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We present an e↵ective field theory for the nonlinear fluctuating hydrodynamics of a single con-
served charge with or without time-reversal symmetry, based on the Martin-Siggia-Rose formalism.
Applying this formalism to fluids with only charge and multipole conservation, and with broken time-
reversal symmetry, we predict infinitely many new dynamical universality classes, including some
with arbitrarily large upper critical dimensions. Using large scale simulations of classical Markov
chains, we find numerical evidence for a breakdown of hydrodynamics in quadrupole-conserving
models with broken time-reversal symmetry in one spatial dimension. Our framework can be ap-
plied to the hydrodynamics around stationary states of open systems, broadening the applicability
of previously developed ideas and methods to a wide range of systems in driven and active matter.

1. INTRODUCTION

In the past few years, infinitely many universality
classes of hydrodynamics have been discovered [1–14],
with exotic conservation laws such as the conservation
of multipole charges or charges along sub-dimensional
manifolds. Dubbed “fracton fluids”, as such universal-
ity classes describe the thermalization of generic mod-
els of interacting fractons (particles with mobility con-
straints) [15–25], a careful study of these new hydrody-
namic universality classes is likely to give valuable insight
into the foundational underpinnings of hydrodynamics as
an e↵ective field theory (EFT) [26–28], especially in non-
thermal systems with unusual symmetries.

In this letter, we find new universality classes of frac-
ton hydrodynamics with broken time reversal symmetry.
To understand why this construction is subtle, let us con-
sider the simplest fracton fluid: a 1d system with charge
and dipole symmetry [1–4], which can be experimentally
realized in tilted optical lattices [29]. Letting ⇢ denote
the density of conserved charge, one finds that dipole
conservation @t

R
dx x⇢ = 0 mandates

@t⇢+ @
2
xJxx = 0. (1)

With time reversal symmetry,

Jxx = D@
2
x⇢+ · · · (2)

is necessary, where the dots denote subleading terms in
derivative expansion. Thus far, this result is justified
using e↵ective field theory methods based on coupling
this fluid to background (mixed-rank) gauge fields [1]; a
more straightforward argument is that Jxx is time re-
versal odd: since there is no T-odd parameter in the
model that could relate Jxx to ⇢ within ideal hydrody-
namics, only derivatives of ⇢ can appear in Jxx. When
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time reversal symmetry is broken, is it possible to write
Jxx = �D

0
⇢+ · · · ?

Our purpose in this letter is to give a systematic and
highly generalizable framework capable of answering this
question (negatively). We will develop a systematic e↵ec-
tive field theory framework for studying hydrodynamics
of non-thermal systems, with or without time reversal
symmetry. Studying many di↵erent examples of fracton
fluids without time reversal symmetry, we will discover
an infinite new family of dynamical universality classes,
which generalize Kardar-Parisi-Zhang (KPZ) [30–33] and
multipolar extensions thereof [9].

2. EFFECTIVE FIELD THEORY

We first develop a user-friendly EFT for a non-thermal
fluid (one in which energy is not conserved, and temper-
ature is not well-defined). We focus on systems with a
single conserved charge with density ⇢, which is a scalar
under rotations, inversions and time reversal; generaliza-
tions will appear elsewhere. We assume that dynamics
is local in space, ergodic, and that there exists a steady
state probability distribution on the classical state space
(or quantum density matrix) invariant under the micro-
scopic dynamics. In contrast, we will not assume that the
dynamics is invariant under time-reversal or any spatial
symmetry.
For pedagogical purposes, consider nonlinear fluctu-

ating hydrodynamics from a traditional perspective via
classical stochastic di↵erential equations [34]. (Note that
our eventual EFT will also describe the hydrodynamics
of microscopically quantum systems.) It is useful (for
now) to think of ⇢x as the discretization of a continuum
function ⇢(x) onto some d-dimensional lattice. We write

d⇢x
dt

= Fx(⇢) + ⇣x(t), (3)

where Fx is some nonlinear function of ⇢s on nearby lat-
tice sites, consistent with all necessary symmetries, and
⇣x(t) corresponds to stochastic fluctuations. (3) is in the
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Ito interpretation. Eventually, we’ll want a rulebook for
how to calculate Fx and the statistics of ⇣x. For now,
assume that the noise is white, with zero-mean and

h⇣x(t)⇣x0(t0)i = ✏Qxx0(⇢)�(t� t
0), (4)

with ✏ a perturbatively small “bookkeeping” parameter,
and Qij symmetric and positive semidefinite. It will
be useful to replace (3) by the equivalent Fokker-Planck
equation for P (⇢, t),

@P

@t
=

@

@⇢x


�Fx(⇢)P +

✏

2

@

@⇢x0
(Qxx0(⇢)P )

�
. (5)

where summation over repeated indices is understood.
Now we bring in our first key assumption: the existence

of a steady state distribution

Peq(⇢) / exp[��(⇢)/✏], (6)

If ✏ ! 0, this distribution becomes tightly peaked near
minima of � at small ✏. This limit is both technically
convenient and physically sensible: on very long scales,
a fluid should be approximately described by noise-free
partial di↵erential equations (e.g. Fick’s Law). Combin-
ing (5) and (6) we conclude that [35]

0 + O(✏0) ⌘ 1

✏

✓
�Fxµx +

1

2
Qxx0µxµx0

◆

= �iH(�iµ/✏,⇢), (7)

where we have defined

µx ⌘ � @�

@⇢x
. (8)

Already, we can see sharp connections to thermodynam-
ics and statistical mechanics: � plays the role of entropy
S, the thermodynamic potential in the microcanonical
ensemble, while µ is the chemical potential conjugate to
⇢x. This emergent thermodynamics does not require fi-
nite temperature, energy conservation, or time reversal
symmetry. Moreover, the noise variance Qxx0 is not ar-
bitrary: (7) mandates a fluctuation-dissipation theorem
[36, 37] relating Qxx0 to Fx; the consequences of this will
be especially clear in the EFT language.

In (7), we also defined a function H(�iµ/✏,⇢). We will
now show that it can be interpreted as a ‘Hamiltonian’.
The path integral of the system described by (3) is given
by the Martin-Siggia-Rose method [38]:

Z =

Z
D⇢D⇣ � (@t⇢� F (⇢) + ⇣) e�

R
dt 1

2✏⇣Q
�1⇣

, (9)

which is equivalent to

Z =

Z
D⇢D⇡D⇣ ei

R
dt(⇡@t⇢�F (⇢)·⇡+ i

2✏⇣Q
�1⇣+⇣⇡)

=

Z
D⇢D⇡ ei

R
dtL

. (10)

In the last equation we get the e↵ective Lagrangian

L = ⇡@t⇢� F (⇢)⇡ +
i✏

2
⇡Q⇡ = ⇡@t⇢�H(⇡,⇢). (11)

Note that H(⇡ = �iµ/✏,⇢) is simply (7) up to O(✏).
From now on, we replace ⇢x with its continuum limit

⇢(x). Fx, Qxx0 and P (⇢, t) then become functionals of
⇢(x). The Hamiltonian in the continuum limit is

H =

Z
dx

✓
F (x, ⇢)⇡(x)� i✏

2
⇡(x)Q(x, ⇢)⇡(x)

◆
, (12)

where F and Q can include spatial derivatives acting on
⇢ and/or ⇡.
There are three important transformations and/or

symmetries we wish to impose within EFT:
Charge/multipole conservation: For any inte-

grable function f(x), we define a ”multipolar” charge as

Qf :=

Z
ddx f (x) ⇢(x). (13)

Qfi is conserved if the system is invariant under

⇡(x) ! ⇡(x) + f(x)c(t), (14)

where ci(t) is an arbitrary function of time. Under this
transformation, the action transforms as

S ! S +

Z
dt ddx f(x)c(t)@t⇢(x). (15)

The invariance of the action gives

�S

�c(t)
=

d

dt

Z
ddxf (x) ⇢(x) =

d

dt
Qf = 0. (16)

Parity: Under parity, x ! �x and ⇢(x) ! ⇢(�x). We
further demand the canonical momentum ⇡(x) ! ⇡(�x).
Time-reversal: Under time reversal, t ! �t and

⇢(x, t) ! ⇢(x,�t). Supposing for the moment that we
have time reversal symmetry and satisfy (17), in order
for the Lagrangian to be invariant under time reversal,
the term ⇡@t⇢’s contribution to the action should remain
the same (up to a total derivative). Under time reversal,
@t⇢ ! �@t⇢. If ⇡ ! �⇡ under time reversal, from the in-
variance of Hamiltonian, H(⇡, ⇢) = H(�⇡, ⇢), we would
find that the leading order of ⇡ in the time-derivative
free terms of Hamiltonian is H ⇠ ⇡

2, which means the
dynamics of the system is fully stochastic.
If we want a system whose dynamics is not fully

stochastic, we have to change the behavior of ⇡ un-
der time reversal, namely ⇡(x, t) ! �⇡(x,�t) + ig(x), so
now H(⇡, ⇢) = H(�⇡ + ig, ⇢). From the above analysis,
we know that only when g@t⇢ is a total derivative can
the equations of motion be invariant. According to (7),
the Hamiltonian satisfies

H(0, ⇢) = H(�iµ/✏, ⇢) + O(✏0) = 0. (17)

A natural choice is therefore

⇡(x, t) ! �⇡(x,�t)� iµ(x)/✏. (18)
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Note that (18) is a Z2 transformation reminiscent of
the Kubo-Martin-Schwinger (KMS) symmetry used to
implement time-reversal symmetry in dissipative thermal
systems at temperature T . It is consistent with the con-
dition that two applications of the time reversal should
return dynamical fields to their original values. (18) is
the unique kind of Z2 transformation on functions (also
called an involution) not requiring an infinite order series
in ⇡. Since µ is a total derivative, assuming that H is
invariant under (18), the change in the action is a total
derivative:

S ! S + i��/✏, (19)

where �� denotes the di↵erence in the thermodynamic
potential � in the initial and final state.

Remarkably, our EFT-based guess for how to imple-
ment time-reversal can also be justified microscopically.
Assuming statistical time-translation invariance for sim-
plicity, time-reversal symmetry is microscopically imple-
mented via detailed balance: if at time t the microstate
of the system is ⇢0, and at time t = 0 the microstate is
⇢0, then

P(⇢0
, t|⇢0, 0)Peq(⇢0) = P(⇢0, t|⇢0

, 0)Peq(⇢
0) (20)

Here P(· · · ) denotes the transition probability, which can
be calculated via path integral: [38]

P(⇢0
, t|⇢0, 0) =

Z

⇢(0)=⇢0,⇢(t)=⇢0

D⇢D⇡ ei
R
dtL

. (21)

Observe that the transformation (18) is accompanied
with t ! �t, which flips the two boundary conditions
in the path integral. Combining (19) with (6) we obtain
(20).

So far, our discussion has focused on theories with
Gaussian noise, which are described by a quadratic
Hamiltonian H(⇡, ⇢). However, it is straightforward to
consider higher order Hamiltonians from the EFT per-
spective. What is highly nontrivial is to convert the ac-
tion S[⇡, ⇢] back to the Fokker-Planck equation, once we
consider nonlinearities in ⇡; this task will be done in
a future paper. In Appendix A, we give the general-
ization of (7) to non-perturbatively large noise without
time-reversal.

Eq. (18) is also the correct definition of time-reversal in
situations where detailed balance is broken. In this case,
it may not be a symmetry (S need not be invariant).
Still, within linear response, we can cleanly separate out
the time-reversal even and odd contributions to S: Fx =
F

(e)
x +F

(o)
x , where F (o)

x satisfies
R
x F

(o)
x µx = 0. It is easy

to verify that (18) still holds if, instead of (19), we have

S ! S
⇤ + i��/✏, (22)

where S
⇤ is the original action with F

(o)
x ! �F

(o)
x , and

where F (e)
x obeys (7). F (o)

x is unrelated to the noise Qxx0 ,
and correspond to time-reversal breaking terms (hence

the sign flip in (22)) that are not dissipative. In hydro-
dynamics such terms can arise from quantum anomalies
[39, 40], Hall transport [41], and more general situations
when boost invariance is broken [42]. We conclude that
any hydrodynamic theory for ⇢, with a stationary ho-
mogeneous distribution, transforms in a “covariant” way
under the symmetry (22) at leading orders in the deriva-
tive expansion (see Appendix B). This allows us to pro-
vide quite strong constraints on fracton hydrodynamics
without time-reversal symmetry.

3. FRACTON FLUIDS

We now begin to classify the new universality classes of
fracton hydrodynamics with or without P or T symmetry.
Here we will systematically discuss systems with only
three kinds of multipole charge conservation: monopole,
dipole and quadrupole conservation, but our framework
can be easily generalized to other systems. At least for
multipole conserving theories, it appears that all of the
peculiar possible phenomena can be found already within
one of these three theories.
We start by writing down all possible leading-order

terms in Hamiltonian; namely, we will consider at most
quadratic terms in ⇡, and keep as few derivatives and
nonlinearities in ⇢ or µ as possible.
Charge conserving: the action is invariant under the

transformation

⇡ ! ⇡ + c(t), (23)

so the Hamiltonian should be function of @x⇡ or higher
order derivative terms:

H = A(⇢)@x⇡ + �(⇢)@xµ@x⇡ � i✏Q(⇢)(@x⇡)
2 + · · · ,

(24)

Dipole conserving: H should consist only of @2
x⇡ or

higher order terms:

H = A(⇢)@2
x⇡ + @xB(⇢)@2

x⇡ + �(⇢)@2
xµ@

2
x⇡

�i✏Q(⇢)
�
@
2
x⇡

�2
+ · · · , (25)

Quadrupole conserving: H should consist only of
@
3
x⇡ or higher order terms:

H = A(⇢)@3
x⇡ + @xB(⇢)@3

x⇡ + @
2
xC(⇢)@3

x⇡

+�(⇢)@3
xµ@

3
x⇡ � i✏Q(⇢)

�
@
3
x⇡

�2
+ · · · , (26)

In the above equations, A(⇢), B(⇢), C(⇢), �(⇢), and
Q(⇢) are (as of yet) undetermined functions of ⇢, which
don’t include any derivatives. Combining all other the
constraints we imposed to the system, (7), (17) and (18),
we list all possible forms of the undetermined functions in
Table 1. From the table, we see that with or without P or
T, the leading order dissipative terms �(⇢) are always the
same and are fixed by the conditions (7) and (17). This
is the fluctuation-dissipation theorem [36]. Second, when
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conservation symmetry A(⇢) B(⇢) C(⇢) �(⇢)
T or P 0 Q

monopole PT f(µ) / / Q

None f(µ) Q

T or P 0 0 Q

dipole PT 0 µ / Q

None 0 µ Q

T or P 0 0 0 Q

quadrupole PT µ 0 µ Q

None µ 0 µ Q

TABLE 1. Leading order terms in H for a fracton fluid. f(µ)
represents an arbitrary function of µ.

the systems have PT symmetry or neither, there always
exists a nonzero leading order term, which is dissipation-
less. The monopole charge-conserving case allows for a
generic function f(µ): indeed, for F antiderivative of f ,
the corresponding term in the Hamiltonian transforms
as f@x⇡ ! f@x⇡ + if@xµ = f@x⇡ + @xF (µ), where the
second term is a total derivative, and similar steps lead
to the other nonzero entries of Table 1. These terms can
lead to instabilities. In the charge-conserving case, the
endpoint of this instability is the KPZ fixed point [30–33];
in higher dimensions, we have found a new generalization
of KPZ.

To estimate the critical dimensions for these fixed
points, we assume that the charge susceptibilityR
ddxh⇢2(x)i is finite, which implies the scaling ⇢ ⇠ L

� d
2 ,

where L is the system size. In the charge conserving case,
the leading nonlinearity in the current is Jx = A(⇢) ⇠
⇢
2 ⇠ L

�d, while the leading dissipative term is Fick’s law
Jx = ��@xµ ⇠ @x⇢ ⇠ L

�1� d
2 . We see that, as L ! 1,

the nonlinearity dominates over the dissipative term be-
low d = 2. Taking B(⇢) to be the leading nonlinearity
in the dipole conserving case (see Table 1), a similar rea-
soning gives d = 2 as critical dimension, while in the
quadrupole conserving case, with the leading nonlinear-
ity begin A(⇢), d = 6. For n-pole conserving systems in
general, we find upper critical dimension d = 2(1 + n) if
n is even, and d = 2n if n is odd. Hence for su�ciently
large n, the upper critical dimension for hydrodynamics
can be arbitrarily large.

We can also answer the question we posed at the
beginning of the letter, under (2). We cannot write
Jxx = �D

0
⇢+ · · ·, because the dissipationless part of the

dispersion relation can change if we break T or P symme-
try, but the leading order dissipative terms in the systems
(within linear response) do not change. This follows from
the requirement of stationarity, (7).

4. NUMERICAL SIMULATIONS

We now present large-scale simulations of classical
Markov chains in one-dimensional lattice models with
quadrupole conservation, and with or without time-
reversal symmetry. The time-reversal symmetric chain

is constructed generalizing [3, 6]: we allow charges of
value qx = 0,±1, . . . ,±4 to exist on each of L sites
of a 1d lattice, with periodic boundary conditions; at
each time step, we act with “gates” on each q-tuple of
adjacent sites, and replace the configuration of charges
present with another one with identical charge, dipole
and quadrupole moment. We have taken q = 6 in our
simulations to ensure the dynamics does not get frozen
[43, 44] and that the late-time physics is captured by
hydrodynamics.
We analyze the correlator

C(x, t) = hqx+y(t+ s)qy(s)iy, (27)

with the average taken over position y, and random re-
alizations of the gates and initial conditions; the corre-
lator is insensitive to the value of s . 105. With time-
reversal symmetry, by dimensional analysis we know that
C(0, t) ⇠ t

�1/z with z = 6, which can be obtained by
comparing the scaling of charge q ⇠ L

� 1
2 with the dy-

namical scaling exponent @t ⇠ @
z
x. As in [3, 6] we can

confirm this scaling readily in numerics: see Figure 1.
Now let us sketch how we break time-reversal symme-

try: details are found in Appendix D. If we only had
charge conservation, then we could break time-reversal
symmetry by simply hopping a unit of charge to the right
neighbor with some finite probability at the end of each
round of random gates. Importantly, this rule does not
modify the fact that the uniform distribution (taken over
all many-body configurations in each fixed charge sec-
tor) is the stationary distribution of the classical Markov
chain: thus, we can readily numerically evaluate C(x, t)
by sampling uniformly random initial conditions. To gen-
eralize this idea to n-pole conserving models, first observe
that the charge conserving chain can be understood as
operating by always trying to increase the local dipole
moment. We modify this picture by finding gates which
try to increase the (n + 1)-pole moment in each charge
sector, yet do so disturbing the uniform distribution as
little as possible. While we could not find a Markov chain
which provably has a uniform many-body stationary dis-
tribution once n > 0, the chains which we did find ex-
hibit behaviors which are consistent with our qualitative
expectations: namely, breaking P and T leads to a dissi-
pationless “drift” term. The e↵ect of this term on corre-
lators can be estimated by balancing the time derivative
with the linear part of the drift term: @t⇢ ⇠ @

n+1
x ⇢ for

n even and @t⇢ ⇠ @
n+2
x ⇢ for n odd. These lead to a

power-law decay:

C(0, t) ⇠
⇢

t
�1/(n+1)

n even
t
�1/(n+2)

n odd
. (28)

To estimate the dynamical critical exponent, we must
discard this added drift, so we calculate

g(t) ⌘
Z

dx C(x, t)2 ⇠ t
�1/z

. (29)

as our estimate for the dynamical exponent z. Intu-
itively this correlator will capture the “width” of an ini-
tial charge distribution at time t. Figure 1 shows that
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:  f-gate :  random gate

FIG. 1. (a) Sketch of the Markov chains we simulate. At
each time step, we act with f-gates (that break time-reversal
symmetry) with probability p = 0.1, and random gates with
1� p = 0.9, on blocks of size 6. (b) C(0, t) with time-reversal
symmetry. (c) C(0, t) without time-reversal symmetry. (d)
g(t) with time-reversal symmetry. (e) g(t) without time-
reversal symmetry.

after an initial transient period of z = 6 scaling, at suf-
ficiently late times the chain exhibits anomalous scaling
with z ⇡ 4. A crude estimate of z can be attempted by
balancing the time derivative in the conservation equa-
tion with the leading nonlinearity induced by the drift
@t⇢ + @

3
x⇢

2 which, accounting for ⇢ ⇠ L
�1/2, leads to

z = 3.5, which is reasonable close to the measured value,
and very far from the value z = 6 predicted by linear
response. Therefore, our simulations are consistent with
the existence of a new dynamical universality class, whose
upper critical dimension will be d = 6.

We emphasize that the simulations of classical mod-
els are su�cient to study hydrodynamics, even as “frac-
ton fluids” were originally inspired by quantum phases of
matter. Firstly, any possible quantum corrections to hy-
drodynamics become important only at frequency scales
~! ⇠ T , which are generally beyond the hydrodynamic
regime of validity anyway. For the Markov chains we
simulated, one would take T ! 1 and one sees hydro-

dynamics break down at ! ⇠ 1. Secondly, previous stud-
ies [3, 6] on quantum automaton circuits find the same
hydrodynamics as the T-invariant theories of this letter.

5. OUTLOOK

In this letter we have described the systematic con-
struction of nonlinear fluctuating hydrodynamics with-
out time-reversal symmetry. Our construction is valid
with or without a well-defined temperature, generalizing
recent field theories of hydrodynamics [26–28] to a broad
range of theories which cannot be coupled to a spacetime
metric. A non-trivial example of this is to multipole-
conserving theories, where we have shown that hydrody-
namics can break down in PT-symmetric models; the late
time physics is described by exotic dynamical universal-
ity classes. We hope to report on additional applications
of our formalism in the near future.
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Appendix A: Stationarity condition for
non-perturbative noise

Here we derive the requirement on H that must be
satisfied if the stationary distribution of the nonlinear
fluctuating hydrodynamics is e��. Observe that the path
integral must obey

e��(⇢0) =

Z
D⇢0e

��(⇢0)

Z

⇢(dt)=⇢0,⇢(0)=⇢0

D⇡D⇢eiS ; (A1)

namely, if we evolve the stationary distribution for time
dt it does not change. Now, letting ⇡0 = ⇡(t = 0)
and evaluating the path integral using infinitesimal time
steps,

S ⇡
Z

ddx [⇡0(⇢
0 � ⇢0)� dt⇥H(⇡0, ⇢0)] , (A2)
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and therefore

e��(⇢0) ⇡
Z

D⇢0e
��(⇢0)

Z
D⇡0e

i
R
ddx⇡0(⇢

0�⇢0)

✓
1� i⇥ dt⇥

Z
ddxH(⇡0, ⇢0) + O(dt2)

◆

⇡ e��(⇢0) � i⇥ dt⇥
Z

D⇢0e
��(⇢0)

Z
D⇡0e

i
R
ddx⇡0(⇢

0�⇢0)

Z
ddxH(⇡0, ⇢0). (A3)

We deduce that the second term above must equal 0.
Now, observe that the last term in the last equation above
is e↵ectively a Fourier transform from ⇡0 to ⇢

0, which we
can undo:

0 =

Z
D⇢0 e��(⇢0)�i

R
ddx⇡0⇢0

Z
ddxH(⇡0, ⇢0). (A4)

This is the generic requirement on H in order to have
stationarity. It is transparent to implement in the limit
where � is sharply peaked, as the ⇢0 integral may be
done via saddle point. The saddlepoint equation gives

µ(⇢0) = i⇡0, (A5)

and therefore the criterion that when noise is weak, (7)
must hold.

Appendix B: KMS invariance of hydrodynamics for
general homogeneous stationary states

In this appendix, we show that hydrodynamic fluctu-
ations around a locally homogeneous stationary state al-
ways satisfies KMS invariance (22) at leading order, ir-
respective of whether such stationary state is thermal or
not, and independently of the existence of microscopic
time reversal.

First, we observe that the linearized dynamics around
a stationary distribution always satisfies KMS invari-
ance. Indeed, let us assume that (3)-(4) describe a lin-

ear stochastic process, i.e. Fx(⇢) = (F (e)
xx0 + F

(o)
xx0)⇢x0 ,

where F
(e)
xx0 , F

(o)
xx0 and Qxx0 are constant, and F

(e)
xx0 , F

(o)
xx0

are defined below (22). Plugging these together with
�(⇢) = 1

2Uxx0⇢x⇢x0 into eq. (5) we find

F
(e)
xy Uxz + F

(e)
xz Uxy = QxwUxyUwz, (B1)

which is precisely the relation one finds by imposing
KMS symmetry (22). Here, however, this relation is sim-
ply a consequence of stationarity, without imposing any
stronger condition. In general, this statement holds only
for linear perturbations around a stationary state [36, 37].
In particular, this means that the Hamiltonian (12) will
always satisfy KMS invariance at quadratic order in am-
plitude expansion so long as it describes the dynamics
around a stationary state.

Let us now consider the case in which ⇢ is a con-
served quantity. The Hamiltonian in this case has the

form (24), which we expand in amplitude ⇢x = ⇢̄ + �⇢x

around the background value ⇢̄ up to quadratic order in
amplitude perturbation. Since ⇢ is a conserved quan-
tity, this Hamiltonian describes the linearized dynamics
around a homogeneous stationary state with background
density ⇢̄, and must therefore satisfy KMS symmetry.
Varying over the values of ⇢̄, we then see that this will
constrain nonlinear terms as well, as far as they con-
tribute to the quadratic Hamiltonian. The term with
lowest number of derivatives that is not constrained by
this procedure (and which is thus not, a priori, KMS
invariant) is H ⇠ Cijk@iµ@jµ@k⇡, which is highly sup-
pressed as we are interested in the long-wavelength dy-
namics, and can generally be neglected. A similar discus-
sion can be done in higher dimensions and with conserved
higher multipoles. In particular, all allowed terms listed
in Table 1 satisfy the KMS symmetry (22).

Appendix C: Fracton hydrodynamics with a
subsystem symmetry

In this appendix, we sketch the extension of the mod-
els described in the main text to a theory with a subsys-
tem symmetry. Let us focus for concreteness on a theory
where on a 2d square lattice, charge is conserved on each
line of the lattice. In the continuum limit this leads to
the condition that

0 =
d

dt

Z

x=x0

dy⇢ =
d

dt

Z

y=y0

dx⇢, (C1)

which is more adeptly stated as

0 =
d

dt

Z
dxdy (f(x) + g(y)) ⇢ (C2)

for arbitrary functions f and g.
Following the construction in the main text, we im-

mediately see that we need to build an action for fields
⇢(x, y, t) and ⇡(x, y, t). Subsystem conservation laws are
enforced by demanding the invariance of H under

⇡ ! ⇡ + f(x) + g(y). (C3)

In the presence of time-reversal symmetry, the minimal
theory we can write down is

H =

Z
dxdy A@x@y⇡@x@y (⇡ + iµ) , (C4)

where the @x@y motif ensures (C3) is obeyed.
If we break time-reversal symmetry, we are looking for

a term of the form @x@y⇡⇥G(µ) in the integrand above,
where G may depend on spatial derivatives of µ and can
be chosen such that @x@yµ is a total-derivative in space.
The simplest possibility seems to be

Hodd =

Z
dxdy @x@y⇡ (cx@xµ+ cy@yµ) (C5)
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where cx,y are two constants. These constants ensure
that, e.g., @x@yµ@xµ = @y

1
2 (@xµ)

2 is a total derivative,
thus there will be no ⇡

0 term in the time-reversed action.
Hodd thus flips sign (cx,y ! �cx,y) under time-reversal.

The scaling analysis that determines the relevance of
fluctuations in this theory is equivalent to the discussion
in the main text for dipole conserving theories. In d = 2
spatial dimensions, corrections to the dynamical criti-
cal exponent z = 4 arising from nonlinearities will be
marginal at best. We are not aware of an example where
a simple subsystem symmetry leads to a strong instabil-
ity of the kind described in the main text for quadrupole-
conserving chains in d = 1.

Appendix D: Details on the classical Markov chains

Here we show the details of how we break time rever-
sal symmetry in our Markov chain simulations, focusing
on quadrupole-conserving systems as an example. Our
goal is to break time reversal symmetry while keeping the
many-body stationary distribution of the Markov chain
uniform.

Before discussing microscopic update rules, it is help-
ful to consider what we hope to find. We expect that
the A(⇢)@3

x⇡ term in (26) – namely, the A(⇢) term in the
quadrupole current Jxxx – is not negligible. The conse-
quence of a non-vanishing A(⇢)@3

x⇡ can be seen from the
time derivative of the octopole moment:

@t

Z
dx x

3
⇢ = �6

Z
dx A(⇢), (D1)

which means when we act the gates and replace the
blocks of charges, we want the octopole moment of the
block to increase more if the block has positive net charge
than when the block has negative net charge. (If the oc-
topole moment of the block tends to increase regardless
of ⇢, that will contribute a constant term in A which
drops out of equations of motion!)

With time-reversal symmetry, we create a dictionary of
all possible 6-site configurations with fixed charge, dipole,
and quadrupole charges [3, 6]. Our time-reversal and
parity-preserving chain consists of choosing groupings of
6 adjacent sites at random (we do so in parallel across
the entire chain, so each site gets updated once per time
step), and replacing each configuration of charges within
a grouping with another one, drawn from the dictionary,
of the same charges, uniformly at random. We call this
applying a “gate”, as in the literature on random quan-
tum circuits. It is believed that the unique stationary
distribution of this Markov chain, at fixed charge, dipole,
and quadrupole charge, is uniform – at least close to zero
charge density.

We time-reversal breaking by, with some probability p,
replacing the gates above with a T-breaking gate, which
we define as follows. Consider some function fx obeying

X

x

fx = 0 (D2)

for any state. A typical example of this is to set

fx =
5X

j=0

ajqj+x (D3)

where qx = 0,±1, . . . ,±4 denotes the charge on site x,
and to demand

5X

j=0

aj = 0. (D4)

To implement a T-breaking gate, we first calculate fx for
each block. If the net charge of the block is negative and
fx > 0, or if the net charge of the block is positive and
fx < 0, with a probability / |fx|, we replace the block
with a block that has �fx and identical multipole mo-
ments (charge, dipole and quadrupole moments). Oth-
erwise, the block stays the same. Under this rule, for
each replacement, the probability of a certain chain be-
ing changed to another chain will be

Pout /
X

f
�
x ⇥(f�

x )� f
+
x ⇥(�f

+
x ), (D5)

where f�
x denotes fx⇥(�qx�· · ·�qx+5) – i.e. fx restrict-

ing to blocks with negative net charges – while f
+
x cor-

responds to blocks with positive net charge. Here ⇥(x)
is the unit step function. Observe that if the stationary
distribution of the Markov chain was uniform (i.e. up
to global conservation laws Peq(q1, . . . , qL) = c for some
constant c) the probability of a certain microstate q being
allowed to transition into another state is

Pin(q) /
X

f
+
x ⇥(f+

x )� f
�
x ⇥(�f

�
x ). (D6)

Now we have

Pout � Pin /
X

f
�
x � f

+
x . (D7)

If for large systems,

X
f
�
x ⇡

X
f
+
x ⇡ 0, (D8)

we expect that Pout ⇡ Pin, so that the uniform distribu-
tion will be approximately stationary (and thus it is easy
to sample by preparing the chain in a microstate chosen
uniformly at random).
To make the e↵ect of the A(⇢)@3

x⇡ term manifest, we
desire that blocks with higher fx should have higher
(or lower) octopole moments. We do so by choosing
a = [�1, 1, 0, 0, �1, 1]. Unfortunately, it turns out
that only 80% of configurations (qx, . . . , qx+5), with a
given fx, have� 1 “partner” with the same charge, dipole
and quadrupole moments but �fx. For this reason, (D7)
does not exactly hold in our chain.
We name these T-breaking operations “f-gates”. Note

that the system will freeze up if we only apply “f-gates”,
so it is important to apply more of the random and ther-
malizing gates vs. f-gates (i.e. p ⌧ 1). Nevertheless,
we find that for p ⇠ 0.1, the dynamics appears to be
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FIG. 2. The data of C(0, t) and g(t) with di↵erent probabil-
ities of applying f-gates. The early time behaviors and late
time behaviors of the correlation functions with di↵erent ps
are almost the same. The fluctuations in the orange plot in
(a) are due to sampling noise.

thermalizing for > 106 time steps, and that (after al-
lowing the chain to thermalize for a similar number of
initial steps), the two-point function C(x, t) exhibits be-
haviors consistent with our EFT predictions in the main
text. We have further checked that – although we do not
know the exact steady-state distribution of these chains
– equal time correlation functions of the charge density
are essentially constant in time (to 1 part in 104), provid-
ing evidence that any drift in the probability distribution
of the chain with time is not strong enough to explaain
the anomalous scaling we observe; rather it seems more
likely to be due to the breakdown of subdi↵usive hydro-
dynamics.
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