Breakdown of hydrodynamics below four dimensions in a fracton fluid
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We present the nonlinear fluctuating hydrodynamics which governs the late time behavior of
a chaotic many-body system with simultaneous charge/mass, dipole/center of mass, and momen-
tum conservation. This hydrodynamic effective theory is unstable below four spatial dimensions:
dipole-conserving fluids at rest are unstable to fluctuations, which drive the system to a novel
dynamical universality class. In one spatial dimension, our construction is reminiscent of the well-
established renormalization group flow of the stochastic Navier-Stokes equations; however, the fixed
point we find possesses subdiffusive scaling, rather than the superdiffusive scaling of the Kardar-
Parisi-Zhang universality class. We numerically simulate many-body classical dynamics in one- and
two-dimensional models with dipole and momentum conservation, and find evidence for the pre-
dicted breakdown of hydrodynamics. Our theory provides a controlled example of how kinematic
constraints lead to a rich landscape of dynamical universality classes in high dimensional models.

Introduction.— One of the oldest and most applicable
theories in physics is hydrodynamics. While hydrody-
namics was first understood as a phenomenological set of
equations that govern liquids and gases [1], over the past
century we have instead recognized that hydrodynamics
is best understood as the universal effective field theory
that governs thermalization in a chaotic many-body sys-
tem [2-4]. Due to this universality, the same theories
of hydrodynamics can describe diverse phases of classi-
cal or quantum matter, including ultracold atoms [5, 6],
quark-gluon plasma [7], and electrons and phonons in
high-purity solids [8-11].

Novel phases of matter arise when the microscopic de-
grees of freedom are fractons — excitations which are
individually immobile, and can only move in tandem [12—
30] (these are different from a previous use of the word
“fracton” in the context of high-energy physics [31]). As
a simple example, we can consider a phase of matter in
which the global charge (or mass) is conserved, together
with the global dipole moment (or center of mass). In
this case, a single particle cannot move without violating
the dipole conservation law. If such a phase of matter, re-
alized on a lattice, can thermalize [32-34], it is described
by a novel hydrodynamics in which Fick’s law of charge
diffusion is replaced by slower subdiffusion [35-40]. The
emergence of subdiffusion is not special to peculiar micro-
scopic details of particular lattice models; it is guaranteed
by the symmetries of the dynamics. This robustness of
hydrodynamics to microscopic peculiarities makes it an
experimentally ideal probe for constrained dynamics [41].

Here, we study such a dipole-conserving theory which
is also translation-invariant. In this case, charge, dipole
and momentum are all conserved quantities. We show
that these fluids exhibit a highly unusual hydrodynamics,
with magnon-like propagations with subdiffusive decay
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rates. More importantly, as we now explain, below four
spatial dimensions these fluids are violently unstable to
thermal fluctuations. Hydrodynamics, meant as a set of
deterministic conservation laws, will thus not exist in any
experimentally-realizable spatial dimension.

This differs from what happens in fluids with conven-
tional conserved quantities. Such systems are well de-
scribed by deterministic hydrodynamic equations in three
spatial dimensions d = 3, with marginally irrelevant fluc-
tuations in d = 2. In d = 1, fluctuations become over-
whelmingly large and the dynamics on long time/length
scales is governed by the Kardar-Parisi-Zhang (KPZ) uni-
versality class [42, 43]. The KPZ fixed point is remark-
ably generic: it also arises in the study of growing sur-
faces [42], quantum Hall edge states [44], and dynamics
of integrable systems [45-51]. Among the many non-
equilibrium universality classes that have been discov-
ered in statistical mechanics, ranging from flocking [52]
in active matter, to driven-dissipative condensates [53],
to fluctuating smectic liquid crystals [54], the KPZ fixed
point is unique in that it describes the instability of an
ordinary undriven fluid at rest without any spontaneous
symmetry breaking.

In this paper, we discover a new dynamical universal-
ity class which we call the dipole-momentum conserving
(DMC) fixed point. Although both KPZ and DMC fixed
points can arise out of an instability of a fluid at rest, the
DMC fixed point is distinct. Microscopically, the dynam-
ics is kinematically constrained due to the conservation
of the total dipole moment. As a consequence, this leads
to a dramatic slowdown of the macroscopic dynamics. In
particular, transport in DMC is subdiffusive, while KPZ
has superdiffusive scaling. Another distinction from or-
dinary fluids is that, as a consequence of the modified
scaling, fluctuations are relevant below four dimensions,
whereas in ordinary fluids fluctuations are relevant be-
low two dimensions. This is the first example known to
us where the hydrodynamics of conserved quantities in a
thermalizing system, without symmetry breaking, is un-
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stable to relevant fluctuations in dimensions greater than
one.

Just as hydrodynamics is robust against microscopic
details, so too is the universality class of non-equilibrium
dynamics that emerges out of a hydrodynamic instabil-
ity. The universality class of a dipole-conserving fluid can
be realized in any medium with exact or emergent dipole
and momentum conservation. While we are not aware
of a current experimental platform exhibiting these con-
servation laws, we outline possible strategies to building
them in what follows. Independently of experiment, it is
possible to realize these conservation laws in classical or
quantum dynamics which can be simulated numerically.
We have numerically simulated chaotic classical dynam-
ics with dipole and momentum conservation in one and
two dimensions, and find evidence for the DMC fixed
point. Our work establishes an unexpected and profound
connection between non-equilibrium statistical mechan-
ics and fracton phases of matter.

Microscopic Models.—Given the seemingly abstract
nature of how fluids might simultaneously have both
dipole and momentum conservation, before diving into
the theoretical framework of fluid dynamics, it is instruc-
tive to first describe a microscopic model which would lie
in such a universality class. For simplicity in the discus-
sion which follows, we focus on one dimensional systems.
Let us begin by considering N particles with momenta
p; and displacements z; (i = 1,..., N), coupled together
by the following Hamiltonian:

NE: P+1
n

Here V(x) = Voa? + Vza® + - is a generic polyno-
mial. This is qualitatively similar to a simple model
of one-dimensional solids with anharmonicity, except for
the kinetic energy, which depends on only the difference
of momenta. Somewhat similar models have arisen in
the “dipole fermion” picture of fractional quantum Hall
states [55, 56].

This curious kinetic energy is all that we need to
have an emergent dipole conservation. Using the Poisson
brackets {2, Dm } = dnm, we find that the dipole moment

+ V(xn — Tpg1)- (1)

D, charge @ and momentum P, given by ) = EN
D = Z _,z; and P = Z
tipole algebra [57]

_1 pi obey the classical mul—

{D,P} =0, (2)

with all the other Poisson brackets vanishing. Since @, D
and P commute with the Hamiltonian, we have conser-
vation of charge, dipole and momentum all at once, in a
spatially local theory. Note that energy is also conserved
if the dynamics is Hamitonian. But it is straightforward
to modify the dynamics to no longer conserve energy.

If we assume that the dynamics is close to equi-
librium (i.e. displacements are small), then 1We can

2

safely set (without loss of generality) V(z) = jz°. A

simple calculation reveals that the normal modes of
this quadratic and integrable system are of the form
(T, pn) o< e¥"=@rt and that when k < 1, wp ~ k2.
As promised in the introduction, we have uncovered a
magnon-like dissipationless dispersion relation, which we
will show later is universal and follows entirely from si-
multaneous dipole and momentum conservation, even
when we include higher order terms (which destroy in-
tegrability) in V' (x).

As we have found a magnon-like dispersion relation,
it is tempting to push the analogy between dipole con-
serving fluids, and isotropic ferromagnets, a little further.
Consider the isotropic Heisenberg ferromagnet

N—-1
- Z Sn . Sn+17 (3)
n=1

where S,, = (8%, 8Y,5%) and {S%, 57 } = €% Sk§,, .. Tm-
posing the constraint S}.S;; +S5¥Sy +S2S57 = 1, and per-
turbing around the minimal energy configuration SZ = 1,
we observe that if we identify charge @, dipole D and mo-
mentum P with the total z, x and y components of spin,
the spin algebra is equivalent to (2). Moreover, Taylor
expanding H to leading order in small S¥¥, we observe
that up to a global constant, H is approximately given
by (1) with V(z) = a2

Remarkably, we see that the isotropic ferromagnet has
an approzrimate dipole and momentum conservation close
to equilibrium. However, nonlinearities in the ferromag-
net do not preserve S7 = 1, and so the nonlinear theories
differ [58, 59]. Despite this nonlinear discrepancy, we
note that nonlinearities are known to be strongly rele-
vant below six dimensions in the Heisenberg ferromagnet
[60]. In the exact dipole-conserving theory, we will show
that the upper critical dimension is four. It would be
interesting to investigate whether a ferromagnet can be
modified by realizable interactions to better stabilize the
dipole-conserving hydrodynamics.

Hydrodynamics.—We now use canonical arguments,
based on the second law of thermodynamics, to derive
the hydrodynamics of conserved momentum, charge, and
dipole. The fundamental assumption of hydrodynamics
is that the late time physics is governed locally by the
independent quantities of the system, which we write as

P:/MmiQZ/Mm, (4)

where 7% and n are the momentum and charge density,
respectively. ij indices in what follows run over spatial
dimensions 7 = 1,...d, and repeated indices are summed
over. The dynamics of the densities n and 7 is given by

the local conservation laws:
aﬂri + @T“ = 0, th + 8“]1 =0 s (5)

where T% and J’ are stress and charge flux, and are
assumed to be local expressions of 7%, n. Crucially, we
also need to demand

J=0;07", (6)



which comes from dipole conservation:

(%/ddxxin: */ddﬂ?ﬂ?iajjj = /ddiﬂ]i (7

where the right-hand side vanishes only if J* satisfies (6).
We will also demand that J%, which can be interpreted
as a dipole flux tensor, be local in the densities.

We have not included the dipole density as a separate
degree of freedom. Indeed, let us decompose the dipole
charge as: D' = Dj + S, where D} = [d%zz'n is the
“orbital” component and S’ a remainder, corresponing
to a density of microscopic dipoles. In general, we only
expect the sum D? to be conserved, and not each compo-
nent separately. Therefore, the S? charge will typically
relax into the local density x*n, and dipole density is not
a separate hydrodynamic degree of freedom [61]. This
is analogous to the reason why a fluid with angular mo-
mentum conservation does not have a new hydrodynamic
mode associated to angular momentum density.

Upon specifying the explicit dependence of T and
J" on ¥ and n, (5) and (6) will completely specify the
time evolution of 7% and n. To find such explicit depen-
dence, we shall write down the most general expressions
of T% and J* in terms of 7% and n following a derivative
expansion, and then impose that the dynamics be consis-
tent with the local second law of thermodynamics. This
amounts at finding a vector J§ such that

s+ 0;J5 >0 (8)

when evaluated on solutions to hydrodynamics, where s
is the thermodynamic entropy density. This basic con-
straint will uniquely determine the concrete expressions
of T, J* in terms of 7%, n, order by order in derivatives,
up to phenomenological coefficients that are determined
by the specific underlying system.

Let us first review what happens in the absence of mo-
mentum conservation [35]. We solve for the dynamics of
n alone. Eq. (6) and the fluctuation-dissipation theo-
rem demand that J;; = D1(p)0;0;n + Da(p)d;;0*n. This
starkly contrasts with a conventional diffusive system,
where without dipole conservation, J; = —Dd;n. The
continuity equation implies that (within linear response)
Omn = —(Dy + D3)(9%)%n: density obeys a subdiffusion
equation with dynamical critical exponent z = 4 relating
the scaling of time and space. At leading order Jj oc J°.

The thermodynamics and hydrodynamics of
dipole/momentum-conserving systems are special:
contrary to all cases known to us, the homogeneous
part of momentum density decouples from the dy-
namics. Indeed, we begin by first assuming that the
entropy density is a function of momentum and charge
densities s = s(w%,n), as in conventional thermody-

namics. We now show that this breaks (6). Recall the
thermodynamic relation
Tds = —V'idr' — pdn, 9)

where V? and p are the velocity and chemical potential
of the system. We recall that we are assuming absence of

energy conservation, so we will take T" to be a constant set
by noise in this discussion, and will study hydrodynamics
with energy conservation in a technical companion paper
[62]. Combining this thermodynamic relation with the
fact that, in non-dissipative hydrodynamics, entropy is
locally conserved, we arrive at

T(0¢s+0;J%) = =V (O +0;T9") — p(Opm+0;J"). (10)

The most general expressions for the currents are Jg =
s1VE, T = p6 + himi V', J* = hoV?, where s1,p, h1, ho
are functions of 7% and n. Plugging these expressions in
(10) gives s; = s —p, p = Ts + un + Vix’, bVt = 7t
and he = n, which are just the standard constitutive
relations of the hydrodynamics of a charged fluid: indeed,
we have not used anywhere the fact that we are dealing
with a dipole-conserving fluid. In particular, these results
together with (6) lead to the relation

nV'=9;J7", (11)

which would naively imply that .J% is non-local in the hy-
drodynamic variables, thus violating our basic assump-
tions.

The only way for (11) to be consistent with locality,
therefore, is to demand that the velocity V? is itself a
total derivative (divided by n). Since V* is defined as the
chemical potential of 7%, such requirement is only possible
if the entropy density has the following dependence on 7*:

s = s(0jv;,n), v = T (12)
n
Again demanding (10), we find
T = p6™ + Vigd — Yix0jur, (13a)
J9 =1y, (13b)
where the velocity and the thermodynamic pressure are
| Jds
V'= —0;1, =Ts—nT—, 14
" i p st (14)
and we have defined the quantity
as
ii=T———| . 15
w.] 8(32”0]) N ( )

Unlike ordinary fluids, the velocity is a higher-derivative
expression of momentum density. This is the only way
to reconcile (11) with locality. In a rotationally invari-
ant theory, we find that Tj; is symmetric up to total
derivatives, consistent with conservation of angular mo-
mentum. An explicit derivation of these facts is provided
in the Supplementary Material (SM).
Note that the entropy density s as well as equations of
motion are invariant under the shift
= 7'+ nd, TY — T 4 Jic | (16)
where ¢’ is a constant vector. This invariance is a man-
ifestation of the dipole algebra (2). Indeed, (2) implies,



using locality: {D? 77} = nd", which is equivalent to the
symmetry (16). In fact, using (16) as the only input, one
immediately infers (12), which in turn imply (13a)-(15)
and in particular (6). This symmetry-based approach
confirms that the hydrodynamics (13a)-(15) is valid for
arbitrary strongly-coupled systems and thus universal.
It is straightforward to derive first order dissipative
corrections to hydrodynamics. We do this calculation in
the SM, and now summarize the results. We find that
Ji‘j‘ = J(%) + J(’{) and T% = T(Zé) + T(Zf), where JZ(J)) and
T(Zg) correspond to the ideal hydrodynamic results derived
above, and
—T() =MV, + M 00,
J(Z{) = Iiijklakvl + Cijklakal,u.

(17a)
(17b)

The tensor structures are detailed in the SM, and are
similar to shear and bulk viscosities of an isotropic fluid.

To complete our hydrodynamic description, we finally
add the effect of thermal fluctuations. Generalizing
the standard fluctuation-dissipation theorem [1], we add
noise to the currents: T% — T% 479 and J9 — JU £4
where the variance is determined by the dissipative co-
efficients of (17): (7% (t,x)7*(0,0)) o< T(t)6(?(z), and
similarly for the two-point function of ¢¥ and its product
with 7. More details can be found in the SM.

In the SM, we derive the propagating hydrodynamic
modes of this theory: namely, we look for solutions to
the hydrodynamic equations in which n,v; oc ef*=iwt,
We find a magnon-like “sound” mode with dispersion re-
lation [60, 63] w = +ck? — iyk?, and d — 1 subdiffusive
modes for transverse momentum with dispersion relation
w = —iy’'k*. Explicit expressions for ¢,~,~' are not il-
luminating and are provided in the SM. Note that the
qualitative structure of these quasinormal modes matches
those of an ordinary fluid, except that each power of wave
number k is doubled.

Instability of Hydrodynamics.— In fact, the true dis-
persion relations differ from those we found from lin-
ear response above. Relevant nonlinearities couple
to thermal fluctuations and lead to anomalous scal-
ing, severely affecting the long-time behavior of gen-
eral dipole-conserving hydrodynamics. For simplicity, we
shall present the explicit nonlinearities only in one dimen-
sion; the higher dimensional counterpart is qualitatively
similar and can be found in the SM. We consider per-
turbations of an equilibrium fluid at rest where v, and
n. =mn — ng are regarded as small:

1 ~ 1

Opvg + —0un 4 MOyt + N'020,n + T02v, + —0,7 = 0,
X no

(18a)

Ot — aTd3v, + %8;‘.71 +0%¢ = 0. (18b)

where T = %F, and we dropped dissipative/nonlinear
0
terms which are not important for what follows. We in-

cluded stochastic fluctuations in the equations. The val-
ues of constants A, X, x, a, I', and C do not depend on
VU, Or 7.

At mean-field level, the dissipative scaling is w ~ k*,
while the noise scales as 7,7 ~ k5 Starting from the
linearized theory and assuming that y, I' etc. are scale
(k) independent, we find 7% ~ v ~ k2% and n ~ k%. As
per the usual renormalization group analysis, the non-
linearity A must scale as k%, making it relevant when
d < 4; X scales as k%72 and is relevant when d < 2. As
a consequence, we can anticipate anomalous dissipative
scaling: the magnon-like sound mode will have disper-
sion relation w ~ k% — ik?, with z < 4. We crudely
estimate z by assuming that, even after fluctuations are
accounted for, the scaling of the densities does not renor-
malize. Assuming A # 0 and balancing the time deriva-
tive with nonlinearities 9;7° ~ V(72)?, V(V7)? leads to
B~ k0 or 2~ d/2 + 2. In one dimension, this
gives z ~ 2.5, and in two dimensions z ~ 3.

Numerical Simulations.— Having predicted both the
exotic dissipative hydrodynamics of a dipole-conserving
theory, together with its breakdown due to thermal fluc-
tuations, we now describe two models which we have used
to numerically test our predictions.

Model A: Our first model starts with Hamiltonian
(1), with

Viz) = %x2 + k32 + kg2t (19)
Note that Model A has energy conservation, and strictly
speaking our hydrodynamic derivation above does not.
Energy conservation changes the universality class and
critical exponents of hydrodynamics [62], and so strictly
speaking, model A does not lie in the universality class
predicted above. However, we empirically find that the
coupling with energy density is negligible within numeri-
cal accuracy, and model A is effectively described by the
hydrodynamics above. In the SM, we study a stochastic
version of model A with noise and dissipation, which is
not energy conserving and is predicted to lie in our uni-
versality class. Further simulations, discussion of the role
of energy conservation, and extensions of this model to
higher dimensions, are also described there.
Model B: Our second model corresponds to
N
H=Y(—cospi— Fz)+V(z),  (20)

i=1

with V(x) given in (19). Note that this model does not
have explicit dipole conservation, nor momentum conser-
vation. However, analogous to the emergence of dipole
conservation out of energy conservation in systems placed
in strong tilt fields [35, 41, 64], we predict the emergence
of dipole and momentum conserving hydrodynamics in
this model. Indeed, in the SM, we explicitly show that
the linearized equations in model B exhibit fast Bloch os-
cillations superimposed on top of magnon-like hydrody-
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FIG. 1. Distribution function of (p_(¢)px(t)) correlations at
late times for (a) model A and (b) model B. The dashed line
is the theoretical k2 prediction.

namic modes. Model B is inspired by one possible exper-
imental realization of dipole-conserving hydrodynamics,
in which ultracold fermionic atoms are placed in a tilted
optical lattice [41]. The cos p; kinetic energy arises from
the finite bandwidth of a lattice model, and the F'x; force
field comes from the tilt. In order for this realization to
be appropriate, it is important for umklapp scattering to
be suppressed and for momentum to be approximately
conserved.

We now present large scale simulations for each model.
A “thermodynamic” check for dipole-conserving hydro-
dynamics is to look at the equilibrium fluctuations of the
momentum density, which are proportional to the mo-
mentum susceptibility: using (11) and (14),

T _9
Xpp = v o< k™e. (21)
As k — 0, we predict a clear divergence in the equal time
correlation functions (pg (¢t)p—(t)), with (- - -) an average
over times and/or initial conditions; here p; denotes the
discrete Fourier transform of p;. Figure 1 demonstrates
this divergence is present in both models.

Next, we study the thermalization time scale of
each model. Choosing random initial conditions,
higher-momenta modes will thermalize first, so that
(p—r(t)pi(t)) will develop a maximum at some momen-
tum k.. For a dispersion relation with Imw o k7, the
thermalization time of a mode with momentum & scales
as k%, which will yield

k() oc t =17 (22)

note that z = 4 in linearized hydrodynamics. Figure
2 shows numerical simulations in both models, which
demonstrate that z =~ 4 when k3 = 0, but that z ~ 2.5
when k3 # 0. Crucially, we observe both (7) a large scale
deviation from z = 4, which is compatible with our crude
estimates for z at the non-equilibrium fixed point, and
(i) much weaker instability (in fact, we did not numeri-
cally detect one unambiguously) when ks = 0, which is a
consequence of A ~ 0 in this model in (18). Moreover, our
data exhibits the strongest scaling collapse when z = 2.5
(when ks # 0). This constitutes strong numerical evi-
dence for the existence of the same non-equilibrium fixed
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FIG. 2. Temporal dependence of 1/k, showing anomalous
scaling in model A (top) and model B (middle). Shown
with blue (orange) is the case when k3 # 0 (k3 = 0). We
estimate 1/z = 0.404+0.03 when k3 # 0 and 1/z = 0.26£0.01
when ks = 0 in model A; 1/z = 0.41 £ 0.02 when ks # 0
and 1/z = 0.27 + 0.02 when k3 = 0 in model B. In model A,
k3 = 3 - 10 when nonzero, ks = 2-10°, N = 10, averaging
over 50 different initial conditions. In model B, F' = 50,
k3 = 3-10% when nonzero, ks = 1.8 -10%, N = 10*, with one
random realization shown. The characteristic timescale 7. is
T« = 2000/e, in the upper panel, whereas 7. = 1/e, in the
lower panel, with €. the energy density. Bottom: Scaling
collapse of the equal-time momentum correlation function in
model A for 1/z ~ 0.4. Shown in the inset is the raw equal-
time momentum correlation function without rescaling.

point, arising both in Models A and B. Remarkably, the
observed value of z is extremely close to our simplistic
estimate of 2.5.

In Model A, we have also studied the fate of the
magnon-like sound mode by studying the Fourier trans-
form of unequal time correlation functions (p_j(0)px(¢)).
Figure 3 shows that this correlation function is sharply
peaked near w = ck?, with a decay rate consistent with
z = 2.5. This suggests that the real part of the disper-
sion relation remains quadratic at the dipole-conserving
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FIG. 3. (a) Absolute value of the temporal Fourier trans-

form of (P_j(0)Px(t)) showing the quadratic dispersion of a
propagating mode in model A. (b) Linewidth of the quadratic
excitations in panel (a) as a function of momentum. Shown
with dashed-dotted lines is the k2 fit.

fixed point, and is consistent with our assumption that
the densities do not pick up anomalous exponents at this
new fixed point.
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FIG. 4. Temporal dependence of 1/k, showing anomalous
scaling in the two-dimensional version of model A (top) and
scaling collapse of the equal-time total momentum correlation
function (bottom). Shown in the inset is the raw equal-
time momentum correlation function without rescaling. The
dashed line is the theoretical k=2 prediction. We estimate
1/z = 0.33 £ 0.03. The characteristic timescale 7, is 7 =
100/e., with €, the energy density. Simulations occurred on
a 400 x 400 grid with k3 = 3, ks = 4, averaged over 100
realizations.

We have also simulated Model A in d = 2. Figure
4 shows a scaling collapse consistent with z ~ 3, again
very close to the estimated exponent predicted in the

previous section, and clearly distinct from the Gaussian
prediction (z = 4). This is the first instance known to us
where hydrodynamics is strongly unstable to fluctuations
in dimension d > 1. Finally, Figure 4 also indicates con-
sistency with the divergent behavior of x pp predicted by
the thermodynamic relation (21).

We remark that the numerical detection of anoma-
lous transport scaling can be sometimes quite subtle.
For example, it has long been known that energy trans-
port in one-dimensional “standard” (non-fractonic) hy-
drodynamics is anomalous [65]; however, this statement
has been subject to relatively recent debates, where cer-
tain models were observed to display ordinary diffusion
[66, 67]. While the general consensus is now that en-
ergy transport in these systems is always anomalous [68],
these works instruct us that unambiguous determinations
of non-equilibrium critical exponents may be quite non-
trivial. The relatively weak mixing of energy density with
momentum and charge densities in our simulations is con-
sistent with the fact that our model A appears to ac-
cess the DMC fixed point at numerically accessible time
scales, even without any noise.

Outlook.—We have discovered a new universality class
which is undriven, yet out-of-equilibrium. Our construc-
tion was inspired by the physics of fractons, which were
originally devised [12] to protect quantum information
against thermalization, but have since revealed deep con-
nections between quantum information, condensed mat-
ter physics, quantum field theory, and (due to this work)
non-equilibrium statistical mechanics.

Our discovery of hydrodynamics with both momentum
and dipole conservation may also provide a key path to-
wards understanding whether it is possible to couple frac-
ton matter to gravity (a spacetime metric) — and if so,
how [69]: the natural language for describing momentum-
conserving hydrodynamics as an effective theory involves
coupling to background metrics [2-4]. Moreover, per-
forming a renormalization group analysis in fracton sys-
tems is still a technical and conceptual challenge [70-
72]. This paper provides a rare example where such an
analysis can be performed, and may shed light into field
theories of other fractonic phases of matter.

Although we have focused on the hydrodynamics of
a dipole-conserving fluid here, we anticipate infinitely
many additional non-equilibrium universality classes
arising from the consideration of higher multipole con-
servation laws [35], subsystem symmetries [35, 73, 74], or
explicit/spontaneous symmetry breaking. We look for-
ward to the systematic classification of fracton-inspired
non-equilibrium universality classes, and hope for their
ultimate discovery in experiment.
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S1

Supplemental Material for
Breakdown of hydrodynamics below four dimensions in a fracton fluid

Appendix A: Zeroth order hydrodynamics

In this appendix, we derive the zeroth order hydrody-
namics. Our starting point is (10). First collecting the
terms with time derivatives, we find

TatS = —Viatﬂ'i — ,uatn

(83 O+ 0s

3 8(8kvl)atakvl> = V'O (nv") — pon

(Tas + Vivi + ;L) ogn + 1/}k-latakvl + nViatvi =0.

on
(A1)

Since the first term must vanish, we conclude that the
chemical potential is given by

ds
=T — Vi A2
I 5, V'Y (A2)
For the second term, we integrate by parts to find
Ok (’l/)klatvl) + (nVi — akd)kl) 8t’l)i =0. (A3)

Setting the second term to zero implies the first equation
n (14).

The remaining divergence term can be absorbed into
the entropy current, and indeed we now turn to the eval-
uation of the entropy current by studying the spatial
derivative terms in (10):

T&Jfg + Ok (wklﬁtvl) = —ViajTji — /J,aiJi

— Vi, T + <Taz + V’“v’“) 0; (nvi + ji) . (A4

In the second line above, we have plugged in the ansatz
J' = nV?+ J. Ultimately we will show that J* = 0 at
ideal fluid level, so in the equations that follow we will
drop this term to avoid clutter. With a bit of hindsight,
we claim that

. s .
Ji=nyi

o )i Oj. (A5)

The latter term clearly cancels out a term in the first line
of (A4); as for the former, observe that if we plug (A5)
into (A4), we find

—Vi9; T + VFuF9;(nV?) = TnV'0; g—s
i 0s ; 0s
_Tvaz( an> TV o-0m
i 0s ; 0s
=TV, (nan —s> +TV 900 88kv

(

= TVZ& <nas - S> + Viﬁk (mlf)ivl)
an

— ViVl (A6)

This equation is satisfied if

3 Os
T —T(sna) 67 4 nVivt — 0. (AT)
n

Let us confirm that this ideal stress tensor T% is sym-
metric in the indices ¢, 7 up to total derivatives. To this
aim, consider a constant antisymmetric matrix €};; and
write

/ddeijQij
ds ds
__ d . 3
= T/d T (a(akw)akvj + 90w k)a vk> Qi; (A8)

_ 4. Os "
_ T/d e 0;)

where §(9;v;) = (Qx0v, + QikOxv;) is the variation of
d;v; with respect to the infinitesimal rotation z* — z* +
Q%27. Since the entropy density s is invariant under
rotations, the above expression vanishes. Hence, T;; is
symmetric, up to total derivative contributions.

Appendix B: Dissipative hydrodynamics

Introduce higher-derivative corrections to the currents:
? (3

TV = (O)—f—TJ J = J(o) JJ and J® = J’ +JS(1)

where the quantities with subscrlpt (1) denote higher-

derivative corrections. Using the conservation laws (5)

together with thermodynamic relations (14) and (A2),

expand
0s
T@ts :T%ﬁtn + ’l/)qijataivj
=10;0;J7 + VIO, T + 0;(1hi;00v5)
=0;(u0; J7" — J90;p + VITh;;0005)
+J"j818ju—Tij8¢Vj. (Bl)
Eq. (8) then gives
0 < 0;(Jéy + 103y + VITH i (vs) ) — (3,05 )
+J(Z{)816]u — T&@ZVJ, (B2)
where the leading derivative terms cancel out due to (10),
and where (9;v;)(1) denotes the dissipative contribution

to Oyvj. The most general expressions for the dissipative
stress tensor and charge current are

_TZJ) _ ni]kqplakalapvq + Oéijklakalﬂ

a (B3a)



Tl = w9000, + CM Do (B3b)
where 77? kp ql, ... are regarded as constant tensors, and

where we only kept terms that are linear in v; and u
as these are sufficient to capture the anomalous scalings:
any nonlinear dissipative term will be irrelevant. The

ijkqpl s
tensor 7;”""" has the general decomposition

pd Rl 5id skp sl 4 b, 50k slilp gl

B4
+ b387t 51 R gD 4 by §it5T kg, (B4

where AIr172--1P9) denotes total symmetrization with re-
spect to the indices k, p,q. From (B8a) and (C2) below,
we also have

g 2 d—1
ij(k|r| plrig)l — _z 9
n a (C dn) (cn +t2—

a2> 5 5(kp 5a)l

+ 2 (a1 + as — ag) ik glilpgalt

+ (n+171)(as + ag)s'* 5041

+ (n — 1) (as + ag)5" 6/ 6.
(B5)

Egs. (B4) and (B5) have the same tensor structure. From
this and (C3) we conclude that, by a suitable choice of
coefficients, the first term in (B3a) can be written as
nzl'jklpqakalapvq _ nijklakw (BG)
A similar conclusion applies to the first term in (B3b).
This allows us to write the currents in terms of V*:

*T(if) L M VAR L W W (B7a)
J3 = kHOV + OO, (BTH)

where
nijkl _ C(Sijtskl + 2n5i<k6l>j 4 Zﬁdl[kél]j (B8a)
KR = ) 59 5K 1 24067k §1>T 4 255671k 51 (B8b)
A THl = ) 59 6M 4 267k 5> (B8c)
Okl — 51 §H 1 00yt <k§i> (B8d)

where A<U> = 1(AY 4+ A7 — 151 Akk) and Al =
£(A% — A¥%) denote traceless symmetrization and anti-
symmetrization with respect to indices 17, j, respectively.
The coefficients in (B7) can be regarded as a matrix act-
ing on the vector (0;V;,0;0;p). Choosing Jé(1) so that
the total derivative on the right-hand side of (B2) van-
ishes then implies positive semi-definiteness of such trans-
port matrix. Moreover, Onsager’s principle implies that
this matrix should be symmetric. The last term in (B8a)
would contribute to entropy production through rigidly
rotating the fluid as dS ~ 7(9};V}])?; this cannot hap-
pen for rotationally invariant fluids, and we shall set it
to zero. Similarly, by coupling the system to a suitable

S2

background higher-rank gauge field, one can infer that x3

also vanishes. We shall explicitly derive these constraints

in [62]. Putting all the constraints together, we then find
C? n, Cla CQ 2 07

ai <0y,

a1 = ki,

a% < nCj.

Q2 = Ry

(B9)

Finally, using the fluctuation-dissipation theorem gives
the following two-point functions for the noise introduced
in the main text:

(79 (¢, )74 (0,0)) = 2T 5(1)5(? () (B10a)
(€9t 2)€™(0,0)) = 27CYH5(1)0™ (x) (B10b)
(7 (t,2)65(0,0)) = T(a™™ + 5M9)5(1)5 () (B10c)

Appendix C: Linearized hydrodynamics

We now analyze the dispersion relations of the lin-
earized hydrodynamics around a homogeneous back-
ground charge density ng, ignoring the effects of fluctu-
ations. Taking n = ng + n, where n and v; are regarded
as small, expand

1 ..
§=-50 0;v; Oy — (C1)

where the tensor a”* = ¢*!%J has the following general

decomposition:

a7 = 4169 6K + 2a56"F6177 + 2056776 (C2)

In (Cl), po = p(ng) is the chemical potential evalu-
ated on the background charge density, and y = g—z is
charge susceptibility. Thermodynamic stability requires
that a1, as,as,x > 0. The thermodynamic relations in

Egs. (14),(A2) then give
_ T
V= ——a”’”@ﬂkm, o = Xﬁlﬁ
g (C3)
p = pono + X~ 'nont

where o = p — po, and the ideal part of the currents
read

T(ig) = (pono + nox'n)dY, (C4a)
3 T .
J(l(])) = —n—oa”kl@km, (C4b)

while the dissipative contributions T(if) and Jg) are pre-
cisely given by (17). Plugging these in the conservation
equations (5) yields
. T T
o + 20 + SS9, + S T00%0,0;m;
X ng g

— gaia% =0 (C5a)



T T
o — Lorom + Con - Trotom =0 (Cob)
no X ng
where
d—1
a=a; + 27(12, (CGa)
d—1
cC=0C+ QTC’Q, (C6b)
d—1
K = K1 + 2 K2, (CGC)
ro= 2, (C6d)
d—1 1 n
FQ = C + (2da — ﬁaz — a3> 37 (C6e)
—1
A=m +2d Qs. (Cé6f)

These equations lead to the following dispersion relations:

alng,, 1i(C aT 4

=4y —k —=|—+—T1+T k Cr

omnf e (TS s cm
T

w= 15Tk (CTh)
ngy

where the two modes in the first line arise from the cou-
pling between 7 and the longitudinal component of mo-
mentum 9;m;, while the modes in the second line have
multiplicity d — 1 and are associated to the transverse
components of momentum 92 (m; — 9;0;7;).

Appendix D: Equations of motion with relevant
nonlinearities

Here we give explicit expressions for various quantities,
valid beyond linear response. The input is the entropy
density

= a0 + 5 D1
s=-5a iv; 0k + 5(n), (D1)
whose form is sufficient to capture all the relevant non-
linearities, and §(n) is a generic function of n. Using
(13a)-(15) we have
Vij = —Ta"*9pv, nVi= —Tajiklﬁjakvl

T .. (D2)
p= —50/7']“81"1)]‘8]6’0[ —|—13(n)

where p = T'(§ — n0,5). The currents are

T4 — (ﬁ _

+ Taikplapvlajvk — ROV, — RO + T
JU = — Ta" v 4+ CIR 9,0 1 + TR O,V + €V,
(D3)

T y , A
Qaklpqakvlﬁpvq) oY — Tamkl@pakvlvj

S3

where we already accounted for the constraints discussed
around (B9). It will be convenient to express the con-
servation equations in terms of v; = 7, for which we
have

vt + % (05T7" — 'y, 0;.%) = 0. (D4)

Plugging in the above expressions and substituting (C2)
for a”*! we find

1 2T
Oyv; + 581'13 + ?(a — ag — a3)0;0xvr0;v;)
2T al
+ 7(@2 + a3)8j2-vk8[ivk] + Fflé)“vi
T A 1 .
+ %Fgazaiajvj — 781‘82% + *87‘7']1 =0 (D5a)
n ny n

o — aT@zﬁwi + %6477, — %A8432U1 + 610]{’7 =0
(D5b)

where we neglected nonlinear dissipative terms, since
they are irrelevant.

Expanding
_ Ho _ 1, A g A1y
=——f— =0 — =N — — D
S =-Tr 37" ~er” 1t (PO
we find that the contribution from p in (D5a) is
1. 1. A Jo9a
0D = gain + Ano;n + N'n°o;n, (D7)

where M = \; — —L5.
Xng

The evaluation of the dynamical exponent z is not
amenable to perturbation theory. One can verify this
by evaluating the Kubo formula for frequency-dependent
transport; for example for the viscosity

(@) ~ / dte—i«t / AL (T (¢, )T (0, 0))
N / dte—iwt / Al (i (t, ©)2((0,0))2)  (DS)

. 4 d—4
~ /ddkdteflwtef2'yk t (JJT,

where we only considered the nonlinearity T% ~ fR2§¥
and assumed factorization of the 4-point function of 7.
For simplicity we assumed absence of propagating modes,
so that (n(t,k)n(0,—k)) ~ e~ "'t. We then see that
the correction to the mean-field viscosity is divergent as
w — 0, making perturbation theory ill-defined.
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FIG. S2. Scaling of momentum correlation for the stochastic
model A. Shown in panels (a-b) are the self-similar collapse
of the correlations for (a) ¥ = 0.1, and (b) v = 1. Shown
in panel (c) is the position of the peak of the distribution as
a function of time for (a) and (b). The linear fitting yields
1/z=0.31£0.02 for v = 0.1, and 1/z = 0.26 £0.02 for v = 1.

Appendix E: Stochastic Model A

We now overview a stochastic version of model A, given
by the equations:

Opn — V' (xn-1—xp) + V' (2p — Tpy1)

+ V(2010 — Opn—1 — OTnt1) + & —€n1 =0 (Ela)
Oryn — (2P0 — Pny1 — Pn—1)

—v(20ipn — Otpn—1 — OtPn+1) + G — o1 =0 (E1b)

where v is a friction coefficient, and the noise correlations
are chosen so that the fluctuation-dissipation theorem is
satisfied:

(En()Em (0)) = (G (t)Gm (0)) = vT0mnd(t).  (E2)
Setting v = 0, one recovers the Hamiltonian model A.
The model above can serve to verify that the scaling ex-
ponent z remains smaller than 4 even after energy con-
servation is broken, which happens, at sufficiently long
times, as soon as v is turned on. Figure S2 shows that,
for v not too large the scaling exponent is still anomalous,
thus corroborating the fact that z < 4 independently of
the existence of a diffusive energy conservation law. We
emphasize that in the true thermodynamic limit, theo-
ries with any amount of noise are expected to flow to the
same DMC fixed point — the fact that our estimate of z
changes with v is a consequence of finite size effects.

S4
Appendix F: Model A in higher dimensions

Here we describe a generalization of model A in d di-
mensions. This is a rather straightforward extension of
the one-dimensional case of (1):

H = Z { Z (p“(T) _pg(r + eu))2

" (F1)
+v (Zm(r) o+ em) b
with the Poisson brackets
{pu (7‘), Ty (T/)} = 6u,u5r,r’ . (F2)

Here, 7 = (r1,...,7rq), with r4,...,7¢ = 1,...,N — 1
denotes the lattice site. p, with p =1,...,d denotes the
d-dimensional particle momentum, and similarly for z,,.
e, represents a unit vector in each direction p. One can
easily see that in one-dimension this Hamiltonian reduces
to (1). The potential is taken to have the same form as
in (19).

Note that this model has a large number of non-
dynamical degrees of freedom corresponding to the com-
ponents of p, and z, which cannot be written as gra-
dients of a scalar function on the lattice. We focus on
the “longitudinal sector” only when studying correlation
functions. It is possible to couple this transverse sector
to the longitudinal one, if desired, by multiplying the
kinetic terms by a function of }° (z.(r) — z.(r + eu))
or by letting the potential depending on the “transverse
increments” of x,: V (z,(r) — z,(r +e,)).

Appendix G: Statistical analysis of numerical data
for model A in d=2

To find the anomalous scaling exponent z that best fits
the numerical data, we minimize a function that quan-
tifies the dispersion of the collapsed datapoints, as we
describe next. We denote by k,, the values of the radial
component of the wavevectors, and by ¢, the timesteps
of the simulation, where m,n = 0,1,2,.... Fixing the
value of (a, ), we define the auxiliary variables

Yn,m = t;na<P_knPkn>(tm)7 (Gl)

with 8 = 1/z. For each value of t = ¢t,,, these
functions define an implicit function y,,(x) which we
can approximate by linearly interpolating the datapoints

(Tn,m>Yn,m). As such, the dispersion function can be
defined as

O'(Oé,ﬁ) = Z Z Z (yn,m - yn’,m’)2a

z nmel, n',m'cl,

Tn,m = tfnkn7

(G2)

where I, are bins centered at discretized positions x with
an appropriately chosen width. The value of o(«, ) for
the d = 2 version of model A is plotted in Figure S3,
where in particular we observe that the minimum dis-
persion is obtained for 8 = 0.33 4 0.03.
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FIG. S3. Contour plot of the dispersion function o defined
in Eq.(G2) as a function of the parameters («, 8). Lighter
colors indicate smaller values.

Appendix H: Linearized dynamics in model B

Here we show that the linearized equations in model
B exhibit fast Bloch oscillations superimposed on top of
magnon-like hydrodynamic modes. Consider the Hamil-
tonian of model B with V(z) = {a*:

N
1
H:Z;(—cospifF:Ei)+§(xifxi_1)2. (H1)
We observe that the nonlinear equations of motion:
Owx; = sinp;
t p (H2)

Ops = F 4+ 22 — Ti41 — mi—1,

admit the following exact solution corresponding to col-
lective Bloch oscillations:

1 —cos(F't)
(1) = LoD,

p(t) = Ft.

(H3a)
(H3b)

Now consider perturbations around this solution: dx; =
z; — 20 and dp; = p; — p?. The linearized equations of
motion for the perturbations are

0¢dxy, = cos F't Opg, (14)
Opdpr = (2 — 2cos k)xy,

where dx; and dp, are the discrete Fourier transform of
dz; and dp;. When k < 1 (the long wavelength limit),
(H4) implies

D20py, = k* cos F't 0py, (H5)

which is the well-studied Mathieu equation.

S5

The general form of the Mathieu equation is an ordi-
nary differential equation with real coefficients:

(H6)

In our case, a =0, 7 = Ft/2, ¢ = 2k*/F? < 1. By Flo-
quet’s theorem, (H6) has solutions of the form e!*”®(7)
and e " ®(—7), where ®(7) is periodic with period 7.
Assuming v is not an integer, 7 ®(7) and e VT ®(—7)
are linearly independent, so we can expand u(7) as

[e%S)
§ Con 2n17’ § 02n€_2n1T.

n=-—oo n=—oo

(H7)
Substituting (H7) in (H6) gives a recurrence relationship
for cop:

v’ + (a — 2qcos 21)u = 0.

( Ale

’}’n(V)an,Q + Con + Tn (V)02n+2 =0 (HS)
where
q 2k?2
= = . H9
(V) 2n—-v)2—a F2?2(2n—v)? (H9)
The equations (H8) can be written as a ma-
trix  equation M,,,c, =0, with repeated in-

dices summed over, and with tridiagonal matrix
My = 5mn + 5m,n717m + 5m,n+17m' The exponent v
is fixed by the condition det(M) = 0.

Assuming v < 1, we have the relations vo(v) > v, (v)
and v,(v) < 1 for any n # 0. So M is now a tridiag-
onal matrix whose diagonal elements are 1 and all off-
diagonal elements other than My and My _; are per-
turbatively small. As a result, we can estimate the value
of v by only considering the matrix elements M,,,, for m,
n=-1,0, 1L

1 40 7
det(M)~det | 5 1 5 | =1-55=0 (HI0)
O % 1 2V

Wegetuz%—‘fk < 1. Slncenowu%zg>>1,we

have |c| > |c42| > |cyon| for any n > 1, so approxi-
mately ¢z = c_2 = —co.

Assuming the initial condition dpg(0) =0, we have
A = —As, s0

5pr(t) ~ (A1e™™ + Ase™™7) (co + c12€®T + caoe™ )
= Asinvrt (1 — gcos 27’)
k2t k2
= Asin — —cos I't H11
V2F ( F? ) (HLD)

We can also find dxy:

A k2t A P k2t
sin sin ——
Var “®aF ' F V2F
We observe that a fraction of both dp, and dzy oscillate
at the frequency k2, confirming our claim that this model
has hydrodynamic magnon modes propagating on top of
fast Bloch oscillations.

dwy(t) ~ (H12)
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