2022 IEEE/RS) International Conference on Intelligent Robots and Systems (IROS) | 978-1-6654-7927-1/22/$31.00 ©2022 IEEE | DOI: 10.1109/IR0S47612.2022.9981822

2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

October 23-27, 2022, Kyoto, Japan

DRACo-SLAM: Distributed Robust Acoustic Communication-efficient
SLAM for Imaging Sonar Equipped Underwater Robot Teams

John McConnell, Yewei Huang, Paul Szenher, Ivana Collado-Gonzalez and Brendan Englot

Abstract— An essential task for a multi-robot system is gener-
ating a common understanding of the environment and relative
poses between robots. Cooperative tasks can be executed only
when a vehicle has knowledge of its own state and the states of
the team members. However, this has primarily been achieved
with direct rendezvous between underwater robots, via inter-
robot ranging. We propose a novel distributed multi-robot
simultaneous localization and mapping (SLAM) framework for
underwater robots using imaging sonar-based perception. By
passing only scene descriptors between robots, we do not need
to pass raw sensor data unless there is a likelihood of inter-robot
loop closure. We utilize pairwise consistent measurement set
maximization (PCM), making our system robust to erroneous
loop closures. The functionality of our system is demonstrated
using two real-world datasets, one with three robots and
another with two robots. We show that our system effectively
estimates the trajectories of the multi-robot system and keeps
the bandwidth requirements of inter-robot communication low.
To our knowledge, this paper describes the first instance of
multi-robot SLAM using real imaging sonar data (which we
implement offline, using simulated communication). Code link:
https://github.com/jake3991/DRACo-SLAM.

I. INTRODUCTION

Underwater robotics has proliferated over the past decade,
supporting a variety of tasks, including ship hull inspec-
tion, harbor security, maintenance-inspection-repair (MIR),
and intelligence surveillance reconnaissance (ISR). How-
ever, autonomous underwater vehicles (AUVs) are limited
in their sensing capabilities. Firstly, the global positioning
system (GPS) cannot be used due to the attenuation of GPS
signals in the water. While AUVs can surface to collect
GPS measurements, this is inefficient and impossible during
under-ice missions or certain tactical situations. Further, if a
small, lightweight, low-power perceptual package is desired,
underwater lidar may be infeasible, and the use of sonar
may be required, especially in turbid or dark environments.
While the capabilities of sonar-based systems have expanded
to include fully autonomous operation, the primary area of
contribution is still focused on single agents executing their
missions. However, real-world problems often benefit from
a team of robots, a multi-robot system. When considering
tasks ranging from autonomous exploration to ISR, a multi-
robot system can reduce time, energy expenditure or create
redundancy when operating in an adversarial environment.

A fundamental capability for both single and multi-robot
systems is state estimation. When operating in unknown en-
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(c) An example multi-robot SLAM run from the environment in (b),
from the perspective of one robot. This robot’s poses are shown as
black dots connected by several factors: sequential scan matching factors
(SSM) in green, non-sequential scan matching factors (NSSM, intra-
robot loop closures) shown in red, inter-robot (IR) loop closures in blue
and partner robot (PR) factors in purple. This robot’s map is shown in
red with blue points merged from the other robot in the mission.

Fig. 1: Distributed multi-robot SLAM overview: (a) the robot
used in our experiments, (b) one of the settings for our experiments,
and (c) a representative experimental result are shown.

vironments, simultaneous localization and mapping (SLAM)
is utilized to estimate vehicle location and provide situational
awareness. For underwater robots, SLAM has typically been
implemented to localize a single vehicle. Recent works on
SLAM for underwater multi-robot systems consider both
direct encounters (e.g., inter-robot range measurements) and
indirect encounters (e.g., commonly observed targets in the
survey area) as a means for fusing robot state estimates
[1], [2]. There are some fundamental challenges to imple-
menting such systems. Firstly, acoustic communication links
have notably low bandwidth, limiting information exchange
between robots. Another issue is the nature of sonar as a
tool for perception. Sonar has a low signal-to-noise ratio,
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low resolution, and often lacks 3D information. Moreover,
there are no (or poor) initial conditions relating the robots
in a multi-robot system without GPS.

In this work, we propose a system for distributed multi-
robot SLAM that uses an imaging sonar’s perceptual data
as a basis for state estimation, and we validate it over real-
world datasets. In addition to utilizing real perceptual data,
we do not provide any initial conditions relating the robots a
priori, and we do not rely upon inter-robot ranging, permit-
ting an exclusive reliance on indirect encounters between
robots. Lastly, we consider the bandwidth limitations of
wireless acoustic communications and design our system for
compatibility with realistic constraints (we note that beyond
bandwidth, there are additional limitations associated with
real-world acoustic comms [3]). Our key contributions are:

o The first underwater multi-robot SLAM system devel-
oped for use with real imaging sonar data.

o A high-performance pipeline for robustly identifying,
registering, and rejecting outliers of indirect encounters
using real sonar data with no initial conditions.

e A strategy to manage bandwidth usage, making real
world application with acoustic modems a possibility.

« A validation of our system on two real-world data-sets.

In the following sections, we discuss related work, mathe-
matically define our problem, present our system and results.

II. RELATED WORK

A. Underwater Multi-Robot SLAM

In the underwater space, inter-robot constraints generally
come in two forms [2]: direct encounters where robots
observe one another via acoustic ranging, and indirect en-
counters, where robots observe the same targets in the envi-
ronment and may derive inter-robot measurement constraints
relating one another. We note that direct encounters require
synchronized clocks, which may not be practical over long
periods without GPS clock corrections due to clock drift.

We first consider [4], where a mobile base station is used
to localize a team of low-cost vehicles lacking perceptual
sensors using an acoustic beacon. A similar concept is
considered in [5], except instead of a team of robots, a
leader-follower arrangement is used. [6] considers inter-
robot ranging without fixed acoustic beacons and performs
a simulation study comparing the use of fixed beacons to a
cooperative localization solution. [7] considers an algorithm
for processing inter-robot acoustic pulses in a distributed
manner. [1] proposes a pose-graph-based method for cooper-
ative localization of a team of robots using dead-reckoning,
GPS, and inter-robot ranging. The outcome of this work is a
system where a robot maintains an understanding of its state,
and the team’s state. Moreover, when GPS measurements
occur at the surface, their effect is shared across robots. [2]
integrates perception into the above, and commonly observed
features are shared and integrated into robot pose-graphs.
[2] assumes that robots share point-landmark observations
in their survey area, but the framework is only tested in
simulation. Further, due to GPS, each robot is effectively

localized in a common frame, enabling the sharing of range-
bearing measurements to commonly observed targets without
a need to solve the complex data association problem. Recall,
GPS may not always be available due to under-ice operations
or tactical situations (e.g., jamming). [8] considers the robot
map merging problem using only similarity in feature space,
in this case, ship hull curvature. While this work is able to
merge trajectories and lower the data transmission require-
ments between robots, it requires a highly descriptive feature
vector. It is only validated over a single dimension, whereas
we consider a 3DOF system.

There are some notable examples of underwater multi-
robot SLAM using cameras [9]-[12] and cameras with other
navigation sensors [13]. Cameras, however are not robust
in all water conditions. While these works are informative,
because we operate in turbid conditions with low visibility,
we do not consider them further.

Another area to consider is the concept of multi-session
SLAM, where a robot is provided with a prior SLAM run
and merges the map it builds with the prior run as the mission
progresses. This is examined for ship hull inspection [14],
[15], bathymetric mapping [16], ship-wreck reconstruction
[17] and environmental monitoring [18]. However, multi-
session does not account for communicating information
between robots, as it is a single agent system with prior
information. Additionally, it may be the case that the robot
has some knowledge of its location in the prior map, con-
straining the inter-robot loop closure search space.

In contrast to the above, we utilize no notion of an initial
guess relating robot reference frames. Second, we consider
the bandwidth limitations of real acoustic modem hardware
and take steps to manage network utilization. Lastly, we
implement a fully functioning system to detect and estimate
indirect encounters in sonar data: inter-robot loop closures.

B. Place Recognition With Sonar

Place recognition (loop closure) is fundamental for a
perception-driven multi-robot system. Place recognition has
been widely studied in LIDAR sensing [19]-[21]. These
works assemble a 2D bird’s eye view image of a 3D LIDAR
scan with coarse discretization to compare scenes. They also
derive a 1D descriptor to support scene search and retrieval.

Place recognition has also been studied with sonar-
equipped AUVs. Firstly, [22] considers building scene graphs
to compare scenes and evaluate rigid-body transformations
but requires at least fifteen objects in each scene to run.
Machine learning has also been used to support this task in
[23], [24]. However, few public sonar datasets exist, and this
is often a research area unto itself. Iterative closest point
(ICP) based loop closure is used in our prior work [25]
to support single-agent active SLAM. This work uses sonar
derived point clouds with ICP; when ICP provides a trans-
form between keyframes, we estimate overlap between the
point clouds. Point cloud overlap, then pairwise consistent
measurement set maximization (PCM) [26], are used to reject
outlier loop closures. Inliers are integrated into the graph-
based pose SLAM solution. We note the extension of the
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PCM algorithm [15], but due to its additional complexity,
we will not utilize it in our work.

C. Acoustic Modems

To communicate, AUVs generally use acoustic modems,
which are low-bandwidth compared to in-air systems. One
of the most well-known devices is the WHOI Micromodem
[27], which can transfer a maximum of 5400 bits/s over
a long-range. For shorter-range transmission (300 meters),
higher bandwidth (62.5 kbits/s) units are available [28].
Moreover, recent research has demonstrated the feasibility
of achieving even higher bandwidth in real-world conditions
[29]. In our work, we consider bandwidth to be limited,
and we will study the network utilization of our multi-robot
system as a critical parameter. Further, we will take steps to
minimize the transmission of large data structures.

III. PROBLEM DESCRIPTION

In this work we consider a team of robots N. Each
robot n € N maintains its own SLAM solution, in its own
reference frame Z,,. Each robot receives a set of observations
Zy,; at a given pose X, ; across discrete time steps ¢. Each
robot pose is defined in the plane (fixed depth) as

Xn,t = (xr Yr HT)T . (1)

Each set of observations consists of sonar returns in spherical
coordinates with ranges r € R, bearings § C [—m, 7),
elevation angles ¢ C [—m, ), and associated intensity values
v € R,4. These sonar observations can be mapped into
Cartesian coordinates by

T cos ¢ cos 0
y| =r| cosgsinb | . 2)
z sin ¢

Each robot moves through the environment according to the
dynamics

Xn,t = g(un,h Xn,tfl) + On,t, (3)

where x,, ;1 is the previous timestep’s pose, u,; is the
control command and o, is process noise. The posterior
probability over the time history of poses is defined as

p(Xn,lzt7mn|zn,1:t7un,1:t)7 (4)

with map m,,. While we consider a distributed multi-robot
SLAM solution, there is no initial transform between each of
the reference frames Z,,. This work aims to use each robot’s
observations to derive inter-robot loop closures and estimate
team member trajectories in each robot’s reference frame.

IV. ALGORITHM

This section will provide the technical details of our
distributed multi-robot SLAM system. An overview of this
system from the perspective of one robot is shown in Fig.
2. Each robot logs messages from team members, using a
k-d tree to search for potential inter-robot loop closures. We
then attempt registration and reject outliers. Inter-robot loop
closures are added to the factor graph and broadcast to the
rest of the team. The pose graph is optimized, and significant
state changes are communicated to the rest of the team.
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Fig. 2: System diagram for a single robot. Each robot maintains
a message pool of received scene descriptors. Based on k-d tree
search, registration is attempted and outliers rejected. Inlier inter-
robot loop closures are added to the pose graph and sent to team
members. Large SLAM corrections are also sent to team members.

A. Sonar image processing

At each pose, x,, ¢, the sonar observations z,, ; consist of
a sonar image. The 2D image is populated with acoustic
intensity values. However, not all the pixels in the image
represent contact with structures in the environment. Our first
step is to identify which pixels constitute a sonar contact
and which do not. We use constant false alarm rate (CFAR)
detection, [30] which is derived from radar processing and
has supported our previous work [31].

Once contacts are identified, the pixels are mapped to
meters as an in-plane point cloud. Note that while imaging
sonar observes a 3D volume of water, the sensor does not
return 3D information, only a 2D projection with ¢ as zero.
The consequence is that our system is confined to fixed
depth, in-plane pose estimation. The point cloud is subject
to voxel down-sampling, with each voxel’s output being the
medoid of the contained points. Example point clouds are
shown in Fig. lc.

B. Point Cloud Compression

In this work, each point in a point cloud is a pair of 32-bit
floating points (X,y), which may overwhelm the data link. For
this reason, we consider a simple voxel-based compression
algorithm. We take a point cloud, cast it onto a planar
voxel grid, and only retain centers of occupied voxels. This
compression is performed first by discretizing each point,
Da,y, t0 a designated resolution, Acompression-

DPz,y

compression

Pij = X (5)
Note that the p; ; are discrete. Each cell in the voxel grid is
populated according to Eq. (5). If a voxel contains a non-
zero number of points, then that voxel’s center is recorded
for transmission. In our implementation, each voxel center is
a pair of 8-bit unsigned integers, offering significant savings
over a pair of 32-bit floating points. This compression,
though, results in a loss of some geometric information. Our
experiments will evaluate compression efficacy by character-
izing SLAM error and network utilization in Section V.
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C. Single robot SLAM

For multi-robot SLAM, first, each robot must estimate
its state. We utilize the vehicles’ onboard Doppler velocity
log (DVL) and inertial measurement unit (IMU) with the
uncompressed point clouds from Section IV-A. We for-
mulate this as a graph-based pose SLAM problem and
use the GTSAM [32] implementation of iISAM2 [33]. We
use odometry factors f° from the vehicle dead reckoning
system between sequential poses. Next, we add sequential
scan matching (SSM) factors. fSM are derived from calling
ICP [34] between sequential frames. Lastly, we consider
non-sequential scan matching factors (i.e., intra-robot loop
closures). fNSSM factors are derived by calling ICP between
non-sequential frames, outlier factors are rejected using a
minimum required point cloud overlap, then PCM [26].

£(©) = (0 [T (@) [[£*(©,) ] £5(©,)

J q

Note that poses (keyframes) are instantiated if the dead
reckoning system indicates a distance or rotation larger than
a threshold compared to the previous pose. When each robot
passes its state to the team members, it incrementally passes
its optimized poses as keyframes are instantiated.

D. Distributed Multi-robot SLAM

Now that each robot has a system to estimate its state,
we extend it to include the rest of the team’s states in a
distributed multi-robot SLAM solution. We use the existing
pose graph to integrate inter-robot loop closures relating team
members’ trajectories. Note that each robot is responsible for
its SLAM solution while passing the required information to
build a multi-robot state estimate that includes each robot.

Each robot will incrementally share its pose estimates via
the datalink as keyframes are added. We add any detected
inter-robot factors, fIR, as in Section V-F. Next, we will add
the entire trajectory for each robot in the team if that robot
has at least one f'R. The trajectory will be added as a series of
sequential factors between robot poses, denoted f*R, partner
robot factors. This completes the factor graph as shown in
Fig. 3.

E. Inter-robot Loop Closure Search

We formulate the search for inter-robot loop closure
candidates as a retrieval problem. Given a candidate and
a database, we wish to search the database for possible
matches. To do so, we build a scene descriptor using a
range-based histogram similar to [35] for each scene. These
histograms encode a scene according to the number of mea-
surements at each range bin, making it rotationally invariant.
Note that range bins are discrete, the size and range of which
are provided a priori. Using the point cloud, each histogram
bin is the number of points in its respective range bin.

Each robot encodes and communicates its scene descrip-
tors to the rest of the team incrementally as the keyframes
are instantiated. Note that when this message is shared, it
also includes the pose estimate of the keyframe in the sender
robot’s reference frame. Additionally, each robot maintains

Fig. 3: SLAM Factor Graph. Robot poses x for three robots, «,
B, § are considered with several factors: sequential scan match-
ing factors (SSM) in green, non-sequential scan matching factors
(NSSM, intra-robot loop closures) shown in red, inter-robot (IR)
loop closures in blue and partner robot (PR) factors in purple.

a k-d tree of its scene descriptors. As a robot receives scene
descriptors from team members, it compares them to its own
using a nearest neighbor search, with a designated maximum
neighbor distance. Once nearest neighbors are identified,
registration is attempted.

F. Registration

When performing registration between two scenes, we
estimate a 3DOF rigid body transformation

T = (2ays)' ©6)

cosf, —sind
R=(_"" NE )
sin G4 cos 04
in order to derive inter-robot factors, f'R. In the registration
problem we minimize the squared Euclidean distance be-

tween two sets of points A and B, that have been associated
according to nearest neighbor.

E(R,T) = Y|la; — Rb; + T||*. (8)

Note we do not have any notion of an initial guess between
robot reference frames, and therefore have no notion of
initial guess when solving the registration problem. It is for
this reason we utilize Go-ICP [36]. Go-ICP finds a globally
optimal registration result, showing good performance under
partial overlap and poor initial guess conditions. For Go-
ICP initial alignment, we apply Euclidean mean subtraction
to the point clouds and set R and T' as identity and zero,
respectively. Once Go-ICP completes, we call standard ICP
to refine the transformation using the Go-ICP result as an
initial guess.

G. Outlier Rejection

Once registration is complete, the result must be eval-
vated as legitimate or erroneous. In our implementation,
we consider outlier rejection before and after registration.
Before a registration call is made, we check that the point
cloud has a minimum number of points, to avoid attempting
registration with a cloud containing insufficient information
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to provide a reasonable transformation estimate. Next, we
consider the ratio between the point clouds; if the point
ratio is too large or small, the scenes are not likely to be
of the same content and therefore discarded. Next, we cast
sonar points onto a coarse grid to enable rapid scene-to-
scene comparison, which we term the scene image. When
comparing loop closure candidates, the two relevant scene
images are compared, and if the sum of absolute differences
between them is high, the scenes are considered different and
do not warrant registration. Registration is attempted if the
point clouds have the minimum number of points, comply
with our ratio requirements, and have a small-enough sum
of absolute differences between scene images.

Once registration is completed, we evaluate the overlap be-
tween the two clouds using the resultant transform estimate.
Overlap is computed by evaluating the percentage of points
with the nearest neighbor inside 0.5 meters. If the overlap is
sufficient, we pass the inter-robot loop closure to PCM [26]
for geometric verification. Once a loop closure is validated
by PCM, it is added to the pose graph and communicated to
the rest of the robots in the team.

H. Communication Strategy

As noted in Section II-C, communication between robots
is bandwidth limited. For this reason, we formulate our
communications strategy to minimize the transmission of
large data structures by first exchanging small ones. After the
robot has completed its pose graph optimization at each step,
it shares the newest scene histogram, as in Section IV-E, with
the associated pose. When another member of the multi-robot
system receives this message, the histogram is used to query
a k-d tree. If any of the nearest neighbors comply with the
maximum tree distance, then that point cloud is requested.
Upon receipt of this cloud, registration is attempted as per
Sections IV-F and IV-G. This model aims to eliminate the
exchange of raw sensor data at each time step. Raw sensor
data is only exchanged if scenes are close in feature space,
potentially resulting in an inter-robot loop closure.

Note that we incrementally share pose estimates of robot
keyframes as keyframes are instantiated. AUV state estima-
tion, however, is prone to high SLAM drift and subsequent
drift correction when loop closures are detected. These
corrections mean that robots may need to share updated pose
estimates with their team; otherwise, they will be operating
with deprecated knowledge of other robots in the system. We
handle this by setting a change threshold for a robot’s state;
if any pose changes significantly, that pose is re-sent to the
team. The team then uses this new information to implement
the fPR,

V. EXPERIMENTS
A. Hardware Overview

In this work, we utilize our customized BlueROV2-Heavy
as shown in Fig. 1a. This vehicle features depth and attitude
control implemented with an onboard PixHawk. The sensor
payload includes a Rowe SeaPilot DVL, VectorNav VN-
100 MEMS IMU, Bar30 pressure sensor, and a twin sonar
arrangement. The vertical sonar is a Blueprint Subsea Oculus

M1200d, and the horizontal sonar is an Oculus M750d. We
use the horizontal sonar as the SLAM perceptual input; with
a max range of 30 meters, the sensor has a 20-degree vertical
aperture and a 130-degree horizontal field of view. In order
to manage sensor data and our SLAM system, we utilize the
robot operating system (ROS). The computer used to manage
all instances of SLAM in our multi-robot system is equipped
with an Intel i9-9880H 2.30GHz CPU.

In order to perform multi-robot experiments, we record
several datasets and concurrently play them back on a
single computer. We use |N| instances of our system during
playback to create a multi-robot system. Please note that we
play back real data (sonar, DVL, IMU) and simulate acoustic
communication between robots. To simulate communications
between robots, we use the existing ROS message passing
system to pass the relevant messages between instances of
our system.

B. Metrics

In order to consider different parameterizations of our
system, we use several metrics. Note that there is no ground
truth in our data, nor is there enough publicly available
sonar data with ground truth information to perform a study
of this type. However, since the goal of our system is to
provide awareness of the team relative to a single robot,
we formulate the following. Each dataset has a stable single
robot SLAM solution; this solution is transformed into the
frame of each team member. The location of each team
member in a common reference frame is determined using
manual alignment. We then compare the single-agent SLAM
outcome, transformed into each team member’s reference
frame, to the estimate each robot has built of its team
members using our system. We denote this as inter-robot
error, characterized with mean absolute error (MAE) and root
mean squared error (RMSE).

Our second metric is network utilization, measured by
monitoring the communication channel between robots and
measuring total traffic. Note that we exclude network over-
head and only report the cost of message contents, as network
overhead may be hardware-specific. Network utilization is
reported as a time series plot and considering the total usage
divided by the mission duration. Note that we perform ten
trials for each test case, and results for inter-robot error and
network utilization are aggregated across all ten trials.

C. Multi-robot SLAM Ablation Study

To validate our system, we consider two environments:
SUNY Maritime College in The Bronx, New York, shown
in Fig. 1b, and the United States Merchant Marine Academy
(USMMA) in Kings Point, New York. At SUNY Maritime,
we use a system of two robots crossing paths from opposite
sides of the environment, with a single opportunity for inter-
robot loop closure. At USMMA, we consider a system of
three robots traveling in similar directions, with several op-
portunities for inter-robot loop closure. At SUNY Maritime,
the robots start on opposite sides of the environment, while
at USMMA all robots start close together.
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Entire Trajectory

Poses With Inter-robot Loop Closures

Euclidean Dist. (m) Theta (deg.)

Euclidean Dist. (m)

Theta (deg.) Network Utilization (bits/second)

Case MAE RMSE MAE RMSE MAE RMSE MAE RMSE  Average Min/Max

SM 1 2.83 2.89 5.12 5.12 22 22 5.12 5.12 - -

SM 2 2.36 2.39 347 347 2.06 2.06 3.47 3.47 - -

SM 3 1.92 1.98 35 3.51 1.5 1.97 3.27 3.28 337.62 217.05 / 468.05

SM 4 2.63 2.68 4.74 4.74 2.03 2.04 4.75 4.75 161.07 134.93 / 208.55

SM 5 7.25 7.58 20.27  26.76 6.84 6.88 14.47 15.83 213.65 124.26 / 486.54
USMMA 1 2.28 2.66 3.24 3.89 1.22 1.44 1.78 2.38 - -
USMMA 2 2.09 2.41 221 2.63 1.13 1.39 1.38 1.78 - -
USMMA 3 1.17 1.29 1.93 2.27 0.66 0.73 1.27 1.47 3176.61 2556.64 / 5579.54
USMMA 4 1.44 1.62 2.62 3.07 0.82 0.97 1.71 2.09 1244.84 1050.19 / 1284.24
USMMA 5  3.09 3.59 1776 22.66 3.26 3.31 11.51 1333 2126.56 2079.58 / 2173.16

TABLE I: Real world multi-robot SLAM results. This table summarizes inter-robot error and network utilization for our five test cases.
We analyze inter-robot error in two ways; the entire robot trajectory and only poses with inter-robot loop closures. We report the average
network utilization and the min/max of the 10 trials for each test case. Note SM denotes SUNY Maritime.

To test the algorithmic components of our multi-robot
SLAM architecture, we present an ablation study in which
we progressively add components of our system until the
system is complete. Specifically, we vary the contents of our
outlier rejection system and specific components of the com-
munication strategy. We note that there is no difference in
system parameterization between datasets. For each dataset,
we test each of the following cases:

o Case 1: min. no. pts., point ratio, and overlap conditions

o Case 2: min. no. pts., point ratio, overlap, and scene
image conditions

o Case 3: min. no. pts., point ratio, overlap, scene image
conditions, and PCM

o Case 4: min. no. pts., point ratio, overlap, scene image
conditions, PCM, and point cloud compression (The
complete proposed system)

o Case 5: min. no. pts., point ratio, overlap, scene image
conditions and PCM without re-sending updated pose
information

Our results are summarized in Table I, and qualitative
examples are shown in Fig. 4. We also provide playback
of our experiments (for case 4) in our video attachment. We
require a minimum number of 75 points, a maximum point
ratio of 2.0, a scene image max. of 0.8, minimum overlap
of 55% and compression voxel size of 0.25 meters. When
computing SLAM metrics, we consider Euclidean distance
in meters and yaw (theta) in units of degrees. We break our
SLAM metrics into two categories: (1) the entire trajectory
and (2) only the poses with inter-robot loop closures. We
also report network utilization in units of bits/second for each
case. Note that cases 1 and 2 do not have network utilization
reported. Their communication configuration does not differ
from case 3, nor does their difference in outlier rejection
change any form of communication logic.

When considering the results of our multi-robot SLAM
ablation study, there are several important takeaways. Firstly
there is added value in using a scene image as a method
of outlier rejection (case 2) at both USMMA and SUNY
Maritime in terms of error. Secondly, the addition of PCM
(case 3) yields additional value in terms of inter-robot error.
Next, when considering the use of point cloud compression

(case 4), there is a slight increase in inter-robot SLAM error
in exchange for cutting network utilization in half compared
to uncompressed clouds (case 3). Time series plots showing
network utilization are given in Fig. 5. We note the reduction
in network usage when using the compression method of Sec.
IV-B, as well as the spike at the beginning of the USMMA
mission, which is due to heavy point cloud exchange. Lastly,
when removing the sending of significant updates in a robot’s
state estimate to the rest of the team (case 5), a greatly
deteriorated inter-robot SLAM result is observed with some
savings in network utilization relative to case 3.

We note that our system runs faster than keyframes are
added; an aggregate summary of runtimes from USMMA
and SUNY Maritime is shown in Table II. We note that our
registration time in Table II includes our outlier rejection
system (without PCM, which is captured separately in the
table). It is important to note that network utilization with
three agents is reasonable when considering the limitations
of commercial off-the-shelf hardware options. We want to
underscore the significance of this result. This work is
the first instance of multi-robot SLAM using real imaging
sonar data to utilize indirect encounters, to the best of our
knowledge. Not only does our system result in inter-robot
loop closures, but these loop closures are also leveraged to
build estimates of team members in the frame of each robot
in a distributed manner. Further, it does so with an efficient
exchange of information, as shown by the network utilization
results. Lastly we note the success rate, i.e., how often inter-
robot loop closures are successfully detected. For cases 1-4 in
both data sets and USMMA case 5 we note a 100% success
rate. For SUNY Maritime case 5, we note a 70% success
rate, but given this is a data point meant to show the value
of an otherwise included feature, we consider it no further.

D. Analysis of Perception Message Overhead

Some readers may note that using a computer vision
paradigm is common when attempting to register a pair
of keyframes with no initial guess. This general paradigm
extracts salient point features, associates them, and then
computes a transform with RANSAC or similar. We note
the use of KAZE [37] and AKAZE [38] features on sonar
imagery [39], [40] and the use of ORB [41] in RADAR
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Fig. 4. Example trajectories from USMMA. This dataset includes three robots, v (red), 5 (blue) and § (orange). Solid lines show
trajectory estimates with dotted lines showing ground truth used to compute Table I. Note that there is only robot relative ground truth, so
there is no true (dotted) line for a robot’s own trajectory. We also note that estimated trajectories (solid) may be shorter than true (dotted)
due to the varying shutdown times of robots. Stars show starting locations for robots. We avoid using -y since it refers to sonar intensity.

Algorithm Mean (ms)  Standard Deviation (ms)
PCM 0.32 0.33
Kd-tree Search 0.88 4.49
Registration (w/ rejection) 258.88 265.43

TABLE II: Runtime. PCM is used for loop closure verification,
k-d tree search is for scene comparison, and registration refers to
the Go-ICP based registration method in Section IV-F, including
the outlier rejection computations.

Method Mean Count  Std. Dev.  Mean KBits
Scene Descriptor 1 1 128
Point cloud - float32 138.69 142.94 9.14
Point cloud - compressed 138.69 142.94 2.28
KAZE 48.68 56.73 116.20
AKAZE 37.05 41.14 20.07
ORB 168.62 32243 82.54

TABLE III: Perception message overhead. Mean count and std.
dev. refer to the average number of points extracted with the given
method. Mean Kbits are computed by taking the overhead of a
single point and multiplying it by the mean number of points.

imagery. However, in the multi-robot case, that would require
broadcasting feature points and descriptors. We provide a
summary of some relevant feature extraction tools for sonar
imagery in Table III. Here we consider the data-overhead per
feature and the number of features per sonar image in our
datasets. We use the OpenCV implementations of KAZE,
AKAZE, and ORB to perform this comparison.

As shown in Table III, our scene descriptor is a data-
efficient means of summarizing content. Moreover, even
passing simple 32-bit floating-point-based point clouds is
significantly less costly than KAZE, AKAZE, and ORB.
Lastly, our compression method, while simple, shows a
considerable reduction in data requirements, and as we have
shown in Section V-C and Table I, only results in a minor
increase in inter-robot error.

E. Multi-agent Mapping

While the purpose of our system is to provide each

robot with knowledge of the states of the other agents in

the system, it can also be used to derive merged maps.
Consider a system of robots tasked with mapping an area in a
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Fig. 5: Network utilization. A comparison of network utilization
with and without the voxel compression method described in
Section IV-B. The y-axis shows network utilization using a sliding
window (window of 100) average. The x-axis shows time. A
representative run is shown from the three-robot USMMA datset
at top, and from the two-robot SUNY Maritime dataset at bottom.

collaborative modality, a core task for a multi-robot system.
This section showcases an example of a map that was merged
offline, using the multi-robot SLAM results from Section
V-D. We specifically consider the SUNY Maritime dataset,
which has two robots. Using the multi-robot state estimate,
we can transform the sonar point clouds in the frame of each
robot, shown in Fig. 1c. We note the coverage increase with
the use of a multi-robot system and the drift in our SLAM
system. This drift is primarily due to the high drift rate of
our low-cost MEMS IMU. We also note that the inter-robot
drift is comparable to that of a single robot sweeping the
entire workspace shown in Fig. 1c.

VI. CONCLUSIONS

In this work, we have proposed a system to find and inte-
grate inter-robot loop closures in a distributed, graph-based
pose SLAM architecture. We have demonstrated the real-
time viability of our system, the accuracy of accepted inter-
robot constraints, and the efficacy of our communications
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system. When considering the potential shortcomings of our
system, while we take steps to prevent perceptual aliasing
from corrupting the SLAM solution, this effect can overwork
the communications link. If scene descriptors are similar,
we exchange point clouds, meaning that perceptual aliasing
can result in the over-exchange of information that our
outlier rejection system will cull. Future work will consider
geometric verification in scene descriptors to ensure only
useful perceptual data is exchanged. However, this is the
first example of imaging sonar-based underwater multi-robot
SLAM, to the best of our knowledge. There is much potential
for future work, including achieving a wide variety of co-
operative tasks, and multi-robot active SLAM. Furthermore,
our system enables multi-agent autonomous operations in
settings where GPS 1is unavailable or clock synchronization
is impractical, which are relevant constraints in many real-
world applications.
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