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Hydrodynamic effective field theories with discrete rotational symmetry
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We develop a hydrodynamic effective field theory on the Schwinger-Keldysh contour for fluids
with charge, energy, and momentum conservation, but only discrete rotational symmetry. The con-
sequences of anisotropy on thermodynamics and first-order dissipative hydrodynamics are detailed
in some simple examples in two spatial dimensions, but our construction extends to any spatial
dimension and any rotation group (discrete or continuous). We find many possible terms in the
equations of motion which are compatible with the existence of an entropy current, but not with
the ability to couple the fluid to background gauge fields and vielbein.
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1. INTRODUCTION

Recent years have seen a flurry of activity to develop a dissipative effective field theory for hydrodynamics [1–6].
While the actual field theory itself was well-known for a very long time (e.g. the stochastic Navier-Stokes equations),
what remained mysterious were the underlying symmetries that might lead to the explicit construction of a Lagrangian,
as one does in textbook quantum effective field theories (for non-dissipative dynamics).

Thus far, many of the papers written on this subject have sought to understand existing hydrodynamic universality
classes, including the Navier-Stokes equations, in a new field theoretic language. More recently, however, some authors
have begun to use this effective field theoretic approach to predict new universality classes of hydrodynamics, such as
“fracton fluids” [7–9] that arise in constrained quantum dynamics.

The purpose of this paper is to use effective field theory methods to learn about “regular” fluids (with charge,
energy and momentum conservation) with only discrete rotational symmetry groups. This is particularly relevant
for applications to electron liquids in high-purity materials [10–19], which have been realized experimentally in many
materials [20–32]; see [33] for a review. Since most metals are not even close to isotropic, it is important to understand
the consequences for discrete rotational symmetry on hydrodynamics. Some literature [34–38] has already attempted
to describe the hydrodynamics of such anisotropic fluids, albeit usually by simply positing the allowed tensor structures
that could arise in (e.g.) viscosity. When done, authors have used kinetic theory [34, 35] or AdS/CFT [39–41] to
derive the equations for an anisotropic fluid from a more microscopic perspective.

As we will see, there are a few peculiarities which are somewhat surprising from a microscopic perspective, and
which it is desirable to have a more universal understanding of. For example, we will see that in fluids with triangular
point group [42], there are certain terms which seem to be allowed in the conventional Landau paradigm (an entropy
current can be constructed): in particular within linear response, it seems possible to construct a spatial stress tensor
c · λijkvk ⊂ Tij , with vk fluid velocity and λ an invariant tensor under the discrete point group. However, kinetic
theory calculations reveal that c = 0 [42]. In this paper, we will explain why c = 0 in this model based on very general
arguments which are most natural within the effective theory approach. In other point groups as well, we will show
that certain anisotropic corrections, naively allowed by symmetry or Landau phenomenology, can be forbidden.

We will follow rather closely the formalism introduced in [4, 5] as we develop our effective field theory of hydrody-
namics. The main difference between our work and earlier work on the subject is that for a discrete point group, there
are no continuous generators of rotational symmetry whatsoever. The key consequence of this is that, just as when one
studies a non-relativistic fluid it is more appropriate to couple the fluid to an Aristotelian background [43, 44] rather
than a conventional Lorentzian spacetime manifold, here we will find it desirable to “generalize” the Aristotelian
background to an even more generic family of geometries which does not demand any accidental symmetry. The
natural conclusion is that one should couple the fluid with only discrete rotational symmetry directly to the vielbein.
The vielbein indices will encode all information about the discrete (or continuous) rotational symmetries imposed on
the model. To understand this conclusion, notice that when coupling to a relativistic metric gµν , the stress tensor
T µν ∼ δS/δgµν must manifestly be symmetric. This means physically that energy current is the same as momentum
density (in proper units). The non-relativistic fluid can only avoid this Lorentz covariance by coupling not to gµν but
to a “spatial metric” hµν and a timelike vector τµ obeying suitable constraints, similar to Newton-Cartan geometry
[45–47]. In an anisotropic fluid, there are in general no symmetry requirements on the stress tensor. So the only
object we can couple to is a set of d+ 1 linearly independent spacetime vectors, i.e. the vielbein.

In Section 2, we review the geometry of the Aristotelian background, and then generalize the effective field theory
to the vielbeins, focusing on the classical limit of most relevance for hydrodynamics. In Section 3, we consider
thermodynamics and the “ideal fluid” limit, and explain why certain terms can be forbidden despite their naive
compatibility with Landau’s formulation of hydrodynamics based on entropy currents. In Section 4, we discuss first
order dissipative hydrodynamics and describe both fluids with discrete and continuous rotational symmetries based on
our formalism. We discuss further the parity-violating hydrodynamics with applications to the Hall effect in Section 5.
Finally, Section 6 contains concluding remarks.

2. OVERVIEW OF EFFECTIVE FIELD THEORY

In this section we will overview the effective field theory framework along with the symmetries we impose.
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2.1. Fields in the effective action

Consider a generating function in the Schwinger-Keldysh (S-K) formalism [48, 49]1 for correlators of a conserved
U(1) current Jµ and the energy and momentum currents T µ

α . Here and below, Greek µν · · · indices will represent
coordinate spacetime indices, while ij · · · represent only spatial components. α,β, . . . represent spacetime vielbein
indices, while b, c, . . . represent spatial vielbein indices only (we will reserve a for another purpose!). The summation
convention is used for all four types of indices. We emphasize that for us, the energy and momentum currents are
most naturally thought of as ordinary vectors, with an additional vielbein index associated to the actual quantity
being conserved. Our goal is to calculate the generating function of real-time correlation functions of Jµ and T µ

α .
This is done in the standard way by constructing the generating functional

eW [eαsµ,Asµ] = tr
(

ρ0U
†(eα2µ, A2µ)U(eα1µ, J1µ)

)

, (2.1)

where the unitary operators U are defined as

U(eαµ, Aµ) = exp

[

i

∫

dtddx
(

eαµ(x)T
µ
α (x) +Aµ(x)J

µ(x)
)

]

. (2.2)

Here the s index runs over indices 1 and 2, and denotes the half of the S-K contour on which the field is defined. The
global U(1) symmetry of the field theory implies that W must be gauge invariant (in the absence of anomalies) with
respect to the background gauge field Aµ.
eαµ is the vielbein: it will play the role of the spacetime metric in our calculation. We must use vielbein rather

than a metric for two reasons. Firstly, the vielbeins can somewhat intuitively be regarded as “background gauge
fields”2, so, similar to the U(1) symmetry, the spacetime diffeomorphism is realized as a kind of “gauge invariance”
of the vielbeins. Second, as we will see frequently below, in the presence of a small symmetry group, the vielbeins are
more natural and fundamental ingredients to describe the spacetime. Indeed, as we explained in the introduction, a
conventional metric is too strongly constrained to capture the asymmetry of the stress tensor which is inevitable in
an anisotropic theory. The vielbein indices α are in a representation of any discrete/continuous rotational symmetries
which remain in the problem.
The vielbein satisfy the orthogonality and completeness relations

eµαe
β
µ = δβα, eµαe

α
ν = δµν . (2.3)

We denote the determinant of the vielbeins as

e = det(eµα). (2.4)

Moreover, as we do not assume the existence of an absolute time [50] and allow for spatial dislocations [51–53], we
introduce the torsion field

Gα
µν ≡ ∂µe

α
ν − ∂νe

α
µ + ωα

βµe
β
ν − ωα

βνe
β
µ, (2.5)

where ωα
βµ is the spin connection which makes the derivatives covariant under discrete rotational symmetry. In the

present case, only the internal space-like components ωb
cµ are nonzero.

2.2. Fluid symmetries

To proceed, we represent the generating function (2.1) in terms of a path integral. In principle this path integral
can be done over all microscopic fields, but we wish to integrate out all of the non-hydrodynamic modes. Following
[4], the modes which we will keep are the Stuckelberg fields Xµ, which we will relate to energy and momentum, and
φ, which we will relate to charge:

eW [eα
1,µ,A1,µ;e

α
2,µ,A2,µ] =

∫

DX1DX2Dφ1Dφ2 eiIEFT[eα
1,A,B1,A;eα

2,A,B2,A]. (2.6)

1 For our purpose, we only consider the closed time path [6].
2 The momentum mimics the time-reversal-odd “charges”. However, it does not diffuse but has linear dispersion relation due, in part, to
the non-linear diffeomorphism symmetry we will review below. In this sense, the “background gauge field” analogy is a bit imprecise.
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To incorporate diffeomorphism invariance and to promote the coordinate fields Xµ to be dynamical, it is helpful to
introduce another fluid spacetime parametrized by σA, as we will illustrate in the following. So, in the above equation,
the A,B indices denote space and time (A = t) in the fluid spacetime, while I, J, . . . denote spatial indices alone. The
fields in IEFT are defined as (s = 1, 2)

eαs,A(σ) =
∂Xµ

s (σ)

∂σA
eαs,µ(σ), Bs,A(σ) =

∂Xµ
s (σ)

∂σA
As,µ(σ) +

∂φs(σ)

∂σA
, (2.7)

and one can check that they are invariant under the spacetime diffeomorphism and U(1) gauge symmetries:

e′αs,µ(X
′
s) =

∂Xν
s

∂X ′µ
s
eαs,ν(Xs), A′

s,µ(X
′
s) =

∂Xν
s

∂X ′µ
s
As,ν(Xs), X ′µ

s (σ) = fµ
s (Xs(σ)), (2.8a)

A′
s,µ(Xs) = As,µ(Xs)− ∂µλs(Xs), φ′s(σ) = φs(σ) + λs(Xs(σ)), (2.8b)

for arbitrary functions fµ
s and λs. To describe the hydrodynamics of the charged fluids, additional symmetries need

to be imposed to distinguish from other phases of matter such as solids and superfluids3. First, there is a “diagonal
shift symmetry” for each fluid element:

φr → φr + λ(σI), φa → φa. (2.9)

This is the freedom to make an independent phase change in a fluid. Similarly, the fluid spacetime has a reparametriza-
tion symmetry both in space and time:

σI → σ′I(σI), σt → σt, (2.10a)

σt → σ′t = σt + f(σI), σI → σI . (2.10b)

The freedom to relabel each fluid element and set their own clocks distinguishes a fluid phase from a solid phase. Note
that in (2.10b) we have fixed part of the gauge freedom relative to [4] by defining the local proper temperature to be

T (σ) = 2
T0

e01,t + e02,t
. (2.11)

This is the standard way of defining local proper temperature in a curved spacetime; the temperature is induced by
the temporal Killing vector ∂Xµ/∂σt. For the purposes of this paper, this gauge fixing will be useful.
On each contour s, it is convenient to decompose the gauge invariant variables eαs,A as

∂Xµ

∂σt
≡ buµ, b =

∂Xµ

∂σt
e0µ, (2.12a)

∂Xµ

∂σI
≡ buµvI + λµI , vI =

1

b

∂Xµ

∂σI
e0µ, λµI =

∂Xµ

∂σI
− vI

∂Xµ

∂σt
, (2.12b)

such that

uµe0µ = 1, e0µλ
µ
I = 0. (2.13)

uµ plays the role of a fluid velocity vector, b will eventually relate to temperature, and vI and λµI denote the parts of
∂IXµ oriented along e0µ or not. We then define (recall b, c indices run only over spatial vielbein!)

ub = uµebµ, abI = λµI e
b
µ, (2.14)

and we define aIb = λIµe
µ
b as the inverse matrix of abI , where λ

I
µ is the inverse of λµI satisfying

λIµλ
µ
J = δIJ , λIµλ

ν
I = δνµ − eν0e

0
µ. (2.15)

3 However, these symmetries lack a solid derivation (see attempts based on holography in [54, 55]).
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We can similarly define the fluid spatial metric

aIJ ≡ abIa
b
J = λµI λ

ν
Jhµν , hµν = ebµe

b
ν (2.16)

and its inverse aIJ , such that we can raise or lower the indices to get λIµ ≡ hµνaIJλνJ . Here hµν is the spatial part
of the metric. In the remaining part of the paper, upper (lower) fluid spatial indices are understood as being raised
(lowered) by aIJ . Similarly, for Bs,A, we will decompose it as

µ = uµAµ +Dtφ, bI = λµIAµ +DIφ, (2.17)

where Dt = b−1∂t and DI = ∂I − vI∂t.
The degrees of freedom b, vI , uµ,λµI are not all independent. In particular, from

∂Xν

∂σI
∂ν
∂Xµ

∂σt
=
∂Xν

∂σt
∂ν
∂Xµ

∂σI
, (2.18)

we have

uµ∂µvI =
1

b2
λνI∂νb+

1

b
uµλνIG

0
µν , (2.19a)

uµ∂µλ
µ
I = λνI∂νu

µ − uµuνλρIG
0
νρ, (2.19b)

To summarize, the gauge invariant variables are

Φs = {bs, vs,I , ub
s, abs,I , µs, bs,I}. (2.20)

In order to make these variables covariant under the fluid shift symmetries (2.10a) and (2.10b), we first introduce
the r/a variables. In a nutshell the r-variables will correspond to hydrodynamic degrees of freedom while a-variables
correspond to fluctuations and noise. We will always write

Φr =
Φ1 + Φ2

2
, (2.21)

but it will be convenient to define the a-variables in a more complicated way:

ba = log(b−1
2 b1), va,I = v1,I − v2,I , ub

a = ub
1 − ub

2, µa = µ1 − µ2, ba,I = b1,I − b2,I ,

χa = log det
(

aI2,ba
b
1,J

)

, ΞI
a,J = log





aI2,ba
b
1,J

det
(

aI2,ba
b
1,J

)



 . (2.22)

Note that we have separated out aIJ ’s a-field into the traceful (χa) and traceless (ΞI
a,J) components. Now, we

introduce two covariant derivatives Dt and DI on the fluid spacetime. For a general covariant scalar ξ they are 4

Dtξ =
1

br
∂tξ, DIξ = ∂Iξ − vr,I∂tξ. (2.23)

For the vector fields we have instead

Va,I = brva,I , Vr,I = brvr,I , DIbr ≡
1

br
(∂Ibr − ∂tVr,I), Dtbr,I ≡

1

br
∂tbr,I . (2.24)

From (2.1) and (2.6), unitarity and stability require

I∗EFT[Λa,Λr] = −IEFT[−Λa,Λr], (2.25a)

Im IEFT ≥ 0, (2.25b)

4 Note that br , Vr,I and br,I are not covariant objects, thus one should take (2.24) as a definition of their first derivatives.
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IEFT[Λa = 0,Λr] = 0, (2.25c)

where Λr,a denote collectively the r-a variables of both external and dynamical fields. The first equation tells that every
even power of a-fields should be purely imaginary, and the second one says their coefficients should be non-negative.
The last equation means every term should at least include one a-field.
Moreover, by taking the density matrix to be the thermal ensemble ρ0 = e−β0H , the Kubo-Martin-Schwinger

(KMS) condition tells that IEFT is related to its time-reversal partner with every field getting an imaginary shift
along the temporal direction. By further applying an anti-unitary symmetry Θ that is preserved by the Hamiltonian
(time-reversal, possibly in combination with a spatial operation) we obtain the symmetry

IEFT[Λ1,Λ2] = IEFT[Λ̃1, Λ̃2], (2.26)

where

Λ̃1 = ΘΛ1(t− iθ,x), Λ̃2 = ΘΛ2(t+ i(β0 − θ),x). (2.27)

We will focus on the consequences of this symmetry in the limit where we can Taylor expand in β0 − θ, though defer
a detailed discussion of this classical limit to the end of this section.
Now the action in the fluid spacetime is ready to be written down. Its schematic structure is

IEFT =

∫

dd+1σ ab L[Φr,Φa], (2.28)

where we defined a = det abJ . Note the Jacobian

Λ = det
∂X

∂σ
=

ab

e
. (2.29)

The L can be further expanded in the number of a-fields and (covariant) derivatives:

L = L(1,0) + L(1,1) + . . .+ L(2,0) + . . . , (2.30)

where L(m,n) contains m factors of a-fields and n derivatives. In this paper, we will restrict to the order m+ n ≤ 2.5

Then, the (off-shell) stress tensor and current can be derived through variation of the action with respect to the
vielbeins and the gauge field respectively,

T µ
α =

1

ab

δIEFT

δeαµ
, Jµ =

1

ab

δIEFT

δAµ
. (2.31)

Much of this paper will amount to an analysis of the types of terms we can write down in L and the consequences on
T µ
α and Jµ.

2.3. Rotational symmetry

Before we start to write down L, however, there are two more important things to discuss. We begin with a
discussion of the consequences of discrete rotational symmetry.
For a system to preserve the rotational symmetry group G, the action (a functional) must be invariant under

(unitary) transformations of the fields ψi. In addition to the “hydrodynamic” symmetries listed above, we also wish
to impose some (generally discrete) rotational symmetry group G. In what follows, we will assume that there is
no boost-like symmetry mixing time and space; the only spacetime symmetries of interest will include time-reversal
(possibly only in tandem with inversion), and the rotational group G.
Let V denote the d-dimensional “vector” representation of the group G that position and momentum transform in.

We propose that the spatial vielbein indices bc · · · are the indices which will lie precisely in V . Let V (g) denote the
unitary transformation corresponding to the group element g ∈ G, in the representation V . Then the action must be
invariant under the transformation (e.g.)

ebsµ → V (g)bcecsµ. (2.32)

5 Writing down higher order terms is sophisticated and does not appear particularly illuminating to us, although there are some point
groups where more interesting structure will only arise at higher orders (such as D5).
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More generally, all vielbein indices transform similarly.
It is useful to build the action by classifying all possible group invariant tensors with indices bc · · · . We can then

build an action by simply making sure that all vielbein indices are contracted with one of our invariants. We will
often denote these invariant tensors with the letter f :

f b1···bn = V (g)b1c1 · · ·V (g)bncnf c1···cn . (2.33)

Such a tensor exists if and only if V ⊗n contains the trivial representation. Each copy of the trivial representation
corresponds to a different invariant tensor.
Let us start by considering the example of the non-boost invariant system, but with otherwise the full rotational

symmetry group O(d). Here, the underlying geometry is the Aristotelian geometry [43, 44]. The temporal vielbein e0µ
is independent as there is no boost symmetry relating it to the spatial ones; while the spatial vielbeins are required to
form a “metric” hµν , which is a rank-d (d+ 1)× (d+ 1) symmetric tensor. This metric is best understood by simply
writing it as

hµν = ebµe
c
νδbc, (2.34)

with δbc the unique invariant tensor (up to taking tensor products with itself) for O(d). Because all higher rank
invariant tensor are simply products of Kronecker δs, there is no reason to introduce ebµ in the Aristotelian geometry;
it suffices to simply couple systems to hµν , the unique invariant object. Of course, even this Aristotelian geometry
itself came from breaking the Lorentz group O(1, d) to O(d). Because the Lorentz group had unique invariant ηαβ ,
one can only couple to the spacetime metric

gµν = eαµe
β
νηαβ . (2.35)

But with the breaking of boost symmetry, gµν is no longer the most general kind of background: instead we need to
keep track of the four objects hµν , hµν , e0µ and eµ0 , obeying the constraints

hµνe
µ
0 = 0, hµνe0µ = 0, e0µe

µ
0 = −1, hµρh

ρν = δνµ − e0µe
ν
0 . (2.36)

But, this seemingly complicated construction is greatly simplified by noticing that all of these identities follow directly
from the vielbein identities in (2.3), together with (2.34).
It is now straightforward to deduce what happens when the rotational symmetry O(d) is broken further. As

explained above, there will generally be new invariant tensors to contract vielbein into. An instructive example is a
system with rectangular symmetry group D2, only invariant under x → ±x and y → ±y. In this theory, there is an
invariant tensor f corresponding to the Pauli z-matrix. All invariants can be built out of products of δ and f , as can
be deduced by noting that δ ± f correspond to projections onto even numbers of x/y indices. In this D2-invariant
theory, we can include terms proportional to each of

hµν = δbcebµe
c
ν , fµν = f bcebµe

c
ν (2.37)

in our effective action.
A particular focus of this paper will be on fluids in two spatial dimensions. All possible point groups are classified

by either ZN (a discrete rotational group without parity symmetry), a dihedral group DN
6 which is a semidirect

product of ZN with parity, and of course the two continuous groups O(2) and SO(2). We will focus on the group DN

in this paper, with a brief discussion of ZN in Section 5. This group consists of a rotation r around a fixed point by
the angle θ = 2π/N and a reflection s around a fixed symmetry axis, i.e.

DN = 〈s, r|s2 = rN = 1, srs = r−1〉. (2.38)

The group is non-abelian when N ≥ 3, while abelian when N ≤ 2. The construction of invariant tensors based on
branching rules is well reviewed in [35, 36], and we summarize the results in Table 1.

6 Since there are totally 2N group elements, it is sometimes denoted as D2N in the math literature.
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D2 D3 D4

parity-
even

δij , σ
z
ij δij , δixσ

z
jk − δiyσ

x
jk δij

δijδkl, εijεkl, σ
x
ijσ

x
kl, σ

z
ijσ

z
kl δijδkl, εijεkl δijδkl, εijεkl

σ
z
ijδkl ± δijσ

z
kl, σ

x
ijεkl ± εijσ

x
kl, σ

x
ijσ

x
kl + σ

z
ijσ

z
kl σ

x
ijσ

x
kl, σ

z
ijσ

z
kl

parity-
odd

εij , σ
x
ij εij εij

εijδkl ± δijεkl, σ
x
ijδkl ± δijσ

x
kl εijδkl ± δijεkl εijδkl ± δijεkl

εijσ
z
kl ± σ

z
ijεkl, σ

x
ijσ

z
kl ± σ

z
ijσ

x
kl σ

x
ijσ

z
kl − σ

z
ijσ

x
kl σ

x
ijσ

z
kl ± σ

z
ijσ

x
kl

TABLE 1. Lists of invariant n-tensors for various discrete rotational groups even or odd under parity symmetry. The 3-tensor
for D3 is chosen to respect Py; see the main text.

2.4. The classical limit and the physical spacetime

The other important issue to address is the classical limit of this quantum effective theory framework, corresponding
to the limit ! → 0. This is a suppression of loop corrections to quantum field theory while maintaining the classical
statistical fluctuations required by the fluctuation-dissipation theorem. Schematically, we take this limit as follows [4]

Λr → Λr, Λa → !Λa, ! → 0. (2.39)

Hence, we can write various external and dynamical fields as

eα1/2,µ = eαµ ±
!

2
eαa,µ, Xµ

1/2 = Xµ ±
!

2
Xµ

a , A1/2,µ = Aµ ±
!

2
Aa,µ, φ1/2 = φ±

!

2
φa. (2.40)

We find the gauge invariant variables as

eα1,A = eαA +
!

2
eαa,A, B1,A = BA +

!

2
Ba,A, (2.41)

where

eαA = ∂AX
µeαµ, eαa,A = ∂AX

µEα
a,µ, Eα

a,µ = eαa,µ + LXae
α
µ,

BA = ∂AX
µAµ + ∂Aφ, Ba,A = ∂AX

µCa,µ, Ca,µ = Aa,µ + ∂µφa + LXaAµ, (2.42)

where Lξ is the Lie derivative with respect to the vector ξµ.
The physical spacetime is defined by one copy of the vielbeins eαµ and coordinates Xµ. It is often more useful to

then think of σA(x) as the dynamical field by inverting the function Xµ(σ), and – to connect with more standard
notation – just writing lower case xµ instead of Xµ. The a-fields describe noise and statistical fluctuations, and are
independent of r-fields. Since the invariant a-variables are organized into Eα

a,µ and Ca,µ, we can write the Lagrangian
as, to the second order,

L = T µ
αE

α
a,µ + JµCa,µ + iWµν

αβE
α
a,µE

β
a,ν + 2iY µν

α Eα
a,µCa,ν + iZµ,νCa,µCa,ν + · · · . (2.43)

The first two terms precisely correspond to the stress tensor and current in (2.31). The equation of motion in the
absence of stochastic fluctuations is obtained by varying Lcl with respect to Xµ

a and φa and setting Xµ
a = φa = 0

afterwards, which means that only the leading order in a-fields is involved. This leads to

e−1∂µ (eT
µ
α ) e

α
ν −Gα

νµT
µ
α − FνµJ

µ = 0, e−1∂µ (eJ
µ) = 0. (2.44)

We see that besides the normal Lorentz force FµνJν , there is another Lorentz-like forceGα
µνT

ν
α induced by the torsional

spacetime [50].
In the classical limit and physical spacetime, taking Θ = IT 7, the KMS symmetry transformation (2.27) becomes

[5] (note that Bµ = Aµ + ∂µφ; in general, we will use the same letter with multiple types of indices when the
transformation between frames is standard)

Ẽα
a,µ(−x) = Eα

a,µ(x) + iLβµeαµ(x), C̃a,µ(−x) = Ca,µ(x) + iLβµBµ(x), (2.45)

7 In d = 2, we employ a combination of inversion and time reversal symmetry. We discuss other symmetries below.
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where

βµ(x) = β(x)uµ(x), (2.46)

and the Lie derivatives read

Lβµeαµ = ∂µ(β
νeαν ) + βνGα

νµ, LβµBµ = ∂µ(βµ) + βνFνµ. (2.47)

The dynamical KMS invariance (2.26) therefore requires

T µ
{0}αLβµeαµ + Jµ

{0}LβµBµ = e−1∂µ(eV
µ
{0}), (2.48a)

T µ
{1}α = −Wµν

αβLβµeβν − Y µν
α LβµBν , (2.48b)

Jµ
{1} = −Y µν

α Lβµeαν − Zµ,νLβµBν . (2.48c)

where the subscript {n} denote the n-derivative order and V µ
{0} is an arbitrary function with zero derivatives. The

relationship with the entropy current has been discussed in [56].

3. THERMODYNAMICS AND IDEAL HYDRODYNAMICS

In this section we use the effective action principle to describe the thermodynamics and ideal hydrodynamics of a
fluid with (discrete) rotational symmetry.

3.1. Factorizability

We begin by discussing an important constraint which appears to arise from locality, KMS invariance, and the
ability to couple to background gauge fields: the factorizability of the ideal fluid action [4].
In writing down the effective action by integrating out the UV degree of freedom as in (2.6), we have assumed that

in general it is not factorizable: namely that

IEFT[Λ] ,= I[Λ1]− I[Λ2]. (3.1)

And indeed in order to describe dissipative hydrodynamics, this must be the case. However, we claim that the effective
field theory must be factorizable for ideal hydrodynamics in the models we will study in this paper:

IEFT = Iideal[Λ1]− Iideal[Λ2] + higher derivative terms. (3.2)

KMS and locality do imply that, in (2.6),

Wideal = W [Λ1]−W [Λ2]; (3.3)

we have not found an example where (3.3) holds while (3.2) does not.
A simple argument why factorizability is reasonable is as follows. The lowest order in derivative action we can write

down will generate thermodynamic correlators, e.g. 〈O1(0, 0)O2(0, 0) · · · 〉. Now, suppose that there were a term in
the ideal fluid action which could not be written in the form (3.2):

eIEFT,ideal =
〈

e−i
∫
O2·Λ2ei

∫
O1·Λ1

〉

,=
〈

e−i
∫
O2·Λ2+i

∫
O1·Λ1

〉

, (3.4)

where the time ordering is implicitly assumed. Moreover, this equality would not hold even at the ideal fluid level.
This would imply that there are certain correlation functions where the ordering of operators was crucial, or in other
words that there is a pair of (products of) thermodynamic operators, O and O′, such that

〈[O,O′]〉 ,= 0, (3.5)
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i.e., the order in which we arranged these two operators in a thermal expectation value is important. We expect that,
for a conventional fluid (but with discrete rotational symmetry), such commutators can be assumed to vanish at the
ideal fluid level. As one transparent example of this, note that

∫

ddx〈[T 0
b (x),O(y)]〉 = i〈(∂bO)(y)〉 = 0, (3.6)

as long as the thermal state is on average homogeneous. Even more generally, it is typically the case that even if local
operators fail to commute, the operators will commute in the thermodynamic limit. A transparent example of this can
be found in the hydrodynamics of a system with a non-Abelian flavor symmetry [57]: even though the charge density
operators do not commute, in the thermodynamic limit this commutator becomes very small; as a consequence, there
are hydrodynamic modes for all flavor charges.
Henceforth, from here on out, we will assume (3.2) when building our ideal hydrodynamic action. As we will see,

this condition can impose non-trivial constraints on fluids with discrete rotational symmetry, which we will argue
are stronger than the constraints imposed within the conventional Landau paradigm for hydrodynamics. As a con-
sequence, the effective action approach provides further constraints on the construction of a noise-free hydrodynamic
theory than the conventional approach would alone.

3.2. Thermodynamics

We are now ready to build the ideal fluid Lagrangian. It will generically take the form

L(1,0) = −ε0ba + p0χa + n0νa + π0,bũ
b
a, (3.7)

where

νa = µa + baµ, ũb
a = ub

a + bau
b, (3.8)

and ε0, p0, n0 and π0,b are functions of τ , µ and ub which are not all independent (we will return to this point in
Section 3.3). It is useful to find explicit expressions for the a-fields in the physical spacetime, which will be of interest
as we eventually use (3.7) to deduce constitutive relations:

ba = uµE0
a,µ, νa = uµCa,µ, ũb

a = uµEb
a,µ, χa = eµb

(

Eb
a,µ − ubE0

a,µ

)

,

Va,I = λµIE
0
a,µ, ca,I = λµICa,µ, ΞI

a,J = aIbλ
µ
J

(

Eb
a,µ − ubE0

a,µ

)

−
1

d
χaδ

I
J .

(3.9)

There are also “anisotropic” terms that are allowed by all the symmetries of Section 2:

L(1,0)
new = rτa, (3.10)

where r is some possibly new thermodynamic coefficient, and τa is some contraction of ebsµ with the G-invariant
tensors f which vanishes when ebaµ = 0. The main result of this section is that

r = 0. (3.11)

As such, the only anisotropy which is possible within ideal hydrodynamics arises due to the anisotropic momentum
susceptibility in (3.7). We demonstrate this surprising fact, at least within linearized hydrodynamics, using kinetic
theory models of anisotropic (electron) fluids in Appendix A. Using (2.31), we conclude that the ideal hydrodynamic
constitutive relations are

T µ
0 = −ε0u

µ − p0(u
µ − eµ0 ), (3.12a)

T µ
b = p0e

µ
b + π0,bu

µ, (3.12b)

Jµ = n0u
µ. (3.12c)

One should distinguish the anisotropy induced by the discrete rotational symmetry here from the literature where an
external source has been manually added in one particular spatial direction [58–60] (see also [40]). In the latter case,
there is a spatial Killing vector orthogonal to the temporal one uµhµ = 0, rendering the transverse and longitudinal
pressure to be different. Another example of hydrodynamics where more explicit anisotropy is possible is in the
presence of a 1-form symmetry, such as in magnetohydrodynamics [61].
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3.2.1. Absence of anisotropic pressure in a rectangular fluid

It is illustrative to focus on a concrete example to justify (3.11). Let us consider a fluid with rectangular (D2) point
group, which will correspond to invariance under x → ±x and y → ±y. The invariant tensors correspond to anything
with an even number of x and y indices, and can be built out of tensor products of δbc and fbc = (σz)bc. In this case
we will write more explicitly:

L(1,0)
new = p0,×τa = p0,×fbca

b
1Ia

c
2I“ = ”p0,×f

bcaIba
J
cΞa,IJ , (3.13)

where the quoted equation means that the stress tensors produced by the action are equal. Due to the tracelessness
of fbc, this term vanishes when abaI = 0. The ideal hydrodynamic constitutive relations is then modified to

T µ
0 = −ε0u

µ − p0(u
µ − eµ0 )− p0,×f

c
de

µ
c u

d, (3.14a)

T µ
b = p0e

µ
b + p0,×f

c
b e

µ
c + π0,bu

µ. (3.14b)

In Landau’s hydrodynamic paradigm, p0,× ,= 0 would be possible if we could construct a conserved entropy current.
Equivalently, we can simply ask whether it is possible for (2.48a) to ever hold [56]. Explicitly, we have

T µ
{0}αLβe

α
µ = −p0,×f

c
b e

µ
c u

b
(

∂µ(β
νe0ν) + βνG0

νµ

)

+ p0,×f
c
b e

µ
c

(

∂µ(β
νebν) + βνGb

νµ

)

. (3.15)

In the presence of an arbitrary background vielbein, this term cannot be arranged into a total derivative. In particular,
in the presence of non-zero Gα

νµ, there are clearly terms which are not total derivatives in the above equation. Since
this term would violate KMS invariance, we must have p0,× = 0.
Interestingly, if we turn off the spin connection, Gα

νµ = 0, and we work in the flat spacetime limit, the anisotropic
pressure will be KMS invariant and consistent with the entropy current by requiring

p0,× = −β
∂p0,×
∂β

, (3.16)

where we choose V µ
{0} = p0,×f b

c e
µ
b e

c
νβ

ν . Therefore, to forbid the anisotropic pressure, we must impose KMS invariance

upon an arbitrary backgroud field. This is analogous to the case of chiral anomaly in 1 + 1d [62] where j ∼ µ at
leading order is fixed by KMS invariance only with generic background fields. Similar instances where introducing an
arbitrary background field is important to fix hydrodynamic coefficients are found in [63, 64]. Without appealing to
KMS invariance, we show in Appendix B that the anisotropic pressure in the action does not manifest factorizability.

3.2.2. Absence of linear velocity in ideal stress tensor

Let us now give another example of a forbidden term in a fluid with D3 symmetry. This introduces a new invariant
tensor which is traceless and fully symmetric: f bcd (see Table 1). So it is tempting to try and write down

L(1,0)
new = K1a

I
2,bf

b
cda

c
1,Iu

d +K2f
b
cda

I
bu

cud
ca,I +K3f

b
cda

I
bu

cudVa,I , (3.17)

where

ca,I = ba,I + µVa,I . (3.18)

By varying with respect to the background field, we find

T µ
0 = (K3 −K1)fbcde

bµucud, (3.19a)

T µ
b = K1fbcde

cµud, (3.19b)

Jµ = K2fbcde
bµucud. (3.19c)

Similar to the previous example, we want to find what the KMS invariance would put as constraints. Specifically,

T µ
{0}αLβe

α
µ + Jµ

{0}LβBµ =(K3 −K1)fbcde
bµucud

(

∂µ(β
νe0ν) + βνG0

νµ

)

+K1fbcde
cµud

(

∂µ(β
νebν) + βνGb

νµ

)

+K2fbcde
bµucud (∂µ(βµ) + βνFνµ) . (3.20)
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Similar to above, we find that it is not possible to rewrite this term as a total derivative due to the presence of F
and G terms; thus we must have K1 = K2 = K3 = 0. However, when the system only couples to the flat spactime
without external field, the KMS invariance condition becomes

K3fbcde
bµucud∂µ(β) +K2fbcde

bµucud∂µ(βµ) =
1

2
fbcde

bµucud∂µ(βK1), (3.21)

which leads to

K3 + µK2 =
1

2

∂(βK1)

∂β
, K2 =

1

2

∂K1

∂µ
. (3.22)

Indeed, without background fields, it is possible to construct a conserved entropy current for ideal hydrodynamics so
long as this constraint on K1,2,3 is satisfied. It is only KMS invarince plus coupling to an arbitrary background field
which demands K1,2,3 = 0.
Should one allow such terms, the K1 term would qualitatively change the dispersion relations of an ideal fluid. In

linear response about a fluid at rest, K2,3 is a nonlinearity that will not affect quasinormal modes.
We could also try to write terms proportional to P2f b

ca
I
bu

cca,I + P3f b
ca

I
bu

cVa,I (include fbc = δbc) in the action.
However, these are also not allowed.

3.3. KMS invariance

Since very few anisotropic terms are allowed within hydrodynamics, the thermodynamic analysis will basically
mirror that of a conventional fluid. In the vielbein formalism, we must impose (2.48a) to (3.7). We find that, with
the choice V µ

{0} = p0βµ,

− (ε0 + p0)∂β + π0,b∂(βu
b) + n0∂(βµ) = β∂p0, (3.23)

which leads to

ε0 + p0 − π0,bu
b − µn0 = −β

∂p0
∂β

, n0 =
∂p0
∂µ

, π0,b =
∂p0
∂ub

. (3.24)

This is precisely the thermodynamic relation for a rotational invariant fluid without boost symmetry [43], but with
more general form of momentum susceptibilities [65]; e.g. in a D2-invariant fluid:

π0,b = ρ0δbcu
c + ρ0,×fbcu

c + . . . , (3.25)

The dots in the above equation include higher orders of velocity densities with invariant n ≥ 2-tensors. Further, the
factorizability requires the invariant tensors to be symmetric, and the combination π0,bub must be positive to ensure
thermodynamic stability.

4. FIRST ORDER DISSIPATIVE HYDRODYNAMICS

We now turn to dissipative, first order hydrodynamics. Unlike before, without a factorizability requirement, here
we will find that nearly everything allowable by symmetry can exist.

4.1. The effective action and transport coefficients

The O(a) Lagrangian with first derivatives in the fluid spacetime can be written explicitly. We will focus on a
particular example of a fluid with a symmetric traceless invariant tensor f bcd and tensors f bcde = fdebc; however, the
construction is straightforward to extend. In particular, for most discrete groups there are multiple inequivalent such
tensors, but we will postpone the full enumeration of them and their effects to later subsections (in Section 4.2 and
Section 4.3) to avoid overly cluttering the notation here. We find that

L(1,0) + L(1,1) =− f1ba + f2χa + f3νa + f4,bũ
b
a − ηf IJKLΞa,IJAKL

− λ1V
I
a D̃Ibr − λ2c

I
aD̂tbr,I + λ12V

I
a D̂tbr,I + λ21c

I
aD̃Ibr

+ f IJK
{(

γ13D̃Ibr + γ23D̂tbr,I

)

Ξa,JK + (γ31Va,I + γ32ca,I)AJK

}

,

(4.1)
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where we denoted

f I1...In = f b1...bnaI1b1 . . . a
In
bn
, AK

L = aKr,bDta
b
r,L, (4.2)

and for later convenience we introduce

D̃Ibr = DIbr −DIτ, D̂tbr,I = Dtbr,I − µD̃Ibr, (4.3)

and

f1 = ε0 + f11Dtτ + f12Dt(log a) + f13β
−1Dt(µβ) + f14,bβ

−1Dt(u
bβ) + . . . , (4.4a)

f2 = p0 + f21Dtτ + f22Dt(log a) + f23β
−1Dt(µβ) + f24,bβ

−1Dt(u
bβ) + . . . , (4.4b)

f3 = n0 + f31Dtτ + f32Dt(log a) + f33β
−1Dt(µβ) + f34,bβ

−1Dt(u
bβ) + . . . , (4.4c)

f4,b = ρ0,b + f41,bDtτ + f42,bDt(log a) + f43,bβ
−1Dt(µβ) + f44,bcβ

−1Dt(u
cβ) + . . . , (4.4d)

and η, f ’s, and λ’s are all real functions of µ, τ and ub. Moreover, to zeroth order in derivatives, we have

−iL(2,0) =s11b
2
a + s22χ

2
a + s33ν

2
a + 2s12baχa + 2s13baνa + 2s23χaνa

+ 2

(

s14,bba + s24,bχa + s34,bνa +
1

2
s44,bcũ

c
a

)

ũb
a

+ rf IJKLΞa,IJΞa,KL + r11V
I
a Va,I + r22c

I
aca,I + 2r12V

I
a ca,I + f IJK (t13Va,I + t23ca,I)Ξa,JK .

(4.5)

Before taking the classical limit and physical spacetime, which turns out to be more convenient, we can already see
the structure of the stress tensor and current from variation of (4.1). Using (2.31), we arrive at

T µ
ν ≡ T µ

α e
α
ν

=

(

δL

δba
−

δL

δub
a
ub − µ

δL

δµa

)

uµe0ν +
δL

δχa
(δµν − uµe0ν) +

δL

δub
a
uµebν +

(

1

b

δL

δva,I
− µ

δL

δba,I

)

λµI e
0
ν

+
δL

δΞI
a,J

{

λIρλ
µ
J(δ

ρ
ν − uρe0ν)−

1

d
(δµν − uµe0ν)δ

I
J

}

.

(4.6)

Identifying

ε = −
δL

δba
+
δL

δub
a
ub + µ

δL

δµa
, p =

δL

δχa
, πb =

δL

δub
a
, qµ =

(

1

b

δL

δva,I
− µ

δL

δba,I

)

λµI , (4.7)

we obtain

T µ
ν = −εuµe0ν + p(δµν − uµe0ν) + πbu

µebν + qµe0ν +Σµ
ν , (4.8)

where Σµ
νu

ν = 0. Similarly, from variation of Aµ, we obtain the U(1) current

Jµ = nuµ + jµ, (4.9)

where

n =
δL

δµa
, jµ =

δL

δba,I
λµI . (4.10)

Explicit expressions for the above quantities are listed in (4.15) and (4.18) in physical spacetime, as one can check
they are identical to the one by variation.
Now, let us take the classical limit and work in the physical spacetime. The transformation of derivatives from the

fluid spacetime to physical spacetime is

∂t = b∂, ∂I = bvI∂ + λµI ∂µ, (4.11)

where we denote

∂ = uµ∂µ, (4.12)
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thus

Dtτ = ∂τ, Dt(log a) = eµα∂e
α
µ + ∂µu

µ = e−1∂µ(eu
µ), Dt(µβ) = ∂(µβ),

D̃Ibr = −b∂vI = −
1

b
λµI ∂µb− uµλνI e

0
µν , D̂tbr,I = ∂(λµIAµ) + bµ∂vI = λρI∂ρu

µAµ + λµI ∂Aµ + µb−1λρI∂ρb,

AI
J ≡ aIr,bDta

b
r,J = aIbλ

µ
J

(

∂ebµ + uρωb
cρe

c
µ + ebν∂µu

ν
)

, Dt(u
bβ) = ∂(ubβ) + uµωb

cµu
cβ.

(4.13)

Then, the classical Lagrangian (2.43) reads

T µ
0 = −f1u

µ − f2(u
µ − eµ0 ) + λ1w

µ + λ12w
µ + ητµb u

b + pρf
ρνµebνδbcu

c + γ31f
µνρebνδbc

(

∂ecρ + ecλ∂ρu
λ
)

, (4.14a)

T µ
b = f2e

µ
b + f4,bu

µ − ητµb − pρf
ρνµecνδcb, (4.14b)

Jµ = f3u
µ − λ21w

µ − λ2w
µ + γ32f

µνρebνδbc
(

∂ecρ + ecλ∂ρu
λ
)

, (4.14c)

where

ε ≡ f1 = ε0 + f11∂τ + f12θ + f13T∂(µβ) + f14,bT∂(u
bβ), (4.15a)

p ≡ f2 = p0 + f21∂τ + f22θ + f23T∂(µβ) + f24,bT∂(u
bβ), (4.15b)

n ≡ f3 = n0 + f31∂τ + f32θ + f33T∂(µβ) + f34,bT∂(u
bβ), (4.15c)

πb ≡ f4,b = π0,b + f41,b∂τ + f42,bθ + f43,bT∂(µβ) + f44,bcT∂(u
cβ), (4.15d)

with θ ≡ e−1∂µ(euµ), wµ = hµνwν , wµ = hµνwν and

wµ = ∂µτ + uρG0
ρµ, wµ = ∂µµ+ µ∂µτ + uρFρµ, pµ = γ13wµ + γ23wµ,

τµb = f c c′

b b′ eµc e
ρ
c′

(

∂eb
′

ρ + ∂ρuνeb
′

ν

)

−
1

d
f c c′

c b′ eρc′
(

∂eb
′

ρ + ∂ρuνeb
′

ν

)

eµb .
(4.16)

In the above equations, we defined

fµνρ = f bcdeµb e
ν
ce

ρ
d, ∂νuµ = ∂νu

µ − uµuρG0
ρν , (4.17)

and the spatial spin connection vanishes properly due to contractions with invariant tensors. Straightforwardly, we
obtain (4.8) and (4.9) by identifying various thermodynamic quantities as in (4.15) and dissipative coefficients with

qµ = λ1w
µ + λ12w

µ + γ31f
µνρebνδbc

(

∂ecρ + ecλ∂ρuλ
)

, (4.18a)

jµ = −λ21w
µ − λ2w

µ + γ32f
µνρebνδbc

(

∂ecρ + ecλ∂ρu
λ
)

, (4.18b)

Σµ
ν = − (ητµb + pρf

ρνµecνδcb) e
b
α(δ

α
ν − uαe0ν). (4.18c)

Moving to the order O(a2), from (4.5), we obtain

Wµν
00 = s11u

µuν + s22(u− e0)
µ(u− e0)

ν − 2s12u
(µ(u− e0)

ν) + r11h
µν + rΠµν

bc ubuc − t13f
µρνebρδbcu

c, (4.19a)

Wµν
b0 = −s22e

(µ
b (u− e0)

ν) + s12u
(µeν)b + s14,bu

µuν − s24,b(u− e0)
(µuν) − rΠµν

bc uc + t13f
µρνecρδcb, (4.19b)

Wµν
bc = s22e

(µ
b eν)c + s44,bcu

µuν + 2s24,be
(µ
c uν) + rΠµν

bc , (4.19c)

Y µν
0 = s13u

µuν − s23(u− e0)
(µuν) + r12h

µν − t23f
µρνebρδbcu

c, (4.19d)

Y µν
b = s23e

(µ
b uν) + s34,bu

µuν + t23f
µρνecρδcb, (4.19e)

Zµν = s33u
µuν + r22h

µν , (4.19f)

where8

Πµν
bc = f b′ c′

b c e(µb′ e
ν)
c′ −

2

d
f d d′

d (c e(µb) e
ν)
d′ +

1

d2
f d d′

d d′ e(µb eν)c . (4.20)

8 We assume fb1b2b3b4 = fb3b4b1b2 , and we leave discussions about fb1b2b3b4 = −fb3b4b1b2 to the end of this section.
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Then, the dynamical KMS condition (2.48b) and (2.48c) tells that

s11 = f11T, s22 = −f22T, s33 = −f33T, s44,bc = −f44,bcT

s12 = f12T = −f21T, s13 = f13T = −f31T, s23 = −f23T = −f32T,

s14,b = f14,bT = −f41,bT, s24,b = −f24,bT = −f42,bT, s34,b = −f34,bT = −f43,bT,

t13 = γ13T = γ31T, t23 = γ23T = γ32T,

r11 = −λ1T, r22 = λ2T, r12 = −λ12T = λ21T, r = ηT.

(4.21)

All the equations include both Onsager relations due to the symmetries Wµν
αβ = W νµ

αβ , Y
µν
α = Y νµ

α , and Zµν = Zνµ

(which were enforced by the two a-fields in the noise terms), and the fluctuation-dissipation theorem relating noise to
dissipative transport coefficients.
Defining

κ ≡ −λ1, σ ≡ λ2, α ≡ λ12 = −λ21, (4.22)

we identify them as the thermoelectric conductivities [65]. Since we work in the non-relativistic case, there are no
relativistic Ward identities to relate these 3 coefficients. The bulk viscosity ζ is defined through field redefinition (see
Appendix C) in (C11). If there exists a rank-3 invariant tensor, we define

γε ≡ γ13 = γ31, γn ≡ γ23 = γ32. (4.23)

We find that the thermoelectric conductivitivity matrix is now generalized to a 3-by-3 matrix with κ,σ, η on the
diagonal, and α, γε, γn on the off-diagonal. The Onsager relation then says that the matrix is symmetric. As in the
conventional transport theory, we expect both the transport coefficient matrix as well as the bulk viscosity to be
positive semidefinite. This is realized by the unitarity (2.25b), which, together with (4.21), implies that

ζ ≥ 0, η ≥ 0, σ ≥ 0, κ ≥ 0, α2 ≤ κσ, γ2ε ≤ κη, γ2n ≤ ση. (4.24)

So far, we have focused on a microscopic theory that is symmetric under the combination of inversion and time
reversal symmetry, i.e. Θ = IT . It is possible to have different underlying symmetries. In particular, when Θ = T ,
all the above results hold true, except for the coefficients of terms involving invariant 3-tensors. We find that the
dynamical KMS condition (2.26) with Θ = T requires that t13 = t23 = 0, thus γ13 = γ23 = γ31 = γ32 = 0.
As emphasized in [42], it appears that typically when the rotation symmetry group does not include inversion, in
practical applications to electron fluids one will choose Θ = IT .
We might also consider antisymmetric tensors: fb1b2b3b4 = −fb3b4b1b2 (but parity-even). An example with a D2 fluid

could be fyyxx = −fxxyy. These tensors does not generate terms in L(2,0), and according to the KMS invariance with
the above Θ, the terms in L(1,1) would also vanish. However, if we take the anti-unitary operator to be Θ = Px+yT
with

Px+y : x → y, y → x, (4.25)

the terms in L(1,1) would not be constrained by KMS invariance and could realize further coefficients in non-dissipative
hydrodynamics. This can be regarded as a generalization of non-dissipative parity-violating fluid (Section 5). We will
not consider this case further.

4.2. Application to O(2) invariant fluid

Let us first consider an O(2) invariant fluid in d = 2 spatial dimensions as a sanity check of our formalism. Using
the “building block” δbc, we have π0,b = ρ0δbcuc, and so the thermodynamic relation (3.24) becomes

ε0 + p0 − ρ0u
2 − µn0 = −β

∂p0
∂β

, n0 =
∂p0
∂µ

, ρ0 = 2
∂p0
∂u2

, (4.26)

where u2 ≡ δbcubuc is the “squared velocity potential” [43] and ρ0 is known as the momentum susceptibility [65]. The
nontrivial rank-4 invariant tensor is

fO(2)
b1b2b3b4

= δb1b3δb2b4 + δb1b4δb2b3 , (4.27)
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while the tensor εbb′εcc′ leads to violation of angular momentum conservation. To see such constraint at the action
level, it is most direct to employ the coset construction [66] in the non-relativistic limit [67]. The details of this are
too technical to expand on here, but in a nutshell, the existence of angular momentum conservation in the coset
construction will require that Ξa,IJ is a symmetric tensor.9 Hence, we cannot couple to εbcΞa,bc. Therefore, we find
the shear viscosity tensor as

Σµ
ν = −η

{

(

hµσ∂hσρ + hµλ∂λuσhσρ +∆µ
σ∂ρu

σ
)

(δρν − uρe0ν)−
2

d

(

eρb∂e
b
ρ +∆ρ

σ∂ρu
σ
)

(δµν − uµe0ν)

}

, (4.28)

where we used the “metric” of a rotationally invariant theory (2.34), and defined

∆µ
ν ≡ hµρhρν = λµI λ

I
ν = δµν − eµ0e

0
ν . (4.29)

In flat spacetime limit, we obtain (up to the treatment of bulk viscosity in Appendix C)

ΣO(2)
ij = −η (∂iuj + ∂jui − ∂kukδij) = −η

(

σz
ijσ

z
kl + σx

ijσ
x
kl

)

∂kul. (4.30)

This agrees with the results in [70].

4.3. Application to fluids with dihedral symmetry

Next we turn to fluids with Dn point group.
As the first example, the D4 group contains three rank-4 invariant tensors

fD4

b1b2b3b4
= εb1b2εb3b4 , gD4

b1b2b3b4
= σz

b1b2σ
z
b3b4 , hD4

b1b2b3b4
= σx

b1b2σ
x
b3b4 , (4.31)

Taking πg,b = ρgg
D4

bc1c2c3
uc1uc2uc3 and πh,b = ρhh

D4

bc1c2c3
uc1uc2uc3 , the thermodynamic relation becomes

ε0 + p0 − ρ0u
2 − ρgu

4
g − ρhu

4
h − µn0 = −β

∂p0
∂β

, n0 =
∂p0
∂µ

, ρ0 = 2
∂p0
∂u2

, ρg = 4
∂p0
∂u4

g
, ρh = 4

∂p0
∂u4

h

, (4.32)

where

u4
g = gD4

b1b1b2b3
ub1ub2ub3ub4 , u4

h = hD4

b1b1b2b3
ub1ub2ub3ub4 . (4.33)

are the “quartic velocity potentials” and ρg,h are corresponding “susceptibilities”. Since there is no invariant rank-3
tensor, the shear viscosity becomes, in the flat spacetime limit,

ΣD4

ij = −
(

η◦f
D4

ijkl + η1g
D4

ijkl + η2h
D4

ijkl

)

∂kul = −
(

η◦εijεkl + η1σ
z
ijσ

z
kl + η2σ

x
ijσ

x
kl

)

∂kul, (4.34)

where we identified η◦, η1 and η2 as the rotational, plus and cross viscosity [36]. Note that when η1 = η2 = η and
η◦ = 0, it reduces to the isotropic O(2) viscosity tensor (4.29). The presence of the rotational viscosity η◦ breaks
the symmetry of the dissipative contribution to the stress tensor: ΣD4

ij ,= ΣD4

ji . This is because Σij = Σji is only
guaranteed by continuous O(2) rotational symmetry, and is unstable to any discrete rotational subgroups [35]. On the
other hand, the symmetric part of the viscosity tensor is relatively stable against rotational symmetry breaking (see
a thorough group theory discussion in [35, 36]). More generally, for even N , the viscosity tensor of a DN≥6-invariant
fluid looks just like an O(2)-invariant fluid, up to the rotational viscosity η◦ (which is nearly invisible in simple fluid
flow experiments [36, 71]); while for DN≤4, anisotropy appears in the symmetric viscosity as shown in (4.34). However,
this is not true for odd N as discussed below.
The invariant tensors for D3 are

gD3

b1b2b3
= δb1xσ

z
b2b3 − δb1yσ

x
b2b3 , fD3

b1b2b3b4
= εb1b2εb3b4 , hD3

b1b2b3b4
= σx

b1b2σ
x
b3b4 + σz

b1b2σ
z
b3b4 , (4.35)

9 A more exotic interpretation is that angular momentum conservation is a type of “dipolar” charge conservation law. Because of this,
we must restrict the form of the momentum current to those functions which are compatible with this dipolar conservation law. At
sufficiently low order in derivatives, the only such possibility is to mandate the stress tensor be symmetric [68, 69].
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The rank-3 tensor gD3

b1b2b3
satisfies two properties: it is fully symmetric, gD3

b1b2b3
= gD3

b2b1b3
= gD3

b3b2b1
and it is traceless

gD3

bbc = 0. We find that the thermodynamic relation becomes

ε0 + p0 − ρ0u
2 − ρD3

u3 − µn0 = −β
∂p0
∂β

, n0 =
∂p0
∂µ

, ρ0 = 2
∂p0
∂u2

, ρD3
= 3

∂p0
∂u3

, (4.36)

where u3 = gD3

b1b2b3
ub1ub2ub3 is the “cubic velocity potential” and ρD3

is the corresponding momentum susceptibility.
Now with the rank-3 invariant tensor, the shear viscosity tensor becomes, in the flat spacetime limit,

ΣD3

ij = −
(

η◦f
D3

ijkl + ηhD3

ijkl

)

∂kul − gD3

ijk (γ13T∂kβ + γ23T∂k (βµ))

= −
(

η◦εijεkl + η
(

σx
ijσ

x
kl + σz

ijσ
z
kl

))

∂kul −
(

δixσ
z
jk − δiyσ

x
jk

)

(γεT∂kβ + γnT∂k (βµ)) .
(4.37)

As we discussed above, the rotational viscosity η◦ indicates the breaking of O(2) symmetry; otherwise, the symmetric
part of the viscosity tensor coincides with the O(2) invariant fluid. However, there are new dissipative coefficients [42]
which couple gradients of temperature and density to the traceless symmetric velocity strain tensor:

TD3

i0 = γε (δixσ
z
kl − δiyσ

x
kl) ∂kul, (4.38a)

JD3

i = γn (δixσ
z
kl − δiyσ

x
kl) ∂kul, (4.38b)

and similarly, which cause stress in the presence of temperature or velocity gradients. The coefficients are related by
KMS, or equivalently, Onsager reciprocity. From a representation theory perspective, this coupling is possible because
fbcd converts a traceless symmetric tensor into a vector: they are in the same irrep of D3.

4.4. Normal modes

In this section we work out the linearized hydrodynamics of a discrete rotational fluid at rest (ub = 0 in equilib-
rium)10. The hydrodynamic normal modes are defined as non-vanishing solutions to the equation of motion [65, 73].
Consider the linearization,

uµ = (1, δui), µ = µ0 + δµ, T = T0 + δT. (4.39)

To linear order in the perturbations, with the reference frame being the Landau frame (see Appendix C), the stress
tensor and charge current read, combining (4.1), (3.7) and (C12),

T 0
0 = −δε, T 0

i = ρ0δijδu
j + ρ0,×fijδu

j , J0 = δn,

T i
0 = −(ε0 + p0)δu

i + λ1∂
iδτ + λ12T0∂

iδ(µβ) + γεf
i k
j ∂kδu

j ,

J i = n0δu
i − λ21∂

iδτ − λ2T0∂
iδ(µβ) + γnf

i k
j ∂kδu

j ,

T i
j = δij

(

δp− ζ∂kδu
k
)

− η

(

f i l
j k ∂lδu

k −
1

d
δijf

m l
m k ∂lδu

k

)

− (γε∂kδτ + γnT0∂kδ(µβ))f
ki
j ,

(4.40)

where fi...’s are invariant tensors. Note that the external fields are turned off and we work in the flat spacetime limit.
We have changed the hydrodynamic variables from δT , δµ to δε, δn, thus the variations should be expressed in terms
of them: for example, δp = (∂εp)n δε+ (∂np)ε δn, where the derivatives are taken in fixed value of the other variable,
which is implicitly assumed below. Then, plugging it into the conservation laws

∂µT
µ
α = 0, ∂µJ

µ = 0, (4.41)

we obtain d + 2 coupled equations (see Appendix D). In a rotationally invariant fluid, one has a shear mode with
multiplicity d − 1, which controls transverse momentum diffusion, a longitudinal diffusion mode, and two sound-like
modes [65]. However, we find that such classification needs to be modified when the continuous rotational symmetry
is broken. We consider d = 2 in the following.

10 This condition simplifies the expressions; for example, the internal energy ε̃ = ε − π(i)u
(i)

≈ ε [43]. We expect a more sophisticated
discussion would be necessary to generalize to a non-stationary fluid [72].
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Let us first consider on a D2-invariant fluid and consider the leading order contribution to the sound modes. Taking
fij = σz

ij , we obtain

ω = ±vs(kx, ky) + . . . , (4.42)

where the dots include dissipative corrections of order O(k2). The sound velocity is anisotropic:

vs(kx, ky)
2 = [(ε0 + p0)∂εp+ n0∂np]

(

k2x
ρ0 + ρ0,×

+
k2y

ρ0 − ρ0,×

)

, (4.43)

reminiscent of similar effects in anisotropic elastic solids. For a general dihedral group (D3 or D4), the sound modes
have an isotropic dispersion relation at leading order:

ω = ±vs,0k − iΓ (kx, ky), (4.44)

where k ≡
√

k2x + k2y and the speed of sound is

v2s,0 =
(ε0 + p0)∂εp+ n0∂np

ρ0
. (4.45)

Note that this formula is equivalent to the result in a rotation-invariant fluid.
The attenuation constant generically becomes anisotropic in momenta. In this paragraph we will include transport

coefficients allowed both by D3 and D4 to save space in the formulas below, but will continue to take ρ0,× = 0:

Γ (kx, ky) =
1

2v2s,0ρ0

[

(

η̃(kx, ky)k
2 + ζk2

)

v2s,0 + Ãk2
]

(4.46)

where

η̃(kx, ky) =
η1
(

k4x + k42
)

+ 2 (2η2 − η1) k2xk
2
y

k4
, (4.47)

and

Ã = (λ1∂εp− λ12∂np) ((ε+ p)∂ετ + n∂nτ) + (λ2∂np+ λ12∂εp) ((ε+ p)T0∂ε(µβ) + nT0∂n(µβ)) . (4.48)

We cannot detect the rotational viscosity through these modes as there is no dependence on η◦11. The diffusive modes,
defined as

ω = −iD±(kx, ky)k
2, (4.49)

are “coupled together” and exhibit the rather cumbersome anisotropic diffusion constant:

D±(kx, ky) =
1

2v2s,0ρ0

(

η(kx, ky)v
2
s,0 +A±

√

(

η(kx, ky)v2s,0 +A
)2

− 4v2s,0B(kx, ky)

)

, (4.50)

where

η(kx, ky) =
(η◦ + η2)(k4x + k4y) + 2(η◦ + 2η1 − η2)k2xk

2
y

k4
, (4.51)

A = (λ1n0 + λ12(ε0 + p0)) (∂ετ∂np− ∂εp∂nτ) + (λ2(ε0 + p0)− λ12n0) (∂εpT0∂n(µβ)− ∂npT0∂ε(µβ)) , (4.52)

and

B(kx, ky) =

(

3k2xky − k3y
)2

k4

[

(

γ2n(ε0 + p0) + γnγεn
)

(∂εpT0∂n(µβ) − ∂npT0∂ε(µβ))

−
(

γ2εn0 + γnγε(ε0 + p0)
)

(∂ετ∂np− ∂nτ∂εp)
]

.

(4.53)

Explicitly, the two diffusion modes are coupled through γn and γε because they now carry both momentum, heat and
charge. Moreover, the rotational viscosity contributes to the two diffusive modes in the same way. When η1 = η2 = η12,
one can absorb the rotational viscosity into the total viscosity as ηeff = η◦ + η and we recover the conventional shear
mode; when η1 ,= η2, the rotational viscosity is not removable. Finally, the positivity of the attenuation and diffusion
constants follow from (4.24) and [35].

11 Recall that we denote η◦, η1 and η2 as coefficients for invariant tensors εijεkl, σ
z
ijσ

z
kl and σx

ijσ
x
kl.

12 To meet this condition, it is not necessary to have a rotationally invariant fluid, but D3 or DN≥6 does. Hence, it might be the reason
why experiments are not able to detect the rotational viscosity even in a discrete rotational fluid.
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5. PARITY-VIOLATING HYDRODYNAMICS

In this section we will briefly remark on breaking the parity symmetry, which is present in DN . The parity (mirror)
symmetry is defined as

Px : x → −x, y → y, (5.1a)

Py : y → −y, x → x. (5.1b)

Breaking the parity symmetry is fulfilled by reducing the dihedral group DN to its subgroup ZN which contains only
the N -fold rotations.
The invariant tensors under symmetry group ZN are listed in Table 1 by allowing parity odd tensors to appear.

Again, for the continuous symmetry group SO(2) = O(2)/Z2, angular momentum conservation will require that the
action can only couple to the symmetric part of Ξa,ij, thus restricting the appearance of coefficients such as rotational
viscosity.
In order to obtain the hydrodynamic constitutive relations, one needs to repeat the steps of the previous section,

but now including these parity-violating invariant tensors. Since there are no surprises when applying this method,
we will simply present the results without details of the calculation, focusing on the parity-odd coefficients which
we will denote with overbars. The equilibrium effective action is similar to Section 3.2 with only the momentum
susceptibility becoming anisotropic by σx

bc (εbc is not permitted, as it is antisymmetric). At the first derivative
order, we have dissipative terms generated by symmetric tensors f̄bcde = f̄debc (with Θ = T or IT ). However,
unlike the parity-even fluids, there are non-dissipative hydrodynamics in parity-violating fluids; they are generated
by anti-symmetric tensors: f̄bc = −f̄bc, f̄bcde = −f̄debc. For the ZN -invariant fluid, we have:

f̄bc = εbc, f̄bcde = σx
bcσ

z
de − σx

deσ
z
bc, (5.2)

though we keep the notation more generic as the general principles would hold in other dimensions as well. For
example, we have13

T̄i0 = λ̄1f̄ij∂jτ + λ̄12f̄ijβ
−1∂j(µβ), J̄i = λ̄21f̄ij∂jτ + λ̄2f̄ijβ

−1∂j(µβ), T̄ij = −η̄f̄ijkl∂kul, (5.3)

These antisymmetric contributions to the viscosity tensor, by construction, do not lead to any new terms in L(2,0);
as such, our effective field theory will not constrain the sign or values of any parity-odd coefficients (except possibly
to 0). Note that alternative considerations can lead to strong constraints on these coefficients [74–79].
When Θ = T or IT , we have

λ̄1 = λ̄2 = λ̄12 = λ̄21 = η̄ = 0. (5.4)

While for Θ = Px,yT , all the coefficients λ̄1,λ̄2,λ̄12,λ̄21,η̄ are unconstrained, except for λ̄12 = λ̄21. In this case,
Px,yT is the symmetry in the presence of an external magnetic field, therefore, λ̄1, λ̄2, λ̄12 = λ̄21 correspond to the
thermoelectric Hall conductivities and η̄ is identified as the Hall viscosity. Further work on anisotropic Hall viscosity
can be found in [38].

6. CONCLUSION

We have extended the effective field theory formalism proposed in [4–6] to non-relativistic fluids with only discrete
rotational symmetry (point group). These fluids most naturally couple to the vielbein, whose indices transform in
representations of the point group. By contracting properly the vielbein indices with invariant tensors, we are able to
write down general effective actions whose variation gives the stress tensor and current; moreover, the action contains
information about stochastic effects, both in and beyond linear response (though in this manuscript, we have not
carefully studied the nonlinear terms in the noise a-fields).
We illustrated the consequences of anisotropy on thermodynamics and first-order dissipative hydrodynamics, focus-

ing on fluids with dihedral point groups. We argued that due to the factorizability constraint, there will be very few
new thermodynamic quantities even in highly anisotropic fluids. In contrast, transport coefficients associated with the
discrete rotational symmetry were largely unconstrained, and here our results appear to agree with earlier literature

13 For simplicity we present results in the flat spacetime limit, in the stationary fluid frame, and without external electrical field.
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in overlapping regimes. In tandem with a concurrent paper [42], we have also emphasized the possibility for novel
new hydrodynamic phenomena in fluids with discrete rotational symmetries without inversion. In these dihedral-
symmetric fluids, with a small enough point group, terms that seem to be compatible with Landau’s hydrodynamic
phenomenology (an entropy current can be constructed) are nevertheless forbidden by factorizability, or alternatively,
the ability to couple the theory to background gauge fields.
We end with some future directions for further investigations. (1 ) It is desirable to detect the anisotropic hy-

drodynamic phenomena we have predicted in experiments, either through viscometry [36] or by careful analysis of
quasinormal modes (this is likely only achievable in engineered anisotropic fluids, e.g. in liquid crystals or active
matter [80, 81]). (2 ) We expect generalizations of our formalism to other exotic fluids, e.g. superfluids and fracton
fluids [7], especially when including hydrodynamic fluctuations [62, 82]. (3 ) Studying driven open quantum systems
will also be of interest[49], as it is possible that factorizability is no longer a symmetry of the effective action. (4 )
It would be interesting to extend the non-relativistic anomaly [83, 84] to a more general setting with the discrete
rotational symmetry. We anticipate that the torsional anomaly [85] will induce new chiral transport coefficients in
the non-relativistic limit due to the velocity density ub.
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Appendix A: Kinetic theory model

In this section we will show that most anisotropic ideal hydrodynamic coefficients must vanish in simple kinetic
theory models (without Berry curvature). The notation and methodology in this appendix follows closely [86, 87],
and here we just provide a very terse summary. We will study toy models of electronic Fermi liquids, in which we
neglect spin. The equilibrium distribution function is the Fermi function:

feq(x,p) =
1

1 + eβ(ε(p)−µ)
, (A1)

where ε(p) is the dispersion relation. We consider a weakly perturbed system with

f = feq −
∂feq
∂ε

Φ, (A2)

where Φ denotes the linearized perturbation. If we define the inner product

〈Φ1|Φ2〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

Φ1Φ2, (A3)

and the matrix

L = ik ·
∂ε

∂p
, (A4)

then the equation of ideal hydrodynamics are simply

∂t|Φ〉+ L|Φ〉 = 0, (A5)

projected onto the hydrodynamic slow modes: charge density |ρ〉, energy density |ε〉 and momentum density |πi〉:

|ρ〉 =

∫

ddp

(2π!)d
|p〉, (A6a)

|ε〉 =

∫

ddp

(2π!)d
ε|p〉, (A6b)
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|πi〉 =

∫

ddp

(2π!)d
pi|p〉. (A6c)

The currents within ideal hydrodynamics correspond to charge current |Ji〉, energy current |JE
i 〉 and stress tensor

|Tij〉 defined as

|Ji〉 =

∫

ddp

(2π!)d
∂ε

∂pi
|p〉, (A7a)

|JE
i 〉 =

∫

ddp

(2π!)d
ε
∂ε

∂pi
|p〉, (A7b)

|Tij〉 =

∫

ddp

(2π!)d
pj
∂ε

∂pi
|p〉. (A7c)

The coefficients of ideal hydrodynamics within linear response may be found as follows: for example,

δJi = 〈Ji|ρ〉δµ+ 〈Ji|ε〉
δT

T
+ 〈Ji|πj〉δvj , (A8)

with δµ, δT and δvj corresponding to the changes in equilibrium in chemical potential, temperature and velocity
respectively. We find that

〈Ji|ρ〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

∂ε

∂pi
= 0, (A9a)

〈JE
i |ρ〉 = 〈Ji|ε〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

ε
∂ε

∂pi
= 0, (A9b)

〈JE
i |ε〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

∂ε

∂pi
ε2 = 0, (A9c)

〈Ji|πj〉 = 〈Tij |ρ〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

∂ε

∂pi
pj =

∫

ddp

(2π!)d
feqδij = n0δij , (A9d)

〈JE
i |πj〉 = 〈Tij |ε〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

∂ε

∂pi
pjε =

∫

ddp

(2π!)d

(

feqεδij + pj
∂ε

∂pi

)

= (ε0 + p0)δij , (A9e)

〈Tij |πk〉 =

∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

∂ε

∂pi
pjpk =

∫

ddp

(2π!)d
feq (pkδij + pjδik) = π0,kδij + π0,jδik. (A9f)

where

p0 = −

∫

ddp

(2π!)d
log
(

1 + e−βε
)

. (A10)

Most of the integrals above vanish because they are total derivatives of a function of ε integrated over a compact
Brillouin zone. Here π0,i, ρ0, ε0 and p0 correspond to the background expectation values for momentum density,
charge density, energy density and pressure respectively. We conclude that within the thermodynamic currents, there
are no possible contributions of the form Tij ∼ fijkvk, Tij ∼ fijµ, Ji ∼ fijvj etc., as noted in the main text.
In contrast, the susceptibilities can in general be anisotropic. For example, the inner product

〈πi|πj〉 =

∫ ∫

ddp

(2π!)d

(

−
∂feq
∂ε

)

pipj = ρ0δij + ρ0,×fij + · · · (A11)

can be as anisotropic as the dispersion relation allows. Similarly, when some part of the vector representation is
trivial, susceptibilities such as 〈ρ|πi〉 can be non-vanishing.

Appendix B: Factorizability for discrete rotational symmetry

In this appendix, we show that the integrability condition

δ(eT µ
α )

δeβν
=
δ(eT ν

β )

δeαµ
,

δ(eT µ
α )

δAν
=
δ(eJν)

δeαµ
, (B1)
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which is equivalent to the factorizability in (3.2) [4], forbids the p0,× term. To do so, it will be useful to note the
following identities within ideal hydrodynamics:

δb = buµδe0µ, δuµ = −uµuνδe0ν , δeµα = −eναe
µ
βδe

β
ν , δµ = uµδAµ − µuµδe0µ. (B2)

From explicit calculations, we obtain, from the second integrability condition,

∂p0
∂µ

eµb +
∂p0,×
∂µ

f c
b e

µ
c = n0e

µ
b , (B3a)

∂π0,b
∂µ

=
∂n0

∂ub
, (B3b)

∂ε0
∂µ

− µ
∂n0

∂µ
− ub ∂π0,b

∂µ
= −

∂n0

∂τ
, (B3c)

and we find exactly the thermodynamic relation (3.24) as well as the constraint ∂p0,×/∂µ = 0. Then the first
integrability condition gives, taking α = b and β = 0 for example,

0 = p0,×
(

f c
c′u

c′e[νc eµ]b + f c
b e

[ν
c e

µ]
0 − f c

b e
µ
c u

ν
)

−
∂p0,×
∂ub

f c
c′e

µ
c u

c′uν + uc′ ∂p0,×
∂uc′

f c
bu

µeνc , (B4)

where we have used the thermodynamic relation to cancel other terms. Obviously, the function p0,× ∼ T from the
dynamical KMS condition in the flat spacetime limit does not satisfy the above equation, and the solution can only
be p0,× = 0.

Appendix C: Field redefinition

In this appendix, we show how to arrive at the Landau frame by a proper field redefinition. The Landau frame is
defined as

T µ
αu

α = −ε̃0u
µ, Jµe0µ = n0, (C1)

where ε̃0 is the internal energy, and, in our case, it is modified as ε̃0 = ε0 − ρ0,bub.14 The field redefinition consists of
two parts: one by removing terms proportional to the zeroth order equation of motion, and two by proper shifting of
r-fields

uµ → uµ + δuµ, β → β + δβ, µ → µ+ δµ. (C2)

Here we will focus on redefining the first derivative Lagrangian through (derivatives of) the zeroth order Lagrangian
(for more general discussion see [5]). We focus on flat spacetime for simplicity.
The thermodynamic relation (3.24) can be written as

ε0 + p0 = −β

(

∂p0
∂β

)

µ,ub

, n0 = β
∂p0
∂(µβ)

, ρ0,b = β
∂p0

∂(ubβ)
. (C3)

Then we find the zeroth order equation of motion in flat spacetime to be 15

Eε ≡ −∂τ + θ

(

∂p0
∂ε0

)

n0,ρ0

= 0, En ≡ T∂(µβ) + θ

(

∂p0
∂n0

)

ε0,ρ0

= 0, Eb
ρ ≡ T∂(ubβ) + θ

(

∂p0
∂ρ0,b

)

n0,ε0

= 0, (C4)

where the Eε, En and Eρ are related through

∂µJ
µ = −β

∂n0

∂β
Eε + β

∂n0

∂(µβ)
En + β

∂n0

∂(ubβ)
Eb

ρ = 0, (C5a)

∂µT
µ
αu

α = β
∂ε̃0
∂β

Eε − β
∂ε̃0
∂(µβ)

En − β
∂ε̃0

∂(ubβ)
Eb

ρ = 0, (C5b)

14 This holds true as long as the boost symmetry is broken [43].
15 There is also a transverse equation of motion for the stress tensor, which is not shown, as it will not be used in this discussion.
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where we denoted dε̃0 = dε0 − ubdρ0,b as the internal energy. In the above equations, we used the Maxwell relations:
for example, we applied

(

∂n0

∂β

)

µβ,ubβ

= −

(

∂ε0
∂(µβ)

)

β,ubβ

,

(

∂n0

∂(ubβ)

)

µβ,β

=

(

∂ρ0,b
∂(µβ)

)

β,ubβ

(C6)

to (C5a). Now, let us consider the field redefinition of r-fields. The leading order Lagrangian becomes

δrL
(1,0) = Ea,µδu

µ + Ea,ε0δε0 + Ea,ρ0,b
δρ0,b + Ea,n0

δn0, (C7)

where δε0 = δβ∂βε0 + δµ∂µε0 + δub∂ubε0 (similar for n0, ρ0,b), and with

Ea,µ = −(ε0 + p0)E
0
a,µ + ρ0,bE

b
a,µ + n0Ca,µ, (C8a)

Ea,ε0 = −

(

uµ +
∂p0
∂ε0

(uµ − eµ0 )

)

E0
a,µ +

∂p0
∂ε0

eµbE
b
a,µ, (C8b)

Ea,ρ0,b
= −

∂p0
∂ρ0,b

(uµ − eµ0 )E
0
a,µ + uµEb

a,µ +
∂p0
∂ρ0,b

eµcE
c
a,µ, (C8c)

Ea,n0
= uµCa,µ −

∂p0
∂n0

(uµ − eµ0 )E
0
a,µ +

∂p0
∂n0

eµbE
b
a,µ. (C8d)

Although the first equation will not be used, the coupling with the momentum susceptibility implies that one can no
longer “rotate” qµ into jµ to define a frame-independent vector as in the case of relativistic fluids [4] – this means we
need a thermoelectric matrix with four transport coefficients. Note that one part of the first derivative Lagrangian
can be rewritten as

L = −hεu
µE0

a,µ + hρ,bu
µEb

a,µ + hnu
µCa,µ − hp(u

µ − eµ0 )E
0
a,µ + hpe

µ
bE

b
a,µ

= −hεEa,ε0 + hρ,bEa,ρ0,b
+ hnEa,n0

− h̃p(u
µ − eµ0 )E

0
a,µ + h̃pe

µ
bE

b
a,µ,

(C9)

where

h̃p = hp −
∂p0
∂ε0

hε −
∂p0
∂n0

hn −
∂p0
∂ρ0,b

hρ0,b
= −ζθ, (C10)

and in the last step we used (C4) and defined the bulk viscosity as

ζ ≡f11(∂εp)
2 − f22 − f33(∂np)

2 + f44,bc∂ρb
p∂ρcp+ 2f12∂εp− 2f13∂εp∂np

− 2f14,b∂εp∂ρb
p+ 2f23∂np+ 2f24,b∂ρb

p− 2f34,b∂np∂ρb
p.

(C11)

Therefore, by eliminating the first three terms in (C9) with an appropriate choice of δuµ, δβ and δµ, we have

L = ζθ(uµ − eµ0 )E
0
a,µ − ζθeµbE

b
a,µ. (C12)

Appendix D: Linearized hydrodynamics

Here we provide a few more details for the calculations in Section 4.4. The linearized equations of motion for
hydrodynamics are

0 = ∂0δn+ n0∂iδu
i − λ21∂

2δτ − λ2T0∂
2δ(µβ) + γnf

i k
j ∂i∂kδu

j, (D1a)

0 = −∂0δε− (ε0 + p0)∂iδu
i + λ1∂

2δτ + λ12T0∂
2δ(µβ) + γεf

i k
j ∂i∂kδu

j , (D1b)

0 = ρ0δij∂0δu
j + ρ0,×gij∂0δu

j + ∂i(δp− ζ∂kδu
k)

− η

(

f j l
i k ∂j∂lδu

k −
1

d
f j l
j k ∂i∂lδu

k

)

− fkj
i (γε∂j∂kδτ + γnT0∂j∂kδ(µβ)) (D1c)

where ∂2 ≡ ∂i∂i. Letting

fij = σz
ij , fijk = δixσ

z
jk − δiyσ

x
jk , ηfijkl = η◦εijεkl + η1σ

z
ijσ

z
kl + η2σ

x
ijσ

x
kl, (D2)
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and applying Fourier transformation, we obtain a 4-by-4 matrix M(ω, kx, ky) acting on the vector (δux, δuy, δε, δn)T

returning zero. The hydrodynamic normal modes are defined as the solutions of

detM(ω, kx, ky) = 0. (D3)

We find

detM(ω, kx, ky) = g0(O(k6)) + g1(O(k4))ω + g2(O(k2))ω2 + g3(O(k2))ω3 + g4(O(k0))ω4, (D4)

where gi(O(kn)) = gi(knx , k
n−1
x ky, . . . , kny ). If we substitute the ansatz ω = vs(kx, ky) with vs(kx, ky) ∼ O(k) into the

equation, we find

g2(O(k2))v2s + g4(O(k0))v4s = 0. (D5)

The solution is given in (4.43). After finding vs = ±vs,0, we take the ansatz ω = ±vs,0(kx, ky) − iΓ (kx, ky) with
Γ (kx, ky) ∼ O(k2). This boils down to solving

g1(O(k4))− i2Γ g2(O(k2)) + g3(O(k2))v2s,0 − i4Γ g4(O(k0))v2s,0 = 0. (D6)

When ρ0,× = 0, the solution is given by (4.46) with ρ0,× = 0. Next, for the diffusion modes, we take the ansatz
ω = −iD(kx, ky) with D(kx, ky) ∼ O(k2). The equation needs to be solved is

g0(O(k6))− iDg1(O(k4)) −D2g2(O(k2)) = 0, (D7)

and the two solutions are given by (4.50).
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