Deep Learning-Assisted Online Task Offloading
for Latency Minimization in Heterogeneous
Mobile Edge

Yu Liu, Yingling Mao, Zhenhua Liu, and Yuanyuan Yang, Fellow, IEEE

Abstract—With the proliferation of smart devices in recent years, many applications requiring high computing capability and low
latency have emerged. Edge computing is one of the promising paradigms to support such applications. Due to the high volatility of
edge environments, e.g., frequent movements of mobile devices, varying task sizes, and time-variant channel conditions, we have to
make the offloading and resource management decisions on the fly. This paper formulates and studies the problem of online task
offloading and resource management in heterogeneous mobile edge environments. The goal of the problem is to minimize the overall
system latency. We prove that the problem is NP-hard. Moreover, traditional algorithms needing long decision-making times are
insufficient to support applications with high volatility. This paper proposes a deep learning-assisted online algorithm that can make fast
decisions. In particular, we design an offline solver for the proposed problem and use a deep neural network to emulate the solver. We
conduct extensive simulations to evaluate the proposed approach. Results show that the proposed approach is around 50, 000x and
500x faster than the commercial Gurobi solver for the optimal solution and the proposed offline approximation solver, respectively.
Moreover, the overall latency under the proposed approach is near-optimal.

Index Terms—Online Task Offloading, Mobile Edge Computing, High Volatility

1 INTRODUCTION

The number of Internet of Things (IoT) devices has been
increasing rapidly over the past years, from 8.5 million in
2019 to 13.1 million (projected value) in 2023 [1]. Enor-
mous data generated from IoT devices coupled with the
development of information technologies, such as machine
learning, have facilitated many novel applications, e.g., au-
topilot, object detection, and virtual reality gaming [2]. Such
applications require low response latency, e.g., single-digit
millisecond latency, extensive data, and high computing
power [3]. Cloud computing has enormous benefits in pro-
viding high computing capability and low cost. However,
the long distances between cloud servers and end-users
incur high propagation latency [4], and there is congestion
in the core network during peak hours [5]. Therefore, cloud
computing is insufficient to support applications requir-
ing low response latency, and there is a push to perform
computing near end users. On the other hand, end mobile
devices are insufficient for the applications because of their
low computing capability and limited battery capacity [6].
Mobile Edge Computing (MEC), drawing lots of attention,
is one of the promising computing paradigms to support
such applications because edge computing devices are close
to end-users and have sufficient computing capability.

e Y. Liu, Y. Mao, and Y. Yang are with the Department of Electrical
and Computer Engineering, Stony Brook University, Stony Brook, NY,
11794. Z. Liu is with the Department of Applied Mathematics and
Statistics, Stony Brook University, Stony Brook, NY, 11794. E-mail:
{yu.liv.3,yingling.mao, zhenhua.liv, yuanyuan.yang } @stonybrook.edu

o This work was supported in part by the National Science Foundation
under grant numbers CCF-1730291, CCF-2046444, CNS-2146909, CNS-
2106027, and CNS-2214980.

This paper considers the online task offloading and
resource management problem in heterogeneous mobile
edge environments. The system runs in discrete time. At
the beginning of each time slot, we observe three sets of
system states, i.e., input data sizes, task sizes, and channel
conditions, and make four decisions: offloading, computing
resource management, base station selection, and band-
width allocation decisions. Since we consider applications
requiring low latency, decisions must be made immediately,
e.g., in several milliseconds. System states and decisions at
each time slot jointly determine the overall latency. Some
papers consider the corresponding static problems where
the system states are invariant [7], [8], [9], [10], yet they
are insufficient for highly volatile systems considered in
this paper. The algorithms proposed in these papers do not
have polynomial time complexity. Consequently, the system
states may have changed before the algorithms finish their
computation. In addition, we can hardly accelerate them be-
cause they are iterative algorithms. Therefore, an algorithm
with extremely low decision-making time is needed to deal
with highly volatile systems.

Motivated by [11], we adopt an online deep reinforce-
ment learning method to tackle the proposed problem. The
deep reinforcement learning approach uses deep neural net-
works to make decisions based on the current system states,
and the forward passes of these networks can be acceler-
ated through parallel computing. Despite the advantages
of making decisions using deep reinforcement learning
methods, it is challenging to solve the proposed problem.
The problem of collectively offloading tasks, selecting base
stations, and allocating bandwidth and computing resources
is NP-hard. There are contradictions between the latencies of
different devices, and we must make decisions thoughtfully

to minimize the overall latency. In addition, the proposed
problem is more complicated than that in the literature,
and the algorithm used in the literature cannot solve the
proposed problem efficiently (see Section 7.2 for details).
Therefore, we must design a novel online reinforcement
learning approach to solve the proposed problem.

Our main contributions are listed as follows:

o We formulate the online task offloading and resource
management problem in heterogeneous edge envi-
ronments (OTORM) where system states are highly
volatile. We prove the formulated problem is NP-hard.

e We decompose the problem into two disjoint subprob-
lems: joint task offloading and computing resource al-
location (JCM) problem and joint base station selecting
and bandwidth allocation (JPM) problem. By eliminat-
ing the computing resource allocation variables in JCM
and the bandwidth allocation variables in JPM, we
convert JCM and JPM to their equivalent problems, P1
and P2, respectively.

o We design an offline solver for P1 and P2 and prove
the solver has an approximation ratio of 2.62/(1 — 8X),
where) is a tunable parameter.

e We design an online deep reinforcement learning ap-
proach for the proposed problem. The approach learns
from past decisions under different system states. For
fast convergence and better performance, the approach
leverages both previous decisions made by itself and
that of the offline solver.

e We conduct extensive real-world data-driven simula-
tions to evaluate the proposed approach. Simulation
results show that the proposed approach outperforms
popular baselines. Furthermore, the approach can make
decisions swiftly, e.g., around one millisecond on av-
erage. In addition, the proposed approach is near-
optimal, achieving 1.016 times the optimal latency on
average.

The remainder of this paper is organized as follows.
Section 2 discusses related works. Section 3 formulates and
simplifies the problem. Section 4 analyzes and simplifies
the proposed problem. Section 5 proposes the online deep
reinforcement approach. Section 6 states the offline approx-
imation solver used by the approach. Section 7 shows the
performance evaluation results. Section 8 concludes this

paper.

2 RELATED WORKS

Some papers considering related offline offloading problems
are as follows. In [8], Josilo et al. consider wireless and
computing resource allocation for computation offloading
in edge computing and design a game theoretic-based al-
gorithm with a constant approximation ratio. In [9], Josilo
et al. consider offloading tasks to network slices and al-
locating wireless and computing resources and propose a
game-theoretic-based algorithm similar to the method in
[8]. Both [8] and [9] do not consider fronthaul links, where
congestion may occur. Moreover, in [10], Yu et al. consider
the service function chain placement, routing, and resource
management problem in network edge and provide a con-
stant factor approximation algorithm using an approach
similar to methods in [8], [9]. The algorithms designed in

2

[8], [9], [10] may need exponential time to converge. In
addition, the algorithms are iterative-based and can hardly
be accelerated. Therefore, these algorithms take a long time
to make decisions and cannot handle online problems with
high volatility. There are also some papers allowing partial
task offloading. In [12], Pavlos et al. consider a heteroge-
neous multi-MEC system considering both the risk-aware
behavior of the individual users and the risk of failure of
the computing resource and propose a game-theoretic based
algorithm with low complexity. In [13], Pavlos et al. focus
on the problem of risk-aware data offloading in multi-server
multi-access and propose a non-cooperative game-theoretic-
based distributed low-complexity algorithm.

Some other papers consider online task offloading prob-
lems with different settings and goals. In [14], Gang et al.
design a collaborative task offloading mechanism for mobile
edge computing systems with the goal of maximizing social
welfare. In [15], Ni et al. focus on the caching problem in mo-
bile edge computing systems with stationary system states
and design a Lyapunov optimization-based algorithm. In
addition, a similar Lyapunov optimization-based approach
is used in [16] to minimize the time average cost of mobile
edge devices. In [17], Qi et al. focus on minimizing energy
consumption in mobile edge computing systems and pro-
pose a Lyapunov optimization-based algorithm similar to
that in [15]. In [18], Zhi ef al. consider a computation offload-
ing problem in edge computing to maximize the revenue of
edge servers. In [19], Ye ef al. focus on lowering the energy
consumption of a small cell base station on/off switching
problem and propose a deep reinforcement learning-based
algorithm. In [20], Panagiotis et al. consider the problem
of two unmanned aerial vehicles of different operators
allocating energy to users and formulate the problem as a
generalized colonel blotto game. In addition, the authors
proposed a reinforcement learning algorithm to schedule
energy.

A closely related paper is [11], which uses a deep rein-
forcement learning-based approach to solve online compu-
tation offloading problems. However, there are significant
differences between [11] and this paper. First, they consider
different problems. We consider a system with heteroge-
neous edge servers, while [11] assumes only one edge
server. In addition, [11] does not consider computational
resource management, but we take it into consideration.
Therefore, the problem considered in this paper is much
more complicated than that of [11]. From the perspective of
the technical approach, there are also significant differences.
The approach in [11] makes decisions after it trains and
updates its neural networks, while we make decisions at
the beginning of each time slot for low decision-making
time. The approach in [11] only learns from the best deci-
sion among randomly generated decisions, which may not
be effective for more complex problems (as discussed in
Section 7). Therefore, we design an offline solver, and our
approach takes advantage of the offline solver. Although the
approach used in this paper is not a standard reinforcement
learning method like Q-learning or Actor-Critic methods,
we follow [11] and call it a reinforcement learning-based
method.

D={Dy,---,Dy}
B={Bo,---,Bk}
S={S1,---,5n}
di,t € [I],t € [T]
d: set {d; +|i € [I]}
fie,t € [I] job size (FLOP) of D; at time slot ¢
£ set {fi¢li € [I]}

set of mobile WDs

set of base stations

set of edge servers

input data size (bit) of D; at slot ¢

WE, k€ K] fronthaul bandwidth (Hz) of By
W,g k€ [K] uplink bandwidth (Hz) of By,
Fpn,n € [N] computing capability of S;, (FLOP/s)
Tin suitability between D; and S,
Ti kot base station selection decision
x; {wieli € 1),k € [K]U{0}}
d)?jk’ ‘ uplink resource management decision
oVt e (1] {60, 4l € 1),k € [K] U {0}}

(;Sf'? kot fronthaul resource management decision
OF [t € [T) {f, Jie 1],k e [K]U{0}}
D4, t € [T] oyl
Ti(ft & Tft uplink&fronthaul latency of D;

Tict = TiUt + Tﬂ communication latency of D;

Yin,t task offloading decision
yi,t € [T] {Yintli € [I],n € [N]}
Vit computing resource management decision
Uyt € [T {¥i,n,eli € [I],n € [N]}
Tr, processing latency of D;
h?,k, : uplink channel condition (bps/Hz)

hy {nY, ,Ji € 1],k € [K]U{0}}
ht, ft and dt

system states at time slot ¢

TABLE 1: Important Notations
3 SYSTEM MODEL AND PROBLEM FORMULATION

This section describes the heterogeneous mobile edge com-
puting system and formulates the online task offloading and
resource management problem (OTORM). Some important
notations are listed in Table 1. We introduce the edge com-
puting system in Section 3.1 and formulate the OTORM
problem in Section 3.2.

3.1 System Model

We consider a mobile edge computing system that oper-
ates in slotted time, i.e., ¢ € {1,2,---}. The mobile edge
computing system consists of edge computing servers, base
stations, and mobile Wireless Devices (WDs). A network
topology diagram of the mobile edge computing system is
shown in Figure 1.

There are N edge servers in the system, and we use
S = {51,8,---,SNn} to denote the collection of all edge
servers. Since the cost of edge data centers per scale de-
creases as the scale increases, we assume that there is
one edge server room for cost efficiency. The model pro-
posed in this paper can handle the case that there are
multiple edge server rooms. There are K + 1 base sta-
tions, and the collection of all base stations is denoted by

&) Macro Cell

Edge Server Wireless
ﬁ Server ® Room ABase station & Fronthaul
| Baseband G Micro cell Wired
Sl Unit Base station Fronthaul

Fig. 1: An example of the mobile edge computing system.
The macro base station covers the gray area. The dashed
ellipses are the areas covered by the micro base stations.
Some mobile devices can connect to more than one micro
base station, while others may not be covered by any micro
base stations. Some micro base stations use wired fronthaul
links, while others have wireless fronthaul connections.
Servers in the edge server room are heterogeneous.

B = {By, B1, Bz, -+ , Bk }. In particular, By is a macro cell
base station, and {Bj, Ba, -+ , Bx } are micro cell base sta-
tions. The macro base station uses a relatively low frequency
compared with micro base stations, e.g., 700 MHz for macro
base stations and 3.5 GHz micro base stations [21], where
low-frequency signals attenuate slower than high-frequency
signals and can go through barriers like walls and windows.
Typically, a macro base station can cover a few kilometers,
and a micro base station covers a range of around a hundred
meters. There are I wireless devices (WDs) in the system,
and we use D = {Dy, Da,---,Dr} to represent the set of
all WDs. All WDs can access the macro base station By,
while each micro base station only covers a subset of D.
Base stations and WDs are located in a two-dimensional
space. Since we consider an online system, the locations of
WDs are time-varying.

The macro base station By covers an area, e.g., the
dashed ellipse in Figure 1, which is the area considered
by the system. Each micro base station covers a smaller
area, e.g., the dashed ellipses in Figure 1. At time slot ¢,
wireless device D; can access to base station By if it is
within the coverage area of Bj. The macro base station
connects to an edge server room via optical fiber, where the
baseband unit (BBU) locates. The connections between base
stations and the edge server room are so-called fronthaul
links [22]. There are two types of fronthaul links, namely
wireless fronthaul and wired fronthaul [23]. Wireless fron-
thaul links can be millimeter wave (mmWave) radio or
free-space optical communication [24], and wired fronthaul
links can be optical fibers or coaxial cables [25]. For each
k € {0} U[K] !, we use W[to denote the bandwidth of

1. For any positive integer n, [n] represents set {1,2,--- ,n}.

the fronthaul link between base station Bj and the edge
server room. In addition, there is a link for each base station
communicating with mobile wireless devices for uploading
tasks” input data. To distinguish it from the fronthaul link,
we refer to links between mobile wireless devices and base
stations as uplinks. In particular, we use W to denote the
uplink bandwidth of base station Bj.

At the beginning of each time slot ¢, D; generates a task
with an input data size of d; ; bits, and it takes f; ; floating-
point operations (FLOPs) to complete the task. There are
N edge servers in the edge server room. Edge server
n € [N] has a computing capability denoted by F), (FLOP
per second). The edge servers are equipped with different
computing devices such as CPU and GPU. Since the edge
servers are heterogeneous, each edge server is more suitable
for running tasks of specific WDs. For each i € [I] and
n € [N], there is a suitability parameter o;, € [0,1] for
wireless device D; and edge server S,, where the more
significant o; ,, is better. The approach proposed in this
paper can handle the case that o;, varies over time. The
suitability parameter is widely adopted in the literature,

e.g., [8], [9], [10].

3.2 Problem Formulation

In this section, we formulate the OTORM problem. The goal
of the system is to minimize the overall latency, where there
are two types of latency, namely communication latency and
processing latency.

3.2.1 Communication Latency

At the beginning of each time slot ¢, the system controller
has to select a base station for each wireless device D; € D.
We use z; 1 € {0,1} to represent whether wireless device
D; chooses base station By, for offloading its task at time
slot ¢. For tasks that can be split and executed on multiple
servers, we consider each task as multiple independent
fine-grained tasks. Each WD has to select exactly one base
station at each time slot. Therefore, we have the constraint
as follows:

K
Y wige=1, i€ll]telT]. 1)
k=0

Let x; be the set of base station selection variables at time
slott,ie., x; = {z;)i € [I],k € [K]U{0}}. In addition, we
use variable ¢} ; € [0, 1] to represent the proportion of base
station B's uphnk bandwidth resource allocated to D;. For
example, the system may use the orthogonal frequency di-
vision multiplexing (OFDMA) multi-access technique, and
allocating bandwidth resources corresponds to allocating
resource units. Since the total bandwidth resource that By
allocates to WDs can not exceed W, the total uplink
bandwidth of Bj, we have the following constraint:

Z¢1kf— ke

We use ®V to denote the set of all uphnk bandwidth
management variables at slot ¢, i.e., ® = {¢¥} ,]i € [I],k €
[K] U {0}}. Similarly, the fronthaul hnks of base stations
are shared by WDs, and we use variable ngvF ke € [0,1]

[K]U{0},t € [T]. @

4

to represent the proportion of By’s fronthaul bandwidth
allocated to D;. We have the following constraint:

I
Y dike <1 ke[KJu{0},t € [T]. 3)

i=1
Let ®" be the collection of fronthaul link bandwidth man-
agement variables at slot ¢, i.e., ®f = {¢f, i € [[],k €
[K] U {0}}. Moreover, we use ®; to denote the collection of

all bandwidth management decisions, i.e., ®; = <I>f U <I>tU .
The latency experienced by D; over the uplink is as
di

follows:
Iz 7;
Z TG s

where hY ¢ 1s the achievable data rate per Hz (bit/(s-Hz))
of the uphnk channel between Bj and D; at time slot ¢.
hY k¢ is a function of the locations of WDs, and some real-
world data of achievable data rates can be found in [26].
Note that h?k. . = 0if the location D; is not in the coverage
area of By. We use h; to denote the collection of uplink
channel conditions at time slot ¢, i.e, hy = {hY} ,|i € [I],k €
[K] U {0}}. h; varies over time, and we observe it at the
beginning of each time slot. Similar to (4) for uplink latency,
the latency experienced by D; over the fronthaul link is as
follows:

(4)

lekaF(bf‘kthF’ (5)
where hl is the achievable data rate per Hz (bit/(s-Hz))
of the fronthaul link of Bj. Parameter hf is fixed and
known. Then, the communication latency of D; at time slot
t, denoted by T} €, is as follows:

szktWUd) +lektWF¢frkthF
(6)
Note that there is an abuse of notation in (4), (5), and (6),
where we let z; 1+ - v = 0 if x; 1, = 0 regardless of what v
is. Then, the overall communication latency of the system at

time slot ¢ is a function of x; and ®; as follows:

U
zkthzkt

Ty Xtaq)t ZTN xt, D). @)
In our formulation, we assume that the download time of
processed outcomes is negligible because the output data
are usually small and the download link is powerful. If the
downloading time is significant and cannot be ignored, we
can add a download time term to (6), and the proposed
algorithm can handle the new formulation.

3.2.2 Processing Latency

At the beginning of each time slot ¢ € [T], the system
controller chooses an edge server for each WD. We use
variable y; , . € {0,1} to represent whether wireless device
D; computes its task on server S, at slot t. A WD can only
offload its task to one edge server at each time slot ¢. Thus,
we have the following constraint:

N
Z Yin,t = 1
n=1

i€ [I],tel[T). 8)

We use y; to denote the collection of task-offloading vari-
ables, i.e., y: = {yin|i € [I],n € [N]}. In addition, we use
variable 1); ,, ; to represent the proportion of S,,’s computing
capability allocated to D; at time slot ¢. Similar to (2) and (3),
there is a constraint for variable v; ,, ; as follows:

I
> hing <1, ne [N telT).)
i=1

Let W be the collection of computing resource management
variables at time slot ¢, i.e., ¥y = {¢; n|i € [I],n € [N]}.
Then, the processing latency experienced by D; at time slot
t, denoted by T t, is as follows:

Zyznt

The above formula for computing processing latency is
widely adopted in the literature [7], [8], [9], [10], where
fi+ is the task size of D; at slot ¢, Fj,1; ,, + is the amount
of computing capability allocated to D;, and o;, is the
suitability of running D;’s task on S,,. Then, similar to (6)
and (7), the overall processing latency of the system at time
slot t is a function of y; and ¥, as follows:

ZTth ZZym

i=1n=1
Similar to that in (6), there is an abuse of notation in (11)
where we let y; ,,: - v = 0 as long as y; » ¢+ = 0.

(10)

nwz n,t0in

P (ye, V1))

nwinto—ln-

3.2.3 Mathematical Expression

Next, we state mathematically state the formulated problem
as follows.

min Y (T (xe, @) + T/ (ye, W)
st ik € {0,1}, 1€ [I],k € [K]U{0},t € [T]
oVer €0,1], die[l],ke [K]U{0},telT)
prei€0,1], ie[l],ke[KIU{0},tell
Yint €{0,1}, i € [Il,n € [N],t € [T
Yint € [0,1], i € [I],n € [N],t € [T

(1),(2),(3),(8), and (9).
(OTORM)

The system operates in an online manner. We observe the
current system states at the beginning of each time slot ¢,
i.e., channel conditions h, task sizes f;, and input data sizes
d;, and make control decisions (x¢, x;, ®;, ¥;) immediately.
Let H, F, and D be the feasible space of h;, f;, and d,
respectively, i.e, h, € H, fi € F, and d; € D. In addition,
H C RI*E+D F C R!, and D C R!, where R is the set of
real numbers.

4 PROBLEM ANALYSIS AND SIMPLIFICATION

In this section, we analyze and simplify the problem
we have to solve at each time slot, ie., minimizing
(T (x4, ®;) + TF (yi,¥,)) over (x¢, P4, y:, ;) subjecting
to corresponding constraints. First, from objective function
(T (x4, ®;) + TF (yi,¥4)), the communication delay is
merely determined by (x:, ®;), and the processing delay
is a function on variable (y;, ¥¢)). Second, there is no

5

coupling between (x;, ®;) and (y;, ¥;) in the constraints.
Therefore, we can decompose the problem of minimizing
(T (x4, ®;) + TF (y¢, ¥y)) into two subproblems. We refer
to the first problem of minimizing 7, (x;, ®;) over (x;, ®;)
as the Joint base station selection and bandwidth man-
agement problem for Communication latency Minimization
(JCM), and refer to the second problem of minimizing
TF (y:, ¥;) over (y:,¥;) as the Joint task offloading and
computing resource management problem for Processing
latency Minimization (JPM). Although we can minimize
(T (x4, ®;) + TF (y¢, ¥4)) as a whole, dividing it into two
minor problems can help us to develop a more efficient ap-
proach. In particular, we can solve the two subproblems in
parallel, speeding up the decision-making time. In addition,
since we make decisions using DNNSs, solving the two in-
dependent subproblems as a whole may cause interference
between them, leading to performance degradation.

4.1 Optimal Bandwidth Management for JCM
We consider simplifying the JCM problem by deriving the

closed form optimal bandwidth variable ®; under any given
x;. First, we formally state the JCM problem as follows:
T (%0, @)

min
x¢ Py

stz € {0, 1}, ,
o7 €10,1], i€ [l,ke[K
¢5k,t € [07 1]7 (XS [I] k

K
Z Tikt =1
k=0
I

U
Zgbi,k,t < 17
i=1
I

F
Zd)i,k,t <]-a
i=1

If x; is given, JCM is a convex problem, and we can derive
the optimal ®; under x; by exploiting the KKT conditions.
For each k € [K] U {0}, we know the WDs that choose base
station By, if x; is given. We use Zj(x:) to denote the set
of indexes of WDs that choose Bj under decision x;, i.e.,
i € Tp(xy) if x5, = 1. We use ®,(x;) to denote the optimal
®; under x;, and ®;(x;) is shown in Lemma 1.

(JC™)

ke [K]U {0}

e [K]u{o}.

Lemma 1. For any feasible x;, the optimal ®; under x;,
denoted by ®;(x;), is as follows:

Vdit/h).

, ifi e Ti(xy), k € [K]U {0}
d)f'],k,t —]EZ%:(xt)\/dj /B
0, otherwise.
Vb e T (xe), k € [K] U {0}

oF, , = > Vdje/hg’
ikt T) €Ty (xe)

0, otherwise.

The main idea of the proof is to exploit the KKT condi-
tions, and then we can derive the equations in Lemma 1.

Since the process is standard, we omit the proof. Substi-
tuting ®;(x;) into JCM, JCM is equivalent to the following
minimization problem over variable x;.

K 4 I 4\
%‘?wﬂzﬂmwﬂ+
K 2
Z (lekt hU)
k= 0 v ikt

st Tkt € {0, 1}, i € I],k € [K]U {0}

K
> wige=1,i€[l]
k=0

1)

Although variable ®, is eliminated, P1 is still NP-hard as
shown in Theorem 1.

Theorem 1. P1 is NP-hard.

Proof. We prove that P1 is NP-hard by reducing the set
partition problem to a degenerated version of P1. The de-
generated version of P1 is denoted by P1*. Under P1%, there
are only two base stations, and the uplink bandwidths are
infinite. In addition, the two base stations have the same
fronthaul bandwidth. Therefore, P1* is partitioning all WDs
to two disjoint sets, Zp and Z;, with the goal of minimizing
(Cieg,)2 + (Sicr,)%, where pi = +/diz > 0 and
Zo UZI; = [I]. The set partition problem is the task of de-
ciding whether set S = {p1,p2, - ,pr} can be partitioned
to two sets, S1 and S5, such that ZpGSo p= Zpesl P
First, we show that if the minimum objective value of
P1*is (Y_i € [I]p;)?/2 under partition Zy and Z;, S can be
partitioned to two sets such that Zpe s P = Zpe s, P Let
Psum - Zze[[] Di and z = Z’LEI{) Di- Then (ZZ € []pl) /2
is the minimum objective value of P1* means (PSum — z)2 +
z = P2 /2.Since Py > 0and z > 0, (Paym — 2)? + 2% =
P2, /2 holds if and only if = = P/2. Then, we can partltlon
Sto Sy = {pili € Tp} and S; = {p;|i € Z;} such that
dpeseP = 2pes, p- Similarly, we have if the minimum
objective value of P1* is not (}_i € [I]p;)?/2, S can not be
partitioned to sets S1 and Sz such that 3 cq P =2 cs, P
That is, we can solve the set partition problem if P1* can
be solved. Since the set partition problem is NP-hard, P1* is
NP-hard. O

4.2 Optimal Computing Resource Management for JPM

Similar to Section 4.1, we derive the closed-form optimal
computing resource management variables ¥, under any
given y; in this section. We first formally state the JPM
problem as follows:

min Ttp(yt,\llt)
yi, Ve
st Yint €{0,1}, i€ [I],n € [N],
VYint €10,1], i€ [I],n €[N],
N
(JrMm)
Zyi,n,tzl ZG[IL
n=1
I
> hins <1, me|N]
i=1

[Observe system states at slot ¢, i.e., (f¢, by, ht)J

~

[Apply DRL-TOBS to P1 and P2 to get X; and y; J

\
&G

[Exploit Lemma 1 and Lemma 2 to get ®, and ‘PJ

Fig. 2: Scheme for solving OTORM at each slot.

If y; is given, JPM is convex, and we can derive the optimal
¥, under y; by exploiting the KKT conditions. We know the
WDs that compute their tasks on S, if y, is given. We use
Z,(yt) to denote the set of indexes of WDs offloading their
task to Sy, ie, i € Z,(y¢) if Y;n+ = 1. In addition, we use
U(y;) to represent the optimal ¥ under y;. Then, we have
Lemma 2 as follows.

Lemma 2. For any feasible offloading decision y;, the opti-
mal computing resource management decision ¥, under y,
denoted by ¥(y;), is as follows:

\ fit/oin
VIi/o5n’

JE€In(yt)

0, otherwise.

ifi € In(Yt)vk € [K]

wi,n,t =

The proof of Lemma 2 is omitted, since the proof is
simply an application of KKT conditions. Then, by substi-
tuting ¥4 (y,) into JPM, JPM is equivalent to the following
minimization problem over variable y;.

T H(Zymtﬁ)

st yint € {0,1}, i € [I],n € [N]

N
Z Yint = 1
n=1

Theorem 2. P2 is NP-Hard.

(P2)

i e).

The proof of Theorem 2 is similar to that of Theorem 1,
and we omit it.

5 ONLINE SCHEME DESIGN FOR OTORM

In this section, we focus on designing a scheme for solving
OTORM in an online manner. A diagram of the scheme is
shown in Figure 2. At the beginning of each time slot ¢, we
observe the current system states, i.e., input data sizes d;,
task sizes f;, and uplink channel conditions h;, and make
four sets of decisions, namely x;,y:, ¢, ¥;. We have to de-
cide the decision variables in a short time. Otherwise, high
decision-making time will cause degeneration of experience.
From Section 4, we can get the closed form optimal ®; and
¥, once x; and y; are given. Therefore, the core of the
scheme is solving P1 and P2 to get x; and y;, respectively.
Since P1 and P2 are NP-hard, there is no algorithm can
solve them in polynomial time. In this section, we design
an algorithm named Deep Reinforcement Leaning based
Task Offloading and Base station Selection algorithm (DRL-
TOBS), for solving P1 and P2 efficiently. A Diagram for

the DRL-TOBS approach is shown in Figure 3. While the
proposed approach is not a classical reinforcement learning
method, it shares some features with RL. Specifically, in our
approach, the offline solver is a part of the environment of
RL, and the agent is represented by the DNNs. At each time
slot, the environment generates a new state and updates
the datasets. In contrast to the classical RL approach, our
method does not have a reward at each time slot but instead
relies on the datasets as a substitute. In other words, while
the agent in classical RL updates its policy based on the
reward, our approach updates its policy (the DNNs) based
on the datasets.

The overall idea of the DRL-TOBS approach is as follows.
DRL-TOBS uses two DNNs to make decision (x;,y;), sim-
ilar to the actor-network of the actor-critic RL algorithm.
Since the outputs of the DNNs are continuous variables
and (x;,y:) are binary, we then discretize the continuous
outputs to multiple binary candidates and select the best
one among the candidates to perform. After performing the
decisions and before the beginning of the next slot, we use
an offline solver to get another decision (X;,y;). DRL-TOBS
then compares the decisions made by the offline solver
and the performed decisions and stores the better decisions
in datasets. Lastly, we randomly select samples from the
datasets to train the DNNs. Next, we will introduce the
modules in Figure 3 in detail.

5.1 Deep Neural Networks

From the universal approximation theorem, it is possible
to use neural networks with hidden layers to approximate
solvers of P1 and P2. At the beginning of each time slot ¢,
we observe the current system states, i.e., d;, f; and h;, and
pass them to the neural networks, i.e., DNN-1 and DNN-2
for P1 and P2, respectively.

a) DNN-1 for P1:

The inputs of DNN-1 are h; and d;. The input layer
has I(K + 2) neurons. Then, the input layer is connected
to hidden layers. Since we consider an online scenario, the
training and inference processes of DNN-1 have to be fast.
Compared with the sigmoid function, the ReLU function
and its derivative are easy to compute. Therefore, we use the
ReLU function as the activation function of hidden layers.

Next, we consider the output layer of the neural net-
work. We set the number of neurons in the output layer
to be I(K + 1), where each output approximates a de-
cision variable ;1 ;. There is a constraint for z; ., ie.,
SN ikt = 1fori € [I]. We embed the constraint in the
output layer, as shown in Figure 4. To be more specific, the
neurons in the output layers are partitioned into I groups
of the same size. The outputs of the i-th group approximate
variables related to D;, ie., z; ;¢ for k € [K] U {0}. Then,
neurons of each group use a softmax activation function.
Use z; 1, to denote the input of the k-th neuron in the i-th
group. Under softmax activation functions, the output of the
k-th neuron in the i-th group, denoted by Z; 1, is as follows,

erik

K) :
Zk/:O ezz‘k'

Therefore, we have Y #; 1., = 1 for i € [I]. The physical
meaning of Z; . is the probability of D; choosing base

Ty = (12)

7

station By, and Z,{;O Z;kt = 1 means each WD has to
select one base station.

The loss function of the network is the cross entropy
between output X, = {Z; 1.+,% € [I],k € [K]U{0}} and the
corresponding target decision in the dataset denoted by x.
To be more specific, the loss function of DNN-1 is as follows:

I

ZZ llleog(xlkT)

Lossy(Xr,%7;) (13)

a) DNN-2 for P2:

DNN-2 for P2 is similar to DNN-1 for P1. At each time
slot ¢, the input of DNN-2 is f; = {f;|i € [I]}. That is,
the input layer has I neurons. Then, we pass the inputs
to hidden layers, where the hidden layers use the ReLU
function as their activation function for high efficiency. The
output layer has I x N outputs approximating y; ¢ for
i 6 [I], n € [N]. Similar to DNN-1, we embed constraint
SN Wims = 1,7 € [I] to the output layer. In particular, the
output neurons are partitioned into I groups of the same
size, and neurons in each group use the softmax function as
the activation function. Use z; ,, to denote the input of the
n-th neuron in the ¢-th group. Then, the output of the n-th
neuron in the i-th group, denoted by ¥; », is as follows,

eZin

Yin = =k (14)

Zn’ =1 e¥in’
We have 27]:;1 Yin = 1 for i € [N], and 9, represents
the probability of D; computing its task on server .S,,. The
loss function of the network is the cross entropy between
output . = {in.r,t € [I],k € [N]} and the corresponding
decision in the dataset denoted by Y-, as follows:

ZZ ~Yin 108(Jin)-

i=1n=1

Lossa(y,y (15)
The time complexities of a forward pass of the DNNs
are polynomial with respect to the number of neurons in
each layer. Moreover, the process primarily involves matrix

multiplications, which can be parallelized efficiently using
GPUs.

5.2 Discretization and Performing Decision

From (12) and (14), the outputs of DNN-1 and DNN-2 are
real numbers between 0 and 1. We then discretize the out-
puts to feasible binary decision variables. For each i € [IV],
let k7 be a realization of random variable K;; where the
probability mass function (PMF) of K ; is]P’(KZ t = k) =

Zikt, k € [K] U {0}. Then, we set :clk*t = 1 and set
ikt = 0 for k # k. Similarly, let n} be a realization of
random variable Nut where the probab1l1ty mass function
(PMF) of N,’7t is P(Ni,t = TL) = §i77,,7t,n € [N] We set
Yinzt = 1 and set y; »,; = 0 for n # N;. In addition to the
above discretization method, D; can choose the base station
with the largest Z; ; and choose the edge server with the
largest ; ,, +. We generate a number of feasible solutions for
P1 and P2. We then compare the solutions for P1 and use
X; to denote the solution with the lowest communication
latency. Similarly, we compare the solutions for P2 and
use y; to denote the solution with the lowest processing
latency. The time complexity of the discretization process

1
: 1
| DNN1 ® (hespdespxes) (o | !
| o g 25|
I o
1 o =] N =. (ht-2,dt-2,%2) P+ o© !
1 ht' dt §_ 05 q)t(xt) = (hy-1,d-1,%¢-1) Q o :
! o N 5 3 (he, dy, x,) S o 1
s = P oY 1
& = = ¢ o
1| =t o <>] = a !
= =} = = 2o 1
ik Y- =2
1|2 £ 3 ¥ s Labeled _")
—> a = H
—:g.- .:\33 g éé 8 Sample Dataset X
"3 DNN2 £z |0 > !
(7] 3 1
|8 3 - g sl
18 S e 5 35 '
|21t ® 3 P () (ft—SZIYt—SZ) —- 3 !
1 N’ g 3 % :
Q
! = N (fe-2,¥t-2) S a1
! S (fe-1.¥e-1) =) g.- :
1
' (foye) S (ul; :
1 N o+ |
1
. . 1
! Beginning of end of time1
i timeslot t '
' I
1

slott

Fig. 3: Diagram of the DRL-TOBS Approach.

last hidden layer

21,2
X1,2

softmax

{
%

o ER
softmax

group 1 group i group [

Fig. 4: Embedding Constraint (1) to the Output Layer

is polynomial to I, N,K and the number of candidate
decisions. Next, referring to Lemma 1 and Lemma 2, we can
get the corresponding closed-form resource management
decisions, i.e., ®(x) and ¥(y). Then, we perform decision
(%, ®(%), yi, U(3)}.

After making decision {%,®(X),y:, ¥(y)} in a short
time, we can improve the neural networks using the re-
maining time in time slot ¢. In the following, we consider
the processes of generating data samples and training the
neural networks.

5.3 Solver For P1 and P2

After performing the decision of time slot ¢ and before the
beginning of the next time slot, we use a solver to solve P1
and P2 to get better decisions, which are used for training
the neural networks.

Some commercial solvers for P1 and P2 are available,
e.g., Gurobi [27], MOSEK [28], and GLPK [29]. The ad-
vantage of the solvers is that they can return the optimal
solution, while the disadvantage is that it may take a rela-
tively long time to get the optimal solution. Although we
can use multi-slots, e.g., §, to solve P1 and P2 and train the
neural networks every ¢ time slots, it will lead to a longer
convergence time for the neural networks. For example, the
Gurobi solver may take up to ten minutes to solve P2 under
I = 120 and N = 16, and WCGA proposed in Section 6
takes less than one second to get an approximation solution

with high precision. In real-world systems, the system states
have high volatility, e.g., change for each second. Therefore,
designing a solver to generate data samples for DNN-1
and DNN-2 more frequently is necessary. We propose an
algorithm named WCGA in Section 6 that is more efficient
at solving P1 and P2 in order to decrease the convergence
time of DNN-1 and DNN-2. The WCGA algorithm sacrifices
precision in order to solve P1 and P2 more efficiently. The
details of the WCGA solver are in Section 6.

5.4 Datasets, Sampling and Training

Once the solver for P1 and P2 returns solutions X; and
¥:, we compare them with the previous decisions made by
DNN-1 and DNN-2, i.e., Xx; and ¥, and use x; and y; to
denote the better solutions for P1 and P2, respectively. After
we have x, let ((h;, d;), x;) be an data sample for DNN-1,
where (h¢,d;) is the input and x; is the target. Similarly,
after we have y, let (f;,y;) be an data sample for DNN-2.
The datasets for DNN-1 and DNN-2 have sizes of S; and
Sa, respectively. If a dataset is full, the latest data sample
will replace the oldest one.

Similar to [11], after we update the datasets, we ran-
domly sample a batch of samples from each dataset and
use the sampled batches to train their corresponding neural
networks. We use stochastic gradient descent (SGD) with
momentum as the optimizer for training the neural net-
works. Updating the DNN parameters has a polynomial
time complexity that depends on the number of neurons
at each layer and the number of data samples. This process
primarily involves matrix operations, which can be highly
parallelized using GPUs.

5.5 The DRL-TOBS Algorithm

We then combine the components of the DRL-TOBS algo-
rithm and state the algorithm as a whole. Since P1 and P2 are
independent, the DRL-TOBS algorithm can solve P1 and P2
in parallel. Next, we formally state the DRL-TOBS algorithm

Algorithm 1: The DRL-TOBS algorithm for P1(P2).

Input: Wlf ,W,? Frn, oin
Output: A solution for P1 (P2): X (y, respectively)
1 Initialization: Randomly choose parameters for
DNN-1 (DNN-2, respectively);
fort ={1,2,---,} do
3 Observer current system states, ie.,
d; = {d;.li € [I]}, £ = {fi+|i € [{]}, and
hy = {n{, li € 1],k € [K]U{0}};
4 Feed d; U h, (f;) to DNN-1 (DNN-2,
respectively) and get X, (y, respectively);
5 Discretize x; (yt) to Cy (Cy, respectively)
feasible candidates, i.e., {x},x2, .- ,x"}
({yl,y?, -,y ?}, respectively);
6 Choose the best candidate, denoted by %x; (¥+),
among {x}, 57, xC"} ({yhy?, 37,
respectively) and calculate ®(%;) (¥(y;),
respectively);
7 | Perform decision X;, (%) (¥¢, ¥(y:)) for JCM
(JPM, respectively);
8 if t%07 == 0 (t%d3 == 0) then

N

9 Apply WCGA to P1(P2) to get X; (¥,

respectively);

10 Save the latest sample to dataset;

11 Randomly sample a batch of data samples for
DNN-1 (DNN-2, respectively);

12 Train DNN-1 (DNN-2, respectively) and
update its parameters;

13 end

14 end

in Algorithm 1. We train DNN-1 and DNN-2 for every ¢;
and J, time slots, respectively.

6 ALGORITHM DESIGN FOR P1 AND P2

Although P1 and P2 are two different problems, they are
special cases of a problem named Weighted Congestion
Problem (WCP).

We first state the weighted congestion problem (WCP).
Under the WCP problem, there are I players and R types of
resources. R is the set of all resources. Each player ¢ € []
has to choose a decision from feasible set D, where D has
a finite number of elements. We use d; € D to denote the
decision made by player ¢ and let D = (d;,ds, - ,d;) be
the collection of decisions of all players. There is a parameter
m,. for each resource r € R. For each decision d € D, there
is a set R(d) € R associated with it, which means that
player i uses resources in set R(d). In addition, there is
a parameter p; , for player ¢ and resource r. Let Z,.(D) to
denote the set of players that chooses resource r, ie., i €
Z,(D) if and only if » € R(d;). Each resource r € R has a
congestion value p, (D) which is a function of decision D as

follows:
pr(D) = Z Pi -

16
1€Z,.(D) (16)

The cost function of player 3 is

fz(D) = Z mrpi,rpr(D)'

reR(d;)

The goal of the system is to minimize

f(D) = Z Z mrpi,rpr(D)'

€[l reR(d;)

All the parameters, i.e., p; , and m,, are non-negative. We
formally state WCP as an optimization problem as follows.

S, fD) =3 3 mepisn(D)
ii€lI] i€[I] reR(d;) (WCP)
st. d; €D, ie 1.

6.1 Interpreting P1 and P2 as WCP

In what follows, we show P1 and P2 can be expressed as the
WCP problem.
a) Interpreting P1:

First, we express P1 as WCP. Let the I WDs of P1 be the
I players of WCP. Let R = {rY rF'|k € [K] U {0}} be the
R = 2(K + 1) types of resources where rY and rf are the
uplink and fronthaul link of base station k, respectively. For
k € [K]u{0},letm, = 1/WV ifrisr{,and let m, = 1/W}’
if r represents r/ . There are K + 1 decisions in feasible set
D,ie.,D = {By,B1 -, Bgk} representing the base stations
that users can choose. R(d) = {rY, 7'} if d is base station

Bk. Let Digr = \/di,t/hkF if ris ’I‘]I;, and Digr = ’/divt/hz{{k’,t if

i U
risry.

For each i € [I], constraint (1) is equivalent to each
player i can only choose one base station. That is, there is a
bijection between feasible solutions of (1) and that of WCP.
For each ¢ € [I], the communication latency experienced by
Di is

K I
70 N~ Tkt [dig it
i,t _Z WF hF Zx],k,t hF
k=0 k E Nj=1
K I
Li,k,t di,t dg t
3 et [(a5
k=0 'k ikt N j=1 ikt
= Z myp; rpr(D)
reR(d;)

Summing the above equation up for i € [I], for each feasible
x; and its corresponding D, we have the objective value of
P1 and that of WCP are equal. Therefore, P1 is a special case
of WCP.

b) Interpreting P2:

Next, we express P2 as WCP. Let the I WDs of P1
be the I players of WCP. Let R = {ry,ra,---,rn} be
the R = N types of resources where 7, represents the
computing resource of edge server S,,. In addition, we have
m, = 1/F, if r = r,. There are N decisions in feasible set
D,ie,D = {S1,S2---,Sn} representing the edge servers
that users can choose. For each d € D, there is only one
element in R(d). In particular, R(d) = {r,} if d represents
Sy Moreover, p; » =/ fi.t/0in if 1 = 1. Similar to that for
P1, there is a bijection between feasible solutions of (2) and
that of WCP. In addition, for any y; and its corresponding
D, the objective value of P2 and that of WCP are equal. That
is, P2 is a special case of the WCP problem.

Algorithm 2: WCGA())
Input: I, R, {p; i € [I],7 € R}, D,R(d;) for d; €
D, m, forr € R. .
Output: A feasible solution to WCP: D

1 Initialization: choose d; from D randomly for i € [I];
while {Ji € Z, (1 — \) f;(D) > min f;(d;, D_;)} do
d;eD

3 | i= argr}lgg{fj(D) - (,Elérll)fi(di,D-i)};

N

4 d; := aArgminaiGD fi(d;, D_y);
5 D := (di7D—i);

6 end

7 Return D := D;

6.2 Algorithm Design

Since P1 and P2 can be expressed as the WCP problem, in
this section, we focus on designing an algorithm for WCP.
We can solve WCP by a game theoretic-based approach
shown in Algorithm 2.

Then, we state the algorithm designed for solving WCP,
named the Weighted Congestion Game-based Algorithm
(WCGA), in Algorithm 2. The WCGA algorithm has a tun-
able parameter . Next, we show the performance of WCGA.

Theorem 3. For any A < 0.125, WCGA(X) will generate a
decision D with f(D) < 252 f(D*) in at most §log(%)
iterations where Py and Pui, are the maximum and the

minimum values of potential function P(D).

The proof of Theorem 3 is found in the our technical
report [30]. Note that each iteration takes O(|D|) steps. In
addition, if A = 0, we have the following theorem.

Theorem 4. WCGA(0) will terminate to a decision D with
f(D) < 2.62f(D*) in finite time steps.

The proof of Theorem 4 is similar to that of Theorem 4
and Theorem 5 in [10]. Consequently, we omit it.

Theorem 3 shows that WCGA(\) can generate a solution
with a constant approximation ratio in polynomial itera-
tions. Theorem 4 shows that WCGA(0) has an approxima-
tion ratio smaller than that of WCGA(A) but has no guar-
antee about convergence time. Nevertheless, experiments
show that WCGA(0) converges faster than the Gurobi solver,
where WCGA(0) sacrifices precision for low time complex-
ity. The simulations in Section 7 use WCGA(0) to generates
data samples for P1 and P2 for better performance.

7 NUMERICAL EVALUATION

In this section, we conduct extensive simulations to evaluate
the DRL-TOBS approach. We implement our simulations
using Python 3.10 on a desktop computer with 32GB RAM,
Ryzen 7 2700X Eight-Core Processor, GEFORCE GTX 1080
Ti GPU, and Windows 10 operating system.

7.1 Simulation Settings

We simulate a relatively large-scale system with more than
100 wireless devices. We set F,,n € [N], computing capa-
bilities of edge servers, as real-world computing capabilities
of EC2 instances [31] as shown in Table 2. In particular, the
unit of F,,,n € [N] is Giga floating-point operations per

10

Type GFLOP/s Type GFLOP/s
c3.4xlarge 358.4 c3.8xlarge 716.8
c4.2xlarge 371.2 c4.4xlarge 742.4
cc2.8xlarge 665.6 d2.2xlarge 307.2
d2.4xlarge 614.4 g2.8xlarge 665.6

TABLE 2: Computing Capabilities of Servers.

second (GFLOP/s), and there are N = 16 servers in the edge
server room, i.e., two of each type in Table 2. In [32], some
real-world task sizes are in the range between 65 MFLOPs
and 250 MFLOPs. Therefore, the task sizes of each time slot
are randomly drawn from the range between 65 and 250
MFLOPs. Similar to [10], we draw parameter o; ,, randomly
from the range from 0.5 to 1.

We assume there are ten 5G base stations in the system.
In particular, there are nine micro base stations and one
macro base station. We assume the base stations are oper-
ated by AT&T using low-land n5 and mid-band n77. We
assume the macro base station uses band n5, which has an
uplink bandwidth of 45 MHz, i.e., Wéj = 45M H z. The mi-
cro base stations use band n77 of bandwidth 100 MHz, i.e.,
WY = 100M H z. We assume all wireless mobile devices can
get access to the macro base station, and each mobile device
can only connect to five micro base stations. From [26], LTE
uplink spectrum efficiency can be up to 50 bps/Hz. The
channel condition hY, , is a function of the communication
distance and other péfameters, which increases as the com-
munication distance decreases. As the wireless devices walk
randomly, the communication distances change randomly,
and the channel condition varies accordingly. We abstract
the random walk model by manipulating hgk’t directly. At
the very beginning, if D; is covered by B}, we draw thk,O
randomly from the range between 15 and 50. Since h;) ,
changes over time, we set A, , = h¥, - (14 eipy),
where ¢; 1, is randomly drawn from normal distribution
N(0,0.01). From [33], the spectrum efficiency of optical fiber
communication can reach higher than ten bps/Hz, and we
set hf' as ten. The bandwidth of the fronthaul links is set to
1GHz [34]. In addition, input data length d;; is randomly
drawn from the range between 1 to 5 megabits, similar to
that in [10].

We set the number of hidden layers of both DNN-1 and
DNN-2 as three. For DNN-1, the numbers of neurons of the
first, second, and third hidden layers are I - K, I, and I,
respectively. Similarly, the number of neurons of the first,
second, and third hidden layers of DNN-2 are I - N, I, and
1, respectively. Note that, we can replace the deep neural
networks with other structures, e.g., Transformer Networks,
RNN, and Pointer Networks. We set the duration of each
time slot to be one second to simulate a highly volatile
system. Since commercial solver Gurobi takes up to ten
minutes to solve P1 and P2, we use the WCGA solver for
generating data samples. The WCGA(0) takes less than one
second to solve P1 and P2 on average. Thus, we set (5{‘ =1
and 62 = 1. That is, we update the two neural networks
every time slot. Other parameters are stated in detail in the
following.

7.2 Convergence of DNN-1 and DNN-2

In this section, we evaluate the convergence performance of
the DRL-TOBS approach. We use WCGA(0) as the solver for
P1 and P2 at each time slot. In addition to the loss functions
defined in (13) and (15), we measure the performance of
DRL-TOBS using normalized communication latency and
normalized processing latency for P1 and P2, respectively.
In particular, the normalized communication latency for P1
(P2) equals the ratio of communication latency (processing
latency, respectively) under DRL-TOBS to the optimal com-
munication latency (processing latency, respectively). We set
the learning rate of DNN-1 and DNN-2 to 0.01. In addition,
we apply the DROO algorithm [11] to the problems.

The normalized communication latency under DRL-
TOBS is shown in Figure 5. The black line in Figure 5
shows the moving average normalized communication la-
tency with a step size equaling 20 slots. The silver area
in Figure 5 is the range of the normalized communication
latency over every 20 slots. Figure 5 shows that DRL-TOBS
converges in 60 slots, and the converged communication
latency is near-optimal (less than 1.02 times the optimal
communication latency on average). In addition, the red line
in Figure 5 is the loss of DNN-1 over time. The normalized
communication latency of P1 decreases as the loss of DNN-1
(13) decreases, which shows that the loss function defined
in (13) can properly represent the objective value of P1.
In addition, the dark blue line in Figure 5 shows that the
DROO algorithm [11] is not capable of solving P1, and it is
necessary to design DRL-TOBS.

The normalized processing latency of DRL-TOBS is
shown in Figure 6. Similar to that of Figure 5, the black
line in Figure 6 is the moving average of the normalized
processing latency under a step size of 20 time slots, and the
silver area shows the range of the normalized processing
latency over every 20 slots. Figure 6 shows that DRL-TOBS
converges to a near-optimal approximation ratio (less than
1.02 on average) in a relatively short time (around 60 time
slots). In addition, the red line in Figure 6 shows the loss
of DNN-2 over time. The loss of DNN-2 decreases as the
normalized processing latency of P2 declines, which shows
that minimizing the loss function defined in (15) is equiv-
alent to minimizing the objective value of P2 to a certain
extent. In addition, the normalized latency under the DROO
algorithm does not converge to near-optimal.

Next, we use a single DNN for the OTORM problem to
simulate the case that OTORM can not be partitioned into
two subproblems. In particular, (f;, h;,d;) are the inputs
of the DNN. As shown in Figure 7, the normalized latency
consisting both communication and computing latencies can
converge to near optimal. In addition, the loss of the DNN
can also converge but have a higher loss than that of DNN-1
and DNN-2.

7.3 Performance against System Fluctuations

In this section, we evaluate the performance of DRL-TOBS
under system fluctuations. Specifically, we focus on a sce-
nario where users can join and leave the system. We set the
number of WDs to 180. After the convergence of DNN-1
and DNN-2, we randomly shut 20 WDs down at time slot

11

—— Moving average cost of DRLTOBS
Range

—— Moving average cost of DROO [11] | 25

187 —— Loss of DNN-1

Normalized Communication Latency
Loss 1

0 50 100 150 200 250 300 350
Time Slots

Fig. 5: Convergence of DNN-1

—— Moving average cost of DRL-TOBS
Range

—— Moving average cost of DROO [11] |- 2.5

181 —— Loss of DNN-2

Normalized Processing Latency

0 50 100 150 200 250 300 350
Time Slots

Fig. 6: Convergence of DNN-2

t = 200, and we then reboot the 20 WDs at time slot ¢ = 300.
We set d; + and f; ; to 0 if WD 7 is down at time slot .

We first consider the performance of DRL-TOBS for P1
against system fluctuations. The normalized communica-
tion latency and loss of DNN-1 are shown in Figure 8.
In particular, the dashed gray line shows the normalized
processing latency under DRL-TOBS using the loss function
considering both inactive and active WDs. The solid black
line indicates the normalized processing latency using the
loss function only considering active WDs. Similarly, the
solid red line is the loss of DNN-1 using the loss function
considering only active WDs, while the dashed orange line
uses the loss function considering all WDs. As we can see
from Figure 8, when WDs leave the system at time slot
t = 200, the normalized communication latency does not
have significant volatility, and DRL-TOBS performs as well
as that of stationary situations. However, when WDs join the
system at time slot ¢ = 300, the normalized communication
latency increases significantly under DRL-TOBS using the
loss function considering all WDs. It takes around ten time
slots for the normalized communication latency to converge
again. In contrast, under DRL-TOBS using the loss function
considering only active WDs, the normalized communi-
cation latency remains near-optimal when WDs join the
system. DRL-TOBS using the loss function considering all
WDs performs worse than that considering only active
WDs because WCGA offloads all inactive WDs via one base
station. And DRL-TOBS tends to offload the WDs via the
same base station when the inactive WDs rejoin the system,
which causes congestion.

Next, we consider the performance of DRL-TOBS for P2
against system fluctuations. As shown in Figure 9, when the
loss function of DNN-2 considers only active WDs, DRL-
TOBS has near-optimal normalized processing latency when

—— Moving average
Range of loss
— Loss

~ N
o ~

-
®

Normalized Total Latency
o
Loss

-
~

g
o

25 50 75 100 125 150 175
Time Slots

o

Fig. 7: Convergence of a Single DNN Approach

N
=3
IS

—— Normalized Latency, using the loss of active WDs
—==- Normalized Latency, using the loss of all WDs
—— Loss of DNN-1, using the loss of active WDs

—==- Loss of DNN-1, using the loss of all WDs r3

= g =

> o o

L L L
N)

Loss of DNN-1

=
N}
"

Normalized Communication Latency

-
=3

150 200 250 300 350 400
Time Slots

o
=)
=3

Fig. 8: Performance of DRL-TOBS for P1 against system
fluctuations

WDs leave and rejoin the system. When the loss function of
DNN-2 considers all WDs, DRL-TOBS has high processing
latency after inactive WDs rejoin the system. The reason is
that WCGA offloads all inactive WDs to one edge server,
and DRL-TOBS tends to keep them in the same edge server
after rejoining the system, causing congestion.

7.4 Performance Comparison with Baselines

In this section, we compare the performance of DRL-TOBS
with two baselines. The first baseline is the MCMC, where
MCMC represents the Markov chain Monte Carlo method.
To be more specific, the MCMC algorithm chooses x and
y randomly at the beginning. Then, WDs take turns to
randomly generate a decision and move to the new decision
with a probability, where the probability is related to the
objective values of the old and new decisions. The second
baseline is called ROPT, which is similar to that used in [10].
In particular, ROPT chooses a base station and an edge
server for each device randomly and uses the optimal re-
source management decisions, i.e., optimal ®; and ¥, under
randomly selected x; and y;. Details of the two baselines
can be found in the source code.

We first compare the average system latency (sum of
processing and communication latency) of the proposed
algorithm with that of MCMC, ROPT, and the optimal
latency, under different numbers of WDs. As shown in
Figure 10 (the unit is a millisecond), the proposed algorithm
outperforms the two baselines used in the literature. In
addition, the proposed algorithm is near optimal, which
can achieve 1.016x the optimal latency on average. The
latency under each algorithm increases as the number of

12

N
=3
IS

—— Normalized Latency, using the loss of active WDs
—==- Normalized Latency, using the loss of all WDs
—— Loss of DNN-2, using the loss of active WDs

—== Loss of DNN-2, using the loss of all WDs r3

A

"
]

I
3
n

,_.
o
=T _ _

Normalized Processing Latency
Loss of DNN-2

-
=3

I
-

100 150 200 250 300 350 400
Time Slots

Fig. 9: Performance of DRL-TOBS for P2 against system
fluctuations

134
—*— ROPT

15 | —&— mMcmc
—— DRLTOBS
]/ —+- oPTIMUM

Average Latency

120 130 140 150 160 170 180 190 200
Number of WDs

Fig. 10: Average system latency under DRL-TOBS v.s. the
number of WDs

WDs increases due to system congestion. Then, we consider
the time complexity of DRL-TOBS with that of MCMC,
ROPT, and the Gurobi solver. We solve P1 and P2 in parallel,
and each time listed in Table 3 is the maximum of corre-
sponding times for P1 and P2. As we can see from Table 3,
WCGA takes around one millisecond to make a decision
that is significantly lower than the MCMC method and the
Gurobi solver, while the Gurobi solver takes approximately
1 minute to make a decision. In addition, the training time
is in milliseconds. The time complexities of the MCMC
method and the Gurobi solver are much longer than a time
slot, and the approximation ratio of the ROPT baseline is
relatively large. On the contrary, the proposed algorithm
has a small approximation ratio and a low time complexity,
which can handle the online task offloading and resource
management problem with high volatility. Subsequently,
we demonstrate the scalability of our proposed algorithm.
Figure 10 illustrates the approximation ratio and time com-
plexity of the algorithm under various system scales, i.e.,
the number of WDs. Our algorithm maintains a consistent
approximation ratio and time complexity as the system scale
increases. The time complexity remains stable because the
forward pass of the deep neural networks can be executed
in parallel.

8 CONCLUSION

In this paper, we formulated and studied the online task
offloading and resource management problem in mobile

of WDs 120 140 160 180 200
PORT 6.9e-03 | 8.0e-03 | 8.1e-03 | 8.8e-03 | 9.6e-03
MCMC 72e+00 | 9.7e+00 | 1.0e+01 | 1.1e+01 | 1.3e+01
DRL-TOBS | 1.8e-03 1.5e-03 1.3e-03 1.3e-03 1.3e-03
WCGA 4.0e-01 5.6e-01 7.7e-01 9.6e-01 | 1.1e+00
Gurobi 5.5e+01 | 6.4e+01 | 4.8e+01 | 6.7e+01 | 7.5e+01
Training 3.7e-03 | 39e-03 | 3.7e-03 | 4.0e-03 | 4.0e-03

TABLE 3: Comparison of Time Complexities (second)

—— Approximation Ratio
—— Time Complexity

=
IS
~

=
N
o

»
Time Complexity / ms

g
o
o

o
o

o
o

Approximation Ratio

°
IS
N

°
N
-

o
=3
o

-
o
S

120 140 160 180
Number of WDs

N
=3
=1

Fig. 11: Scalability of DRL-TOBS

edge environments. We proved the problem is NP-hard and
proposed a deep reinforcement learning-based approach
named DRL-TOBS. In particular, we first designed an offline
solver named WCGA for the formulated problem. The DRL-
TOBS approach uses deep neural networks to approximate
the WCGA solver. The DRL-TOBS approach observes system
states and makes decisions at the beginning of each time
slot. Then, the DRL-TOBS approach uses the remaining time
of each time slot to improve the deep neural networks. We
conducted extensive simulations to evaluate the proposed
approach. Simulation results show DRL-TOBS can converge
and is robust to system fluctuations. The decision-making
time of DRL-TOBS is around one millisecond, which is
5e+04x and 5e+02x faster than an optimal solution solver
and the WCGA approximation solver, respectively. In ad-
dition, the average system latency of DRL-TOBS is near-
optimal.

REFERENCES

[1] A. Holst, “Number of iot connected devices worldwide 2019-
2030,” Statistica, 2021.

[2] W.Shi,].Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE internet of things journal, vol. 3, no. 5, pp.
637-646, 2016.

[3] G.Cui, Q.He,F Chen, Y. Zhang, H. Jin, and Y. Yang, “Interference-
aware game-theoretic device allocation for mobile edge comput-
ing,” IEEE Transactions on Mobile Computing, 2021.

[4] X. Shang, Y. Huang, Z. Liu, and Y. Yang, “Reducing the service
function chain backup cost over the edge and cloud by a self-
adapting scheme,” IEEE Transactions on Mobile Computing, vol. 21,
no. 8, pp. 2994-3008, 2022.

[5] T. Lawrence, “Evening internet 'rush-hour’ affects broadband
users - news - gadgets & tech,” in The Independent, 2013.

[6] B. Yang, X. Cao, J. Bassey, X. Li, and L. Qian, “Computation
offloading in multi-access edge computing: A multi-task learning
approach,” IEEE Transactions on Mobile Computing, vol. 20, no. 9,
pp. 2745-2762, 2021.

13

[7] S.]Josilo and G. Dan, “Joint management of wireless and comput-
ing resources for computation offloading in mobile edge clouds,”
IEEE Transactions on Cloud Computing, vol. 9, no. 4, pp. 1507-1520,
2021.

[8] S.]Josilo and G. Dén, “Wireless and computing resource allocation
for selfish computation offloading in edge computing,” in IEEE IN-
FOCOM 2019-1EEE Conference on Computer Communications. IEEE,
2019, pp. 2467-2475.

[9] S.]Josilo and G. Dan, “Joint wireless and edge computing resource
management with dynamic network slice selection,” IEEE/ACM
Transactions on Networking, pp. 1-14, 2022.

[10] Y. Liu, X. Shang, and Y. Yang, “Joint sfc deployment and resource
management in heterogeneous edge for latency minimization,”
IEEE Transactions on Parallel and Distributed Systems, vol. 32, no. 8,
pp- 2131-2143, 2021.

[11] L. Huang, S. Bi, and Y.-J. A. Zhang, “Deep reinforcement learning
for online computation offloading in wireless powered mobile-
edge computing networks,” IEEE Transactions on Mobile Comput-
ing, vol. 19, no. 11, pp. 2581-2593, 2020.

[12] P. A. Apostolopoulos, G. Fragkos, E. E. Tsiropoulou, and S. Pa-
pavassiliou, “Data offloading in uav-assisted multi-access edge
computing systems under resource uncertainty,” IEEE Transactions
on Mobile Computing, vol. 22, no. 1, pp. 175-190, 2023.

[13] P. A. Apostolopoulos, E. E. Tsiropoulou, and S. Papavassiliou,
“Risk-aware data offloading in multi-server multi-access edge
computing environment,” IEEE/ACM Transactions on Networking,
vol. 28, no. 3, pp. 1405-1418, 2020.

[14] G.Liand]. Cai, “An online incentive mechanism for collaborative
task offloading in mobile edge computing,” IEEE Transactions on
Wireless Communications, vol. 19, no. 1, pp. 624-636, 2019.

[15] N. Zhang, S. Guo, Y. Dong, and D. Liu, “Joint task offloading
and data caching in mobile edge computing networks,” Computer
Networks, vol. 182, p. 107446, 2020.

[16] Y. Chen, N. Zhang, Y. Zhang, X. Chen, W. Wu, and X. S. Shen, “Tof-
fee: Task offloading and frequency scaling for energy efficiency of
mobile devices in mobile edge computing,” IEEE Transactions on
Cloud Computing, vol. 9, no. 4, pp. 1634-1644, 2021.

[17] Q. Zhang, L. Gui, F. Hou, J. Chen, S. Zhu, and F. Tian, “Dynamic
task offloading and resource allocation for mobile-edge computing
in dense cloud ran,” IEEE Internet of Things Journal, vol. 7, no. 4,
pp- 3282-3299, 2020.

[18] Z. Ma, S. Zhang, Z. Chen, T. Han, Z. Qian, M. Xiao, N. Chen,
J. Wu, and S. Lu, “Towards revenue-driven multi-user online task
offloading in edge computing,” IEEE Transactions on Parallel and
Distributed Systems, vol. 33, no. 5, pp. 1185-1198, 2021.

[19] J. Ye and Y.-J. A. Zhang, “Drag: Deep reinforcement learning
based base station activation in heterogeneous networks,” IEEE
Transactions on Mobile Computing, vol. 19, no. 9, pp. 2076-2087,
2020.

[20] P. Charatsaris, M. Diamanti, E. E. Tsiropoulou, and S. Papavas-
siliou, “Competitive energy allocation for aerial computation of-
floading: A colonel blotto game,” in GLOBECOM 2022 - 2022 IEEE
Global Communications Conference, 2022, pp. 970-975.

[21] D. Wisely, N. Wang, and R. Tafazolli, “Capacity and costs for
5g networks in dense urban areas,” IET Communications, vol. 12,
no. 19, pp. 2502-2510, 2018.

[22] A. de la Oliva, J. A. Hernandez, D. Larrabeiti, and A. Azcorra,
“An overview of the cpri specification and its application to c-ran-
based lte scenarios,” IEEE Communications Magazine, vol. 54, no. 2,
pp- 152-159, 2016.

[23] G. Kalfas, C. Vagionas, A. Antonopoulos, E. Kartsakli, A. Mesodi-
akaki, S. Papaioannou, P. Maniotis, J. S. Vardakas, C. Verikoukis,
and N. Pleros, “Next generation fiber-wireless fronthaul for 5g
mmwave networks,” IEEE Communications Magazine, vol. 57, no. 3,
pp. 138-144, 2019.

[24]]. Spécil,]. Bohata, D.-N. Nguyen, M. Mazének, and S. Zvéanovec,
“Effect of erbium-doped fiber amplifier loss compensation on 5g
new radio millimeter-wave seamless transmission over analog
fiber and free space optical fronthaul at 60 ghz,” Optical Engineer-
ing, vol. 61, no. 6, p. 066104, 2022.

[25] D. Acatauassu, M. Lic4, A. Ohashi, A. L. P. Fernandes, M. Freitas,
J. C. Costa, E. Medeiros, I. Almeida, and A. M. Cavalcante, “An
efficient fronthaul scheme based on coaxial cables for 5g central-
ized radio access networks,” IEEE Transactions on Communications,
vol. 69, no. 2, pp. 1343-1357, 2020.

[26] Y. Huo, X. Dong, and W. Xu, “5g cellular user equipment: From

theory to practical hardware design,” IEEE Access, vol. 5, pp.
13992-14 010, 2017.

[27] B. Bixby, “The gurobi optimizer,” Transp. Re-search Part B, vol. 41,
no. 2, pp. 159-178, 2007.

[28] M. ApS, “Mosek optimization suite,” 2019.

[29] A. Makhorin, “Glpk (gnu linear programming kit),” http://www.
gnu. org/s/glpk/glpk. html, 2008.

[30] “Technical report.” [Online]. Available: https://www.dropbox.
com/sh/d52565m18xhw5q8/AAC63CPOWpad8mGfPUuve-nxa?
dl=0

[31] J. Emeras, S. Varrette, V. Plugaru, and P. Bouvry, “Amazon elastic
compute cloud (ec2) versus in-house hpc platform: A cost analy-
sis,” IEEE Transactions on Cloud Computing, vol. 7, no. 2, pp. 456—
468, 2019.

[32] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger,
“Condensenet: An efficient densenet using learned group convo-
lutions,” in Proceedings of the IEEE conference on computer vision and
pattern recognition, 2018, pp. 2752-2761.

[33] G. P. Agrawal, “Optical communication: its history and recent
progress,” Optics in our time, pp. 177-199, 2016.

[34] J. Bohata, M. Komanec, J. Spacil, Z. Ghassemlooy, S. Zvanovec,
and R. Slavik, “24-26 ghz radio-over-fiber and free-space
optics for fifth-generation systems,” Opt. Lett., vol. 43,
no. 5, pp. 1035-1038, Mar 2018. [Online]. Available: http:
/ /opg.optica.org/ol/abstract.cfm?URI=0l-43-5-1035

Yu Liu received his B. Eng. degree with honor
in Telecommunication Engineering from Xidian
University, Xi'an, China. He is now pursuing
his Ph.D. degree in Computer Engineering at
Stony Brook University. His research interests
are in online algorithms, distributed storage,
cloud computing, edge computing and data cen-
ter networks, with focus on placement and re-
source management of virtual network functions
and reliability of service function chains.

Yingling Mao received the B.S. degree in Math-
ematics and Applied Mathematics in 1Zhiyuan
College from Shanghai Jiao Tong University,
Shanghai, China, in 2018. She is currently work-
ing toward the Ph.D degree in the Department
of Electrical and Computer Engineering, Stony
Brook University. Her research interests include
network function virtualization, software-defined
network, cloud computing.

Zhenhua Liu is currently assistant professor
in the Department of Applied Mathematics and
Statistics, also affiliated with Department of
Computer Science and Smart Energy Technol-
ogy Cluster, since August 2014. During the year
2014-2015, he is on leave for the ITRI-Rosenfeld
Fellowship in the Energy and Environmental
Technology Division at Lawrence Berkeley Na-
tional Laboratory. Dr. Liu received his Ph.D. de-
gree in Computer Science at the California In-
stitute of Technology, where he was co-advised
by Prof. Adam Wierman and Prof. Steven Low. Before Caltech, he
received an M.S. degree of Computer Science Technology in 2009 and
a B.E. degree of Measurement control in 2006, both from Tsinghua
University with honor, as well as a B.S. degree of Economics from
Peking University in 2009.

14

Yuanyuan Yang received the BEng and MS
degrees in computer science and engineering
from Tsinghua University, Beijing, China, and the
MSE and Ph.D. degrees in computer science
from Johns Hopkins University, Baltimore, Mary-
land. She is a SUNY Distinguished Professor of
computer engineering and computer science at
Stony Brook University, New York, and is cur-
rently on leave at the National Science Foun-
dation as a Program Director. Her research in-
terests include edge computing, data center net-
works, cloud computing and wireless networks. She has published more
than 460 papers in major journals and refereed conference proceedings
and holds seven US patents in these areas. She is currently the Editor-
in-Chief for IEEE Transactions on Cloud Computing and an Associate
Editor for IEEE Transactions on Parallel and Distributed Systems and
ACM Computing Surveys. She has served as an Associate Editor-in-
Chief for IEEE Transactions on Cloud Computing, Associate Editor-
in-Chief and Associated Editor for IEEE Transactions on Computers,
and Associate Editor for IEEE Transactions on Parallel and Distributed
Systems. She has also served as a general chair, program chair, or vice
chair for several major conferences and a program committee member
for numerous conferences. She is an IEEE Fellow.

