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Research and practical development of data anonymization techniques has proliferated in recent years.

Although the privacy literature has questioned the efficacy of data anonymization at protecting individuals
against harms associated with re-identification, this paper raises another new question: whether
anonymization techniques themselves can mask statistical disparities and thus conceal evidence of
disparate impact that is potentially discriminatory. If so, the choice of data anonymization technique to
protect privacy, and the specific technique employed, may pick winners and losers. Examining the
implications of these choices on the potentially disparate impact of privacy protection on underprivileged
sub-populations is thus a critically important policy question.

The paper begins with an interdisciplinary overview of two common mechanisms of data anonymization and

two prevalent types of statistical evidence for disparity. In terms of data-anonymization mechanisms, the
two common ones are data removal (e.g., k-anonymity), which aims to remove the part of a dataset that
could potentially identify an individual; and noise insertion (e.g., differential privacy), which inserts into a
dataset carefully designed noises that block the identification of individuals yet allow the accurate recovery
of certain summary statistics. In terms of the statistical evidence for disparity, the two commonly accepted
types are disparity through separation (e.g., the "two or three standard deviations" rule for a prima facie
case of discrimination), which is grounded in the idea of detecting the separation between the outcome
distributions for different sub-populations; and disparity through variation (e.g., the "more likely than not"
rule in toxic tort cases), which concentrates on the magnitude of difference between the mean outcomes of
different sub-populations.

Our work demonstrates that the two data anonymization mechanisms have distinctive impacts on the

identifiability of disparity, which also varies based on its statistical operationalization. Specifically, under the
regime of disparity through separation, data removal tends to produce more false positives (i.e., detecting
false disparity when none exists) than false negatives (i.e., failing to detect an existing disparity); while noise
insertion rarely produces any false positives at all. Meanwhile, noise insertion does produce false positives
(equally likely as false negatives) under the regime of disparity through variation; while the likelihood for
data removal to produce false positives and false negatives depends on the underlying data distribution.
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Abstract. Research and practical development of data-anonymization techniques have
proliferated in recent years. Yet, limited attention has been paid to examine the potentially
disparate impact of privacy protection on underprivileged subpopulations. This study is
one of the first attempts to examine the extent to which data anonymization could mask
the gross statistical disparities between subpopulations in the data. We first describe two
common mechanisms of data anonymization and two prevalent types of statistical evi-
dence for disparity. Then, we develop conceptual foundation and mathematical formalism
demonstrating that the two data-anonymization mechanisms have distinctive impacts on
the identifiability of disparity, which also varies based on its statistical operationalization.
After validating our findings with empirical evidence, we discuss the business and policy
implications, highlighting the need for firms and policy makers to balance between the
protection of privacy and the recognition/rectification of disparate impact.
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The principles of data protection should therefore not
apply to anonymous information, namely information
which does not relate to an identified or identifiable
natural person or to personal data rendered anony-
mous in such a manner that the data subject is not or
no longer identifiable.

—General Data Protection Regulation,
GDPR Recital 26

1. Introduction
The emergence of privacy laws and regulations, like
the European Union’s General Data Protection Regu-
lation (GDPR), spurred the proliferation of data-
anonymization techniques in recent years. In general,
such techniques are conceptualized and developed as
an organizational-level (or population-level) solution
balancing two countervailing interests. One is to dis-
associate the data from the data subjects (i.e., individ-
uals) for the purpose of privacy protection. The other
is to maintain the utility of the data. For example,
Apple deployed differential privacy techniques in its
collection of user keystrokes in iOS devices (Apple
Inc. 2020). On one hand, the collected keystrokes can
no longer be easily linked back to an individual,

whereas on the other hand, Apple can still use the col-
lected data to improve its autocorrection and predic-
tive text-entry features. Because disassociating data
from subjects necessitates a reduction of data utility
(Kifer and Machanavajjhala 2011, Dwork et al. 2017),
many data-anonymization techniques operationalize
the privacy–utility trade-off as a tunable parameter
that is set at the organizational level.

Although the implementation of data anonymiza-
tion as an organizational-level solution meets the reg-
ulatory requirements (e.g., the above-quoted recital in
GDPR), it may not align with the idiosyncratic nature
of individuals’ privacy preferences and demands
(Acquisti et al. 2015). Similarly, the benefits (or harms)
derived from improved (or diminished) data utility
also vary drastically from one individual to another
(Pitoura et al. 2018). Considering the organization-level
solution and the individual-level impacts in tandem, a
natural question emerges: Could an organization-
level, one-size-fits-all solution to privacy protection
stimulate disparate impacts on different individuals?
The emergence of privacy laws and regulations gives
primacy to answering this question, because if such
disparate impacts do exist, legislators and regula-
tors would be essentially picking winners and
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losers by requiring or incentivizing the use of data-
anonymization techniques.

Unfortunately, the existing studies on the implica-
tions of data anonymization were largely focused on
the reduction of overall data utility, again defined at
the organizational level over all data records in the
data set, leaving the individual-level impact an unan-
swered question that represents a considerable gap in
the literature. Answering this question is obviously
challenging. The design of data anonymization and
the utility of anonymized data are usually governed
by proprietary technologies and processes that are
opaque to researchers and the public (Tang et al.
2017). The impact of data anonymization on individu-
als is also difficult to grapple with, given that even
privacy experts are often confused by what a data-
anonymization technique offers in terms of privacy
protection (Bambauer et al. 2013). To take the first step
toward answering this question, we focus on a specific
type of disparate impacts that is analytically accessi-
ble, yet practically salient: whether data anonymiza-
tion could mask gross statistical disparities between
subpopulations in the data. The presence of such a
disparity-masking effect may have far-reaching busi-
ness, social, and policy implications. For example, it
could prevent Apple from detecting and rectifying the
subpar accuracy its autocorrection feature offers to
minority populations with distinct language patterns
(Chang et al. 2019). In a healthcare context, it could
preclude the identification of health disparities
pertaining to gender, race, ethnicity, income, sexual
orientation, etc., which represent one of the most
pressing social justice issues facing the United States
(Kelley et al. 2005). For the U.S. Census, with which a
public discourse of how to apply data anonymization
is currently under way (Macagnone 2019), the mask-
ing of disparities could have detrimental impacts on
public policy for the next decade.

To examine the potential impact of data-anonymization
techniques on the detection of statistical disparity, one
must first identify the mechanisms through which the
current techniques anonymize private data and define
the statistical evidence required to identify disparities
between subpopulations. Unfortunately, researchers
and practitioners today frequently and casually use the
term data anonymization to refer to a wide variety of
techniques, from those that directly manipulate data
with predefined rules (Texas Department of State
Health Services 2019) to those that dynamically deter-
mine whether and how to answer queries posed to the
data (Dwork et al. 2019). The term statistical disparity
also requires closer examination and refinement, as its
meaning in one context could be grounded in statistical
significance (e.g., unlawful discrimination; Garaud
1990), yet in another could focus on frequency compari-
son (e.g., public health1).

Seeking clarity to the notions of data anonymization
and statistical disparity, we first propose a typology
categorizing the mechanisms of data anonymization
as data removal or noise insertion; and a typology opera-
tionalizing statistical disparity as through separation2 or
through variation. After offering a detailed presentation
of the two typologies, we explore the interplay be-
tween the two—that is, the implications of applying
each anonymization mechanism on the identifiability
of each disparity operationalization. We emphasize
the distinct outcomes of these four (2 × 2) combina-
tions: When disparity is operationalized through sepa-
ration, although the noise-insertion mechanism only
tends to mask disparities, the data-removal mecha-
nism could more likely produce false positives than
masking disparities. In contrast, when disparity is op-
erationalized through variation, both anonymization
mechanisms could mask disparities or produce false
positives, even flipping the direction of observed dis-
parities on occasion. We develop these distinct
conclusions through conceptual development and
mathematical formalism, before validating them with
empirical evidence. In the final section of the paper,
we discuss the practical implications of our findings,
the limitations of our work, and the potential direc-
tions for future research.

2. Related Work
Closely related to our work is a recent stream of re-
search on how anonymization affects the fairness of
predictions made from the anonymized data. For
example, Pujol et al. (2020) studied the question that if
we were to allocate vital resources based on an anony-
mized data set (e.g., epidemiological data), whether
the error of allocated resources would be unfairly
large for some individuals (or subpopulations) than
others. Similarly, Bagdasaryan et al. (2019) examined
the fairness of predictions from a recurrent neural net-
work if it were trained on a differentially private data
set. Dwork and Mulligan (2013) and Agarwal (2020)
further challenged the fundamental fairness of any
downstream products built from an anonymized data
set. Agarwal (2020), for example, proved the infeasi-
bility of building a “fair” machine-learning model
(under a broad notion of fairness) from an anony-
mized data set that satisfies ε-differential privacy.

Developed in parallel to the above research stream
is a recent body of research in machine learning that
focuses on examining whether removing certain social
determinants from the input data could improve (or
impede) the fairness of predictions generated by a
particular type of downstream product, a (supervised)
machine-learning model (Ekstrand et al. 2018, Lipton
et al. 2018, Kleinberg and Mullainathan 2019, Cowgill
and Tucker 2020, Rambachan et al. 2020). Although
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the machine-learning algorithms and the notions of
fairness varied considerably in this body of research,
its recent development unequivocally established that
the removal of social determinants is always detri-
mental to the fairness of downstream machine learn-
ing (Lipton et al. 2018, Kleinberg and Mullainathan
2019, Rambachan et al. 2020), regardless of the input
data set, the machine-learning algorithm being used,
or the notion of fairness.

Although these two streams of research and our
work are all related to the unintended consequences
of privacy protection on issues related to disparity/
fairness, their referents for disparity are fundamentally
different. Our work focuses on the detection (or mask-
ing) of disparity in the original data from their anony-
mized version. The two existing research streams, on
the other hand, examined the disparity of downstream
data products built from the anonymized data set. In-
terestingly, despite this fundamental difference, the
policy implications of our work and the existing re-
search are remarkably relevant, as elaborated on later
in the paper. For example, whereas our findings show
how different types of anonymization mechanisms
could mask disparity detection (to different extents)
over the (upstream) original data set, the two existing
research streams showed that anonymization could
also blunt the learning of fair prediction models from
the anonymized data, making the downstream data
products susceptible to incurring disparate impacts in
practice.

Finally, sharing the same theoretical roots with our
work was the research on how anonymization re-
duces the utility of the data being released (e.g.,
Dwork et al. 2016, Abowd and Schmutte 2019) and
the implications of such reduced utility on empirical
research (e.g., Santos-Lozada et al. 2020). Santos-Loza-
da et al. (2020), for example, demonstrated that the
noises inserted to population counts could reduce the
accuracy of mortality rates calculated based on such
counts, which, in turn, could affect our understanding
of health disparities across racial/ethnic groups. Al-
though the study of anonymization-induced error in
inferential statistics is an important theoretical under-
pinning of our work, the focus of our work is not to
demonstrate that anonymization-induced errors could
alter empirical findings, such as the outcomes of dis-
parity detection, but to examine how such outcomes
specifically relate to the complex interplay between dif-
ferent mechanisms of data anonymization and differ-
ent types of (statistical evidence used in) disparity
detection.

3. Conceptual Development
In this section, we develop conceptual foundation
demonstrating the potential implications of data

anonymization on disparity detection. We first intro-
duce two typologies for the design of data anonym-
ization and the statistical operationalization of dispar-
ity, respectively, before explicating the mechanisms
through which an anonymization mechanism affects
the detection of disparity according to its
operationalization.

3.1. A Typology of Anonymization Mechanisms:
Data Removal and Noise Insertion

In what follows, we first describe the two types of
anonymization mechanisms, data removal and noise
insertion, before explicating the key differences be-
tween the two.

3.1.1. Data Removal. Because the goal of data ano-
nymization is to prevent any individual from being
identified from the anonymized data set, a natural
idea for anonymizing a data set is to remove the part
of data that could be used to identify an individual.
The data-removal mechanism is rooted in this idea. Its
initial implementations focused on removing varia-
bles that are obvious identifiers, such as name,
address, Social Security number, etc. These implemen-
tations were challenged by the discovery (Sweeney
2000) that 87% of Americans can be uniquely identi-
fied by a combination of ZIP code, gender, and date of
birth—none of which is traditionally deemed an
“identifier.” Following this dramatic discovery, a
plethora of data-removal techniques were developed
in the computer science literature to detect and rectify
the issues caused by such “quasi-identifiers” (e.g.,
Sweeney 2002b, Machanavajjhala et al. 2007), forming
the bulk of the existing literature for the data-remov-
al mechanism.

Although these techniques differ considerably in
their design (see Fung et al. 2010 for a comprehensive
review), a common procedure they follow is to first de-
termine which individuals are at risk for being identi-
fied, before removing the minimum amount of infor-
mation necessary to block such identifications.
Figure 1(a) demonstrates a simple example premised
on the notion that an individual is at risk for being
identified if his or her record in the data set is like no
other (i.e., if the record has an empty neighborhood
like the non-overlapping dotted circles in the figure).
The idea for anonymizing a data set is then to remove
all records with an empty neighborhood (i.e., the
“suppression” technique; Sweeney 2002a), as depicted
in the figure. Beyond this simple example, many other
forms of data removal have been developed, such as
removing selected variables of an individual or obscur-
ing the variables with coarser values—for example, by
changing ZIP code to city or state (Fung et al. 2010).

Despite its intuitive appeal and the innumerable ef-
forts spent on its development, technical research on
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data removal all but ceased in the late 2010s. Part of
this is because of the (re)emergence of noise-insertion
mechanisms, which we will discuss next. The more
important reason, however, is that researchers real-
ized that it is untenable to block all possible identifica-
tions without making substantial assumptions about
what other data sources might be linked with the ano-
nymized data set to identify an individual (Ganta
et al. 2008). Interestingly, this concern did not deter
data removal from gaining firm footing in practice. As
of today, it is not only widely adopted by firms and
government agencies (e.g., Ali 2018, Rocher et al.
2019), but frequently included as recommended practi-
ces for complying with privacy laws and regulations3

(U.S. Department of Health and Human Services 2012,
Article 29 Data Protection Working Party 2014, Finnish
Social Science Data Archive 2020). Table 1, for example,
depicts the data-removal mechanism adopted by the
Texas Department of State Health Services (2019) to
anonymize their state-wide inpatient discharge data set
for regulatory compliance. Similar rules were adopted
by many other states, such as New York (U.S. Agency
for Healthcare Research and Quality 2018). The practi-
cal pertinence of such techniques makes data removal
an important anonymization mechanism to examine in
this paper.

3.1.2. Noise Insertion. Like data removal, the idea of
noise insertion has been extensively studied in several
disciplines, such as computer science, information sys-
tems, and statistics (Traub et al. 1984; Muralidhar
et al. 1995, 1999; Agrawal and Srikant 2000; John et al.
2018). Researchers have long recognized the feasibility
of accurately recovering certain summary statistics
from a noise-ridden data set using methods akin to
statistical calibration (Osborne 1991). Early efforts on
noise insertion, though, were blunted by the finding
that simply adding independent Gaussian noise to all
variables in a data set could allow the inserted noise to
be disentangled from the anonymized data using spec-
tral methods (Huang et al. 2005), effectively re-enabling
the identification of an individual. The development of
differential privacy (Dwork et al. 2016) addressed this
issue and provided a rigorous anonymity guarantee in
the form of statistical indistinguishability (Goldwasser
et al. 1989) between a data set that includes an individu-
al’s information and a data set that does not. More im-
portantly, this guarantee holds, no matter what other
data sources might be available to be linked with the
anonymized data. This avoids the aforementioned
pitfall of the data-removal techniques, makes differen-
tial privacy the de facto standard for modern noise-
insertion techniques, and helps noise insertion gain

Figure 1. (Color online) Illustration of Data-AnonymizationMechanisms

data removal

(a) (b) (c)

noise insertion

original

data removal

noise insertion

effects of anonymization

Notes. (a) Data removal. (b) Noise insertion. (c) Effects of anonymization.

Table 1. Texas Healthcare Information Collection Anonymization Rules

Rule If a patient meets the following criterion Then perform the following action on his/her record

1 <30 patients with the same ZIP code Remove last two digits of ZIP code
2 State ≠ Texas or an adjacent state Remove ZIP code
3 ICD-10 codes indicate alcohol/drug use or HIV Remove ZIP code and gender, change age to age group
4 <5 patients with the same gender and hospital ID Remove ZIP code and hospital ID
5 <50 patients with the same hospital ID Remove ZIP code and hospital ID
6 <5 patients with the same country Remove country
7 <5 patients with the same county Remove county
8 <10 patients with the same hospital ID and race Remove race and ethnicity

Note. In Rule 3, the age is generalized to one of five age segments (<20, [20,40), [40, 60), [60,80), >80).
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wide acceptance in research (Hay et al. 2016) and a solid
footing in practice, especially among high-tech compa-
nies (Apple Inc. 2020) and in statistical agencies such as
the U.S. Census Bureau (Abowd and Schmutte 2019).

Techniques for noise insertion in general, and dif-
ferential privacy in particular, take many ways,
shapes, and forms. Random noises could be directly
added to the original data (Agrawal and Srikant 2000,
John et al. 2018), like in Figure 1(b), or be added to
when answering a query over the data set (Dwork
et al. 2016). The statistical estimates after noise inser-
tion could remain unbiased (e.g., with the standard
Laplace mechanism for differential privacy; Dwork
et al. 2016) or include a small bias determined by the
input data (e.g., the data- and workload-aware algo-
rithm for differential privacy; Li et al. 2014). Similarly,
the inserted noise could be independent of the origi-
nal data set (e.g., Dwork et al. 2016) or be generated
according to the data (e.g., Li et al. 2014). Although
the implementations differ, their conceptual under-
pinning is remarkably consistent: The confidence in-
terval for any summary statistics inferred from the
anonymized data must be wider than the inference
over the original data set, so as to make the inferred
statistics indistinguishable, whether an individual is
in the original data set or not.

3.1.3. Comparison. Figure 1(c) illustrates the compari-
son between the two anonymization mechanisms: Data
removal often introduces bias to the estimated statistics,
and likely reduces the observed standard deviation due
to its tendency to remove “outlier” records, such as those
with empty neighborhoods in Figure 1(a). In contrast,
noise-insertion techniques are usually unbiased or intro-
duce minimal bias to the estimated statistics. Nonetheless,
the inserted noise tends to increase the observed standard
deviation considerably. In the e-companion (section
EC.1), we also provide a more detailed summary of the
typical anonymization algorithms in each category.

Before concluding our conceptual discussions of
the anonymization mechanisms, we offer the caveat
that neither mechanism is a silver bullet for privacy
protection. As mentioned before, the literature has
unequivocally confirmed the feasibility of reidentify-
ing an individual after data removal by linking the
anonymized data set with another external data
source (Fung et al. 2010). Noise insertion cannot
block all possible identifications either. For example, it
has long been known that a differentially private data
set may still disclose a considerable amount of infor-
mation about an individual (Kifer and Machanavajjha-
la 2011). Further, it is impossible to directly compare
the degree of anonymity offered by different anonym-
ization mechanisms because such a comparison de-
pends on myriad factors, including what external data
sources might be linked with the anonymized data

(Du et al. 2008). To this end, it is important to note that
we do not attempt to compare the two anonymization
mechanisms vis-à-vis in the paper. Instead, our imper-
ative is to illuminate and contrast their qualitatively dis-
tinct impacts on the detection of disparity from the
anonymized data.

3.2. A Disparity Typology: Disparity Through
Separation and Disparity Through Variation

There is no dispute that disparities between subpopu-
lations exist in a wide range of social and economic
outcomes, from rates of poverty and unemployment
to quality of education and healthcare. It is not sur-
prising, therefore, that the detection of disparity is a
long-standing research problem in a variety of disci-
plines, from sociology and criminology to epidemiolo-
gy and medicine (Pager and Shepherd 2008). Equally
unsurprising is the fact that courts are frequently
called upon to decide the existence and magnitude of
disparities, such as in cases pertaining to labor and
toxic tort laws (King 2006). Given the range of
domains that have examined the issue, we do not
attempt to be exhaustive in our presentation of the
typology. Instead, our intent in developing the typolo-
gy is to highlight two conceptually distinct, yet equal-
ly prevalent, types of disparity operationalizations
that could give rise to distinctive findings once data
anonymization is applied. Table 2 summarizes the
key differences between the two types of operationali-
zations, disparity through separation and disparity
through variation. In the passages that follow, we first
describe the two types, respectively, before explicating
the differences between the two.

3.2.1. Disparity Through Separation. One stream of
disparity operationalizations originated in the exami-
nation of racial discrimination in sociology (Pager and
Shepherd 2008) and naturally extended to domains re-
lated to employment discrimination (e.g., Barnum
et al. 1995, Gupta et al. 2020) and court cases pertain-
ing to labor markets, such as pattern-and-practices
cases alleging systemic discrimination in a workplace.
In these domains, the main driver behind the detec-
tion of disparity is to affirm or reject the existence of
underlying discrimination based on a focal social de-
terminant such as race or gender (Garaud 1990,
National Research Council 2004). Indicatively, dispari-
ty was operationalized with the goal of discerning its
presence from chance. For example, courts have long
applied a threshold of 5% significance level when es-
tablishing a prima facie case of discrimination (Barnett
1982), meaning that there must be less than 5% proba-
bility for the observed disparity to result from chance.
Translating the 5% threshold to observed disparity,
the Supreme Court opined in Castaneda v. Partida4 that
the disparity must exceed “two or three standard
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deviations.” In essence, this is identical to the opera-
tionalization used by researchers to detect disparity
through sample–mean comparisons (e.g., two-sample
t-test; Castilla 2008, Acquisti and Fong 2020), even
though the operationalizations in research tend to be
more complex, bringing to bear not only the focal so-
cial determinant, but also other relevant variables
(e.g., job performance), as well as the interaction ef-
fects between the social determinant and the other
variables (National Research Council 2004).

We refer to this stream of disparity operationaliza-
tions as “disparity through separation” because, in
both research and legal domains, these operationaliza-
tions were grounded in the idea of detecting the sepa-
ration between outcome distributions for different
subpopulations. Consider a simple example depicted
in Figure 2, where there are two subpopulations and
the outcome variable is binary—for example, repre-
senting whether an employee was promoted to a man-
agerial position. Assuming independence between the
promotion decisions for different employees, the

percentage of employees who were promoted forms a
binomial distribution for each subpopulation, like the
curves in the figure. As can be seen from the figure,
when disparity is operationalized through separation,
its detection hinges on the degree of separation be-
tween the promotion-rate distributions of different
subpopulations, rather than the raw difference be-
tween the observed promotion rates. For example,
when the data set has 10 samples for each subpopula-
tion, the imputed disparity cannot meet the 5%
threshold when the observed promotion rates are 30%
and 70%, respectively (t " 1.95, p " 0.067, with two-
tailed t-test). Yet the disparity could meet the thresh-
old for a much closer pair of observed promotion
rates, like 40% and 60%, when the sample sizes are
larger (e.g., when n " 50, there is t " 2.04, p < 0.05).
The implication of this property, as summarized in
Table 2, is that maximum disparity occurs when the
distance between mean outcomes is maximized across
subpopulations, and the standard deviation of out-
comes within each subpopulation is minimized. We
will discuss later in the paper how data-anonymization
mechanisms, which could modify both the mean and
standard deviation of the outcome variable, impact the
detection of disparity when the latter is operationalized
through separation.

3.2.2. Disparity Through Variation. The other stream
of disparity operationalizations has its root in epide-
miology, but has been applied to a wide variety of do-
mains, including the detection of income disparity
(Éltetö and Frigyes 1968, Siegel and Hambrick 2005),
the argument of tort cases in courts (King 2006), etc. A
classic example is Daubert v. Merrell Dow Pharmaceuti-
cals, Inc.,5 where statistical evidence was used to deter-
mine whether the ingestion of a drug during pregnancy
has a disparate impact on birth defects—that is, wheth-
er there was a disparity in birth-defect rate between
those who took the drug and those who did not. In
these domains, the purpose of operationalizing dispari-
ty is often not only to establish its existence, but to
quantify its magnitude (e.g., in order to assess monetary
relief; King 2006). Indicatively, the operationalizations
in this stream were explicitly designed to measure the

Table 2. Meanings and Properties of Disparity Operationalizations

Type Meaning
Properties at maximum
disparity

Statistical
evidence

Primary
disciplines Court cases

Disparity through
separation

Separation between
outcome
distributions for
subpopulations

Maximum distance
between means;
minimum standard
deviation

Regression
analysis

Sociology,
management,
criminology,
education

Pattern and practice
of discrimination

Disparity through
variation

Differences between
mean outcomes of
subpopulations

Maximum distance
between means

Odds ratio Epidemiology,
medicine

Toxic tort

Figure 2. (Color online) Illustration of Disparity
Operationalizations

Separation Variation

Yes Yes

Yes No

No Yes

No No

0.3 0.4 0.6 0.7

Notes. Each curve depicts the probability density function for the
sample mean of the outcome variable for a subpopulation. When the
outcome variable is binary, such a sample mean follows a binomial
distribution. In the top two charts, the two distributions have little
overlap, enabling the detection of disparity through separation. The
first and third chart from the top have the expected sample means dif-
fer considerably from each other, enabling the detection of disparity
through variation.

Xu and Zhang: Implications of Data Anonymization on Disparity Detection
Management Science, 2022, vol. 68, no. 4, pp. 2600–2618, © 2021 INFORMS 2605

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.o

rg
 b

y 
[5

.1
98

.1
41

.2
11

] o
n 

27
 F

eb
ru

ar
y 

20
23

, a
t 0

7:
16

 . 
Fo

r p
er

so
na

l u
se

 o
nl

y,
 a

ll 
rig

ht
s r

es
er

ve
d.

 



magnitude of disparity. For example, courts have long
applied a “more likely than not” requirement on estab-
lishing disparate impact in civil cases, meaning that the
odds of the undesired outcome in one subpopulation
must be at least twice the odds in another6 (Gastwirth
2019). This relative ratio resembles the odds ratio metric
used in epidemiology research to detect disparity (e.g.,
Hebert et al. 2008).

We refer to this stream of disparity operationaliza-
tions as “disparity through variation” because, in both
research and legal domains, these operationalizations
were grounded in the idea of contrasting the mean
outcomes across subpopulations. Consider again the
example in Figure 2. When disparity is operational-
ized through variation, its detection depends only on
observed promotion rates, but not the standard devi-
ation of their distributions. For example, an ob-
served pair of promotion rates of 30% and 70% always
meets the “more likely than not” criterion (because
0:7=0:3 > 2), no matter if it satisfies the aforementioned
5% threshold. In contrast, if the observed rates are
40% and 60%, their ratio is below the cutoff
(0:6=0:4 " 1:5 < 2), no matter how large the samples
are and whether the two distributions overlap. As
summarized in Table 2, when disparity is

operationalized through variation, the maximum
disparity occurs when the distance between mean
outcomes is maximized and is irrelevant to the stan-
dard deviation of outcomes within each subpopulation,
forming a sharp contrast to the operationalization of
disparity through separation.

It is important to note that, when the data are not
anonymized, this obliviousness to standard deviation
is unlikely to make the findings less robust, so long as
the sample size is sufficiently large (Agresti 2002).
Further, because the distribution of disparity-through-
variation measures, like odds ratios, tend to have a
positive skew7 (Agresti 2002), the likelihood of them
masking an existing disparity by chance is fairly
small. Nonetheless, as we will elaborate in the mathe-
matical formalism section, the situation could change
drastically once the data set is anonymized. For exam-
ple, many noise-insertion algorithms introduce the
same degree of uncertainty to a statistical estimate, re-
gardless of the sample size (e.g., Dwork et al. 2016). In
this case, even a large sample is no longer a safeguard
allowing one to gloss over the standard errors of statisti-
cal estimates in disparity detection. As we will discuss
next, this leads to qualitatively distinct impacts of data
anonymization on the two disparity operationalizations.

Table 3. Implications of Anonymization Mechanisms on Disparity Operationalizations

Mechanism Disparity through separation Disparity through variation

Data removal FP more likely; FN less likely Likelihood of FP and FN depend on data distribution
Noise insertion FP highly unlikely; FN likely FP and FN are equally likely

Notes. FN, false negatives (i.e., type II errors); FP, false positives (i.e., type I errors). The table assumes the direct use of the anony-
mized data set or the differential-privacy algorithm in disparity detection, which is the state of the practice today (Rocher et al.
2019). It does not preclude the future design of dedicated algorithms to compensate for the effect of data anonymization.

Figure 3. Illustration of a False Positive Created by Data Removal

1 2

(a) (b)

3
before data removal

1 2 3
after data removal

Notes. Each circle represents an individual, with color marking its subpopulation membership. The x-axis represents the outcome variable. The
y-axis represents another variable in the data set. The data-removal anonymization is conducted based on all three variables (i.e., x, y, and color).
The four dark circles with x ≈ 3 are removed after anonymization because, for each of them, there is no other circle that is close on all three varia-
bles. (a) Before data removal. (b) After data removal.
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3.3. Implications of Anonymization on
Disparity Detection

In presenting the typology of the data-anonymization
mechanisms, we outlined two important distinctions
between data removal and noise insertion. First, where-
as data removal tends to reduce the standard deviation
(of the outcome distribution) for a subpopulation, noise
insertion almost always increases it. Second, whereas
data-removal techniques rarely make any guarantee on
the bias of statistics estimated from the anonymized
data, many noise-insertion techniques guarantee certain
estimated statistics (e.g., mean) to be unbiased. In what
follows, we discuss how these two distinctions interact
with the two disparity operationalizations to stimulate
different outcomes of disparity detection over anony-
mized data. Table 3 summarizes the key differences.

Consider disparity through separation first. Given
that data removal and noise insertion tend to shift the
standard deviation in opposite directions, we can ex-
pect their ramifications on disparity detection to differ
correspondingly. For example, it is highly likely for
noise insertion to mask disparity because the in-
creased standard deviation reduces the significance
level of the difference between subpopulations. For
the same reason, it is highly unlikely for noise
insertion to trigger a false positive8 when no dispar-
ity exists in the original data set. In contrast, a data-
removal technique could more likely occasion false
positives, as it reduces the observed standard devia-
tion. Meanwhile, it may not be as likely to mask
disparities unless the technique biases the outcomes in
a way that reduces the observed differences between
subpopulations.

Now, consider the operationalization of disparity
through variation. In this case, the change of standard
deviation does not affect the detection of disparity, but
the bias of the observed outcomes does. This brings to
the fore the potential bias introduced by data-removal
techniques. Figure 3 depicts such an example. As can be
seen from the figure, the two subpopulations have the
same mean outcome in the original data set. Yet, after
data removal, the mean outcome for one subpopulation
becomes twice as much as the other, giving rise to a
false positive. The opposite scenario can be constructed,
where data removal masks an existing disparity.9 Thus,
with the data-removal mechanism, whether the bias
would manifest as false positives or false negatives
heavily depends on the underlying data distribution.
This stands in contrast with the case of noise insertion,
where most existing techniques guarantee the absolute
or asymptotic unbiasedness of mean estimates (e.g.,
Dwork et al. 2016). Although the increased standard de-
viation could still shift the observed ratio in unpredict-
able directions, we are equally likely to observe false
positives and false negatives, regardless of the underly-
ing data distribution.

4. Mathematical Formalism
4.1. Preliminaries
In what follows, we present the preliminaries needed
to launch our mathematical inquiry into the implica-
tion of anonymization on disparity detection. Specifi-
cally, we first introduce the formal data model before
using it to present the two disparity operationaliza-
tions and the two anonymization mechanisms,
respectively.

4.1.1. Model of Data. A common method for exploring
the issue of disparity in an observed outcome (e.g.,
promotions in a workplace) is to develop a regression
model that includes the focal social determinant (e.g.,
race) as one variable and the other relevant observed
characteristics (e.g., job performance) as the other vari-
ables (National Research Council 2004). That is,

Yi " β0 + β1Xi + β2XiZi + β3Zi + ξi, (1)

where Yi is the outcome of interest, Zi is the social de-
terminant variable, Xi is a set of variables10 deemed
relevant to the outcome Yi, and ξi is the stochastic er-
ror term (with a zero mean). A simple variant of this
model (e.g., Everett and Wojtkiewicz 2002) is given by
β2 " 0, so that it captures only the direct effect of Zi,
but not the interaction between Zi and Xi. The model
can also allow for nonlinear relationships—for exam-
ple, by applying the log-odds transformation when
the outcome is binary (Rosenbaum 2010).

4.1.2. Disparity Operationalizations. Regardless of the
operationalization, disparity is clearly captured in
Equation (1) by β2X+ β3, the multiplicative factor for
Z. This factor can be interpreted as the magnitude of
disparity on the outcome variable Y given X. For ex-
ample, when Z is binary (i.e., Z ∈ {0, 1}), β2X+ β3 is
the difference we would observe in Y if an individual
were moved from one subpopulation (Z " 0) to anoth-
er (Z " 1). Consistent with this interpretation, the av-
erage magnitude of disparity for an underprivileged
subpopulation can be expressed as β2X̄u + β3, where
X̄u is the average value of X for the subpopulation
(National Research Council 2004). For the simpler var-
iant of the model with β2 " 0, the magnitude of dispar-
ity on Y becomes simply β3.

When estimating the regression coefficients (e.g.,
β3), we obtain both a point estimate and an estimate of
its standard error. The two operationalizations of dis-
parity differ in terms of which estimate(s) they take
into account when detecting disparity. When disparity
is operationalized through separation, the focus is
on determining whether β2X̄u + β3 can be separated
from zero,11 according to a given level of statistical sig-
nificance. Such a determination obviously depends on
both the point estimate and the standard error. When
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disparity is operationalized through variation, only the
magnitude is at play. For example, the “more likely
than not” criterion discussed before is essentially testing
whether β3 > β0—that is, whether the focal determinant
Z bears a higher weight than the other factors captured
in the intercept β0—when X is empty and Z ∈ {0, 1}.
Clearly, such an operationalization depends on only the
point estimates, but not the standard errors.

4.1.3. Anonymization Mechanisms. Figure 4 illustrates
the design of the two anonymization mechanisms. For
both mechanisms, the input to anonymization is the
set of all variables in the data set—that is, (Xi,Yi,Zi) in
the model. With the data-removal mechanism, the
goal is to prevent an individual from being identified
from the output data. There are two common methods
for existing techniques to achieve this goal. One is to
generalize the values of certain variables. For example,
in Figure 4(a), we generalized the values of Yi for the
first two records from 28 and 32 to both being 30. By
doing so, we made the two records identical to each
other, so that neither could be uniquely identified
from the output data. The second method is called
suppression, which is to remove certain records that
cannot be easily made similar to other records. The
last record in Figure 4(a) is an example. Given how far
its value of Yi is from the other records, in order to use
generalization to make the last record identical with
any other record, we have to make significant changes
to Yi for both records, limiting the usefulness of both
in the anonymized data. Instead of doing so, we could
simply remove the last record from the anonymized
data and save other records from being modified, like
is shown in Figure 4(a). Note that the anonymized
data in the figure meet a popular data-removal

guarantee called k-anonymity (k " 2), which requires
that, for each record in the anonymized data set, there
must be at least k− 1 other records with the exact
same value combination (Sweeney 2002b).

Compared with data removal, the existing noise-
insertion techniques have provided a wider variety of
outputs, from a noise-inserted data set to a way of
generating randomly perturbed answers to queries
over the data. Correspondingly, anonymity guarantees
for the noise-insertion mechanism, like the aforemen-
tioned differential privacy guarantee, were broadly con-
ceived to support any noise-insertion algorithm M that
maps the input data set to (a value in) an arbitrary
rangeΘ. For example, the popular (ε, δ)-differential pri-
vacy guarantee (Dwork et al. 2016) requires that, for
any two data sets D and D′ differing by one record
and for any S ⊆Θ, the probability12 for M(D) ∈
S and M(D′) ∈ S must not differ significantly, with the
difference bounded by a function of the two parameters
ε and δ:

P(M(D) ∈ S) ≤ eεP(M(D′) ∈ S) + δ: (2)

Note from the equation that the smaller εand δ are,
the harder it is to distinguish D from D′ after apply-
ing M, meaning that M provides a higher degree of
anonymity.

Researchers have developed many techniques that
can guarantee (ε, δ)-differential privacy (see review in
Hay et al. 2016). A simple, yet popular, one is the
Laplace mechanism (Dwork et al. 2016) depicted in
Figure 4(b), which inserts noise when answering
queries posed over the data. For example, when an-
swering a count query Q that asks for the number of
records nQ satisfying the conditions specified in Q, the
Laplace mechanism adds to nQ a random variable

Figure 4. (Color online) Illustration of AnonymizationMechanisms

Zi Xi Yi

!

Zi Xi Yi

0 0 28

0 0 32

1 1 18

1 1 22

1 0 82

0 0 30

0 0 30

1 1 20

1 1 20

* * *

data removal

(a) (b)

1

nQ nQ + 1

noise insertion

Notes. (a) Data removal. Depicted is a data set before and after data removal. Each row is a record, while each column is a variable. Following the
principle of grouping similar records together, data removal assembles the two recordswith the same value combination of Zi and Xi and repla-
ces their values of Yiwith a common value. The last record (1,0,82) is removed because no other record shares the same (Zi, Xi) combination of (1,
0). (b) Noise insertion. Depicted is the probability density function of two Laplace distributions with scale 1 andmean nQ and nQ + 1, respective-
ly. These two distributions represent the distributions of the (noise-inserted) query answers provided by the Laplace mechanism to any COUNT
query with true answer nQ and nQ + 1, respectively, in order to guarantee (1, 0)-differential privacy. Note that the two distributions largely over-
lap with each other, indicating that the change of one record (i.e., shifting the COUNT query answer from nQ to nQ + 1 or vice versa) is difficult
to detect from the noise-inserted query answer.
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drawn from the Laplace distribution with mean zero
and scale 1=ε, so that the probability density of the
perturbed query answer at point nQ + r is

f (nQ + r) " ε
2
e−rε, (3)

which is depicted by the solid curve in Figure 4(b).
Note from Equation (3) that the probability density
varies by a multiplicative factor of eε when nQ varies
by one, which is the maximum possible difference
between two data sets D and D′ that differ by one
record (as specified in the definition of differential
privacy). According to Equation (2), this means the
Laplace mechanism always achieves (ε, 0)-differential
privacy, no matter what the data setD or the queryQ is.

4.2. Implications of Anonymization on
Disparity Testing

We start by considering how the data-removal mecha-
nism affects the outcomes of disparity testing. When
disparity is operationalized through separation, the
standard errors of the estimated regression coefficients
are salient to whether the test identifies a statistically
significant separation between different populations.
Consequently, the following theorem examines how a
generalization method for data removal—designed spe-
cifically to achieve the aforementioned k-anonymity
guarantee—affects the standard errors of the regression
outputs. Note that the theorem assumes the direct use
of the anonymized data set in regression analysis,
which is the way these data sets are used in practice to-
day (Rocher et al. 2019). Although it is possible to modi-
fy the regression analysis to compensate for the effect of
data removal, the design of such dedicated algorithms
is beyond the scope of the paper.

Theorem 1. When the data set has k records for each value
combination of Xi and Zi, and anonymity is achieved by re-
placing the values of Yi in each anonymous group with
their average, the standard error for the estimation of each
regression coefficient (i.e., β0,β1,β2,β3) is reduced by a
multiplicative factor of 1=

!!
k

√
after anonymization.

Because of the space limit, please refer to the
e-companion (section EC.2) for the proof of the theorem.
Consistent with our earlier conceptual findings,
Theorem 1 shows that the use of the data-removal mech-
anism, specifically the popular generalization technique,
reduces the standard errors of regression coefficients and
may produce false positives in identifying disparities.
Although the mathematical proof is subtle, the finding
of the theorem has a simple intuitive explanation. Note
that data removal in general, and generalization in par-
ticular, tends to group similar records together to elide
their differences, so as to prevent any single record
from being uniquely identified. A direct consequence of
this design is that records belonging to the same

subpopulation are more likely to be grouped together.
Consider a case where all records for the same subpop-
ulation are placed into one group, and their outcome
variable values are all replaced by the group mean. It
clearly makes any testing of disparity-through-separation
more likely to declare a positive result, because the with-
in-subpopulation variance is artificially reduced to zero.

This issue no longer applies when disparity is oper-
ationalized through variation, because the identifica-
tion now depends only on the point estimates, and
not the standard errors. Nonetheless, it gives primacy
to the potential bias introduced by data removal to
the point estimates. We demonstrated an example in
the conceptual development section (Figure 3), where
data removal substantially alters the observed out-
come distribution. The following theorem extends the
example to highlight the severity of the problem
when the outcome distribution is skewed, like the
heavy-tailed distributions commonly present in prac-
tice (Nolan 2003). With a heavy-tailed distribution, the
largest values are associated with the lowest probabil-
ity density, meaning that removing records with the
sparsest neighborhoods tends to reduce the mean
estimate considerably. The theorem considers the ex-
ponential distribution as a conservative example, be-
cause its skewness serves as a lower bound for the
skewness of heavy-tailed distributions.13

Theorem 2. When Yi follows the exponential distribution
Yi ~ Exp(λ), suppressing m out of n records according to
the density of Yi shifts the sample mean of Yi by an expected
value of

E(Ȳ − Ȳ0) "
m logn− logm!

λn
, (4)

where Ȳ and Ȳ0 are the sample mean of Yi before and after
suppression, respectively.

As discussed earlier, please refer to the e-companion
(section EC.3) for the proof of the theorem and a discus-
sion of its extensions beyond the exponential distribu-
tion. The theorem confirms our conceptual discussions
by demonstrating how a few suppressed records could
have considerable influence on point estimates, such as
the sample mean. For example, removing 10 records
from a 100-record data set changes the sample mean by
an expected amount of 0.45/λ. Because the mean of an
exponential distribution Exp(λ) is 1=λ, this expected
change represents 45% of the real value, clearly large
enough to flip the outcome of disparity-through-variation
measures, such as the aforementioned “more likely than
not” criterion.

Finally, we turn our attention to the noise-insertion
mechanism for anonymization. Interestingly, unlike
data removal, the designers of noise-insertion techni-
ques often provide statistical guarantees on how the
inserted noise affects the output of a regression
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analysis. For example, when a noise-insertion tech-
nique directly modifies query answers (e.g., the afore-
mentioned Laplace mechanism), we can construe a re-
gression coefficient as a complex query posed to the
data. The random noise added to the query answer
then directly reveals the statistical properties of our
estimate of the regression coefficient. This makes our
analysis here considerably easier. Specifically, many
existing techniques for noise insertion, including the
Laplace mechanism, produce estimates that are guar-
anteed to be unbiased (Dwork et al. 2016). Although
other techniques might introduce a small degree of
statistical bias in exchange for a substantially reduced
standard error, such biases tend to be small and as-
ymptotically close to zero as the data set size grows
(Li et al. 2014). As such, noise insertion could obvious-
ly produce both false positives and false negatives
when disparity is operationalized through variation.
For disparity through separation, the following theo-
rem establishes an upper bound on the statistical
power of any disparity test for any noise-insertion al-
gorithm that is (ε, δ)-differentially private.

Theorem 3. With any (ε, δ)-differentially private algo-
rithm, when Zi ∈ {0, 1}, Xi follows an independent and
identically distributed (univariate or multivariate) Gauss-
ian distribution, and Yi " β0 + β1Xi + β3Zi + ξi (β3 > 0),
the statistical power of any disparity-through-separation
test must satisfy

Power ≤ 1− e
−6εn|β3 |

σ (1− α) + 4nδ|β3|
σ

, (5)

where α is the significance level for the disparity test, n is
the number of records in the data set, and σ is the standard
deviations for β1Xi + ξi.

The proof of the theorem is available in the e-
companion (section EC.4). The bound in Inequality (5)
offers important insights into the trade-off between pri-
vacy protection and disparity identification. For exam-
ple, the smaller ε and δ are (i.e., the more stringent the
privacy guarantee), the lower the statistical power will
be. As a result, stringent privacy protection comes at
the cost of disparity detection. For example, requiring a
privacy budget of ε " 0:001 means that the statistical
power of disparity detection could drop from 0.80 for
an original data set with 100 records to, at most, 0.32
after anonymization (α " 0:05, |β3|=σ " 0:63). This con-
firms our conceptual finding that noise insertion
could mask a considerable number of disparities in
the data set when disparity is conceptualized through
separation.

5. Empirical Examination
5.1. Data Set
We obtained an inpatient data set from one of the five
most populated states in the United States. The data

set contains 486,924 records of patients who were ad-
mitted and discharged by one of the healthcare facili-
ties in the state during a calendar quarter. It covers
244 healthcare facilities, which represent all privately
owned facilities in the state admitting inpatients, ex-
cept three types of exempted ones: long-term acute-
care facilities; psychiatric and rehabilitation facilities;
and facilities in noncompliance (e.g., due to excessive
error rate). The number of patients discharged from a
hospital ranges from 5 to 9,104. The variables included
for each patient cover information about demographics,
diagnosis, treatment, and financial arrangements. Table
EC.2 in the e-companion (section EC.5) lists the summa-
ry statistics for the key variables of the data set used in
the study.

An important reason why we used this data set is
its close resemblance to the inpatient data set proc-
essed by the Texas Department of State Health Serv-
ices (2019) under the procedure in Table 1. Because
Texas does not permit the release of its data set before
anonymization, our data set becomes an ideal device
to examine the implications of applying the Texas
procedure.14 Although we also studied a number of
other, more technically sophisticated, anonymization
techniques (as elaborated later in the section), we
considered the examination of the Texas procedure
important because it represents a rare case where a
government agency explicitly specifies the step-by-
step procedure for anonymizing a data set with highly
sensitive private information.

5.2. Design of Empirical Study
5.2.1. Disparity Measurement. In the passages that fol-
low, we describe the dependent variables, indepen-
dent variables, and disparity-detection methods used
in the study, respectively.

5.2.1.1. Dependent Variables. We used two depen-
dent variables that have been frequently examined in
the context of health disparity (e.g., Xu and Zhang
2019, Danziger et al. 2020): admission severity (SERV)
and nonresponder indicator (NONRES). Admission
severity (Steen and Cherney 1996) was measured on a
five-point scale (from zero, no clinical instability, to
four, maximal instability). The nonresponder indica-
tor captures whether a patient is responding to treat-
ment during the hospital stay. It is determined by
comparing the clinical variables collected at midstay
with those collected at admission. A patient is deemed
a nonresponder if the probability of in-hospital mor-
tality (as predicted based on the clinical variables) is
higher at midstay than at admission.

An important reason why we chose the two depen-
dent variables is their distinctive characteristics. All
hospitals in the state of our data set are required to
collect the admission severity information, making its
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coverage near 100% in the data set. The nonresponder
indicator, in contrast, is optional to report. Further,
patients deemed to have moderate or lower clinical in-
stability at admission are ineligible for the calculation.
As a result, only 4.3% records in the data set contain
the binary (Yes/No) determination of whether the pa-
tient is a nonresponder. This sharp contrast between
the two dependent variables allows us to examine
two distinct scenarios: (1) where the outcome variable
applies to all individuals in the data set (e.g., income
disparity), and (2) where the outcome applies only to
a small fraction of the individuals (e.g., disparity in
promotion to executive positions; rare-disease dispari-
ty studies, Holtzclaw Williams 2011; or in the Apple
iOS case, where only a small percentage of keystrokes
need correction).

5.2.1.2. Social Determinants. For the purpose of
disparity detection, we examined gender, race, ethnic-
ity, and age as the focal social determinants, respec-
tively. There are two main reasons for selecting these
four variables. First, these variables were frequently
the focal social determinants in disparity studies
(Zhang et al. 2017). Second, they were also often
treated as “quasi-identifiers” in the privacy context
(Sweeney 2000), and therefore (selectively) removed
or obscured for the purpose of anonymization, like in
the Texas procedure in Table 1. Given their promi-
nence in both data anonymization and disparity de-
tection, focusing on these variables allows us to better
explicate the implications of the former on the latter.

5.2.1.3. Control Variables. To further emulate the
analyses commonly carried out in the disparity re-
search literature, we also included three individual-
level variables as controls in the empirical study: (1)
insurance status (INS; a binary variable indicating
whether an individual is covered by a health insur-
ance); (2) cancer history (CANCER; a binary variable
indicating whether an individual has a history of can-
cer diagnosis); and (3) length of the hospital stay in
days (LOS; an integer variable and a widely used
proxy for the complexity of the individual’s medical
condition; May et al. 2016). These control variables
were selected because of their relevance to either the
financial situation or the medical condition of a
patient, which were frequently used as controls in the
health-disparity literature (see references in Zhang
et al. 2017). We stress at the outset that we do not
attempt to establish any causal relationships between
a social determinant and an outcome variable in this
paper. As we elaborate on in the discussion, doing so
would require theoretical development that is beyond
the scope of this paper and a careful scrutiny of which
clinical and socioeconomic variables to use as controls,
an issue that is still under intensive debates in the

disparity-research literature (National Research Coun-
cil 2004, Pager and Shepherd 2008).

5.2.1.4. Disparity Detection. We considered two
disparity-analysis methods corresponding to the two
operationalizations, respectively. For disparity through
separation, we turned to regression analysis for estimat-
ing the model in Equation (1). Specifically, the disparity
in an outcome variable (e.g., admission severity) over a
focal social determinant (e.g., race) was estimated with
the outcome being Y, the focal social determinant being
Z, and the other three social determinants together with
the three control variables15 forming X. We created dum-
my variables for Sex and Race and estimated the model
using ordinary least squares when the dependent vari-
able is admission severity. Because the other dependent
variable (i.e., nonresponder indicator) is binary, we used
logistic regression with the maximum-likelihood estima-
tor.16 For disparity through variation, we considered
the frequently used measure of odds ratio (Bland and
Altman 2000):

OR " P(Y " 1 | Z ∈ V1,X)=(1 − P(Y " 1 | Z ∈ V1,X))
P(Y " 1 | Z ∈ V0,X)=(1 − P(Y " 1 | Z ∈ V0,X))

,

(6)

where X, Y, and Z are as defined in Equation (1), and
V0 and V1 are two subsets of the domain of Z. Intui-
tively, the odds ratio captures the impact of shifting
Z from V0 to V1

17 on the odds of Y " 1 when hold-
ing X constant. The estimation of odds ratio can be
done through logistic regression, specifically, as eβ,
where β is the regression coefficient for Z. To make
the dependent variable Y binary, when calculating the
odds ratio for admission severity, we grouped its five
values into two groups divided at the median: {0, 1} as
one level and {2, 3, 4} as the other.

5.2.2. Data-Anonymization Techniques. To examine
the distinct implications of different data-anonymization
mechanisms on disparity detection, we implemented a
total of four data-anonymization algorithms, two in data
removal and the other two in noise insertion. The first al-
gorithm we implemented was the aforementioned rules
used by the Texas Department of State Health Services
(2019) to anonymize their state-wide inpatient discharge
data set (Table 1). Although all rules are applicable to
our data set, two minor adjustments are in order. First,
we changed the state of Texas in rule 2 to the state in our
data set. Second, because our data set contains ICD-9 in-
stead of ICD-10 codes, we identified and used the ICD-9
codes indicating alcohol/drug use or HIV18 when apply-
ing rule 3. We found in our study that the only rules (in
Table 1) with material impacts on disparity detection are
rules 3 and 8, because they removed social determinants
included in our disparity analysis. Because rule 8 has a
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tunable parameter (i.e., a threshold of 10 patients), we
also tested a variant of the rules when the threshold is 20
instead of 10.

Next, we considered k-anonymity, a data-removal
mechanism recommended by an European Union advi-
sory body for removing the risk of individual identifica-
tions (Article 29 Data Protection Working Party 2014).
Notwithstanding recent debates on the correctness
of such a recommendation (Cohen and Nissim 2020),
k-anonymity is clearly popular among practitioners
(e.g., Ali 2018). For our implementation, we used the
local suppression algorithm included in the sdcMicro R
package (Templ et al. 2015). The algorithm was de-
signed to remove as few variable values as possible to
achieve k-anonymity. To examine how minimal ano-
nymization (i.e., k " 2) affects disparity detection, we
tested the cases of k " 2 and 5 in the study.

For linear regression, we implemented a recently
developed variant (Wang 2018) of the differentially
private sufficient statistics perturbation (SSP) algorithm
(Foulds et al. 2016), which guarantees (ε,δ)-differen-
tial privacy in solving a linear model y " Xβ+ ξ by
first computing the differentially private versions of
X*X and Xy, respectively, before generating the esti-
mated coefficients as (X̂*X)−1X̂y. Compared with the
original SSP algorithm, the variant developed by
Wang (2018) further exploits data-dependent quanti-
ties to achieve near-optimal data utility and was
shown to substantially outperform the other existing
solutions for differentially private linear regression.
Because δ is usually set as a negligible value, we fol-
lowed Wang (2018) in setting δ "min(10−6, 1=n2),
where n is the data set size, and varied ε between 0.1
and 1.

For logistic regression (and the related odds-ratio
estimation), we implemented the differentially private
algorithm for regularized empirical risk estimation
(Chaudhuri et al. 2011), which produces more accu-
rate coefficient estimates than traditional output per-
turbation algorithms (like the aforementioned Laplace
mechanism) because it achieves differential privacy
by perturbing the objective function of the optimiza-
tion process instead of the final output of coefficient
estimates. The algorithm was designed to achieve
(ε, 0)-differential privacy and features only two
parameters, ε and λ, which is the regularization
parameter controlling the ℓ2-regularization term. Fol-
lowing the recommendations by Chaudhuri et al.
(2011), we set in our implementation λ " 1=
(4n(eε=20 − 1)), where n is the input size, and varied ε
between 0.1 and 1.

5.3. Empirical Results
Table 4 reports how applying the data-removal
mechanism affected the detection of disparity

operationalized through separation. As can be seen
from the table, the anonymization methods used in
practice, like the Texas procedure, could substan-
tially interfere with identifying disparity through
separation. In the case of k-anonymity, even the
weakest form of anonymity (i.e., k " 2) produced a
false-positive disparity in admission severity for
Asians. The interference could be toward either di-
rection. For example, for people of Hispanic ori-
gins, the Texas procedure identified a significantly
lower admission severity, whereas k-anonymity
(k " 5) identified a significantly higher severity, yet
the original data cannot support either. Also note
from the table that, consistent with Theorem 1, the
k-anonymity algorithm tends to produce more false
positives than false negatives.

Table 5 reports how applying the data-removal
mechanism affected the detection of disparity opera-
tionalized through variation. Note that, although we
reported the regression coefficients for the control var-
iables in Table 4, we do not include these variables in
Table 5 onward, given that the odds-ratio metric is
only applicable to the social determinants. As can be
seen from Table 5, both data-removal techniques affect-
ed disparity detection substantially, even reversing its
direction in several cases. This is consistent with our
earlier conceptual discussions and Theorem 2. Also
note a sharp contrast with Table 4: When disparity was
operationalized through variation, k-anonymity masked
the severity of disparity in addition to producing false
positives. For example, achieving 2-anonymity entailed
a reduction of the odds ratio for Asian to be a nonres-
ponder from 2.79 to 1.52, incurring a false negative if
the “more likely than not” criterion is used.

Table 6 reports how noise insertion affected the de-
tection of disparity. The left part of the table confirms
the results in Theorem 3—that is, differential privacy
is likely to produce false negatives, but not false posi-
tives, when disparity is operationalized through sepa-
ration. Remarkably, even when ε " 1, a level widely
perceived as weak in practice (Tang et al. 2017, Dwork
et al. 2019), the differential privacy algorithm still
masked the (only) statistically significant disparity for
the nonresponder indicator, with a false negative rate
of 99%. The right half of the table shows a result simi-
lar to Table 5. Like the data-removal mechanism, the
noise-insertion algorithms shifted the estimated mag-
nitude of disparity in unpredictable ways, amplifying
the odds ratio for some, weakening it for others, and
even reversing the direction in several cases. This is,
again, consistent with our conceptual discussions for
Table 3.

We also examined the robustness of the empirical
findings when varying the size of the input data set. Be-
cause of the space limit, please refer to the e-companion
(section EC.6) for the results.
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6. Discussion
6.1. Policy and Managerial Implications
The protection of consumer privacy has emerged as a
task front and center for firms and policy makers in
today’s digitally connected world. Similarly, the recog-
nition and rectification of disparate impact is increas-
ingly regarded as a societal imperative in employment,
housing, healthcare, etc. The primacy afforded to the

two issues will only be reinforced in the future by
the rapidly growing collection of consumer data and
the diversifying landscape of technological issues,
from which both privacy and disparity concerns fre-
quently arise. This makes it all the more important for
researchers, practitioners, and policy makers to be
mindful of the potentially complex interplay between
the two, which is the focus of this paper. With this

Table 5. Effects of Data Removal on Detecting Disparity Through Separation

Notes. Odds ratio estimated by logistic regression as ÔR " êβ, where β̂ is the estimated regression coefficient.
Dark-gray background marks cases where the magnitude of disparity decreases by more than 25% (i.e.,
max(ÔR, 1=ÔR) ≤ 0:75max(OR,1=OR)). Light-gray background marks cases where the magnitude increases by
more than 25% (i.e., max(ÔR, 1=ÔR) ≥ 1:25max(OR,1=OR)). Inverted color marks cases where the estimated ef-
fect has a reversed direction (i.e., ÔR > 1 and OR < 1 or vice versa).

Table 4. Effects of Data Removal on Detecting Disparity Through Separation

Notes. Dependent variable: SERV, admission severity; NONRES, nonresponder indicator. Columns under SERV are estimated by ordi-
nary least squares. Columns under NONRES are estimated by logistic regression with the maximum-likelihood estimator. Dark-gray
backgroundmarks false negatives (under significance level of 0.05), while light gray marks false positives. RACEx and SEXF are dummy
variables, with their names concatenating the original variable name with the value explained in Table EC.2 in the e-companion. RACEI
is empty under NONRES/“Texas Procedure” because the procedure removes the race information for all American Indians with NON-
RES " 1 (i.e., “Y”) in the data set.
*p < 0.05; **p < 0.01; ***p < 0.001.
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backdrop, our results highlighted the importance of
examining the disparate impact of privacy protection
on different individuals and illuminated the intricacies
of identifying disparity in privacy-preserved data. In
the following, we lean on our findings to provide ac-
tionable suggestions for ensuring a proper alignment
between the design of anonymization and the opera-
tionalization of disparity.

First, when a data set used for identifying disparity
has already been anonymized, it is of paramount im-
portance to explicate the anonymization mechanism
that has been applied before examining the statistical
evidence of disparate impacts. For example, if noise
insertion has been applied, operationalizing disparity
through separation tends to produce conservative
findings, in which false positives are highly unlikely.
Thus, such results are at least as valid (as the results
over the original data set) in establishing a prima facie
case of discrimination. In contrast, if a data-removal
mechanism like k-anonymity has been applied, then
false positives become much more likely than false
negatives. As a result, these may better serve as ex-
ploratory steps for determining whether further re-
search is warranted for a particular type of disparate
impacts. Understanding this subtle interaction be-
tween anonymization and disparity detection is in-
creasingly important, given the growing popularity
among firms to either anonymize data at collection time
(e.g., Google’s RAPPOR system; Erlingsson et al. 2014)
or base analytical decisions on privacy-preserved data
(e.g., Uber’s Flex system; Johnson et al. 2018).

Second, if a data set has the potential to be used for
an examination of disparate impacts, then the design
of anonymization should consider, in tandem, the

protection of privacy and the utility of the anony-
mized data for disparity detection. The literature has
repeatedly noted the necessary trade-off between the
two goals (e.g., Kifer and Machanavajjhala 2011).
More importantly, there are existing techniques for
noise insertion (e.g., an algorithm used in this paper
for differential privacy; Chaudhuri et al. 2011) that
were proven to achieve the Pareto optimality on this
trade-off (under certain assumptions). For data re-
moval, although achieving optimality was proven dif-
ficult (e.g., see Meyerson and Williams 2004 for the
NP-hardness proof for the case of k-anonymity), re-
searchers have developed approximation algorithms
that reach within a constant factor of the optimal
trade-off (Aggarwal et al. 2005). These results not only
provide anonymization mechanisms that suit the pur-
pose of disparity detection, but help to illustrate what
can be achieved in terms of disparity detection when
the data set must be anonymized to satisfy certain pri-
vacy guarantees. Knowledge of this achievable trade-
off will, in turn, enable regulators and policy makers
to properly appraise the varying impacts of privacy
protection (and disclosure) on different subpopula-
tions before mandating or incentivizing either privacy
protection (e.g., through privacy legislation such as
GDPR) or the collection of social-determinant infor-
mation for disparity detection (Adler and Stead 2015).

6.2. Limitations and Future Research
Our work was limited by its focus on the detection of
observable disparity, rather than the identification of
any underlying causal discrimination. It is important
to note that even large and persistent disparities in a
data set do not prove discrimination, as the latter

Table 6. Effects of Noise Insertion on Detecting Disparity

Notes. Because both algorithms are randomized ones, we ran each algorithm/parameter combination 100 times and reported the
statistics of the results in the table. Columns under Separation/ε " 0:1 or 1 depict the frequency for the algorithm to return p <
0.05 in the 100 runs, with the standard error in parentheses. Columns under Variation depict the median odds ratio estimation
from all runs, with the standard deviation in parentheses. Note that median is reported to highlight the fact that the change of
odds ratio must be at least as severe in 50% of all runs. Color coding follows Table 5.
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requires substantial prior knowledge about the mech-
anisms through which the data were generated. For
example, one must tease out endogeneity threats from
omitted variables and common biases, such as sam-
ple-selection bias, before supporting a causal inference
of discrimination (Pager and Shepherd 2008). To this
end, our work is only the first step toward under-
standing the implications of data anonymization on
identifying discrimination. Future studies could ex-
amine how data anonymization affects the subsequent
steps of causal inference beyond the establishment of
observed disparity.

Another limitation of our work relates to other po-
tential impacts of anonymizing data. Although there
are obviously disparate impacts on underprivileged
subpopulations when identifiable disparities are
masked, which is the focus of this paper, such dispa-
rate impacts could also stem from other uses of the ano-
nymized data—for example, when the data are used
to allocate resources like education and healthcare
(Ekstrand et al. 2018, Pujol et al. 2020). Interestingly, if
we switch the unit of analysis from subpopulations to
individuals, then anonymization has been shown to pre-
vent certain discrimination, simply because no individu-
al is uniquely identifiable from the anonymized data set
(Ruggieri et al. 2014, Hajian et al. 2015, Kashid et al.
2015). Future research could further examine these
countervailing impacts of data anonymization, so firms
could properly balance them when choosing the data-
anonymization mechanism to apply.

Finally, we offer the caveat that the typologies pre-
sented for the anonymization mechanisms and the
disparity operationalizations were meant to highlight
their nuanced interplay rather than serving as a strict
binary classification. As such, although the character-
istics for each type are expected to hold in general,
there are bound to be exceptions. For example, we
listed employment discrimination and epidemiologi-
cal disparity as the sample domains operationalizing
disparity through separation and variation, respec-
tively. In practice, although most studies and legal
cases involving employment discrimination opera-
tionalized disparity through separation, the U.S.
Equal Employment Opportunity Commission (EEOC)
famously suggested a rule of thumb that falls under
disparity through variation.19 Similarly, there were
technical attempts to develop data-anonymization
techniques that feature both data removal and noise
insertion (Li et al. 2012, Li and Sarkar 2013). The exis-
tence of these exceptions, however, does not affect our
findings pertaining to the implications of data ano-
nymization on disparity identification.
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Endnotes
1 SeeDaubert v. Merrell Dow Pharm., Inc., 43 F.3d 1320 (9th Cir. 1995).
2 As elaborated on later in the paper, disparity through separation
means that, for a given outcome variable (e.g., income), there are (at
least) two subpopulations for which the distributions of the out-
come variable are clearly separable from each other (e.g., their
mean estimates have nonoverlapping confidence intervals). Dispari-
ty through variation, on the other hand, means that the mean out-
come for one subpopulation differs considerably from the other(s).
3 For example, the U.S. Department of Health and Human Services
(2012) recommended the removal of the last two digits of ZIP code
as one of the measures for complying with the Health Insurance
Portability and Accountability Act.
4 430 U.S. 496 (1977).
5 509 U.S. 579 (1993).
6 The rationale for setting this relative-ratio threshold at 2.0 is because,
for individuals in the first subpopulation who suffered the undesired
outcome, only when the relative ratio is at least 2.0 can we possibly
conclude that the undesired outcome is more likely a result of the dis-
parity than other factors shared with the second subpopulation.
7 More rigorously, when the population odds ratio OR > 1, the
probability distribution of the observed odds ratio ÔR tends to
have a positive skew.
8 Obviously, one can always make a trade-off between false-positive
and false-negative rates by adjusting the threshold cutoff in disparity
detection. Our discussions here assume the direct use of the anony-
mized data set without such adjustments, which is the way anony-
mized data sets are used today (Rocher et al. 2019). It is important to
note that, even with an adjusted trade-off, the higher standard devia-
tion after data removal entails a lower statistical power of disparity de-
tection for the same significance level.
9 For example, we can construct such a scenario by removing all
light-colored circles with x ≈ 3 from Figure 3. With this modifica-
tion, the ratio before anonymization becomes two, and its value af-
terward becomes one. In other words, the data-removal process
masks a previously existing disparity.
10 When Xi contains more than one variable, β1 and β2 become
vectors.
11 This holds even when the detection of disparity does not directly
involve a regression model, e.g., when a two-sample t-test is used
to determine whether the mean of two subpopulations are different
or when one examines whether the confidence intervals for the
mean of different subpopulations overlap. In these two examples,
the tests are essentially equivalent with testing a null hypothesis of
β3 " 0 when X is empty (Cumming 2009).
12 The notion of probability is taken over the randomness ofM, e.g.,
the randomness of the noise it inserts into the data or the query
answers.
13 Note that while the skewness of the exponential distribution is al-
ways two, the skewness of a heavy-tailed distribution may be
unbounded.
14 Specifically, it allows us to compare the results of disparity analysis
over the original data with those over the anonymized data, so as to
explicate the effect of data anonymization on disparity detection.
15 For the sake of simplicity and clarity, we did not estimate the in-
teraction item in the model.
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16 For the nonresponder indicator, we also tested the probit model
and Firth’s penalized likelihood estimator (Firth 1993) for correcting
the potential rarity-induced bias in logistic regression, but did not
find notable differences.
17 For example, when Z is binary like Sex, we set V1 " {Male}
and V0 " {Female}. When Z is Race, we could have V1 "
{Black} and V0 containing all other values of Race. When Z is Age,
the odds ratio is usually calculated for V1 " {v+ 1} and V0 "
{v}—that is, differing by one unit, so as to capture the effect of a one-
unit increase in Z on the odds of Y " 1.
18 ICD-9 and ICD-10 codes represent different versions of the Inter-
national Statistical Classification of Diseases and Related Health Prob-
lems. Either can be used to represent diseases, symptoms, etc. ICD-9
codes for AIDS/HIV are 042, 79571, V08, and V6544; and for alco-
hol/drug use, 303-30593, 9445-9446, 9453-9454, 9461-9469, 9800,
V6542, and V791.
19 Specifically, in its Uniform Guideline on Employee Selection (29
C.F.R. §1607.4D), the EEOC considers as probative of discrimination
when the promotion rate for one subpopulation is less than “eighty
percent” of another, which translates to an odds ratio of 1.25.
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Supplemental Materials

EC.1. Summary of Typical Data-Removal and Noise-Insertion Algorithms

Table EC.1 Examples of Data-Removal and Noise-Insertion Algorithms

Examples

D
at
a
R
em

ov
al Rule-based suppression (e.g., Texas Department of State Health Services 2019)

Generalization or suppression to prevent the unique identification of a record (e.g., k-
anonymity; Sweeney 2002)

Generalization or suppression to prevent the disclosure of sensitive attributes (e.g., `-
anonymity; Machanavajjhala et al. 2007; t-closeness; Li et al. 2007)

N
oi
se

In
se
rt
io
n Output perturbation mechanisms for di↵erential privacy, e.g., Laplace (Dwork et al. 2016),

Gaussian (Dwork et al. 2014), and geometric (Ghosh et al. 2012) mechanism

Randomized response mechanisms (e.g., Warner 1965), which may be designed to achieve
local di↵erential privacy (Kasiviswanathan et al. 2011)

Synthetic data generation mechanisms, such as posterior sampling for di↵erential privacy
(e.g., Wang et al. 2015)

Additive noise mechanisms for input data, with which the noise for di↵erent records may be
independent (Agrawal and Srikant 2000) or correlated (Zhang et al. 2005)

Table EC.1 summarizes a number of well-known anonymization algorithms in the category

of data removal and noise insertion, respectively. For data removal, the selection of information

to be removed may be made according to a set of pre-specified rules, like those in the Texas

procedure discussed earlier in the paper. Alternatively, the selection may be designed to prevent

the unique identification of a record (e.g., to achieve k-anonymity; Sweeney 2002), or to prevent

certain predetermined sensitive attribute(s) from being inferred from the released data (e.g., to

achieve `-diversity; Machanavajjhala et al. 2007). For noise insertion, the random noise could be

applied to the input data - e.g., by randomly altering their values (e.g., Kasiviswanathan et al.

2011) or by inserting additive random noises into the input data (e.g., Agrawal and Srikant 2000).

Alternatively, the noise could be applied to the information (e.g., statistics) being released from

the dataset. Examples include the direction insertion of additive random noises into the output

statistics (e.g., Dwork et al. 2016), and the use of posterior sampling to generate random outputs

that satisfy the given privacy guarantee (e.g., Wang et al. 2015).

EC.2. Proof of Theorem 1

Theorem 1 When the dataset has k records for each value combination of Xi and Zi , and anonymity is

achieved by replacing the values of Yi in each anonymous group with their average, the standard error

for the estimation of each regression coe�cient (i.e., �0,�1,�2,�3) is reduced by a multiplicative factor

of 1/
p
k after anonymization.
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Proof of Theorem 1. To separate the stochastic component in Equation 1 from the non-

stochastic ones, we rewrite the linear model as

Yi = ⌧>Wi + ⇠i (EC.1)

where ⌧> = (�0,�1,�2,�3) and Wi = (1,Xi ,XiZi ,Zi ). The regression coe�cients ⌧ can be estimated

using ordinary least square as20 ⌧̂ = (W>W)�1(W>Y). Let ⌦ = ⇠⇠⇠⇠⇠⇠>. The variance of the estimator

⌧̂ can be expressed as

V0(⌧̂) = (W>W)�1
⇣
W
>⌦W

⌘
(W>W)�1 = �2

⇠ (W
>
W)�1, (EC.2)

where �⇠ is the standard deviation of the error term ⇠i , so �2
⇠ = E(⇠2

i ) is the expected value of each

element on the diagonal of ⌦.

After applying the anonymization, the distribution of ⇠i changes. Specifically, it is now

constant for the k records in each anonymous group. Let Ci be the anonymous-group ID of the

i-th record. Unlike in Equation EC.2, the expected values of elements in ⌦ = ⇠⇠⇠⇠⇠⇠> now vary:

E(⌦ij ) =
(
�2
⇠ /k if Ci = Cj

0, otherwise
(EC.3)

Thus, the variance of the estimator ⌧̂ now becomes

V(⌧̂) = (W>W)�1
0
BBBBB@

n/kX

c=1

W
>
c ⌦cWc

1
CCCCCA (W

>
W)�1 =

V0(⌧̂)
k

, (EC.4)

where Wc and ⌦c are the sub-matrices of W and ⌦ corresponding to the records in the c-th

anonymous group, respectively. The theorem directly follows from Equation EC.4. ⌅

EC.3. Proof and Extension of Theorem 2

Theorem 2. When Yi follows the exponential distribution Yi ⇠ Exp(�), suppressing m out of n records

according to the density of Yi shifts the sample mean of Yi by an expected value of

E(Ȳ � Ȳ0) =
m logn� logm!

�n
, (EC.5)

where Ȳ and Ȳ0 are the sample mean of Yi before and after suppression, respectively.

Proof of Theorem 2. According to the results in order statistics, the h-th largest value of n sam-

ples of Yi , denoted by Y(n�h+1), is the sum of n � h+ 1 independent exponential random variables

with parameter �n, �(n � 1), . . . , �h. Thus, its expected value taken over the randomness of the

sample becomes

E(Y(n�h+1)) =
1
�

✓1
n
+

1
n� 1 + · · ·+ 1

h

◆
=
logn� logh

�
. (EC.6)

The theorem directly follows from summing up Equation EC.6 for h = 1, . . . ,m. ⌅

20 Throughout this proof, we use bold symbols likeW and Y to represent the matrix/vector representation of variables.
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The qualitative finding from Theorem 2 readily extends to many distributions beyond

the exponential distribution. For example, consider the Pareto distribution, a heavy-tailed dis-

tribution with a monotonic density function. If Yi follows the Pareto distribution with scale xm

and shape ↵, then its log-transformation log(Yi/xm) must follow the exponential distribution

Exp(1/↵). Given the concaveness of log, the ratio of change incurred on the sample mean is even

larger than what was specified in Equation EC.5. More generally, any one-detailed distribution

(e.g., the lognormal distribution, Weibull, and Lévy distributions) tends to have the suppressed

records concentrating on one side of the distribution, leading to a systemic shift of the sample

mean as indicated by Theorem 2.When the one tail is also heavy-tailed (i.e., when the distribution

has an infinite moment generating function), then such a concentration is likely more skewed21

than the case of exponential distribution in Theorem 2, leading to an even larger shift of the

sample mean.

EC.4. Proof of Theorem 3

Theorem 3.With any (✏, �)-di↵erentially private algorithm, when Zi 2 {0,1}, Xi follows an i.i.d. (uni-

variate or multivariate) Gaussian distribution, and Yi = �0 + �1Xi + �3Zi + ⇠i (�3 > 0), the statistical

power of any disparity-through-separation test must satisfy

Power  1� e
�6✏n|�3 |

� (1�↵) + 4n�|�3|
�

(EC.7)

where ↵ is the significance level for the disparity test, n is the number of records in the dataset, and � is

the standard deviations for �1Xi + ⇠i .

Proof of Theorem 3. For a given set of Di = (Xi,Yi ,Zi ), we consider a mapping of the dataset

to a dataset F(Di ) with equal number of records but only one variable for each record F(Di ) =

(�1Xi+�3+⇠i ). Since F(Di ) can be derived fromDi based on the knowledge of constants �0 and �3,

specifically as F(Di ) = Yi+�3(1�Zi )��0, if a noise-insertion algorithm is (✏, �)-di↵erentially private

over the set of Di , it must also have the same guarantee over F(Di ). Without loss of generality, we

normalize Xi to have mean 0. Since the mean of error term ⇠i is also 0, F(D) follows a Gaussian

distribution with F(D) ⇠N (�3,�).

Now consider the sample mean of F(Di ), denoted by �. By the design of the disparity

test, a positive identification of disparity always entails � > 0. Note that � follows a Gaussian

distribution with � ⇠ N (�3,�/
p
n). For any given (✏, �)-di↵erentially private algorithm, let I↵

be the (1 � ↵)-level confidence interval for � when applying the algorithm. One can see that a

21 Note that while the skewness of the exponential distribution is always 2, the skewness of a heavy-tailed distribution
may be unbounded.
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false negative occurs if 0 2 I↵ . We use P (0 2 I↵) to denote the probability of 0 2 I↵ , with the

understanding that Power  1�P (0 2 I↵).
Now consider an alternative scenario where F(Di ) is generated from a Gaussian distribu-

tion N (0,�). We use P0(0 2 I↵) to denote the probability of 0 2 I↵ in this scenario, where I↵ is

again the (1 � ↵)-level confidence interval for the mean of F(D). Since the population mean of

F(Di ) is now 0, by definition of the significance level, we have

P0(0 2 I↵) � 1�↵. (EC.8)

Note that the total variation distance (Dunford and Schwartz 1958, Section III.1) between the

two distributions of F(Di ) is d = |�3|/� . Since the noise-insertion algorithm is (✏, �)-di↵erentially

private over F(Di ), a bounded di↵erence on the distribution of F(Di ) yields a bounded distance

between P (0 2 I↵) and P0(0 2 I↵). Specifically, using the “group privacy” notion (Hardt and Talwar

2010, Karwa and Vadhan 2018), we have

P (0 2 I↵) � e�6✏ndP0(0 2 I↵)� 4n�d. (EC.9)

Taking Inequality EC.8 into EC.9, we have the upper bound on power as stated in the theorem. ⌅

EC.5. Summary Statistics for the Inpatient Dataset

Table EC.2 depicts the summary statistics for the key variables in the inpatient dataset that were

used in our empirical study.While most of the variables are self-explanatory, we would like to fur-

ther elaborate on the data-generation process for SERV, the admission severeity indicator. When

a patient is admitted to a hospital, the hospital’s electronic medical record system uses a propri-

etary algorithm to predict in-hospital mortality based on the patient’s clinical variables collected

at the time of admission. This prediction is then discretized into the 5-point scale, 0 (No instabil-

ity, p < 0.1%), 1 (minimal instability, 0.1%  p < 1.2%), 2 (moderate instability, 1.2%  p < 5.8%),

3 (severe instability, 5.8%  p < 50%), and 4 (maximal instability, p � 50%), before being reported

to the state-level database. Thus, SERV in the dataset is a discrete variable on a 5-point scale.
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Table EC.2 Summary Statistics for the Inpatient Dataset

Variable Levels n %
P
%

SERV 0 10475 2.1 2.1
1 172360 35.4 37.5
2 202427 41.6 79.1
3 81980 16.8 96.0
4 19682 4.0 100.0
all 486924 100.0

NONRES N/A 100528 20.6 20.6
I 365209 75.0 95.7
N 20144 4.1 99.8
Y 1043 0.2 100.0
all 486924 100.0

SEX F 279251 57.4 57.4
M 207668 42.6 100.0
all 486919 100.0

RACE U 62839 12.9 12.9
W 359010 73.7 86.6
B 53115 10.9 97.6
A 2293 0.5 98.0
I 1436 0.3 98.3
N 8178 1.7 100.0
all 486871 100.0

HISPAN 1 11491 2.4 2.4
0 475429 97.6 100.0
all 486920 100.0

AGE < 20 74596 15.3 15.3
[20,40) 80691 16.6 31.9
[40,60) 99991 20.5 52.4
[60,80) 149332 30.7 83.1
� 80 82306 16.9 100.0
all 486916 100.0

Variable Levels n %
P
%

INS 0 9771 2.0 2.0
1 477153 98.0 100.0
all 486924 100.0

CANCER 0 429644 88.2 88.2
1 57280 11.8 100.0
all 486924 100.0

LOS < 2 80660 16.6 16.6
[2,4) 180808 37.1 53.7
[4,6) 88976 18.3 72.0
[6,8) 49018 10.1 82.0
[8,10) 27924 5.7 87.8
[10,20) 44174 9.1 96.8
� 20 15364 3.2 100.0
all 486924 100.0

Note. SERV=Admission severity. NONRES =Non-
responder indicator. HISPAN = Hispanic. INS =
Insurance status. CANCER = Cancer history. LOS
= Length of Stay (in days). In SERV: 0 = No clini-
cal instability; 1 = minimal instability; 2 = moder-
ate instability; 3 = severe instability; 4 = maximal
instability. In NONRES: N/A = missing value; I =
Ineligible for calculation; N = not a non-responder
(i.e., responding to treatment); Y = non-responder.
In SEX: F = Female; M = Male. In RACE: U =
Unknown; W = White; B = Black; A = Asian or
Pacific Island; I = Native American or Eskimo; N
= Other. In INS: 0 = Self paid; 1 = Insurance is the
primary payer. In CANCER: 0 = no history of can-
cer diagnosis; 1 = current or historic cancer diag-
nosis.

EC.6. Implications of Varying the Dataset Size

To evaluate the robustness of our findings, we examined how the outcome of disparity detection

varied with the dataset size, specifically by sub-sampling the inpatient dataset (without replace-

ment) with a sampling rate that ranged from 0.1 to 0.9. For disparity through separation, we

tracked how the size a↵ected the t-statistic of the regression coe�cient corresponding to a social

determinant. For disparity through variation, we tracked the change of the estimated odds ratio.

As an example, Figure EC.1 depicts the results when the dependent variable was SERV and the

social determinant being examined was HISPAN22. Two important observations emerged from

the study:

First, when the input dataset grew larger, the data-removal mechanisms (i.e., Texas pro-

cedure and k-anonymity) exhibited distinct trends on the t-statistic (i.e., the statistical evidence

22 Like in the earlier regression analyses, these results were obtained when controlling for AGE, RACE, SEX, INS,
CANCER, and LOS.We also studied the same for NONRES and for the other social determinants.While the quantitative
results necessarily di↵ered, the qualitative trends and findings discussed later remained unchanged.
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Figure EC.1 Change of Disparity Detection with Dataset Size
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Note. Both subplots reflect the case where the outcome variable is SERV and the social determinant being examined is

HISPAN, controlling for the other variables AGE, RACE, SEX, INS, CANCER, and LOS. The x axis is the sampling rate

([0.1,0.9]) in both subplots. The y axis in (a) is the absolute value of the t-statistic for the regression coe�cient of

HISPAN. The y axis in (b) is the estimated odds ratio for HISPAN in (b). The parameter settings for the anonymization

mechanisms are: c = 10 for the Texas procedure; k = 5 for k-anonymity; ✏ = 1 for di↵erential privacy.

for detecting disparity through separation) vs. the estimated odds ratio (i.e., for disparity through

variation). While the t-statistic deviated further from the ground truth, the estimated odds ratio

converged closer to it. This is consistent with the contrast between Theorems 1 and 2: While The-

orem 2 suggests that the bias introduced by data removal to the estimated odds ratio tends to

shrink with a larger dataset size n (specifically, by a factor of approximately logn/n), Theorem 1

suggests that the amplification factor introduced by data removal to the t-statistic does not23. In

other words, the extent to which data removal a↵ects the outcome of disparity detection could be

exacerbated by a larger input dataset if disparity is operationalized through separation (Theorem

1), but ameliorated if disparity is operationalized through variation (as Theorem 2).

Second, when disparity was operationalized through separation, data removal consistently

overestimated the t-statistic, while noise insertion consistently underestimated it (under all input

sizes). This further confirmed the qualitative findings discussed in Table 3. That is, with disparity

through separation, data removal tends to producemore false positives than false negatives, while

noise insertion likely produces false negatives only, with false positives being highly unlikely.

23 More specifically, since Theorem 1 suggests a factor constant to n, an increasing n likely yields a larger t-statistic
after data removal because the expected value of t over the original data grows approximately linearly with

p
n.
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