use
of per-cID models in one case (RSRQ y’) do not change
the improvements from our technique. We improve in the
low KPI y regime up to 0.1 in absolute error value (in the
probability domain); in terms of relative error our method
Qcap(y) performs up to 32% better than the baseline Q ¢4y ()
for CDP estimation. We see that our procedure successfully
focuses improvement where it is needed for CDP prediction,
rather than wasting statistical power on the high signal
strength regime. Due to lack of space, results for Qcqp(y)
and Q.(y)in LTE TAs for NYC and LA are in App. A4.1.

4.4.3 Discussion: why minimizing MSE can be naive.

In signal strength prediction, an error of few (say 5) dB will
not reflect much change in QoS when the user’s received
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Fig. 10: LTE Coverage Map for our own Campus dataset. Display only Test Data. (a) Bad Coverage from Test Data (b) Baseline-Proxy- Prediction
Q(¥) (c) Our Model Prediction. It can be seen that (c) has more red points than (b), implying better classification. For this example, we discover
1939 data points which the baseline would not detect (16% of the total 12418 bad coverage points). Best viewed in color.
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class under our predictor Q(y).
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Fig. 12: Improving the RSRP prediction itself via P = (Q,k) —
Pp = (I, k) transform, for the Campus dataset. (a) Qcqp(y) RMSE vs.
RSRP. Our methodology reduces the error up to 27% for lower RSRP
values (0-1 bars). (b) Q=1 (Qcap) RMSE vs. Predicting directly RSRP
values: the improvement has shifted towards the lower RSRP (fewer
bars) accordingly to the new QoS function Qqj(y) we trained for.

signal strength is high (e.g., -50 to -60 dBm, see Fig. 3). The
user experiences excellent QoS in that regime, and hence
even moderately large errors in predicted RSRP would not
greatly impact predictions of QoS. In contrast, an error
of 5dB would substantially affect QoS prediction in the
weak reception regime (e.g., for -120dBm vs.-125dBm you
can notice the large difference in CDP in Fig. 3). For QoS

Fig. 13: Call Drop Probability Q.q,(y) estimation for NYC and LA
datasets. (a) RSRQ (y = y!), Models Per cID. (b) CQI (y = y©).

prediction, it can hence be worth trading greater RSRP
error in the high-strength regime for lower error in the
low-strength regime, as we demonstrated. Working directly
with Q(y) alters our application loss function so as to focus
performance where it is most needed, but without requiring
us to modify the RF's procedure to change its nominal loss
function). The result is improved QoS prediction, up to 32%
for the values that matter more to cellular operators.

4.5 Results for Importance Sampling P = (I, W)

Next, we evaluate our framework in terms of the reweighted
error €,. We predict RSRP and compare RF's vs. RFs,, (i.e.,
w; are set to importance ratio as in Section 4.2).

4.5.1 ¢, over Uniform Spatial Distribution, P = (I,wy,).

(a) Campus dataset: To calculate the importance ratio
wy, = 1/5(1) we estimate s(1) with adaptive bandwidth KDE
over the spatial dimensions as we describe in 3.4. Table 9
reports the error ¢, for both the default RFs predictor
and the RFs,,. We observe an improvement of up to 20%
for e, for cells that are oversampled in just few locations;
the average relative improvement is approx. 5%, which
demonstrates the benefit of readjusting the training loss.

(b) NYC and LA datasets: Fig. 14(a) depicts the sam-
pling distribution s(1) in spatial dimensions (estimated by
adaptive bandwidth KDE as we described in 3.4), in East
NYC nearby JFK airport. It can be observed that the data are
primarily being collected on the highway (Belt Pkwy) adja-
cent to the sea; the sampling density is much higher com-
pared to nearby residential blocks. Although the specifics of
the data collection for NYC dataset are proprietary, we can
speculate that the data collection is more frequent when the
devices are plugged to power and the users utilize a location
navigator app which pushes location updates to other appli-
cations; it is a common practice to minimize the impact on
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[Cell Characteristics[Default RF's — J[RFsw, — Jw |Improvement | LTE-TA Characteristics RFs : YRF s, : Juw|lmprovement
[cID] N]| Veu| /2« | Diff.| Diff. (%) TAI[N [ m%[lnfo Veul Veul Diff.[Diff. (%)
X922 3955 086 0.69] 0.17 96 Cong Beach
X808 17153 154 1.25] 0.28 185 x210 [197521 0.0005 Lakewood 4.06 3.84(0.21 5.3
x470 7688 0.71 0.59] 0.12 17.0 X552 (97942 0.0011[Eastern Brooklyn 5.38 5.12[0.26 49
x460 4069 1.66 1.44] 0.22 13.1 x540 (136105 0.0009[E. Long Island 5.01 4.83(0.18 3.6
X355 29608 177 1.57] 0.20 11.5 X535 (121159 0.003|W. Queens 5.36 5.17(0.19 3.6
x306 4027 221 2.03| 0.18 8.1 Covina
X901 16089 094 091] 005 34 X641110663 | 000014y, cienda Heights 18 1741006 35
x902* 34164 1.93 1.90| 0.03 1.5 x561 (62448 0.0126(Manhattan Mid. 5.64 5.46(0.18 3.2
x914 3041 1.66 1.64| 0.02 1.0 LA Downtown
015 7705 181 1.801 0.00 02 x470 (198252 0.0009 Hollywood 4.56| 4.43|0.13 2.8
x312 9727 0.64 0.65|-0.01 -0.6 x211 (77049 0.0003[Suburban S. LA 4.06| 3.96/0.1 24
x204* 55413 0.91 0.94]-0.03 -3.2 Manhattan Uptown|
X034 1554 243 2.68] 024|100 442114538 | 0.0001y oo - Bronx 3.23 3.19/0.05 15
All 186173 1.34 1.28| 0.06 4.89 537 137247 0.01 M?mhattan 762 753(0.09 11
Midtown East
TABLE 9: Campus dataset, RSRP y prediction: &, Error (ie., ng ?éééog 0(?882 gas"ekrln Brooklyn giz gig 88§ 3;
reweighted according to the uniform distribution = P = (I, wy)): (i) X . rooxyn : Ml e .
Train on Default RES vs. (ii) train on RFsy w; = wa & ——. Models ALL (1094543(0.0042-0.014NYC & LA 4.88| 4.72/|0.16 3.16

s(1
per cID. For each c¢ID and training case, we pick the best E)e)zrforming
adaptive bandwidth KDE for estimating s(1). Our methodology shows
improvement up to approx. 20%. For cells * with extremely high
sampling density in few locations -see [2]-, we utilize fixed bandwidth
estimation both in space and time.

HIGH wy

from our model

HIGH Sampling
Density s(x)

(a) Actual .
s(1).

Measurements (b) Importance sampling.

Fig. 14: NYC dataset: RSRP prediction and uniform error £,. (a)
Actual sampling (s(1)) estimated by an adaptive bandwidth KDE. (b)
Reweighting with w,, from importance sampling. It can be seen that the
collected data from the Mobile analytics companies oversample devices
during commute (GPS Apps push locations updates - power plugged)
and undersample other residential areas.

users’ devices [40]. Fig. 14(b) illustrates the importance ratio
weights w,, and how our model readjusts for the sampling-
target distribution mismatch. Similar patterns are observed
throughout many different areas in NYC and LA datasets:
e.g., see the 405 highway in the Long Beach area x210.

Table 10 reports the error e, for different LTE TAs
in NYC and LA datasets. The average performance im-
provement by training RFs,, is approx. 3%, with up to
5% in some units. We also examined the area x532 where
the benefit of our method was small and as expected the
spatial distribution was indeed approx. uniform (omitted
for space limitations). At the other extreme, regions with
highly biased data collection (i.e., x540 East NYC and x210
Long Beach in LA) show the highest error reduction (3.6%
and 5.3% respectively). Overall, we find higher gains to
reweighting on Campus dataset, as it is collected from a
small number of users and hence more unevenly sampled.
We expect that this feature will be common for small-scale

TABLE 10: NYC and LA datasets, RSRP y prediction: &, Error (i.e.,
reweighted according to the uniform distribution = P = (I, wy)): (i)

Train on Default RFs vs. (ii) train on RFsy w; = wy, o OB Models

per LTE TA. We use adaptive bandwidth KDE for estimating s(1) [36].
Our methodology shows improvement up to 5.3%.

data sets as well as setups with biased sampling because of
mobile analytics companies practices, making reweighting
especially important to correct for sampling bias.

4.5.2 cp : reweighting for Population Density P = (I, wg).
Weighing errors by local population density, instead of
uniformly, results in a metric that places more emphasis
on accuracy in regions where more potential users reside.
To that end, we utilize public APIs to retrieve the census
data and estimate the population density d(1;). Reweighted
¢4 for RSRP data by using the weighted train RFs,,, vs. the
the default RFs show an improvement of up to 5.7%.
Table 11 reports the error weighted proportional to the
actual user population density over the same spatial area.

KPIL: CQI Training Options |y domain — Q(¥)|Q(y) domain
All LTE-TA ||wi = 1, V4 — Qeap(®) [0.0107 [Qcap(y)][0.0088
regions ||wi = wp X 1 Qecap(Fw)|0.0109 |Q2,, (y)|0.0085
Relative Difference 23% 3.07%

KPI: RSRP ||w; = 1,Vi Qeap(§) [0.0045 [Qcap(y)[0.0036
AILLTETA |, = wg oc T4 | Qeap (§0) 00047 [Qiy, (v) [0.0034
regions Relative Difference 5% T

TABLE 11: NYC and LA datasets. The error ¢4 is re-weighted
according to the population distribution) is computed on the Q do-
main, i.e., P = (Qcdp,wq). When predicting 7 with weights and then
converting to Q(y), information is lost from the transformation. When
training with the importance sampling weights, then predicting Q),
can further reduce the error up to 5%.

Table 12 includes the reweighted ¢4 for RSRP data by
using the default RFs vs. the weighted train RF's,,, ; we see
performance improvement up to 5.7

4.6 Reweighted Error for QoS functions: P = (Q, W)

So far, we have separately evaluated the improvement from
(1) predicting QoS directly and (2) re-weighting by impor-
tance ratio. Here, we combine the two and calculate the
reweighted error ¢, (how we handle the input space) for a
QoS function (how we handle the output space) of interest.
Due to lack of space, we only show results for Qcqp(y). In
Table 3, we show four cases to be compared. First, Qcap(Y)
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LTE-TA Characteristics RFs — §|RF'syp — Y. |Improvement
Default . . Remove Low Value Data - Cell: x034 Remove Low Value Data - Cell: x312
N
TAI‘ N |Info oo 2 VEP / p | Diff. | Diff. (%) 100 y 100.00 e m it o
_ Lanhiantl CERSUSN RN .l
x561 | 63303| \yamhattan oons|  7.23 6.82| 041 57(E 90 T g e
idtown o < 99.50
x321 7014 |Eastern Brooklyn 0.0003 4.94 4.8 0.14 2.8 E 80 E
X535 | 122071 |W. Queens 0003 6.03 587] 0.15 25| & g 992
x552 | 98240 |Eastern Brooklyn 0.0011 5.35 5.29] 0.06 12| 5 70 § 99.00
x532 | 137962 | Brooklyn 0.004 6.24 6.22] 0.02 03| © S 9875
x537 | 37964| Manhattan oo1| 882 8.81| 0.01 01| E o0 £
Midtown E. ’ . . . e —e— TMC-Shapley & 98.501 o TMC-Shapley
x540 [138495 |E. Long Island 0.0009 5.09 5.09] 0.00 0.0| & 50{ —- LOO & 98.25{ =+ LOO
- Rand ..+« Rand
x442 | 16372[Manhattan Uptown[ | 597 421]-024| 61| andom 98.00 endom
Queens - Bronx 0 20 40 60 80 0 20 40 60 80
ALL |621421|NYC g.g(l)gz- 5.98 5.90| 0.08 1.35 Fraction of train data removed (%) Fraction of train data removed (%)

TABLE 12: NYC and LA datasets RSRP y prediction: e4 Error
(i.e., reweighted according to the population distribution): (i) Train
on Default RFs vs. (ii) train on RFsy w; = wg o< %, Models per
LTE TA. We use adaptive bandwidth KDE for estimating s(1) [36]. Our
methodology shows improvement up to 5.7%.

Training Options |y domain — Q(¥)|Q(y) domain

TABLE 13: P = (Qcap, wu), NYC and LA datasets, error &, (ie.,
reweighted according to the uniform distribution), results on the @
domain. Predicting § with weights and then converting to Q(y) does
not help because information is lost from the transformation. Predicting
Q(y) after training with the importance sampling weights further
reduces error up to 5%.

is the baseline, where we first predict the signal map value
y of interest and then get an estimate of the CDP. Second,
Qcap(y) is our prediction directly on the function of interest.
Third, we can train a weighted RFs,, for y to get Qcdp(Yuw)-
Last, we can have Q¢ (y) which is the weighted trained
model RFs,, for estimating CDP (i.e., P = (Qcap, W)).
Table 13 reports the errors for uniform loss over a spatial
area, and shows improvements up to 5.5%. Interestingly,
the baseline performance deteriorates when we train on the
adjusted weights. It tries to minimize MSE for y, therefore
the weights can have very little or even negative effect for
mapping back to CDP. Similar results are observed for error
proportional to user population density, but omitted due to
lack of space. This demonstrates the importance of choosing
the loss function, jointly controlled by w and @, to optimize
performance for a specific prediction problem.

4.7 Data Shapley Results

In this section, we compute the Data Shapley values (using
the techniques presented in Section 3.5 and Appendix A2)
of datapoints in our datasets. For each prediction problem
P = (Q, W) and dataset of interest, we compute the perfor-
mance score V, and eventually the shapley value ¢; value
of every datum ¢ in that training dataset. We then order
all datums in decreasing shapley values, and remove data-
points with negative or low values. First, we show that by
removing measurements with negative Shapley values, we
can actually improve the prediction performance up to 30%.
Second, we show that we can further remove a large per-
centage of data points (up to 65%, depending on the dataset
and problem P) with low Shapley values, while maintaining

(a) Cell x034. (b) Cell x312.

Fig. 15: Campus dataset: Removing low valued data points
(for Data-Shapley, LOO and Random) affects Recall Izy.

high prediction performance. The latter allows for “data

AITIP{:T%%A w; =1,V Qecap(@) [0.018  [Qcap(y)[0.0169 minimization”, not before but after the data collection phase,
regions ||Wi = Wu X 3y |Qedp () [0018  |Qy, (y)]0.0160 in the following sense: we can store the minimum amount of
Relative Difference 05% 2% data needed to train a good prediction model. This reduces

KIII’IL;{S I;II; Z‘ = i}v; —— Q:;,‘@EE; g‘gig QﬁfiPEyg g'gii the cost of storing such training datasets, informs pricing
regions || pemgvepianie oz T e W when these datasets are bought, and is also a good practice

from a privacy perspective.

Data Minimization Setup: As we described in Sec. 3.5,
we utilize the TMC-Shapley algorithm to calculate the
data Shapley values ¢; per training data point (x;,y:),
for the problem of coverage indicator classification Q.(y),
i.e., whether there is coverage in a location or not (as per
Sec. 4.4). We remove batches of 5% of Di,.qip starting from
the least valuable (i.e., lowest ¢;). At each step, we re-train
the RFs,;; model with the remaining D, and calculate
the performance of the prediction on the Dheig-out data.

Baselines for Comparison: To compare against data Shapley
valuation, we consider two baselines. First, Leave-one-out
(LOO) [18], calculates the datum’s value by leaving it out
and calculating the score V, i.e., $:°° = V(D) —V (D —{i}).
Second, we remove randomly batches of D;;.4y, at each step.

4.7.1 Effect of removing low value data on Recall.

For the Campus dataset, Figures 15(a), 15(b) and 16(a)
present results for three representative cells (c034, x312,
x901), in terms of the recall Ry (see Sec. 4.4 for its utility for
operators), as a function of the percentage of data removed
from Dyyqin, by all discussed methods (TMC-Shapley, LOO
and Random). TMC-Shapley’s performance either improves
or remains the same when we remove low value data points
compared to LOO and Random. There are two plausible
explanations. First, the batches with low valued Dirg4in
contain outliers and corrupted data; the data Shapley has
correctly identified these points compared to LOO which
does not show any benefit. Second, the datums with low ¢;
do not have much predictive power to maximize the defined
performance metric of interest for the particular learning task;
essentially their removal lets the best suited data points to
train the predictor. Interestingly, after a certain threshold,
TMC-Shapley’s performance drops with the removal of just
a single batch, which holds significant predictive power. In
contrast, by removing data randomly we keep both bad and
quality data, which explains why Random’s performance
neither improves nor decays fast.
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Jo Train Datal \ 1 "l corfD-0|UserID-1)0s |1 [0 [T
Removed
0.0 5777|0.645521 | 256 1933|3839|541 | 1384
0.05 5430]0.68|5246 243 1855|3634|601 |1324
01 5201(0.694967 |34 1752(3449(622 | 1303
0.15 I913[0.76/4697  |216 T651[3262|733 |1192
02 1625(0.83[4429 |19 1550/3075(889 1036
0.5 13370824159 [178 T443|2889885 |1040
03 1049(0.843882 167 1337|2712|916 1009
035 3761|0.84[3611  |150 1226(2535(918 1007
04 3473]0.86|3335  |138 T146(2327|1007]918
045 3185(0.88|3050  [126 1058|2127|1062|863
05 28970912780 [117 976 [1921|1183[742
055 2608]0.9425020 [107 872 [1737|1274(651
06 2321[0.96|2226 |95 768 [1553|1393|532
0.65 2032|0.99|1948 |85 674 [1359]1631[294
0.7 1745(033|1671 |74 585 [1160[195 [1730

TABLE 14: x901 Cell: Data Minimization Results per removal step.

Let us discuss in more depth Fig.16(a), which presents
data minimization results for cell x901 of the Campus
dataset. The removal of low valued data according to
TMC-Shapley’s valuation improves recall Ry compared to
Random and LOO. Moreover, in Fig. 16(a) we annotate with
the label “A” the beginning of the process (i.e., still using the
entire Dy,.q:n); label “B” indicates the step where 65% of the
data have been removed and R has achieved its maximum
value. Fig. 16 depicts the ¢; CDF values for all Dyqiy, (i.e.,
label “A”).

Table 14 reports additional detail for data minimization
in cell x901, in Fig. 16(a), including: the removed fraction
and number of training data, the recall Ry, number of
measurements per users as well as the number of 0s and 1s
of both the held-out data and the predicted 7, per each step
of the removal process. We make the following observations.
First, for the label B, where 65% of the data have been re-
moved and R, has peak at 0.99, we notice that the predictor
Q.(y) has predicted significant higher number of 0s than
1s (1631 Os vs. 294 1s). This does not surprise us, because,
the predictor Q.(y) at label B is being trained with data
points of higher quality for maximizing Ry. Essentially, in
this scenario, data Shapley ¢; encodes the ability of the data
to result in training predictors that would minimize the false
negatives (i.e., maximize recall) and tend to over-predict Os
than 1s. Apparently, for a different metric the low/high ¢;
points could be different. Second, when R drops from 99%
to 33% there is still data availability for both classes/users.

Dataset Shift and Data Shapley, for cell x901. The
dataset shift problem [17] (i.e., the mismatch of the train-
ing and the target distribution) for the labels “A” vs. “C”
offers also significant insights of how the final performance
is affected after a certain threshold of removing training
data. Fig. 17(a) shows w, ﬁ for the Dy,4in data at
label A; the home and work locations where data have
been oversampled are illustrated clearly. The average data
density is E[log s(l) = —3.3]. On the contrary, Fig. 17(b)
depicts w, o ﬁ for the remaining Di,.qip at label C and
it can be clearly seen that the data distribution is closer to
uniform and the average data density has been decreased to
E[log s(1) = —9.3]. The held-out data were randomly sam-
pled from the original distribution, therefore, there is now
a mismatch between the original and target distribution (in
other words, the dataset shift problem we studied in Sec 3.4)
which can explain the drop in the performance.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. XX, NO. XX, XX XX

4.7.2 Effect of Data Minimization on Metrics beyond Ry

We also considered cell x034 and the coverage classification
task, but for a different performance metric (V'): accuracy
(A). Fig. 18(a) reports results from the same data removal
process as previously (i.e., remove an increasing percentage
of lowest valued datapoints). We observe that the TMC-
Shapley’s performance eventually outperforms LOO and
Random when certain threshold of data removal has been
reached. However after a certain threshold, the performance
of TMC-Shap drops, as happened with the recall for the
same cell (Fig. 18(b)). That is expected because the portion
ofdata that can be removed depends on the dataset and the
performance score, even for the same predictor.

5 CONCLUSION AND DISCUSSION

We presented a general framework for predicting cellular
performance from available measurements, which gives
knobs to operators to express what they care most, i.e., what
performance metrics, in what regimes (via quality functions
@), and in what locations (via weights ). To that end, (1) we
trained directly on the () instead of the RSRP domain; (2) we
used the importance ratio re-weighting to address the mis-
match between target and sampling distributions; and (3)
we applied the data Shapley framework to assess the value
¢ of available measurements for the particular prediction
task P = (Q, W), which in turn enables data cleaning and
minimization. We evaluated these ideas on large, real-world
LTE datasets and demonstrated their benefits.

Applications to 5G Deployment. First, our framework
can naturally handle prediction over mmWave 5G with
small cells, similarly to what we did in the Midtown Man-
hattan NYC dataset. There, many overlapping small cells
(100s in the same LTE TA) are used to cover the dense urban
environment. We performed prediction per LTE TA(not per
cell) and cID was used as a feature, to learn the radio
environment. Second, cellular operators have aggressively
pushed the sub-6GHz deployments due to the mmWave
limitations [43] (e.g., range of approx. 100s meters, only line-
of-sight). Sub-6Ghz deployments share the same physical
layer and network characteristics with the LTE networks.
Third, sampling biases will be amplified with small cells
deployment and our W (x) re-weighting schema could help
mitigate it, by expressing complex 5G operator objectives.
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