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The development of novel drug delivery systems, which are revolutionizing modern
medicine, is benefiting from studies on microorganisms’ swimming. In this paper we
consider a model microorganism (a squirmer) enclosed in a viscous droplet to investigate
the effects of medium heterogeneity or geometry on the propulsion speed of the caged
squirmer. We first consider the squirmer and droplet to be spherical (no shape effects) and
derive exact solutions for the equations governing the problem. For a squirmer with purely
tangential surface velocity, the squirmer is always able to move inside the droplet (even
when the latter ceases to move as a result of large fluid resistance of the heterogeneous
medium). Adding radial modes to the surface velocity, we establish a new condition for
the existence of a co-swimming speed (where squirmer and droplet move at the same
speed). Next, to probe the effects of geometry on propulsion, we consider the squirmer and
droplet to be in Newtonian fluids. For a squirmer with purely tangential surface velocity,
numerical simulations reveal a strong dependence of the squirmer’s speed on shapes, the
size of the droplet and the viscosity contrast. We found that the squirmer speed is largest
when the droplet size and squirmer’s eccentricity are small, and the viscosity contrast is
large. For co-swimming, our results reveal a complex, non-trivial interplay between the
various factors that combine to yield the squirmer’s propulsion speed. Taken together,
our study provides several considerations for the efficient design of future drug delivery
systems.
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1. Introduction
The past few decades have seen tremendous progress in modern medicine, especially
in the ways drugs and treatments are administered. Targeted drug delivery, a class of
methods to deliver medication to specific organs or tissues, is showing great promise
for patient care. One form of targeted drug delivery consists of inserting the drug in
a micro- or nano-particle, called a carrier (Samanta, Hosseini-Nassab & Zare 2016;
Kolosnjaj-Tabi et al. 2019; Wei et al. 2020; Chang et al. 2021; Kemp & Kwon 2021;
Zhang, Liu & Zhang 2021; Fabozzi et al. 2023) that is then absorbed by the patient
orally or via an injection. By using these carriers, the drug is kept from interacting with
and affecting any healthy cells, tissues and organs as it safely makes its way through the
bloodstream, thus minimizing negative side effects to the whole physiological system.
Two features must be considered for effective and efficient drug delivery using carriers:
design and control. Design must account for various factors, including shape (Liu et al.
2012; Nejati et al. 2020). Experimental and numerical studies have shown that under
flow conditions and in the presence of red blood cells, non-spherical shapes (including
ellipsoids) display a better margination rate (localization towards the blood vessel walls)
compared with spherical particles. This enhanced rate is particularly important for the
carrier’s ability to adhere and ultimately cross biological barriers (Cooley et al. 2018;
Mitchell et al. 2021). Control on the other end relies in part on the use of micro-robots
that mimic the propulsion of biological microorganisms (Wu et al. 2020). The propulsion
of microorganisms in unbounded fluids and media has attracted a tremendous amount of
interest since the pioneering works of Taylor (1951) and Lighthill (1952). Studies have
since extended these seminal works to investigate the propulsion of microorganisms in
unbounded non-Newtonian and heterogeneous media (Yu, Lauga & Hosoi 2006; Lauga
2007; Leshansky 2009; Zhu et al. 2011; Pak et al. 2012; Datt et al. 2015; Chisholm
et al. 2016; Lauga 2016; Gómez et al. 2017; Nganguia & Pak 2018). However, the use
of carriers to enhance targeted drug delivery (Lee & Yeo 2015; Wu et al. 2020) or
the development of nanotechnologies to manipulate cells in confined spaces (Raveshi
et al. 2021) have led to increasing interest in the motion of microorganisms enclosed
in various interfaces (Mirbagheri & Fu 2016; Reigh & Lauga 2017; Reigh et al. 2017;
Daddi-Moussa-Ider, Lowen & Gekle 2018; Hoell et al. 2019; Nganguia et al. 2020b). One
way of investigating the effects of these interfaces on propulsion is by considering the
locomotion inside a closed domain. To this end, systems consisting of motile organisms
enclosed in droplets have been designed (Clausal-Tormos et al. 2008; Wen et al. 2015;
Ding et al. 2016; Raveshi et al. 2021). Recent theoretical studies of such systems assumed
physical interfaces with various properties (Reigh et al. 2017; Shaik, Vasani & Ardekani
2018; Sprenger et al. 2020; Kree, Ruckert & Zippelius 2021; Kree & Zippelius 2021;
Marshall & Brady 2021). In Reigh et al. (2017) the authors considered a squirmer inside
a clean droplet and obtained analytical solutions for the squirmer and droplet speeds
in a concentric configuration (the squirmer and droplet share the same centre). With
this configuration, they showed that the squirmer always moves faster than the droplet.
However, a co-swimming state (equal speeds between squirmer and droplet) can be
achieved by considering radial modes in the surface velocity of the squirmer. The authors
further analysed the stability of the co-swimming state numerically by considering various
eccentric configurations. A surfactant-covered droplet has also been considered in place
of a clean droplet (Shaik et al. 2018). As in Reigh et al. (2017), the authors of the study
concluded that the squirmer propels faster than the droplet, yielding an unstable concentric
configuration. The authors went on to show that various eccentric configurations, in
which the squirmer and droplet no longer share the same centre of mass, led to a stable
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Caged squirmer in a heterogeneous environment
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Figure 1. The squirmer represents ciliated microorganisms that can be approximated by (a) spherical shapes
such as Volvox (adapted from https://www.britannica.com/science/Volvox/images-videos) or (b) spheroidal
shapes such as Tetrahymena thermophila (reproduced from van Gogh et al. (2022), which is distributed
under the terms of the Creative Common CC BY license). (c) Geometric set-up and schematic of a squirmer
in a Newtonian fluid pocket with viscosity µ1 enclosed in a droplet in a heterogeneous medium with
viscosity µ2. Both the squirmer and droplet are spheroids with semi-major and semi-minor axes rmaj,k and
rmin,k, respectively, where k = s denotes the squirmer and k = d denotes the droplet. (For spherically shaped
squirmers and/or droplets, rmaj,k = rmin,k.) Here n and s denote the unit normal and tangent vectors to the
spheroidal surfaces, respectively. The squirmer and droplet propel with speeds US and UD, respectively.

co-swimming state. These recent findings have provided important insights on locomotion
inside a droplet. The studies showed that the system can be tuned to achieve specific stable,
co-swimming configurations. However, the results are limited to spherical squirmers
enclosed in droplets in homogeneous Newtonian fluids. In reality, microorganisms often
encounter heterogeneous environments with networks of obstacles embedded into viscous
fluid media. For instance, spermatozoa navigate through cervical mucus with a filamentous
network (Rutllant, Lopez-Bejar & Lopez-Gatius 2005); some spirochetes swim through
highly complex and heterogeneous media and cross the blood-brain barrier to infect
the brain (Radolf & Lukehart 2006; Wolgemuth 2015); bacteria Helicobacter pylori can
invade the epithelial cells by moving through the gastric mucus gel that protects the
stomach (Celli et al. 2009; Mirbagheri & Fu 2016). The presence of a sparse network
of stationary obstacles embedded in an incompressible Newtonian fluid can be modelled
using the Brinkman equations (Brinkman 1949) that include the additional hydrodynamic
resistance due to the network of stationary obstacles. The Brinkman equations have been
employed to address the effects of a viscous heterogeneous environment on locomotion
performance (Leshansky 2009; Jung 2010; Leiderman & Olson 2016). In addition to
the viscous heterogeneous environment, it was found that the swimming speed can be
enhanced for specific combinations of permeability and geometric parameters of the
swimmer (Leiderman & Olson 2016).

The squirmer model by Lighthill (1952) and Blake (1971) is adequate for spherically
shaped ciliated organisms like Volvox (figure 1a). However, with a mean length-to-width
aspect ratio of approximately 2, non-spherical ciliates are in fact more common (Lisicki
et al. 2019; Rodrigues, Lisicki & Lauga 2021). Thus, a description of the squirmer that
accounts for spheroidal geometry is needed to describe ciliated propulsion. Keller &
Wu (1977) generalized the squirmer model to a prolate spheroidal body of arbitrary
eccentricity that better represent organisms such as Paramecium and Tetrahymena (see
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figure 1b). The theoretical prediction of their spheroidal model found good agreement
with experimental data of freely swimming and inert sedimenting Paramecium caudatum.
Further generalization of the spheroidal model in Keller & Wu (1977) has been proposed
to include higher modes of swimming to represent other types of swimmers (Ishimoto
& Gaffney 2014; Theers et al. 2016; Pohnl, Popescu & Uspal 2020), or to account for
the effect of shape on squirming in non-Newtonian fluids (van Gogh et al. 2022). In
addition to representing ciliates with spheroidal bodies, the spheroidal model serves as
a first approximation to other non-spherical swimmers (e.g. Escherichia coli) to assess
how geometrical shape affects swimming performance. We examine the dependence of
caged microorganisms’ propulsion on (1) fluid heterogeneity (to model in vivo biological
environments), and (2) squirmer and droplet shapes (for the control and design of
micro-robots and drug carriers). The paper is organized as follows. First, we describe the
setting and formulate the problem in § 2, which includes a discussion of the analytical
(§ 2.2) and numerical (§ 2.3) methods employed in our study. We then derive the
propulsion speeds of the spherical squirmer and droplets in § 3, validate our results against
previous studies in § 3.1, and proceed to investigate the effects of the fluid resistance on the
squirmer-droplet system (§ 3.2) and on its co-swimming state (§ 3.3). The second half of
our study, § 4, investigates the effects of non-spherical squirmer and/or droplet shapes on
propulsion in a homogeneous, Newtonian fluid. We analyse shape effects on the squirmer’s
individual (§ 4.1) and co-swimming (§ 4.2) speeds. The consideration of shapes reveal
many interesting results that we further analyse by looking at the pressure and velocity
profiles from the various configurations (§ 4.3). Finally, we summarize our findings in § 5
and discuss implications for current and future designs of drug delivery systems.

2. Formulation
We consider the propulsion of a spheroidal squirmer in an homogeneous Newtonian
pocket encapsulated inside a spheroidal droplet in an heterogeneous medium, as illustrated
in figure 1(c). The spheroidal squirmers and droplets have semi-major and semi-minor
axes rmaj,k and rmin,k, respectively, where k = s denotes the squirmer and k = d the
droplet. In the case of spherical squirmers and droplets (not displayed in figure 1c),
rmaj,k = rmin,k. The fluid phases inside and outside the droplet have dynamic viscosities
µ1 and µ2, respectively, and the squirmer and droplet propel with speeds US and UD,
respectively. Following Reigh et al. (2017), we assume that the droplet does not deform.
This assumption is reasonable for spherically shaped droplets with sufficiently large
surface tension, or for spheroidal droplets covered with shape-preserving surfactants
and/or contaminants (Wall et al. 2017; Glushkova et al. 2023). Indeed, the contaminants
give rise to surface viscosities that influence the surface dilatation and surface deformation
of the droplet. The resulting forces act to stabilize the droplet’s shape (Nganguia et al.
2023).

The squirmer’s surface velocity consists of radial and tangential modes. In the case of a
spherical squirmer (Lighthill 1952; Blake 1971; Pedley 2016),

ũsq =
∞∑

n=0

AnPn (cos θ) er +
∞∑

n=1

BnVn (cos θ) eθ , (2.1)

where (˜) denotes a dimensional variable, Pn(cos θ) are the Legendre polynomials,
Vn(cos θ) = −2P1

n(cos θ)/[n(n + 1)], P1
n(cos θ) are the associated Legendre polynomials

of the first kind, and An and Bn are radial and tangential swimming modes, respectively. In
the study of squirming microorganisms, it is customary to focus on the tangential modes.
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Caged squirmer in a heterogeneous environment

Furthermore, only the first two tangential modes (Bn = 0 for n > 2) are generally
considered, since they help differentiate between various types of squirmers (such as
neutral squirmers, pullers and pushers). However, we note that the interpretation and
contribution of the tangential swimming modes Bn to the propulsion speed and flow
fields depend on the shape of the squirmer, as has been established by Pohnl et al.
(2020). The propulsion speeds of a translating microorganism in an unbounded Newtonian
fluid UN = 2B1/3 (Lighthill 1952; Blake 1971) and heterogeneous medium UB = 6(1 +
δ)B1/(9 + 9δ + δ2) (Nganguia & Pak 2018) depend only on the first actuation mode B1.
Since our focus is on changes in the propulsion speeds, we keep only the first modes A1
and B1 in the surface velocity (2.1).

2.1. The Stokes–Brinkman model
We extend the Stokes–Brinkman (N-B) model from our previous study (Nganguia et al.
2020a) to account for the motion of the droplet. The Newtonian region (rmaj,s < r <
rmaj,d) is modelled as a purely viscous fluid governed by the incompressible Stokes
equation

∇̃p̃1 + µ1∇̃ ×
(
∇̃ × ũ1

)
= 0, (2.2)

whereas the heterogeneous medium is governed by the Brinkman equations (Brinkman
1949)

− ∇̃p̃2 + µ2∇̃2ũ2 − µ2ω
2ũ2 = 0, ∇̃ · ũ2 = 0. (2.3a,b)

To non-dimensionalize the problem, we scale the velocities using the first mode B1,
lengths using the squirmer’s semi-major axis rmaj,s and pressure using µ2B1/rmaj,s. In
dimensionless form, the Stokes equation in the Newtonian domain (1 < r < b) becomes

∇p1 + λ∇ × (∇ × u1) = 0, (2.4)

where the ratio of semi-major axes b = rmaj,d/rmaj,s is the dimensionless droplet size
that represents the size of the Newtonian domain, and λ = µ1/µ2 is the viscosity ratio.
Similarly, the dimensionless Brinkman equations in the heterogeneous domain (r > b) is
given by

− ∇p2 + ∇2u2 − δ2u2 = 0, ∇ · u2 = 0. (2.5a,b)

The governing equations are solved in the laboratory frame using the following
boundary conditions. In the far field,

u2 (r → ∞) = 0, (2.6)

while

u1 (r = 1) = US + usq (2.7)

on the squirmer surface. The dimensionless surface velocity usq = α cos θer + sin θeθ ,
where α = A1/B1. The boundary conditions on the droplet surface (r = b) are given by
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the continuity of normal velocities

u1 = u2 = UD cos θ, (2.8)

tangential velocities
v1 = v2 (2.9)

and tangential components of surface force

λn · T 1 · t = n · T 2 · t, (2.10)

where T j = −pjI + ε̇j, t and ε̇j = ∇uj + (∇uj)
T denote the unit tangential vector and

rate-of-strain tensor, respectively, and j = 1, 2.

2.2. Analytical solution
The Stokes velocity u1 is obtained using Lamb’s general solutions (Happel & Brenner
1973)

u1 =
∞∑

n=0

(
Onrn+1 + Qnrn−1 + Rn

rn + Sn

rn+2

)
Pn (cos θ) , (2.11a)

v1 =
∞∑

n=1

(
−n + 3

2
Onrn+1 − n + 1

2
Qnrn−1 + n − 2

2
Rn

rn + n
2

Sn

rn+2

)
Vn (cos θ) . (2.11b)

The components u2 = ∂ψ2/∂θ/r2 sin θ and v2 = −∂ψ2/∂r/r sin θ of the Brinkman
velocity u2 are obtained from the streamfunction (Zlatanovski 1999; Palaniappan 2014;
Nganguia & Pak 2018)

ψ2 = sin θ
∞∑

n=0

Fn(r)P1
n (cos θ) , (2.12)

where

Fn(r) = Tnr−n + Ynrn+1 +
√

r
δ2 [ZnIn+1/2(δr) + WnKn+1/2(δr)]. (2.13)

Here, In+1/2 and Kn+1/2 are modified Bessel functions of the first and second kind,
respectively; On, Qn, Rn, Sn, Tn, Yn, Zn, Wn are coefficients determined by applying the
boundary conditions. Note that in order to satisfy the boundary condition in the far
field (2.6), the coefficients Yn = 0 and Zn = 0. Henceforth, we omit the index n in the
coefficients since we focus on a single-mode squirmer (n = 1). The velocity in the Stokes
domain becomes

u1 =
(

Or2 + Q + R
r

+ S
r3

)
cos θ, (2.14a)

v1 =
(

−2Or2 − Q + 1
2

R
r

+ 1
2

S
r3

)
sin θ, (2.14b)

and the corresponding velocity in the Brinkman domain is given by

u2 =
[

2T
r3 + W

e−rδ (1 + rδ)
δ7/2r3

]
cos θ, (2.15a)

v2 =
[

T
r3 + W

e−rδ(1 + rδ + r2δ2)

δ7/2r3

]
sin θ . (2.15b)
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Caged squirmer in a heterogeneous environment

Upon applying boundary conditions, we obtain the system of equations




1 1 1 1 0 0

−2 −1 −1
2

1
2

0 0

−b2 −1 −1
b

− 1
b3

2
b3 s1

b2 1
1
b

1
b3 0 0

2b2 1
1
2b

− 1
2b3

1
b3 s2

3b 0 0
3
b4 − 6

λb4 s3









O
Q
R
S
T
W




=





α + US
1 − US

0
UD
0
0




, (2.16)

where

s1 =
√

2πe−bδ√bδ(bδ + 1)

b7/2δ4 ,

s2 =

√
π

2
e−bδ√bδ(b2δ2 + bδ + 1)

b7/2δ4 ,

s3 = −

√
π

2
e−bδ√bδ(bδ(bδ(bδ + 3) + 6) + 6)

b9/2δ4λ
,






(2.17)

which yields the velocity field coefficients (see Appendix A). For both §§ 3 and 4, we
first discuss the propulsion for purely tangential squirming modes (α = 0), followed by an
analysis of the co-swimming state (α /= 0).

2.3. Numerical simulations
The equations are solved numerically using the finite element method implemented in
the COMSOL Multiphysics environment. To take advantage of the axial symmetry of the
problem, an axisymmetric computational domain in the rz plane is used to simulate only
half of the full flow domain. The equation describing the surface of the prolate spheroidal
body reads

z2

r2
maj

+ r2

r2
min

= 1, (2.18)

where r2 = x2 + y2.
The squirmer and the droplet are modelled as half-prolate spheroids centred at the origin

and whose major axes coincide with the axis of symmetry. The semi-major axis of the
droplet, rmaj,d, is scaled with b > 1 such that rmaj,d = brmaj,s to model a range of droplet
to squirmer size ratios. Semi-minor axes of both the squirmer and the droplet are calculated
based on their respective eccentricities using the definition of eccentricity ek = ck/rmaj,k,
where ck = (r2

maj,k − r2
min,k)

1/2. Note that for a spherical shape, ek = 0.
A large computational domain of size 500asq × 500asq is employed to ensure negligible

confinement effects. Here P1+P1 (first order for fluid velocity and first order for pressure)
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triangular mesh elements are used for the simulations, with local mesh refinement near
the squirmer and inside the droplet domain to properly resolve the spatial variation of
the flow field. The degree of freedom ranges from 1 × 105 to 4 × 105 for the simulations
depending on b, which enlarges the finely meshed droplet domain as it gets larger and,
therefore, increases the degree of freedom.

The unknown swimming velocity of the squirmer is obtained by solving the momentum
and continuity equations simultaneously with the force-free swimming condition applied
on the squirmer surface. Solving the fully coupled problem, we obtain the velocity and
pressure fields. To find the droplet velocity, we evaluate the flow velocity at the droplet
boundary. We used the parallel direct solver (PARDISO) for all simulations. It should
be noted here that the numerical simulations compute the instantaneous velocities of the
squirmer and the droplet while they are in a concentric configuration.

3. Effects of heterogeneity on propulsion
In this section we only consider the spherical squirmer and droplet. We substitute the
velocity fields uj into the force-free conditions

∫

Γ1

T 1 · n dΓ1 = 0,

∫

Γ2

T 2 · n dΓ2 = 0, (3.1a,b)

to determine the unknown swimming speeds of the squirmer US and droplet UD. Here, Γ1
and Γ2 denote the squirmer and droplet interfaces, respectively. The swimming speed of
the squirmer is given by

US = 1
3B

{
(b − 1)2(3 + 6b + 4b2 + 2b3)(18 + 18bδ + 3b2δ2 + b3δ3)

+6[−9 − 9bδ + 15b2 + 9b5 + (15b3 + 9b6)δ + (b7 − b2)δ2]λ
}

, (3.2)

and the swimming speed of the droplet is given by

UD = 30b2 (1 + bδ) λ
B

, (3.3)

where

B = (b5 − 1)(18 + 18bδ + 3b2δ2 + b3δ3) + (2 + 3b5)(9 + 9bδ + b2δ2)λ. (3.4)

In the presence of the dimensionless radial mode α, the squirmer speed becomes

US = 1
Bα

{
1
B

[90λb2(α + 1)(δb + 1)[5δ(b6 − b3) + 9b5 − 5b3 + λ(6b5 + 4) − 4]]

−2[(α − 2)δb6 + 5(α + 1)δb3 − 3b(2αδ + δ) + 3(α − 2)(λ+ 1)b5

+3(2α + 1)(2λ− 3) + 15(α + 1)b2]
}

, (3.5)

where
Bα = 6[(b5 − 1)(δb + 3) + λ(3b5 + 2)], (3.6)

and the droplet speed is given by

UD = 30(α + 1)λb2(δb + 1)

B
. (3.7)
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By setting (3.5) equal to (3.7) (US = UD), we obtain the ratio αSD necessary for the
squirmer and droplet to move at the same speeds,

αSD = 1
BSD

[(b − 1)2(3 + 6b + 4b2 + 2b3)(18 + 18bδ + 3b2δ2 + b3δ3)

+ 6(b5 − 1)(9 + 9bδ + b2δ2)λ], (3.8)

where

BSD = (b5 + 5b2 − 6)(18 + 18bδ + 3b2δ2 + b3δ3) + 3(b5 + 4)(9 + 9bδ + b2δ2)λ.
(3.9)

Substituting αSD into (3.5) or (3.7) yields the co-swimming speed

USD = 90b2 (1 + bδ) λ
BSD

. (3.10)

3.1. Validation
We validate our analytical model and numerical implementation against the results
in Reigh et al. (2017), where the set-up consists of an encapsulated squirmer in a
homogeneous Newtonian fluid (δ = 0). In the limit of δ → 0, the propulsion speeds in
(3.2) and (3.3) reduce to

US = 2[3 + 5b2(λ− 1) − 3λ+ b5(2 + 3λ)]
6(λ− 1) + b5(6 + 9λ)

(3.11)

and

UD = 10b2λ

6(λ− 1) + b5(6 + 9λ)
. (3.12)

These equations are identical to those in Reigh et al. (2017, (19)) after letting λ = 1/λ̃,
where λ̃ is the viscosity ratio in their paper. Figure 2(a) shows the propulsion speed of
the squirmer, while figure 2(b) shows the ratio of the droplet to squirmer speeds as a
function of the droplet size b with δ = 10−3. The dashed curves denote the results using
the purely viscous system in Reigh et al. (2017), the solid curves are obtained from (3.11)
and (3.12), and the symbols denote numerical simulations. Similarly, for the co-swimming
state (figure 2c), the propulsion speed in (3.10) reduces to

USD = 90λb2

18(b5 + 5b2 − 6) + 27(b5 + 4)λ
, (3.13)

which, in the limit δ → 0, is identical to the equation provided in (Reigh et al. 2017, (28)).
To further validate the numerical implementation of the Brinkman equations and the

effects of the fluid resistance δ, we consider the flow decay. Figure 3 shows the magnitude
of the velocity ‖u1 + u2‖ as a function of the distance from the squirmer’s surface (r = 1)
with b = 1.025 and λ = 10. The velocity magnitude is plotted for θ = 0 (figure 3a) and
θ = π/2 (figure 3b). The flow decays as 1/r3 in the far field (Nganguia & Pak 2018), and
we found excellent agreement between our analytical model (solid lines) and numerical
simulations (symbols) for values of the fluid resistance δ = 10−3, 1, 10.
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Figure 2. (a) Propulsion speed for the squirmer, (b) ratio of the droplet to squirmer speeds, and (c) propulsion
speed for the co-swimming state (USD = US = UD) as a function of the droplet size b. In (a,c) the speeds are
scaled by UN = 2/3, the propulsion speed of a squirmer in an unbounded Newtonian fluid. The dashed curves
denote the results using the purely viscous system (see Reigh et al. (2017), (10) and (11)), the solid curves are
obtained from the N-B model ((3.11) and (3.12)), and the symbols denote numerical simulations. The fluid
resistance δ = 10−3 for the N-B model and the numerical simulations.
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Figure 3. Velocity magnitude ‖u‖ =
√

u2 + v2 as a function of the distance from the squirmer’s surface for
(a) θ = 0 and (b) θπ/2. In both panels, b = 1.025 and λ = 10. The solid curves are obtained from the N-B
model and the symbols denote numerical simulations.

3.2. Effects of fluid resistance on the propulsion speed of the squirmer (α = 0)
We now investigate the effects of the fluid resistance δ on the propulsion speed of the
squirmer. We focus on the squirmer since our results show that the squirmer’s speed
exhibits the most interesting variations. As the heterogeneous medium becomes more
resistant to fluid motion (δ → ∞), the droplet’s speed is completely suppressed (refer
to Appendix B) while the squirmer continues propelling. This configuration is akin to
restricting motile organisms in a static droplet to, for instance, investigate the dynamics of
organism-surface interactions (Raveshi et al. 2021). Also note that throughout this section,
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Figure 4. Propulsion speed for the squirmer as a function of fluid resistance δ. In all panels, the speed is
scaled by UN = 2/3, the propulsion speed of a squirmer in an unbounded domain in a Newtonian fluid. The
solid curves are obtained from (3.2).

and unless otherwise noted, we compare the squirmer speed to that of a squirmer in an
unbounded Newtonian fluid.

Figure 4 shows the propulsion speed scaled with UN as a function of the fluid resistance
δ. Taken together, for all values of the viscosity contrast and across the range of fluid
resistance, the squirmer is always able to move in its enclosure. Moreover, we note a
non-trivial dynamics that depends on the viscosity ratio λ and droplet size b. Figure 4(a)
shows the speed for λ = 0.1. In this case, the squirmer always moves slower than its
unbounded counterpart. However, speed enhancement can be achieved relative to the
droplet size. Comparing the curves in the range δ ! 1, we observe that the speed is
non-monotonic: as b increases, the squirmer’s speed first decreases before increasing after
reaching a minimum. On the other end when δ > 1, the speed monotonically increases
with a larger droplet size. The increase in the speed is not unexpected: as b → ∞, the
problem becomes identical to a squirmer in an unbounded Newtonian fluid.

When λ = 1 (figure 4b), the squirmer speed is much the same as that experienced by
a squirmer in a Newtonian pocket in a heterogeneous medium (Nganguia & Pak 2018).
Up to δ ≈ 1, the squirmer swims at the same speed experienced by a squirmer in an
unbounded Newtonian fluid. The speed then decreases monotonically to a non-zero value.
The magnitude of the speed as δ → ∞ is determined by the droplet size. Here, as in the
case of a lower viscosity ratio, increasing b has the effect of raising the squirmer’s speed.
For λ = 10 and fluid resistance up to δ ≈ 1 (for b = 1.025) or δ ≈ 7 (for b ≥ 1.5), the
squirmer always moves faster compared with a squirmer in an unbounded Newtonian fluid
(as illustrated in figure 4c). Similarly to the case with a lower viscosity ratio, the speed
varies non-monotonically with the droplet size. This time, as b increases, the squirmer’s
speed reaches a maximum speed US/UN ≈ 1.2 (b = 1.5). For larger values of the fluid
resistance, the speeds asymptote to non-zero values, meaning the squirmer is always able to
move albeit at a slower speed than that of a squirmer in an unbounded Newtonian fluid. For
targeted drug delivery, it is advantageous that the squirmer and droplet move at the same
speed as much as possible. A sufficient condition to attain this state is to account for the
first radial swimming modes A1 (Reigh et al. 2017) in the squirmer’s surface velocity usq
(2.1). Since the droplet propels in a heterogenous medium, one may ponder, naturally: How
do the radial swimming mode and the co-swimming speed depend on the fluid resistance?
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Figure 5. Modes ratio αSD (a,c,e) and co-swimming speed USD/UN (b,d, f ) for the co-swimming state as
a function of the fluid resistance δ. The values of the viscosity ratio are λ = 0.1 (a,b), λ = 1 (c,d) and
λ = 10 (e, f ). The solid, dashed and dash-dotted curves represent values of the droplet size b = 1.025, 1.5, 3,
respectively.

3.3. Dependence of the co-swimming variables on the fluid resistance (α /= 0)
To answer the previous question, we must analyse the dependence of the co-swimming
mode ratio αSD (3.8) on the fluid resistance δ. This dependence is illustrated in figure 5
for viscosity ratios λ = 0.1 (a), λ = 1 (c) and λ = 10 (e). In all three panels, αSD reveals
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two distinct regions of near-constant values: one at low fluid resistance and another at
high fluid resistance. A transition region ∆ stretches across the interval δ ∈ [1, 100]. We
observe that αSD is larger for low δ compared with the smaller values at large δ. The
magnitude of the transition phase shows a non-monotonic dependence on the droplet size
b: the difference between αSD at small and large δ is such that it first increases with b
up to ≈ 1.5, then asymptote to a non-zero lower value. These changes are more clearly
observed at a high viscosity contrast (figure 5e). Physically, we can deduce that the radial
mode is less effective at large fluid resistance. The co-swimming speed USD is shown
in figure 5(b,d, f ). Taken together, they show that the squirmer-droplet system is fastest
at low values of the droplet size and low fluid resistance. The maximum value of the
propulsion speed reduces monotonically with increasing b. Moreover, USD also depends
on the viscosity contrast λ. For λ = 10, the system moves at least as fast as a squirmer in an
unbounded Newtonian fluid (USD " 1) with the maximum speed occurring at low b and δ.
As the viscosity contrast λ decreases (from 10 to 0.1), so does the propulsion speed and the
system now propels more slowly compared with a squirmer in an unbounded Newtonian
fluid.

4. Effects of squirmer and droplet shapes on propulsion
Studies have shown that spheroidal microorganisms in Newtonian fluids generally swim
faster compared with their spherical counterparts (Keller & Wu 1977; Theers et al. 2016;
Pohnl et al. 2020; Guo et al. 2021), with a propulsion speed given by UN = τ0[τ0 − (τ 2 −
1) coth−1 τ0], where the surface of the spheroid τ0 = 1/e and e is the eccentricity of the
squirmer. The gain in speed due to the spheroidal shape, however, depends on the fluid in
which the squirmer moves. For instance, a spheroidal neutral squirmer in a shear-thinning
fluid propels more slowly for e ! 0.85 and faster for e > 0.85 (van Gogh et al. 2022). In
this section we consider various shape configurations for the squirmer and droplet. While
the surface velocity given in (2.1) is adequate for spherically shaped organisms, a more
general surface velocity for spheroidal squirmers was proposed by Keller & Wu (1977).
The surface velocity was also formulated in terms of the prolate spheroidal coordinate
system (τ, ζ,φ) for a single- and two-mode squirmer (Theers et al. 2016; Pohnl et al. 2020;
van Gogh et al. 2022), where 1 ≤ τ ≤ ∞, −1 ≤ ζ ≤ 1 and 0 ≤ φ ≤ 2π. Since previous
studies of spheroidal squirmers did not provide a general form of the radial modes, we
propose the expression

ũsq · eτ = τ 2
0 (τ 2

0 − 1)−1/2(τ 2
0 − ζ 2)−1/2

∑

n≥0

AnPn(ζ ) (4.1)

for the radial component of the surface velocity. Note that in the limit τ0 → ∞, the term
τ 2

0 (τ 2
0 − 1)−1/2(τ 2

0 − ζ 2)−1/2Pn(ζ ) → Pn(ζ ) and ζ → cos θ . It follows that in this limit,
(4.1) converges to AnPn(cos θ)er, and the expression is matched identically to the surface
velocity of a spherical squirmer (Lighthill 1952; Blake 1971). Thus, for the spheroidal
neutral squirmer considered in the present study, the surface velocity (3.1a,b) becomes

ũsq = A1ζ τ
2
0 (τ 2

0 − 1)−1/2(τ 2
0 − ζ 2)−1/2eτ − B1τ0(1 − ζ 2)1/2(τ 2

0 − ζ 2)−1/2eζ . (4.2)

In what follows, we again focus on the squirmer’s speeds US and USD and leave the
discussion of the droplet’s speed to Appendix B. We consider the squirmer’s eccentricities
es up to 0.9 (corresponding to ciliates with an aspect ratio of 2 (Rodrigues et al. 2021)), as
well as the droplet’s eccentricities ed ≤ 0.9.
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4.1. Effects of shapes on the propulsion speed of the squirmer (α = 0)
We numerically investigate the effects of various squirmer-droplet shape combinations on
the swimming dynamics in a Newtonian fluid (δ = 10−3). We consider three cases: S1, a
spherical squirmer in a spheroidal droplet; S2, a spheroidal squirmer in a spherical droplet;
and S3, a spheroidal squirmer in a spheroidal droplet. Figure 6(a,b) shows the propulsion
speed of a spherical squirmer in a spheroidal droplet (system S1) as a function of the
droplet size b. Compared with an unbounded spherical squirmer, the squirmer enclosed
in the droplet can move significantly slower (up to 50 % reduction for λ = 0.1) or faster
(more than 20 % enhancement for λ = 10) at low values of the droplet size (b < 2.5).
We also note that the propulsion speed is higher for a droplet with lower eccentricity, as
illustrated by the dashed curves (ed = 0.3) versus the solid curves (ed = 0.9). This shape
effect becomes much less pronounced for b > 2.5, as the squirmer’s propulsion speeds
converge to that of their unbounded counterparts.

A spheroidal squirmer in a spherical droplet (S2, figure 6c,d) displays similar features
in comparison to S1. The squirmer has slower propulsion speed for λ = 0.1, while it
propels faster at λ = 10, compared with unbounded spheroidal squirmers. However, two
important features distinguish S1 from S2. First, in S2 with λ = 0.1, the spheroidal
squirmer with higher eccentricity es = 0.9 propels significantly faster compared with
the squirmer with es = 0.3, while the inverse holds true for λ = 10: higher eccentricity
yields lower propulsion speed. Second, in both figures 6(c) and 6(d), the shape effects are
pronounced for a wider range of domain sizes (at b = 5, one can visibly note a difference
between the speeds resulting from es = 0.3 and es = 0.9).

These shape effects from S2 are also observed in S3, where both the squirmer and
droplet have spheroidal shapes (figure 6e, f ). In other words, comparing S2 and S3, the
eccentricity of the droplet does not appear to have a large influence on the propulsion of
the spheroidal squirmer. We note, however, that the maximum gain in propulsion speed
(λ = 10, figure 6 f ) between a spheroidal squirmer in a more elongated droplet (es =
0.3, ed = 0.9) and spheroidal squirmer in a lesser elongated droplet (es = 0.9, ed = 0.3)
is of the same order of magnitude: about a 16 % gain compared with unbounded spheroidal
squirmers. It is worth noting that our results show all three systems (S1, S2 and S3)
yield identical behaviours when λ = 1. The difference in propulsion speeds between the
squirmers in these respective systems and those in unbounded domains is less than 0.1 %.
This suggests that the viscosity contrast can be an effective tool to control the dynamic
behaviour of a caged squirmer, providing more options to design micro-robots for drug
delivery systems.

4.2. Effects of shapes on the co-swimming variables (α /= 0)
For locomotion in an unbounded Newtonian fluid, the radial mode was found to play a
diminishing role for spheroidal squirmers (Keller & Wu 1977). Thus, it is natural to ponder
whether the radial mode still enables co-swimming for the systems we discussed in the
previous section. We first consider systems S1 and S2, where both spherical and spheroidal
shapes are involved. For a fixed eccentricity, we determine the values, when they exist, of
the radial mode at which co-swimming (USD = US = UD) is achieved. Figure 7 shows the
mode ratio αSD as a function of the eccentricity of the squirmer (a–c; with a spherical
droplet) or droplet (d– f ; with a spherical squirmer). In each panel, the solid, dashed and
dash-dotted curves represent values of the droplet size b = 1.5, 2.5, 3.5, respectively. The
viscosity ratios are λ = 0.1 (figure 7a,d), λ = 1 (figure 7b,e) and λ = 10 (figure 7c, f ).
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Figure 6. Propulsion speed for the spherical squirmer in a spheroidal droplet (a,b), the spheroidal squirmer in
a spherical droplet (c,d) and the spheroidal squirmer in a spheroidal droplet (e, f ) as a function of droplet size
b. Here λ = 0.1 for panels in the left column and λ = 10 for panels in the right column. All speeds are scaled
by UN = 2/3, the propulsion speed of a spherical squirmer in an unbounded domain in a Newtonian fluid, or
by UN = τ0[τ0 − (τ 2

0 − 1) coth−1 τ0], the propulsion speed of a spheroidal squirmer in an unbounded domain
in a Newtonian fluid.

In the case of a spheroidal squirmer in a spherical droplet with λ ≥ 1 (figure 7b,c),
αSD decreases with increasing eccentricity. This suggests that the radial mode has less
influence on the propulsion speed of a spheroidal squirmer, and is in qualitative agreement
with predictions for an unbounded spheroidal squirmer. The droplet size also factors in the
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Figure 7. Mode ratio αSD as a function of the eccentricity for (a–c) a spheroidal squirmer in a spherical droplet
and (d– f ) a spherical squirmer in a spheroidal droplet. The fluid outside the droplet is Newtonian (δ = 10−3).

observed trend: increasing b yields larger values of αSD. For λ < 1 (figure 7a), we observe
the same dependence on b. However, for small b, increasing the eccentricity also increases
αSD (albeit not significantly), while it decreases αSD for larger b.

Our results also show an increase in the radial mode with increasing droplet size for a
spherical squirmer in a spheroidal droplet. However, when comparing with the spheroidal
squirmer in a spherical droplet, we observe a few trends that are reversed with more
moderate variations over the range of eccentricities. At b ≤ 2.5, the radial mode necessary
to achieve co-swimming now decreases for λ < 1 (figure 7d), or remains constant for
λ = 1 (figure 7e). For λ > 1 (figure 7 f ), the radial mode shows a strong dependence on
the droplet size: αSD decreases with increasing e for b < 2, and increases for b ∈ (2, 3.5].
As b , 3.5, the radial mode decouples from the eccentricity.

The propulsion speeds corresponding to the mode ratios in figure 7 are shown in figure 8.
Taking all the panels together, we observe a number of features: (1) the co-swimming
speed is always smaller compared with the speed of an unbounded squirmer, (2) increasing
the viscosity contrast also increases the propulsion speed, and (3) smaller droplet radii
yield the largest gain in speed. The influence of eccentricity is more pronounced for a
spheroidal squirmer in a spherical droplet, with reduced effects at larger droplet radii
(figure 8a–c). For a spherical squirmer in a spheroidal droplet, our results show that
the speed is independent of the droplet’s eccentricity for b > 1.5, as illustrated by the
near-constant curves in figure 8(d– f ). High eccentricity shows a modest increase of the
propulsion speed for λ = 0.1 (figure 8d), and a more gradual decrease across the range of
eccentricities for λ = 10 (figure 8 f ).
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Figure 8. Co-swimming propulsion speed USD as a function of the eccentricity for (a–c) a spheroidal squirmer
in a spherical droplet and (d– f ) a spherical squirmer in a spheroidal droplet. All speeds are scaled by UN = 2/3,
the propulsion speed of a spherical squirmer in an unbounded domain in a Newtonian fluid, or by UN = τ0[τ0 −
(τ 2

0 − 1) coth−1 τ0], the propulsion speed of a spheroidal squirmer in an unbounded domain in a Newtonian
fluid. The fluid outside the droplet is Newtonian (δ = 10−3).

Next, we investigate the mode ratio and propulsion speed for system S3: a spheroidal
squirmer in a spheroidal droplet. We consider droplets at low eccentricity (ed = 0.3,
figure 9a,b) and high eccentricity (ed = 0.9, figure 9c,d), and plot the mode ratio αSD
(figure 9a,c) and the co-swimming speed USD/UN (figure 9b,d) as a function of the droplet
size b.

First, for b , 1, the mode ratio αSD decreases quite significantly with increasing
the squirmer’s eccentricity es. Again, this suggests that the radial mode has a reduced
influence for elongated squirmers, consistent with the predictions in Keller & Wu (1977).
Second, for a fixed es, αSD increases monotonically and appears to asymptote as b → ∞
(unbounded domain). In this limit, the mode ratio no longer varies with the viscosity ratio.
The effects of the viscosity ratio on αSD are more significant at moderate b, and also more
pronounced for squirmers with lower eccentricity. In this regime, increasing λ leads to an
increase (decrease) in αSD for es = 0.3 (es = 0.9).

Similarly, we can observe a few patterns regarding the spheroidal squirmer’s speed
(which coincides with the co-swimming speed) in figure 9(b,d). For b , 1, the speed
decreases monotonically and asymptotes to values near zero. This suggests that while
the squirmer is always able to propel, its speed is significantly affected by the shape
of the domain in which it moves (in the present case, a spheroidal domain). The
observation contrasts with propulsion in an unbounded domain (Theers et al. 2016;
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Figure 9. (a,c) Mode ratio and (b,d) co-swimming propulsion speed for the spheroidal squirmer in a spheroidal
droplet as a function of droplet size b. The droplet’s eccentricities are (a,b) ed = 0.3 and (c,d) ed = 0.9. The
curves denote the values of the squirmer’s eccentricities es = 0.3 (solid) and es = 0.9 (dotted), while the
colours differentiate between viscosity ratios: blue for λ = 10, red for λ = 1 and black for λ = 0.1. In (b,d)
the propulsion speed is scaled with UN = τ0[τ0 − (τ 2

0 − 1) coth−1 τ0], the propulsion speed of a spheroidal
squirmer in an unbounded Newtonian fluid.

Pohnl et al. 2020), where the spheroidal squirmer’s speed is greater than 2/3 (the speed
of an unbounded spherical squirmer). The eccentricity of the enclosing spheroidal domain
(the droplet) further influences the co-swimming speed, which decreases with increasing
ed. For instance, USD/UN ≈ 0.9 with b = 1.5 and λ = 10 at ed = 0.3 (figure 9b), whereas
USD/UN = 0.8 at ed = 0.9 (figure 9d). The difference in speed between the droplet’s
eccentricities becomes less pronounced for a fixed λ as b → ∞, and the speeds are nearly
identical for the full range of b for a small viscosity contrast (here, for λ = 0.1).

We can fix the droplet’s eccentricity and viscosity ratio to observe that higher squirming
propulsion (compared with an unbounded spheroidal squirmer) is achieved when b ≥ 1.5
and es = 0.3, versus es = 0.9. However, in this range of b the speed is lower compared
with an unbounded spheroidal squirmer. This observation is also valid for b < 1.5 and
λ < 1.25. When b ! 1.5, ed = 0.3 and λ = 10, our results reveal the only set of parameters
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Figure 10. (a) Pressure and (b) flow field for the spheroidal squirmer in a spherical droplet in figure 7(a). The
eccentricity es = 0.8 and the viscosity ratio λ = 0.1. In each panel, the left half represents b = 1.5 and the
right half represents b = 2.5. The white arrow in the centre of the squirmer denotes the motion along the ez
direction.

for which the enclosed spheroidal squirmer propels faster compared with a spheroidal
squirmer in an unbounded Newtonian domain (illustrated in figure 9b). More interestingly,
the squirmer with high eccentricity (es = 0.9) now yields a larger speed compared with
the squirmer with a low eccentricity (es = 0.3).

4.3. Pressure and flow fields
A close look at figure 7 reveals a number of interesting dynamics, such as (1) in figure 7(a)
where larger (smaller) radial modes at b = 1.5 (b = 2.5) are observed for es = 0.8, (2)
in figure 7( f ) where smaller (larger) radial modes at b = 1.5 (b = 2.5) are observed for
ed = 0.9, and (3) the spherical squirmer in a spheroidal droplet with lower (higher) values
of the radial modes at b = 2.5, ed = 0.9 and λ = 0.1 (λ = 10) in figure 7(d) (figure 7 f ).
In this section we investigate these features in more detail by contrasting the corresponding
pressure and flow fields.

In figure 10 we show the pressure (figure 10a) and velocity field (figure 10b) for a
spheroidal squirmer (es = 0.8) in a spherical droplet with viscosity ratio λ = 0.1. The
left half of each panel represents the case with b = 1.5 while the right half shows the
case with b = 2.5. We note that the propulsion speed (figure 8a) is higher at a lower
droplet size. Moreover, the speed also increases with high eccentricity and b = 1.5 while
remaining nearly independent of eccentricity for b = 2.5. The largest pressure and velocity
magnitudes are concentrated at the front and back of the squirmer. The positive pressure
distribution (yielding a compressive stress) at the front of the squirmer (which is weaker at
b = 1.5 relative to b = 2.5) is consistent with the direction of swimming (indicated by the
arrow). Moreover, the drag on the squirmer is larger at b = 2.5 (compared with b = 1.5),
providing a plausible justification for the faster propulsion at low droplet size.

While the pressure distribution in the exterior of the droplet is zero for both S1 and
S2, the distributions in the interior of the droplet are drastically different. Unlike S2,
where the pressure is concentrated at the front and back of the squirmer and mostly sparse
everywhere else, the pressure for S1 with ed = 0.9 and λ = 10 (figure 11a) is distributed
uniformly in the interior of the droplet, being zero only at the side of the squirmer.
Figure 11(b) shows the flow field, where the left half of the panel represents the case
with b = 1.5 and the right half shows the case with b = 2.5. As we observed previously,
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Figure 11. (a) Pressure and (b) flow field for the spherical squirmer in a spheroidal droplet in figure 7( f ). The
eccentricity ed = 0.9 and the viscosity ratio λ = 10. In each panel, the left half represents b = 1.5 and the
right half represents b = 2.5. The white arrow in the centre of the squirmer denotes the motion along the ez
direction.
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Figure 12. (a) Pressure and (b) flow field for the spherical squirmer in a spheroidal droplet in figure 7(d, f ).
The eccentricity ed = 0.9 and the domain ratio b = 2.5. In each panel, the left half represents λ = 10 and the
right half represents λ = 0.1. The white arrow in the centre of the squirmer denotes the motion along the ez
direction.

the front of the squirmer experiences the largest drag when b = 2.5 leading to a lower
propulsion speed compared with b = 1.5.

Figure 12 shows the pressure (figure 12a) and flow (figure 12b) for S1 with ed = 0.9 and
b = 2.5. The left half of each panel has λ = 10 while the right half shows the case with
λ = 0.1. The pressure field has the same order of magnitude for both values of the viscosity
ratio. For λ = 0.1, positive pressure (corresponding to compressive stress) is observed at
the front half of the squirmer, while negative pressure (corresponding to tensile stress)
dominates at the rear half. The opposite holds for λ = 10: positive (negative) pressure at
the back (front) of the squirmer. The positive pressure at the front of the squirmer for
λ = 0.1 works against the forward motion of the swimmer. For this system, we found the
propulsion speed to be one order of magnitude smaller at λ = 0.1 compared with λ = 10.
A close inspection of figure 12(b) reveals a stronger flow field on the side of the squirmer
(right half of the panel), indicating that the drag on the squirmer is higher at a low viscosity
ratio (a plausible explanation for the lower propulsion speed).
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5. Concluding remarks
We investigated the effects of heterogeneity or shape on the propulsion speed of a
caged squirmer (a squirmer enclosed in a droplet). We particularly focused on neutral
squirmers, since the propulsion speeds of an unbounded squirmer in a Newtonian fluid
and heterogeneous medium considered here have been found to only depend on the first
swimming mode B1.

First, we considered a system consisting of a spherical squirmer enclosed in a spherical
droplet that is immersed in a heterogeneous medium. We derived exact analytical solutions
that recover the results of Reigh et al. (2017) in the limit of small fluid resistance (δ → 0).
For a squirmer with a purely tangential mode and finite heterogeneity, our results show a
non-trivial dependence of the propulsion speed on the droplet size, viscosity ratio and fluid
resistance. We determined that the squirmer is always able to move inside the droplet for
all values of the viscosity ratio and across the range of fluid resistance. These parameters
combine in a non-trivial way to produce the observed squirmer’s speed. In terms of
co-swimming, both the mode ratio and speed depend on the structure of the medium being
considered. The mode ratio shows two regions of near-constant values, being higher at
lower fluid resistance. This indicates that, generally, the radial mode has less influence at
large fluid resistance but is more prominent at low values of the fluid resistance.

Second, we numerically investigated the effects of various squirmer and droplet
shapes on the propulsion in a Newtonian fluid. Specifically, we considered three distinct
configurations: S1, a spherical squirmer in a spheroidal droplet; S2, a spheroidal squirmer
in a spherical droplet; and S3, a spheroidal squirmer in a spheroidal droplet. These
combinations revealed a rich number of dynamics, pointing to the critical influence of
shapes. Compared with a squirmer in an unbounded Newtonian fluid, the propulsion speed
shows a strong dependence on the viscosity ratio for a squirmer with purely tangential
swimming modes in all three systems: it is lower for λ = 0.1 and higher for λ = 10.
The systems are dissimilar in the way they respond to the squirmer’s eccentricity: for
S1, the drop’s eccentricity only affects the spherical squirmer’s propulsion at low b; for
S2 and S3, the effects of the squirmer’s eccentricity are reversed between low versus
high viscosity ratios, although the drop’s eccentricity in S3 does not yield any qualitative
changes compared with S2. Regarding co-swimming in systems S1 and S2, we determined
that the speed is always smaller compared with the squirmer in an unbounded Newtonian
fluid. However, gain in speed closer to the optimal UN can be achieved at high viscosity
ratio and small droplet size. When factoring the dependence on eccentricity, shapes have
the greatest effect for system S2 while S1 displays no significant changes as a result
of varying the droplet’s eccentricity. The squirmer is also always able to propel in S3.
However, the size and eccentricity of the droplet greatly influences the propulsion speed,
which nears zero for a large droplet size. We note, however, that in this system and for a
smaller droplet size and eccentricity, the spheroidal squirmer is able to achieve propulsion
speeds greater than that of its unbounded counterpart.

Our results provide important insights on the factors that affect the motion of
microorganisms caged in a droplet. These insights in turn demonstrate how various designs
could be employed to increase the effectiveness of carriers in drug delivery systems.
In particular, knowledge of the environment’s permeability can be incorporated to
select the most optimal value of the radial mode that produces a co-swimming state.
Alternatively, the size of the system could also be chosen strategically to achieve certain
propulsion speeds. Exploring the stability of the squirmer/droplet systems is also of
critical importance. Reigh et al. (2017) showed that the stability of the co-swimming
state depends on the position of the squirmer relative to the droplet’s centre, and on
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the second swimming mode B2. One would expect those results to hold in our study
for low to moderate heterogeneity. However, the influence of high heterogeneity and/or
shape on the stability remains to be investigated. Other natural extensions of our work
involve combining both heterogeneity and shapes, including investigating the squirming
of spheroidal shapes in an unbounded heterogeneous medium. These extensions will be
explored in future studies.
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Appendix A. Coefficients appearing in the flow field
The coefficients for the flow field obtained from (2.16) are

O = −2(b2 + b − 2)(bδ + 3) − 12λ
(b − 1)2D

+ (b3 + 3b − 4)(bδ + 3) − 6(b − 2)λ

(b − 1)3D
α

+ 3b[(b2 − 1)(bδ + 3) + 2λ]
(b − 1)3D

US − 6b[(b4 − b3)δ + b3 + λ− 1]
(b − 1)3D

UD, (A1)

Q = 2[6(b5 − 1)λ+ (3b5 − 4b4 + 3b3 − 4b2 + 2)(bδ + 3)]
(b − 1)3D

− 6(b5 + 4)λ+ (3b5 + 5b3 − 8)(bδ + 3)

(b − 1)3D
α

− 6(3b5 + 2)λ+ (9b5 − 5b3 − 4)(bδ + 3)

(b − 1)3D
US

+ 2[5b7δ + b6(6λ+ 9) − 5b4δ + 9b(λ− 1)]
(b − 1)3D

UD, (A2)

R = −2b[6b5λ+ (2b5 − 5b2)(bδ + 3) + 3bδ − 6λ+ 9]
(b − 1)3D

+ 2b[3(b5 + 4)λ+ (b5 + 5b2 − 6)(bδ + 3)]
(b − 1)3D

α

+ 6b[(b5 − 1)(bδ + 3) + (3b5 + 2)λ]
(b − 1)3D

US

− 3b[5b6δ + 6b5λ+ 9b5 − 5b4δ − 5b3 + 4(λ− 1)]
(b − 1)3D

UD, (A3)
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S = 12b5λ+ (4b5 − 2b4 − 2b3)(bδ + 3)

(b − 1)2D

+ 6(b − 2)b5λ+ 2(b6 − 3b5 + 2b3)(bδ + 3)

(b − 1)3D
α

− 2[(b6 − b3)(bδ + 3) + 3b6λ]
(b − 1)3D

US

+ 5b7δ + 6b6λ+ 9b6 − 9b5δ + 4b4δ − 9b4

(b − 1)3D
UD, (A4)

T = 6b(b2 + 3b + 1)(bδ + 1)λ

δ2D

− 3(b4 + 2b3 + 8b2 + 4b)(bδ + 1)λ

δ2(b − 1)D
α

− 3(3b4 + 6b3 + 4b2 + 2b)(bδ + 1)λ

δ2(b − 1)D
US

+






6λ[6b5 + 6b4 + b3δ + 6b3 + 6(b6 + b5 + b4)δ

+(2b7 + b6 − b4 − 2b3)δ2 − 4b2δ + b2 − 4b]
2δ2(b − 1)D

+ 6λ(4b3 + 7b2 + 4b)(b − 1)2(b4δ3 + 3b3δ2 + 6b2δ + 6b)

2δ2(b − 1)D





UD, (A5)

W = 3

√
2
π

ebδ√bδ

{

−2(b5/2 + 3b3/2 + b1/2)δλ

D

+(b7/2 + 2b5/2 + 8b3/2 + 4b1/2)δλ

(b − 1)D
α

+(3b7/2 + 6b5/2 + 4b3/2 + 2b1/2)δλ

(b − 1)D
US

−
√

bδ[(6b4 + 6b3 + 6b2 + b − 4)λ+ (4b2 + 7b + 4)(b − 1)2]
(b − 1)D

UD

}

, (A6)

where
D = 6(b + 1)(2b2 + b + 2)λ+ (b − 1)(4b2 + 7b + 4)(bδ + 3). (A7)

Appendix B. Droplet propulsion speed
Studies on the propulsion of a spherical squirmer with tangential surface velocity and
enclosed in a clean (Reigh et al. 2017; Shaik et al. 2018) or surfactant-covered (Reigh et al.
2017; Shaik et al. 2018) droplet in a Newtonian fluid have shown that the squirmer always
propels faster than the droplet. In investigating the effects of the medium’s heterogeneity
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Figure 13. Ratio of droplet to squirmer propulsion speeds as a function of (a) the fluid resistance δ and (b) the
droplet size b. In (a) the squirmer and droplet are spherical (es = ed = 0) and the curves denote various values
of the droplet size b. In (b) the fluid resistance δ = 10−3 and the curves denote various shape configurations.
In both panels, the viscosity ratio λ = 10.

or both the squirmer and droplet’s shapes, our results reveal that neither of these two
factors yield droplet speeds larger than the squirmer’s. These findings are consistent with
the trend observed from those studies in the absence of heterogeneity and for a spherical
squirmer and droplet. The figures for the droplet speed, scaled by the squirmer’s speed,
UD/US are plotted as a function of the fluid resistance δ (figure 13a) and as a function of
the droplet’s size b (figure 13b). They show that the ordinate UD/US is consistently less
than 1 and monotonically decreasing to zero. The results imply that the squirmer speed
is always larger independently of the fluid resistance or shape configurations. In the case
of the dependence on δ, the droplet becomes motionless as δ → ∞, while the squirmer
continues propelling (§ 3.2).
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