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AbstractÐMost existing federated multi-armed bandits
(FMAB) designs are based on the presumption that clients will
implement the new design to collaborate with the server. In
reality, however, it may not be possible to modify the client
protocols. Motivated by this limitation, this work focuses on
clients who always maximize their individual cumulative rewards,
and introduces a novel idea of reward teaching, where the server
guides the clients towards global optimality through implicit
local reward adjustments. Under this framework, the server
faces two tightly coupled tasks of bandit learning and target
teaching, whose combination is non-trivial and challenging. A
novel algorithm, called Teaching-After-Learning (TAL), is pro-
posed, which encourages and discourages clients’ explorations
separately. General performance analyses of TAL on regret and
cost are first established when the clients’ strategies satisfy certain
requirements. To particularize the results, clients with UCB or
ε-greedy strategies are then considered, where novel technical
approaches are developed to analyze their warm-start behaviors.
The obtained guarantees concretely demonstrate that when facing
these client strategies, TAL achieves logarithmic regrets while
only incurring logarithmic adjustment costs, which is order-
optimal w.r.t. a natural lower bound.

I. INTRODUCTION

Federated multi-armed bandits (FMAB) [2]±[8] is a recently

proposed framework that introduces the core principles of

federated learning (FL) [9] into multi-armed bandits (MAB)

[10]. In particular, FMAB often considers a system of one

global server and multiple heterogeneous local clients with the

goal of having the clients converge to the global optimality.

One practical difficulty of realizing existing FMAB designs

is to implement new protocols for both the server and clients

[3], [4], [11]. Specifically, the server and clients are required

to follow the carefully crafted designs collaboratively. In

real-world applications, it is relatively easy to update the

server’s protocols for FMAB. However, given the typically

large number of clients, it is often not realistic to assume

that all of their protocols can be updated, as it would result

in a significant infrastructure cost. For example, in cognitive

radio systems (which is a common motivating application for

FMAB), mobile devices (i.e., clients) are often configured to

optimize their individual communication qualities following

their built-in protocols. It is often hard and expensive to modify

these devices to follow the FMAB designs, especially since

such updates are often needed for both software and hardware.

A full version of this paper can be found in [1]. The work of CSs was
supported in part by the US National Science Foundation (NSF) under awards
2029978, 2143559, 2002902, Virginia Commonwealth Cyber Initiative, and
the Bloomberg Data Science Ph.D. Fellowship. The work of JY was supported
in part by the US NSF under awards 2030026, 2114542, and 1956276.

This work removes this limitation by designing mechanisms

only on the server’s side. Especially, the clients can still follow

the original routines to optimize their individual performances

(as in the aforementioned cognitive radio example) and no

change of their protocols is required. Towards this end, a

novel ªreward teachingº approach is proposed: the server

implicitly adjusts the local rewards perceived by the clients

to indirectly influence their decision-making. This idea is

practical for cognitive radio, as it is widely adopted in standard

communication protocols for the server to measure rewards

(e.g., throughput) and send designed signals to mobile devices.

The seemingly simple idea of reward teaching brings con-

siderable challenges for the server strategy. In particular, the

server faces the following two tasks simultaneously: bandit

learning and target teaching. On one hand, the server has to

learn the unknown global model through the clients’ actions,

which are based on local observations and may not align with

the server’s objectives. Thus, reward adjustments should be

carefully placed to have the clients explore with respect to

(w.r.t.) the global information (instead of their local ones). On

the other hand, even if the global model is learned successfully,

the corresponding learning history has a cumulative effect on

guiding the clients towards the learned target, as all historical

(adjusted) rewards are considered in clients’ future decision-

making. As a result, while having been studied individually

(e.g., learning in MAB and teaching in data-poisoning MAB),

the combination of the aforementioned two tasks is novel and

challenging as they are tightly coupled.

The contributions of this work are summarized as follows.

• A reward-teaching framework. A novel idea of reward

teaching is proposed to let the server design reward signals

to guide clients with their own local strategies. This idea is

practically appealing for FMAB systems as existing client

protocols do not have to be modified ± only the reward signals

they receive are adjusted. From another perspective, it also

provides a method to handle non-naive FMAB clients.

• Client-strategy-agnostic algorithm design. A phased

approach, coined ªTeaching-After-Learningº (TAL), is first

proposed. It addresses the challenge of teaching in an unknown

environment by separately encouraging and discouraging ex-

plorations in two phases. It is worth noting that the design of

TAL is agnostic to the clients’ local strategies.

• Client-strategy-dependent analysis. Theoretical regret

and cost guarantees of TAL are first established when the

clients’ local strategies satisfy some general properties. Partic-

ularizing these properties to UCB1 and ε-greedy [12] strategies
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at clients reveals that TAL can achieve a logarithmic regret

while only incurring a logarithmic adjustment cost, which is

order-optimal w.r.t. a natural lower bound. Moreover, the novel

technical approaches to analyzing warm-start bandit clients

may be of independent merit.

II. PROBLEM FORMULATION

A. Federated Multi-armed Bandits

Local and global models. Following [2]±[4], a standard

FMAB system of M local models and one global model is

considered. With the same set of K arms shared by all the

models, at each time step t ∈ [T ], each arm k ∈ [K] is

associated with a local reward Xk,m(t) ∈ [0, 1] for each

local model m ∈ [M ] and a global reward Yk(t) ∈ [0, 1]
for the global model. These rewards of each arm k are all

independently sampled with unknown expectations denoted

as µk,m := E[Xk,m(t)], ∀m ∈ [M ] and νk := E[Yk(t)]. In

general, the local arm utilities are model-dependent, i.e., µk,m
may not equal to µk,n for n ̸= m. The optimal local arm for

each local model m is denoted as k∗,m := argmaxk∈[K] µk,m
with µ∗,m := µk∗,m,m, and the optimal global arm as k† :=
argmaxk∈[K] νk with ν† := νk† .

As in [2]±[4], we consider the setting where each arm

k’s mean reward on the global model is the average of its

mean rewards on the local models, i.e., νk := E[Yk(t)] =
1
M

∑

m∈[M ] µk,m. A global-local misalignment may occur as

the global optimality may not align with each local optimality,

i.e., k† may not be the same as k∗,m for all or part of m ∈ [M ].
Clients and server. In FMAB, there exist M clients and

one server. At time t, each client m ∈ [M ] selects an arm

πm(t) (referred to as ªlocal actionsº) and then observes its

local reward Xπm(t),m(t) on local model m. Additionally,

each client m’s action πm(t) would also generate a reward

Yπm(t)(t) from the global model. It would be helpful to

interpret the local and global rewards as the individual-level

and system-level impacts from the clients’ actions.

The server in FMAB does not perform any arm-pulling

action herself. Instead, she focuses on guiding the local actions

to optimize their incurred global rewards. However, the global

rewards are not directly observable by the server and the

clients, which is often a result of practical measurement

limitations [3]. Instead, the server is assumed to be able to

observe the local actions and the corresponding local rewards,

i.e., {πm(t), Xπm(t),m(t) : m ∈ [M ]}.
To optimize global performance, previous FMAB studies

require clients to work collaboratively following new local pro-

tocols. Instead, this work considers that clients are fully com-

mitted to interacting with their own local models (i.e., client

m with local model m). Then, the clients would naturally

adopt their own MAB policies to maximize their local rewards.

This setting is practically appealing as in many applications

(e.g., the cognitive radio example in Sec. I), the local clients

are inherently configured to perform local policies to optimize

their local performance (e.g., IoT devices). Specifically, at time

t, each client m individually makes an arm-pulling decision

πm(t) based on her own history observed on local model m,

i.e., Hm(t− 1) := {πm(τ), Xπm(τ),m(τ) : τ ∈ [t− 1]}.

B. Reward Teaching

As mentioned, each client would select suitable actions w.r.t.

her own local rewards, which however may not necessarily

meet the server’s preference due to the global-local model

misalignment. To address this challenge, the following reward-

teaching mechanism is introduced for the server to indirectly

influence the clients’ action selections.

Specifically, after observing {Xπm(t),m(t) : m ∈ [M ]}, the

server can adjust each client m’s local reward Xπm(t),m(t)
to X ′

πm(t),m(t) by an amount of σm(t), i.e., X ′
πm(t),m(t) :=

Xπm(t),m(t) + σm(t), which is then revealed to the client

(instead of Xπm(t),m(t)). Note that one implicit constraint

is that the adjusted rewards must still be in [0, 1], which is

the system limitation. If this constraint is satisfied, the clients

are assumed to be unable to detect the reward adjustments.

The adjusted rewards lead to an adjusted history of H ′
m(t) :=

{πm(τ), X ′
πm(τ),m(τ) : τ ∈ [t]} for client m, which ideally

can shape her future actions in favor of the server.

It is worth mentioning that such reward adjustments are

practical for FMAB applications. In the cognitive radio ex-

ample, it is common for the base station to first measure

the communication quality (via pilot signals) and then send

designed feedback to the devices; this is the case in both

cellular and WiFi. Adjusting rewards can be achieved via

either sending modified feedback signals or modifying the

allocated resources (e.g., bandwidth) to boost or reduce client

performance, which is standard in modern communication

protocols. The devices, on the other hand, are oblivious to

such adjustments thanks to their built-in protocols.

Fig. 1. The reward-teaching process with client m (among the overall M

clients) and action πm(t) = k.

The reward-teaching process is summarized as the following

steps, which is also illustrated in Fig. 1:

• Each client m chooses πm(t) using history H ′
m(t− 1);

• The server observes {πm(t), Xπm(t),m(t) : m ∈ [M ]};
• The server adjusts Xπm(t),m(t) into X ′

πm(t),m(t) by the

amount of σm(t) for each client m ∈ [M ];
• Each client m observes the adjusted X ′

πm(t),m(t).

C. Learning Objectives

Following previous FMAB studies, we focus on the global

view of the server, which leads to a two-fold objective. First,

the server’s main goal is to maximize the cumulative global

rewards and can be characterized by minimizing the notion of
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global regret defined as RF (T ) :=
∑

m∈[M ]Rm(T ), where

Rm(T ) is the regret incurred by client m’s actions w.r.t.

the global model (instead of her local model) defined as

Rm(T ) := Tν†−E[
∑

t∈[T ] Yπm(t)(t)]. The expectation is w.r.t.

both the reward generations and the client-system interactions.

Also, the server’s adjustments on local rewards are

quantified by the cumulative cost defined as CF (T ) :=
∑

m∈[M ] Cm(T ), where Cm(T ) denotes the overall cost spent

on client m and is defined as Cm(T ) := E[
∑

t∈[T ] |σm(t)|].
The subscripts F refer to the global model (i.e., the federation).

Intuitively, there exists a trade-off between these two objec-

tives: with more adjustments on rewards, i.e., larger CF (T ),
the server can have bigger impacts on the clients’ selections

of actions, which ideally would decrease the regret RF (T ).
It is thus important to strike a balance between these two

objectives, which is the focus of the remainder of this paper.

D. Client Strategies

To facilitate discussion, we denote client m’s local strategy

as Πm. Note that while performing their own policies, the

clients are assumed not to be strategically against the server,

which is reasonable for most of the real-world applications of

FMAB, e.g., autonomous but not fully flexible mobile devices

in cognitive radio [3]. In addition, we denote Nk,m(t) as the

number of pulls by client m on arm k by time t, and N−1
k,m(τ)

refers to time step t such that Nk,m(t) = τ .

III. TWO COUPLED TASKS AND DESIGN OBJECTIVES

In this section, two tightly coupled tasks faced by the

reward-teaching server, bandit learning and target teaching, are

elaborated. A reasonable design objective is also proposed.

Bandit learning. One major distinction between learning

in FMAB and in classical MAB [10], [13] is that the server

can only gather information through clients’ local actions.

Previous FMAB studies tackled this challenge by proposing

new protocols for clients to naively follow [2]±[4], [11]. In

contrast, in this work, such information collection can only be

indirectly guided via carefully designed rewards.

Target teaching. To understand teaching, a special case

is first considered where the optimal arm k† is known by

the server. Then, the goal is to assign adjustments to have

the clients pull the pre-specified arm k† as much as possible,

which is mathematically the same as the data-poisoning MAB

problem [14]±[17]. However, in this work, the identity of k†
is not available in advance.

Combination leads to a tight coupling. While both tasks

have been separately investigated (to some extent), the reward-

teaching server faces a combination of them. On one hand,

even if the server can perfectly learn the global model, she

still needs to teach it to the clients. On the other hand, to

teach correctly, sufficient information should be learned by

the server. The resulted tight coupling is the major challenge

of the design. Specifically, the learning attempt has cumulative

effects on teaching, which in return relies on the learned target.

One consequent major difficulty is the analysis of the ªwarm-

startº behaviors of bandit algorithms.

Design objective. For the cost, with a known target arm,

[18], [19] prove lower bounds that with UCB1 and ε-greedy

clients (defined in Sec. V), it is necessary to spend a cost

Cm(T ) = Ω(log(T )) to obtain a regret Rm(T ) = O(log(T )).
Thus, with M independent FMAB clients, a cost of CF (T ) =
Ω(M log(T )) is required to obtain a regret of RF (T ) =
O(M log(T )) while knowing arm k†, which naturally holds

for the more stringent case of not knowing the target k†.

For the regret, UCB1 and ε-greedy clients can be shown

to be conservative [18] as each client m would pull each

arm at least Ω(log(T )) times regardless of the rewards; thus

Rm(T ) = Ω(log(T )) and RF (T ) = Ω(M log(T )).
With these results, the following design goal, order-wise

tight w.r.t. both criteria, is established:

Goal: Design algorithms to achieve both

RF (T ) = O(M log(T )) and CF (T ) = O(M log(T )).

IV. ALGORITHM DESIGN

To address the coupled tasks of bandit learning and target

teaching, one idea is to first learn the server’s target and then

teach the clients to converge to it, which leads to the pro-

posed ªTeaching-After-Learningº (TAL) algorithm (presented

in Alg. 1). Specifically, it starts with the learning phase to iden-

tify the optimal global arm. Then, in the teaching phase, the

server guides the clients toward the learned global optimality.

Note that although there is a separation of phases, the teaching

phase must handle clients that accumulate observations from

the learning phase (i.e., ªwarm-startº clients).

In the learning phase, TAL uniformly adjusts each client m’s

observed rewards to γ1, i.e., σm(t)← γ1−Xπm(t),m(t), where

γ1 ∈ [0, 1] is a to-be-specified input parameter. Intuitively, this

uniform reward adjustment encourages sufficient (or ideally,

uniform) explorations among all arms, since their rewards are

all γ1’s. Thus, the server can collect enough information on

each arm to identify her optimal arm k†.

This identification is designed to proceed in epochs indexed

by counter ψ to ensure statistical independence. If at time

t, each client m has pulled each arm k at least F (ψ) :=
∑

τ∈[ψ] f(τ) times, where f(ψ) := 1
M
· 22ψ+3 log(2KT 2),

the server updates upper and lower confidence bounds (UCB

and LCB) for each arm k ∈ [K] using its rewards collected

between its F (ψ − 1) + 1 and F (ψ) pulls (i.e., overall f(ψ)
pulls) by each client as follows:

UCBk(ψ),LCBk(ψ) :=
∑

m∈[M ]
µ̂k,m(ψ)/M ± CB(ψ), (1)

where µ̂k,m(ψ) := 1
f(ψ)

∑F (ψ)
τ=F (ψ−1)+1Xk,m(N−1

k,m(τ)) and

CB(ψ) :=
√

log(2KT 2)/(2Mf(ψ)) = 2−ψ−2. Note that

with the estimation of µk,m from local samples, the first

term in Eqn. (1) is essentially an estimation ν̂k(ψ) of νk.

The confidence bound CB(ψ) is specifically designed s.t.

LCB(ψ) ≤ νk ≤ UCB(ψ) holds for each arm k and each

epoch ψ in the learning phase with high probability.

The learning phase ends in epoch ψ if the confidence

interval of one arm k‡ dominates that of all other arms, i.e.,
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LCBk‡(ψ) ≥ UCBk(ψ), ∀k ̸= k‡, which is recognized as the

optimal arm. Otherwise, a new epoch ψ + 1 begins. With the

designed confidence bound, this identification is guaranteed to

be correct with high probability.

With the identified arm k‡, the server utilizes the following

adjustments to guide the clients in the teaching phase:

σm(t)←

{

γ2 −Xπm(t),m(t) if πm(t) ̸= k‡

0 if πm(t) = k‡
, (2)

where γ2 is another to-be-specified input parameter and typ-

ically should be small. In other words, if the client does not

pull arm k‡, her reward is adjusted to a small value γ2 to

discourage explorations; otherwise, the original reward of arm

k‡ is kept unchanged to save adjustments.

From Alg. 1, it can be observed that TAL is a pure server

protocol and agnostic to the clients’ local strategies ± the only

interaction with the clients is the adjusted rewards.

Algorithm 1 TAL (with input γ1, γ2 ∈ [0, 1])

1: Initialize: F ← 1 (i.e., the learning phase); ψ ← 1; k‡ ← 0
2: for t ≤ T do
3: Observe {πm(t), Xπm(t),m(t) : m ∈ [M ]}
4: if F = 1 & Nk,m(t) ≥ F (ψ), ∀m ∈ [M ], k ∈ [K] then
5: Update {UCBk(ψ),LCBk(ψ) : k ∈ [K]} as Eqn. (1)
6: if ∃j ∈ [K],LCBj(ψ) ≥ UCBk(ψ), ∀k ̸= j then
7: Set k‡ ← j; F ← 2 (i.e., the teaching phase)
8: else Set ψ ← ψ + 1
9: end if

10: end if
11: if F = 1 then σm(t)← γ1 −Xπm(t),m(t), ∀m ∈ [M ]
12: else if F = 2 then Set σm(t) as Eqn. (2), ∀m ∈ [M ]
13: end if
14: Set X ′

πm(t),m(t)← Xπm(t),m(t) + σm(t), ∀m ∈ [M ]
15: Reveal X ′

πm(t),m(t) to each client m ∈ [M ]
16: end for

V. PERFORMANCE ANALYSIS

We first provide a general analysis of TAL under a few

identified properties for clients’ strategies. Then, we consider

clients with UCB1 or ε-greedy algorithms and show that TAL

achieves order-optimal performance with these clients.

Some useful notations are introduced as follows: ∆k :=
ν† − νk, ∀k ̸= k†, ∆min = ∆k† := mink ̸=k† ∆k, ∆max :=
maxk∈[K] ∆k, and µ†,m := µk†,m. Moreover, δk,m(γ) :=
E[|γ −Xk,m(t)|] and ψmax := ⌈log2(1/∆min)⌉.

We first define sufficiently exploring algorithms for the

learning phase in TAL, which states that a bandit algorithm

would sufficiently explore when facing uniform rewards.

Definition 1 (Sufficiently Exploring Algorithms). Consider a

K-armed bandit environment where rewards from arms in a

set I ⊆ [K] are always a fixed constant γ ∈ [0, 1]. In this

environment, a bandit algorithm Π is said to be (I, γ, η, η)-
sufficiently exploring if it would pull each arm in the set I
at least η(τ ; γ, I) and at most η(τ ; γ, I) times when total τ
pulls have been performed on set I.

If local strategies are sufficiently exploring, enough infor-

mation can be collected in the learning phase to identify the

global optimal arm, as stated in the following lemma, where

η−1(N ; γ, [K]) denotes the value τ s.t. η(τ ; γ, [K]) = N .

Lemma 1 (Learning Phase in TAL). If Πm is

([K], γ1, ηm, ηm)-sufficiently exploring for all m ∈ [M ], with

probability (w.p.) at least 1 − 1/T , the learning phase ends

with k‡ = k† by time step T1, and the regret and cost in the

learning phase of TAL are bounded, respectively, as

RF,1(T ) ≤
∑

m∈[M ]

∑

k ̸=k†
∆k · ηm(T1; γ1, [K]);

CF,1(T ) ≤
∑

m∈[M ]

∑

k∈[K]
δk,m(γ1) · ηm(T1; γ1, [K]),

where T1 ≤ maxm∈[M ]{η
−1
m

(F (ψmax); γ1, [K])}.

The sufficiently exploring lower bound (i.e., η) ensures suf-

ficient information collection, while the corresponding upper

bound (i.e., η) guarantees performance.

Then, for the teaching phase, since the cumulative obser-

vations from the learning phase are inherited to the client

strategies, we can view the clients as ªwarm-startedº. The

following notion of warm-start pulls is introduced, which

measures the warm-start behavior of an algorithm.

Definition 2 (Warm-start Pulls). In a K-armed bandit en-

vironment B, if a reward sequence H = {Hk : k ∈ [K]}
is input to a bandit algorithm Π, where Hk is a reward

sequence for arm k, warm-start pulls on arm k is defined

as ιk(T ;H,B,Π) := EΠ[
∑

t∈[T ] 1{π(t) = k}|H,B], which

represents the expected pulls performed by Π on each arm k
during T steps in environment B with prior input H .

Using this notion of warm-start pulls, the following guar-

antee on the teaching phase can be established.

Lemma 2 (Teaching Phase in TAL). If the event in Lemma 1

occurs, the regret and cost in the teaching phase of TAL are

bounded, respectively, as

RF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑

k ̸=k†

∆k · ιk(T ;Hm,Bm,Πm);

CF,2(T ) ≤
∑

m∈[M ]

max
Hm∈Hm

∑

k ̸=k†

δk,m(γ2) · ιk(T ;Hm,Bm,Πm),

where Bm denotes an environment with constant rewards as

γ2 for arm k ̸= k† and stochastic rewards with expectation

µ†,m for arm k†. The set Hm is defined with each element

of it as a reward sequence Hm = {Hk,m : k ∈ [K]} where

Hk,m ∈ {{γ1}
τ : τ ∈ [η

m
(T1; γ1, [K]), ηm(T1; γ1, [K])]}.

Note that Bm characterizes the environment of client m
in the teaching phase while Hm represents the cumulative

observation inherited from the learning phase. As long as the

warm-start pulls on the sub-optimal arms are low, the regret

and cost in the teaching phase can be bounded.

Finally, the overall performance guarantee can be obtained.

Theorem 1 (Overall Performance of TAL). Under the assump-

tion in Lemma 1, with RF,1(T ), RF,2(T ) defined in Lemma 1

and CF,1(T ), CF,2(T ) in Lemma 2, the regret and cost of TAL

2023 IEEE International Symposium on Information Theory (ISIT)

1457



are bounded, respectively, as RF (T ) ≤ RF,1(T )+RF,2(T )+
O(M) and CF (T ) ≤ CF,1(T ) + CF,2(T ) +O(M).

A. UCB Clients

The popular UCB-type algorithms are first considered to

particularize the general performance guarantee. In particu-

lar, we focus on the celebrated UCB1 algorithm [12] while

noting that the analysis generalizes to other UCB variants

[20], [21]. Especially, at time t, the UCB1 algorithm for

client m chooses arm πm(t) = argmaxk∈[K]{µ̂
′
k,m(t− 1) +

√

2 log(t)/Nk,m(t− 1)}, which the perceived sample mean

µ̂′
k,m(t) :=

∑

τ∈[Nk,m(t)]X
′
k,m(N−1

k,m(τ))/Nk,m(t).
First, the sufficiently exploring assumption in Lemma 1 is

verified in Lemma 3. This is intuitive as with constant rewards,

the sample means are the same while additional pulls decrease

the confidence bound in UCB1.

Lemma 3. For any γ ∈ [0, 1] and set I ⊆ [K], UCB1 is

(I, γ, η, η)-sufficiently exploring with η(τ ; γ, I) = ⌊τ/|I|⌋
and η(τ ; γ, I) = ⌈τ/|I|⌉.

Then, the performance of TAL in the learning phase

(in Lemma 1) can be bounded by recognizing T1 =
O(K log(KT )/(M∆2

min)), which further specifies the reward

sequence set Hm in Lemma 2 and leads to the following

lemma on the warm-start pulls of UCB1.

Lemma 4. If γ1 ≥ µ†,m > γ2 and Πm is UCB1, for all

k ̸= k†, it holds that maxHm∈Hm
{ιk(T ;Hm,Bm,Πm)} =

O
(

(γ1−γ2)T1

K(µ†,m−γ2)
+ log(KT )

(µ†,m−γ2)2

)

.

Proving this lemma is non-trivial and may be of independent

interest in understanding the warm-start behavior of UCB1.

Essentially, the result can be interpreted as first offsetting the

ªwarm-startº history (the first term) and then converging to

arm k† (the second term) in a environment Bm, whose rewards

for arm k ̸= k† are constant γ2’s and rewards for arm k† have

an expectation µ†,m (see Lemma 2).

It is noted that Lemma 4 first requires γ1 ≥ µ†,m, which

maintains the optimism for the estimation of arm k† on each

local model m. The other requirement µ†,m > γ2 is intuitive

as otherwise the local client m would not converge to arm k†.

Since there is no prior information about µ†,m. a feasible and

sufficient solution is to set γ1 = 1 while γ2 = 0, which leads

to the following theorem.

Theorem 2 (TAL with UCB1 clients). For TAL with γ1 = 1
and γ2 = 0, if all clients run UCB1 locally and µ†,m ̸= 0 for

all m ∈ [M ], it holds that

RF (T ) = O

(

∑

m∈[M ]

∑

k ̸=k†

[

∆k log(KT )

µ†,mM∆2
min

+
∆k log(KT )

µ2
†,m

])

;

CF (T ) = O

(

∑

m∈[M ]

∑

k∈[K]

(1− µk,m) log(KT )

M∆2
min

+
∑

m∈[M ]

∑

k ̸=k†

[

µk,m log(KT )

µ†,mM∆2
min

+
µk,m log(KT )

µ2
†,m

])

.

We note that the regret and cost are both of order

O(M log(T )); thus TAL is order-optimal w.r.t. both criteria

in this scenario according to Sec. III. Moreover, the regret

shows two dominating terms, which are from Lemma 4. In

fact, there is another non-dominating (thus hidden) term from

Lemma 1 for the learning phase. A similar three-part form is

shared by the cost: the first term is from the learning phase

while the last two terms are from the teaching phase.

B. ε-greedy Clients

We further consider clients running the well-known ε-
greedy algorithm [22]. Especially, the ε-greedy algorithm for

client m chooses arm πm(t) = argmaxk∈[K] µ̂
′
k,m(t − 1)

with probability 1 − εm(t); otherwise, arm πm(t) is selected

uniformly random from [K], where the exploration probability

εm(t) ∈ [0, 1] is taken as εm(t) = O(K/t), following [12].

First, the sufficiently-exploring property is verified.

Lemma 5. For any γ ∈ [0, 1], if ties among arms

are broken uniformly at random, with probability at least

1 − 1/T , ε-greedy is ([K], γ, η, η)-sufficiently exploring with

η(τ ; γ, [K]) = O(τ/K − log(KT )) and η(τ ; γ, [K]) =
O(τ/K + log(KT )).

Due to the randomness in ε-greedy, it is complicated to

analyze its warm-start pulls in general. Instead, the following

lemma focuses on γ1 = γ2 = 0.

Lemma 6. If Πm is ε-greedy and µ†,m > γ1 =
γ2 = 0, with probability at least 1 − 1/T , it

holds that maxHm∈Hm
{
∑

k ̸=k†
ιk,m(T ;Hm,Bm,Πm)} =

O(K log(KT )/µ2
†,m).

Finally, the overall performance guarantees of TAL with ε-
greedy clients are presented in the following theorem.

Theorem 3 (TAL with ε-greedy clients). For TAL with γ1 =
γ2 = 0, if clients run ε-greedy and break ties uniformly at

random, and µ†,m ̸= 0, ∀m ∈ [M ], it holds that

RF (T ) = O

(

K∆max log(KMT )

∆2
min

+
∑

m∈[M ]

K∆max log(KMT )

µ2
†,m

)

,

CF (T ) = O

(

∑

m∈[M ]

[

Kµ∗,m log(KMT )

M∆2
min

+
Kµ∗,m log(KMT )

µ2
†,m

])

.

The two parts in regret and cost are from the learning and

teaching phases, respectively. As typically M ≪ T , the goal of

having regret and cost both of O(M log(T )) is also achieved.

VI. CONCLUSIONS

A novel idea of reward teaching was proposed to have

the server guide autonomous clients in an unknown FMAB

environment via reward adjustments, which avoids any pre-

viously required changes to the clients’ protocols. A novel

client-strategy-agnostic algorithm, TAL, was proposed. It was

designed with two phases to separately encourage and dis-

courage explorations. General performance analysis was estab-

lished when the clients’ strategies satisfy certain requirements.

Especially, for the representative UCB1 and ε-greedy clients,

rigorous analyses showed that TAL strikes a balance between

regret and adjustment cost (logarithmic in both metrics), which

is order-optimal w.r.t. the natural lower bound.
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