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Abstract

N mutual funds compete for fund flows based on relative performance over their
average returns, by choosing between an idiosyncratic and a common risky invest-
ment opportunities. The unique constant equilibrium is derived in closed form, which
implies that funds generally decrease the investments in their idiosyncratic risky assets
under competition, in order to lower the risk of the relative performance. It pushes all
funds to herd and hurts their after-fee performance. However, the sufficiently disad-
vantaged funds with poor idiosyncratic investment opportunities or highly risk averse
managers may take excessive risk for a better chance of attracting new investments,
and their performance may improve comparing to the case without competition and
benefit the investors.
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1 Introduction

Mutual funds usually pay their managers management fees which are proportional to
the asset under management. This linear compensation scheme is supposed to encour-
age the managers to focus on the performance of the fund itself, and align the interests
of investors and managers. It mitigates the moral hazard of excessive risk-taking in
the fund, which may arise from the option-like performance fees widely adopted by
hedge funds. On the other hand, mutual funds are also subject to profit-chasing fund
flows, which are often based on the funds’ performance, especially relative to their
competitors—other mutual funds. Investors constantly monitor the returns of com-
peting funds, e.g., those that mainly invest in the same asset classes. If one mutual
fund outperforms others, it attracts new investments and boosts future management
fees, while poor performance could lead to less new investment or even withdrawal
of the current investors and magnifies the damage to the manager’s compensation.
While the current investors’ welfare comes from the returns of the fund, the man-
ager’s welfare also includes the changes in the management fees due to fund flows.
Thus, for their own interests, mutual fund managers have the tendency to hedge the
risk in the competitors’ investments, which enter into the fund’s dynamics through the
fund flows.

The competition between mutual funds and fund flows based on relative per-
formance is well documented in the empirical literature [16, 29, 35, 46, 50]. The
extant theoretical analysis mostly focuses on the competition between two funds, or
in discrete-time models [5, 13, 33, 45, 51], or without fund flows (and more generally
on incentives for multiple interacting agents) [2, 6, 18, 24, 31, 39, 41, 49].

We assume that each fund can invest in two investment opportunities, one idiosyn-
cratic, representing the manager’s skill, and one accessible to every fund, such as
a market index, both of which are modeled by geometric Brownian motions, with
general correlations. The flow of each fund is proportional to the return of the fund
relative to the average of N (> 2) funds, referred to as the industry average in the rest
of the paper. The manager of each fund is assumed to have full information about other
funds’ investment opportunities and their portfolio choices, which is also assumed in
the literature on competition between asset managers [4, 40]. It agrees with the fact
that investment strategies of mutual funds are public information, and can also model
the competition in a fund family managed by the same company [37].

Because fund flows are based on relative performance, the optimal strategy for each
fund depends on other funds’ portfolio choices, and we derive a Nash equilibrium in
closed form for managers who try to maximize the expected discounted power utilities
of management fees with different risk aversions. In addition to the dependence on
the fund’s own investment opportunities, as in the classical Merton portfolio, the
equilibrium strategy also hedges against the risk in other funds’ investment and thus
depends on the investment opportunities that the fund does not have access to, and
their correlations with the fund’s own investment.

The imperfect correlations among the idiosyncratic investment opportunities force
each manager to face an incomplete market. For the optimal investment of each fund,
instead of solving the associated system of Hamilton—Jacobi—Bellman (HJB) equa-
tions, for which the solution and verification involve complex mathematical argument,
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especially if the number of funds becomes large (see, e.g., [20, 22]), we derive the
dual bound of the value function and choose the risk premia which give the lowest
upper bound for all admissible strategies. Then, we verify that the proposed optimal
investment strategy achieves this upper bound.

Similar to [40], we search for the equilibria in which portfolios of all funds are con-
stants, and find the unique one. It may not be the unique equilibrium if the investment
strategies are allowed to be stochastic, but it is a natural choice for fund managers
given the homogeneity of the power utilities and the constant investment opportu-
nities. Furthermore, for every fund, given the constant strategies of other funds, the
constant equilibrium portfolio is optimal, among all admissible, potentially stochastic
strategies.

The continuous-time models in [4, 40] are closest to ours, which also consider com-
petition between asset managers. The main difference is that instead of the comparison
only at the terminal date so that the manager’s utility is a function of the relative per-
formance in these papers, we consider a competition for fund flows which happens
continuously. Thus, the relative performance does not enter into the utility function,
but the dynamics of the assets under management of each fund.

With fund flows based on relative performance, managers have two considerations
in his/her portfolio choice, one is the total risk taking of the fund, which decides the
return, and the other is the risk in the relative performance, which decides the fund
flow. Our results show that in most cases the concern for the poor relative performance
dominates, and managers take less risk in their idiosyncratic investment opportunity, so
that the fund behaves more closely to the industry average. It indicates that competition
pushes funds to herd, which agrees with the results in [43] for static models.

However, our results also show new phenomena that are not documented in the
previous literature, even in the competition between two funds, which is extensively
studied in, e.g., [4]. With appropriate correlation structures, if the funds’ investment
opportunities and the managers’ risk aversions are close to each other, it could happen
that every fund is further away from the average, comparing to the case without com-
petition. In particular, if the fund is disadvantaged with poor idiosyncratic investment
opportunity or the manager is of relatively high risk aversion among the group (so that
he/she takes low risk without competition), then to beat the competitors and attract new
investment, the fund increases the risk-taking in its idiosyncratic investment opportu-
nity. It supports the conclusion in [4] that competition can lead to specialization, which
is also discussed in [8, 9, 42, 52, 53]. It also partially agrees with the results in [4, 40]
that more risk averse fund managers tend to take more risk under competition, than
those with lower risk aversions. However, in addition to risk aversion, which is the
only factor that plays a role in this comparison in the above papers, the Sharpe ratios
of investment opportunities and their correlations also play a role in our results, which
show different patterns from the previous literature depending on model parameters
and is a consequence of the difference in our models.

Finally, we also analyze the fund’s performance (investors’ welfare) under the
proposed model, which supplements the literature on the principal-agent relationship
between the investors and managers, which usually focuses on the case of only one
principal and one agent [1, 44]. An interesting result is that, though for most funds the
after-fee performance, measured in Sharpe ratios, is lower with competition, compared
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to the case without fund flows, the performance of disadvantaged funds may increase
in face of competition, which benefits the investors, because after all, fund flows based
on relative performance push the manager to pursue superior returns over other funds.

The rest of the paper is organized as follows. Section2 describes the model of N
funds competing for fund flows and defines the equilibrium in which each manager
maximizes the expected discounted power utility of management fees. Section 3 starts
with the main result showing the closed-form solution to the unique constant equilib-
rium. Section 3.1 discusses in detail the competition between two funds, and Sect. 3.2
shows fund risk-takings, Sharpe ratios, and the herding/specialization effects in the
N-fund case. In Sect.3.3, we analyze the effect of funds with wider market access,
and in Sect. 4, we extend our results to a model of stochastic investment opportunities
using the forward performance criterion. All the proofs are relegated to the Appendix.

2 Model
2.1 Mutual Fund Investments and Flows

Consider a complete filtered probability space (§2, F, {F;};>0, P), endowed with N +
1 Brownian motions Wy, W, ..., Wy and B, which generate the filtration {F;};>0.
Assume (W;, B); = p;jut and (W;, W;); = p;;t, where p;, € (—=1,1) and p;; €
(—1, 1) are constants, for every 1 < i, j < N. Denote p as the N x N matrix with
(p)ij = pij and py, as the N-dimensional vector with (0,); = pim.

Suppose that mutual fund i (i = 1,..., N), in addition to a risk-free asset Sp,
which earns a constant rate of return r, allocates its assets under management between
two risky investment opportunities: (i) S,,;, which is accessible to all investors in the
market, e.g., a market index, following the dynamics

dSmi/Smi = (r +a)dt + bd B;, (1)

with the constants a, b > 0, and (ii) S;, which only fund i has access to,! described
by a geometric Brownian motion

dSii/Sir = (r + p)dt + 0;:dWy, 2)

with the constants u;, 0; > 0. Let A; = Z_,l for 1 <i <N, A, = %, and the risk
aversion-adjusted Sharpe ratio for each fund’s idiosyncratic investment opportunity
be Ay = A—: Denote as m;; and 6;; the proportions of fund i’s assets invested in
S; and S, at time 7. Then, R;;, the excess return over the risk-free rate from these
investments, follows

1 Note that even in a setting of common information in this paper, different fund managers may specialize
in different investment opportunities based on their skill and preference, and for simplicity, we summarize
this specialization as one idiosyncratic S; for each fund (see the same settings in [4, 40]). The analysis in
the following can adapt to the case in which each manager has access to the same N risky assets as in [3],
with only notational changes.
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dR;; = iy (St /Sir — rdt) + 0ir (dSps /S — rdt)

it (uidt + 0;dWi;) + 0;; (adt + bd By).

where m; € A; and 6; € © are admissible, such that the above stochas-
tic differential equation is well defined. More precisely, A, = {m; : F —
progressively measurable and, fOT(lu,-rrit| + |ol-r[i,|2)dt < o0} and ® = {#

F; — progressively measurable and, fOT(|a0,-t| + |b0;;|*)dt < oo}. Investors of fund
i compensate the manager by management fees ; X;,, where 1; > 0 is a constant,
and X;; is fund i’s value at time 7.

Furthermore, assume that the N funds belong to the same peer group, e.g., because
they have the same investment “style” characterized in [12], invest in the same asset
class, or they belong to the same family, managed by different managers in the same
firm, so that investors of each fund compares its return with the rest of the group. The
current clients of fund i (or new investors) invest more into the fund, if its return is
higher than the average of the group, and withdraw if it is lower. The size of the flow at
time  is proportional to X!, and the after-fee relative return over the industry average

(dRis — Yidt) — % Y0_ (dRj; — ¥;dt), and thus X; follows

dX;;/Xi; =rdt + (dR;; — v;dr)

N 3
+ o (dR,';—Iﬂidl)—Z(det_l/fjdt)/N ,

j=1

where «; > 0 is the sensitivity of fund flows to the relative performance of fund i
compared to its peers. Notice that the managerial contracts of mutual funds usually
compensate managers in the above linear way. In the USA, the Investment Advisors
Act requires that management fees to mutual fund managers are proportional to the
assets under management [25]. Fund flows as linear functions on performance and
fund size are documented in empirical studies [35, 46].

For tractability, we have abstracted away other features of the fund competition that
have been shown in empirical studies. For example, in addition to relative performance,
managers also tend to change investment strategies according to different regimes
of market conditions [21, 38], or if they are facing employment risk out of poor
performance [7, 38]. The literature also points out a convex relationship between the
flow and past performance in [7, 16, 50].2 Thus, strictly speaking, we should regard
X as a proxy of the fund value, under our simplifying assumptions. In the rest of the
paper, we still refer to X as the “fund value,” for ease of notation.

Also, if there are linear fund flows based on absolute returns, then the coefficient of
(dRi; —idt) in (3) becomes a constant greater than one. All the following results hold
with only notational changes, and the numerical results stay qualitatively the same.
Thus, we abstract away the fund flows based on absolute performance and focus on

2 Such convexity is the lowest in the USA in cross-country comparison and is declining over time [23, 33],
due to the lower participation cost to the investors, which is even more of the case in recent years.
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the effect of competitions. For the similar reason, we omit the constant intercept in
the linear regression of fund flows on the relative performance in (3).

From (3), in/out flows based on relative performance magnify the effect of man-
agers’ portfolio choices on their management fees. Furthermore, since the industry
average enters into the dynamics of each fund, and the investments of different funds
are correlated, the hedge against risks in other non-accessible investment opportunities
should become part of the manager’s consideration in portfolio choice, and thus every
manager is facing an incomplete market.

Finally, the sum of the flows of the N funds is not necessarily zero, and there are
flows in/out of the group. The funds with better performance can attract new investors
apart from the current clients of the N funds, and those who lose money in the funds
with inferior returns may withdraw and search for investment opportunities other than
the N funds, which is consistent with the empirical evidence in [35] and the theoretical
model for mutual funds tournament game over relative performance in [47]. The net
flow of the whole group is

N

N
1
> ei | @Ry = yidn) = =3 (AR, — jdr)

i=1 j=I

N
= (i — @) (dRi; — Y;dr),

i=1

where @ = ZINZI a;/N. It implies that the fund with lower flow sensitivity (o; < &)
and a positive after-fee return has a negative contribution to the total fund flow and vice
versa. The reason is that fund i’s positive return pushes the industry average higher
and lowers the fund flows of other funds. This effect is magnified by the larger flow
sensitivity of other funds and hence a negative effect on the total fund flow. However,
this would not incentivize the manager with lower flow sensitivity to pursue negative
returns, because the utility function defined below still focuses on the manager’s own
fund and its return, instead of the group as a whole. We derive the equilibrium among
managers, instead of maximizing the whole sector from a social planner’s point of
view.

2.2 Preferences

The manager of fund i chooses the investment strategies (w;,6;) € A; x © and
maximizes the discounted expected power utility from management fees over the time
interval [0, T'] (see similar settings in [31]). Since there are fund flows based on relative
performance, in addition to the fund i’s investment strategy (7;, 6;), the welfare of
the manager also depends on the strategies his/her competitors are taking. Let 7 =

(1, ...,7n) and O = (0y, ..., Oy)', where the superscript’ (for the rest of the paper)

indicates matrix transpose, and manager i’s goal is sup Ji(mi, 05 m_;,0_4),
(;,0;)eA; xO

where
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T LY.\ =V
eﬁan} , @)

Ji(”h@iéﬂ_i,e_i):E[/ I
0 —Yi

Bi is the manager i’s subjective discount factor, and y; > 0 (# 1) is the coefficient of
relative risk aversion. 7_; and 6_; are the vectors representing the portfolio choices
of n — 1 managers’, excluding manager i. Notice that the comparisons between funds
are based on their return d R;’s, instead of their sizes. Thus, the sizes of other funds
X;’s (j # i) do not enter into the dynamics of X; in (3) and do not affect manager
i’s portfolio choice. Furthermore, since (3) and (4) imply that manager i’s utility
is homogeneous in the initial value X;o, the latter also does not affect the optimal
portfolio choice of manager i given other funds’ strategies, and the same holds true for
the equilibrium defined below. Thus, without loss of generality, assume that X;o = 1
foreach 1 <i < N.We will discuss the Nash equilibrium among the N funds, which
no one wants to deviate from, given the portfolio choices of others.

Definition 2.1 Let .4 and @Y be the Cartesian product of 4;’s (i = 1, ..., N), and the
N'th Cartesian product of ©, respectively. (7*, 8*) € A x @V is a Nash equilibrium
if for every i, and any (77;, 6;) € A; x O,

Ji (i, 6;; nf,', 9:) = Ji(ni*s 9,'*; * 9:’)'

—

Furthermore, (77*, 6%*) is called a constant equilibrium if they are constants.

3 Main Results and Discussion

In this section we present the main results of this paper and discuss their implications.
The following theorem shows that there exists a unique constant equilibrium. Notice
that though the equilibrium (7%, 6*) is the unique among all constants strategies,
foreach1 <i < N, J;(m;, 6;; nfi, 9:) < J,'(rrl.*, Qi*; nfl., Gii) for every (7;, 6;) €
Ai x0,ie., (n}, 0}) is optimal among all admissible, including stochastic investment
strategies, given the constant equilibrium choices of other competitors.

Theorem 3.1 There exists a unique constant equilibrium
m*=ApP;ly Iy, )

0" =AnPy! (v +CAT'T"), ©6)

where A ¢ and n,, are N-dimensional vectors with (Ay); = Aj — pPimhm and ()i =
Am — PimAi, respectively, forl <i < N. Ay, Ay, and y are diagonal matrices with the

diagonal elements (Ay)i; = (N+(NNW’ (An)ii = m and (y)ii = Vi,

3 Similarly in the rest of the paper, with positive integer n, v € R" and D € R"*", let v_; € R"~! be the
vector after removing v’s ith element, and D_; € R®=Dx=1) be the matrix after removing D’s ith row
and ith column.
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respectively, for 1 <i < N. Py, Py, and C are N x N matrices with

1= 07, R N ifi =,
ope . mJi] — ope .

—cij(Pij — PimPjm) i F J, / —cij(1—p2 ) ifi # j.

0 e .
(O)ij = lfl ]. Cisz’lfi,j<N-
¢ij(Pjm — Pimpij) i #j, N+ (N — Da;j

(Pp)ij = {

Without fund flows (¢; = 0), the expected utility J; is independent of w_; and
6_;, and the manager essentially faces the Merton problem with two correlated risky
assets, and the optimal investment strategies for fund i are constants (the verification
is omitted)

M _ Ai = PimAm M Am = Pimhi

M= ZL_OmTm oM T P 7
Y oyo(l=p2) " yib(l—p?)

which only depend on the investment opportunities S; and S, which are accessible
to fund /. With the possibility of in/out flows, since managers maximize welfare from
the management fees proportional to the assets under management, they care about
the total return of the fund, including the flows. The equilibrium strategies 7 and
67 include hedging components against the risk exposure to other risky investment
opportunities, and depend on their correlations and the flow sensitivities of all funds.
For example, if 1; = p;;, =0, niM = 0, because S; brings zero expected return, and
cannot be used to hedge the risk in S,,. However, with competition based on relative
performance, as long as S; is not independent of other S;’s, 7" is not necessarily
zero—S; is worth the investment, not because of the return it provides, but the hedge
it brings against the risks in other funds’ investments.

In the following, we discuss how the competition affects the fund managers’ equi-
librium investment strategies and the investment returns for fund investors, and how
they compare to the counterpart without competitions. In particular, we compare the
volatility of fund investment with and without competition, denoted as o;* and al.M ,
respectively,

of = \/(”i*ai)z + 2pim7; 0 0ib + (Qi*b)z’

oM = \/(niMoi)z + 2pimtMOMoib + (9,-Mb)2,

1

and the corresponding after-fee Sharpe ratios of the fund investment

7]* _ _Wi +7Tl'*,ui + Qi*a
-

Vo) + 20 0%0ib + (675)°
" — +niM,ui +9iMa

n, = .
\/(niMa,-)z + 2pimniM9iMa,-b + (GiMb)2

’

Note that since every fund invests in S,,, even with 6; = 0, fund i has exposure to the
risk in S, through fund flows. Thus, instead of 6;, the manager actually has to choose
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the optimal effective investment §; = (N + (N — D;)0; /N — o Z?;ei 0j/N in Sy,.
However, from fund i’s investors’ point of view, the return on their own investments is

dR}, — ;dt corresponding to 7/ and 6", instead of X*” , which includes fund flows.
Thus, when we discuss the fund performance and calculate the after-fee Sharpe ratios,
the calculations do not take into account fund flows.

We are also interested in how each fund’s return compares to the industry average,
in terms of the difference between the individual fund’s after-fee return d R;; — v;dt
and the industry average Z;V:l(dR jt — ¥;dt)/N. The competition tends to move
individual fund’s investment in different directions: on one hand, the manager wants to
deviate from the industry average, in order to outperform and attract new investments,
which increases future management fees. On the other hand, the risk-averse manager
also tends to mimic the competitors, which decreases the risk of outflows due to
poor relative performance. The second effect of funds’ competition is referred to as
herding [27], and is discussed in [28, 48] for institutional investors who have reputation
concerns and make investment decisions based on past performance.

Let 6* = Z,N=1 6F/N and the average logarithmic return of the N funds in

equilibrium be R = YN, RE/N, such that dRf = (r— XL, vi/N)dr +
ZINZI 7 (pidt + 0;dWir) /N + 0*(adt + bd B;). We use the Beta coefficient of R

with respect to R* to measure the “distance” between fund i and the industry average,
denoted as Beta], and

N (q/ZpZn* + Nq/Zpud*b + (7*) X ppubib + NOF0*b?)
(T 2 p S + 2N () £ p*b + N2 (6%)7 b2

Beta) = ®)

where ¢; is an N-dimensional vector with zero entries except that (¢;); = 7, and ¥
is an N x N diagonal matrix with (X');; = o;. If there is no competition, the Beta
coefficient between the corresponding return RlM and their average RM, denoted as
Betaf"’ , can be similarly calculated. LetOM = Z,N: 1 QiM /N, 7M be the N-dimensional
vector with (nM )l. = niM , and qiM be the N-dimensional vector with zero entries
except that (qlM )l. = niM ,

KM
Beta L _ ——,
( ) YpXaM 42N (nM) Zpm0Mb 4+ N2 (6M)" b2
/ _
KM =N ((ql ) EpEyTM—i-N(ql.M) X pmOMb+ 9)
/ -
(") Zpubb + N@,-MGsz) .

The closer Beta;] (or BetalM ) is to 1, the more closely fund i mimics the industry
average. If this is the case for most funds, then the herding effect is present.
The Beta coefficients of R; with respect to the common investment opportunity

dSS’”’ = adt + bd B, with and without competition, denoted as Beta* ; and Beta.,, ca

@ Springer



Journal of Optimization Theory and Applications

be computed similarly
Beta’, = (7t} pimoi + 6;'b) /b, Betal, = (M pimoi +6Mb)/b.

They measure the “distance” between each fund’s investment and S,,. The further
away Beta),; (or Beta%) is from 1, the more fund i specializes in its idiosyncratic
investment opportunity S;.

Finally, before we move to a detailed discussion about the case of two funds, it is
worth pointing out that, in our model, the equilibrium always exists, while in [3], it
depends on the model parameters, especially the risk aversion of different managers.
Also, thoughas N — o0, ¢;j — 0,C — 0, Py and P, converge to diagonal matrices

with entries 1 — pl.zm’s, 775* and 91.* do not converge to % and % (see (7)), i.e.,
the limit as N — oo and the multiplication in (5) and (6) do not commute, because
the dimensions of these matrices also increase with N. In the limit, 7ri* and Gi* still
depend on the average of model parameters of other funds, as more clearly shown in

Proposition 3.5, in the case where all funds only invest in S,,,.

3.1 The Case of Two Funds

We start the discussion from the case of two funds. In this case (with j =2 if i = 1
and j = 1ifi =2)

" 2 1 5
T Grana om0 pimt)
1 o
+ S iva (012 = p1mp2m) (A j — PjmAm) |
J J
" 2 1 2
0] = m ?(1 - ij)()hm — PimAi)
1 1
1 [0 4] 2
+ ;2 . (I = 0,) Om = pjmhj)
J J
o0
m(l - P[zm)(pim - plZij)Ui”i*
J

o
+ 5 A= 05, (Pjm = mzpim)ojn}‘) :

where k1 = (1 = p7,)(1 = 03,,) = GraGray (P12 = PImpe2m)* > 0 * and ko =
(1 —,olzm)(l —pzzm)% > 0. Inaddition to A;, pjm, Am, 7 and 6; also depend
on the investment of the other fund, the fund’s flow sensitivity and the correlations
between investment opportunities, while ni* and 9,.* reduce to ITI-M and BiM ,ifa; =0

fori =1, 2.

Proposition 3.1 Fori, j =1,2and j # 1,

4 According to the proof of Lemma 4.3, (1 — p%m)(l — p%m) > (p12 — P1 mpzm)Q, and thus k1 > 0.
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(i) m strictly increases in A;. 6 strictly increases (decreases or remains a constant)

in i if pim < (> or =) 0.

(ii) 711-* strictly increases (decreases or remains a constant) in A if p12 — P1mP2m >
(< or =)0.

(iii) (a)If pjm = O, then Qi* strictly increases (decreases or remains a constant) in A,
if pr2pim < (> or =)0.
(D) If pjm # O, then 07 strictly increases (decreases or remains a constant) in X,
if pimC < (> or =)0, where

C= (1 + %) (1 — plzm) (1 — pﬁm)

2010
Q4+ a2+ ap)

(031°%) ) P12Pim
Y L N R Y Tl
( (2+a1)(2+062))( p”")( pjm)

Proposition 3.1 shows that each fund invests more into its idiosyncratic investment
opportunity as its Sharpe A; becomes larger, while the change in 6;* depends on p;,.
If pim > 0, then the investment in S, is lower because there is a larger exposure to
S,» from the increase in 7;, and vice versa.

On the other hand, fund i’s portfolio also changes with A ; because the manager’s
compensation depends on the relative performance and thus the portfolios of fund ;.
A large pi> leads to an increase in 77, in order to hedge the larger risk exposure to W;
from the fund flows due to the increasing 71;.*, and vice versa. However, large p1,, 02m
tends to decrease 771*» because either pj,, > 0 so that 97 decreases, and p;;,; > 0 so
that less exposure is needed in S; to hedge against Brownian motion B due to fund
flows, or pj,;, < 0 so that 9;‘ increases, and p;,, < 0 so that the exposure in S; should
still decrease.

The change in 6 is more delicate. If p,, = 0, then according to Proposition 3.1 (i),
Jt;‘ increases in A ; and 0;‘ stays constant. If pj; > 0, then Proposition 3.1 (ii) implies
that 77 increases in A;. To achieve a desired level of total risk-taking, 6 tends to
decrease or increase if p;;,;, > 0 or p;;, < 0, respectively. For p12 < 0, the sensitivity
above changes to the opposite direction following similar arguments.

If pjm # 0, 0 tends to move the same way as 67, as to keep the effective exposure
;i = 2+ a;)8;/2 — a;0;/2 in S, at a desired level, and thus the same sensitivity
with respect to o, as shown in Proposition 3.1 (i). However, the manager should also
consider how to hedge S; and how S; and S, can substitute each other, for the best risk-
return trade-off. Thus, the changes in 9;‘ also depend on the constant C as a function

(P12 = PimP2m)*

of the correlations and the fund flow sensitivities. Notice that (1 — plzm)(l — ,o%m) >
(P12 —P1mP2 m)Z. Thus, the only case in which the sign of C p j, is different from that
of pjm, 18 that p120im / 0 jm 18 negative with a large absolute value. In other words, 0,
is close to 0, and p12p;» have a different sign than that of p,,, which then follows the
similar argument to that in the case of pj,; = 0.

Next, we investigate the effect of flow sensitivity ¢;’s, focusing on the investment
in Si ’s.
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Assumption 3.2 p;,, = A, =0fori =1,2,

In this case, 91'* = 0 fori = 1, 2, and each fund invests in its own investment oppor-
tunities, which are correlated with each other—similar to the models in [4, 40]. The
more general setting with investment in §,, can be analyzed exactly the same way,
with all quantities calculated in closed form, though there are more complex cases to
discuss.

In this setting, with k1 = 1 — %pu, and %, = % fori =1,2,

2 o]
=— (X —— O2A ,
2+ ap)kio1 ( tn 2+Ol2p12 2’”)

(10)
¥ = ; A + _% A
2 = 2 + ar)x10 2,72 2+a1p12 Ly |

Proposition 3.2 Fori, j =1,2and j # i,

(i) If 2p12dj,y; — (2 + (- pfz)aj) Ai.y; > (< or =)0, then w} strictly increases
(decreases or remains a constant) in «;.

(ii) If p12 (Zplzki% -2+ 1 —p%z)ai))nj,yj) > (< or =)0, then ni* strictly
increases (decreases or remains a constant) in o;.

For each fund i, the fund flow magnifies the risk and return of its own investment. As
«; increases, this magnifying effect becomes larger, and manager i tends to decrease
m* for the desired level of risk exposure, and this tendency is larger if S; becomes
a better investment opportunity, measured by A; ,,. However, manager i also needs
to hedge the larger risk in §; due to fund flows. Since d X;; is decreasing in d R j;, if
p12 > 0, then the manager tends increase 7r; and vice versa, and this tendency increases
with A ;. On the other hand, « j does not affect fund i’s flow directly. But as discussed
above, 7 * changes accordmg tothe signof2p124; 5, —(2+(1— :012)0‘! A, Vi . Tohedge
against thls change in ¥ which affects fund i’s flow, 7" should change accordingly,
depending on the sign of the correlation p5.

The following are numerical examples in more general settings, which allow 6*’s to
be non-trivial. In Fig. 1 with py,, = 0.3, p2,, = 0.5, p12 = —0.6,¢; = 0.8, b =0.15,
01 =0.18, 02 = 0.13, A, = 0.15, 41 = 1.5, %2 = 0.2, y1 = y» = 2, 6 increases
with a2, to hedge larger risks (in absolute value) in S, and the fund 1’s exposure to S;.
Similarly, 6] moves in the opposite direction to 7", while the effect is much smaller,
because «p does not directly enter the dynamics of fund 1, and the increase in 65
fulfills part of the hedging demands from the increase in 7", which lowers fund 1’s
effective exposure to Sy, {1 = H%Ql — ”‘7‘6’2. In Fig.2, p17 is changed to 0.6. ni“ and
05 show the opposite pattern to Fig. 1, while 7§ and 6] behave similarly, following
the same intuition as above.

Next, we examine the comparison of the portfolios with and without competi-
tion under the further assumption that «; = « and y; = ¢ fori = 1,2. Define
A= A2,y, /A1,y and without loss of generality assume % < 1. Then, the equilibrium
portfolios are
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(a) w1 and 73 (b) 07 and 63

Fig. 1 Equilibrium portfolios with p1,, = 0.3, p2,, = 0.5, p12 = —0.6, ¥1 = 0.8, b = 0.15, 01 = 0.18,
oy =0.13, A, = 0.15, 41 = 1.5, 12 = 0.2, 1 = y» = 2, against ap

(@ 77 and 75 with p2n,, = 0.6 (b) 67 and 03 with p2,, = 0.6

Fig. 2 Equilibrium portfolios with p1,,, = 0.3, p2,, = 0.5, p12 = 0.6, 1 = 0.8, b = 0.15, 01 = 0.18,
oy =0.13, A, = 0.15, 41 = 1.5, 12 = 0.2, y; = y» = 2, against ap

*

2 <)»1,y1 + 2_%1/?12)»2,7/2)
7T1 =

- 2+ a)o; (1 — (ﬁ)zpﬁ)’

*

2 <)»2,y2 + ﬁ—amzkl,yl)
7T2 =

- Q2+ a)om (1 - (2_%&)2,0122>.

Proposition 3.3 Under Assumption 3.2 and assume that oj = o, i = ¢ fori = 1,2
and . = Ay /M1,y < 1, then i <M, 0t < oM, and

(i)If p12 > 0 and A < #1*20122)’ then w5 > 7 and n5 > n. If p12 > 0 and

by 2p12 * M * M
> theny < my" andny <ny.

2+a(l—p7y)’ B
(ii) If p12 < 0, 5 < né"l. If furthermore A < —Z_%Ip]z, n > né”. Otherwise
s < ndl.
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In addition to the total risks in the fund investment, fund managers also care about the
risk in the relative performance, because it affects the fund flow and thus management
fees in the future. On the one hand, they want to keep investment strategy niM which
brings the best risk-return trade-off according to their own risk attitude. On the other
hand, they may want to invest less in ;, in order to mimic the industry average and to
decrease the risk of poor performance against their competitors. Proposition 3.3 shows
that for fund 1 with the larger risk aversion-adjusted Sharpe ratio A1/yy, it is relatively
easier to outperform, and thus the concerns for the risks in the relative performance
dominate and the manager takes less risk (7} < JT]M ). The fund’s performance is worse
than it could have been without competition (] < n{” ). The same could happen if y;
is small, and therefore the manager tends to take large risks without competition and
has a better chance of outperforming the competitor. It is consistent with the results
in [4, 40] that more risk-tolerant managers may decrease the volatility of the fund
to decrease the risk in the relative performance. Though in addition to risk aversion,
which is the only factor that plays a role in such comparison in the above literature,
the Sharpe ratio also enters into the equation in our results.

For the relatively disadvantaged manager (with smaller A, or large risk aversion
y2), even more factors matter in such comparison and we have more cases to discuss.
If p12 > 0, the portfolio choice of the competitor hedges part of the risk in the fund’s
own investment. Thus, if A is small, i.e., the disadvantage is big, the eagerness for
new investments dominates, and the manager increases the fund’s risk for a better
chance of winning the competition. This result partially agrees with and provides
an alternative explanation for the empirical evidence in [10, 37] that the manager
with relatively poorer past performance tends to increase risk-takings, though, in our
model of equilibrium, the manager reacts to the disadvantaged investment opportunity
by taking a larger risk at every r > 0. This may not be bad news for the clients, because
the after-fee Sharpe ratio of the fund actually increases. If A is sufficiently large, then
the peer pressure is lighter and fund 2 invests similarly to fund 1 by decreasing the
risky investment and thus lowers the performance. If p;; < 0, the introduction of fund
flows increases the total risks in the fund, and the concern for the fund’s absolute
performance leads fund 2 to decrease the investment in S5 to hedge against the risk

2(14 5% p12)

(2+a)(17<2%x)2,0122>

—o00 at A = 0. Thus, similar to the case of pj2 > 0, if A is small (with a threshold
different to the previous case), the big disadvantage leads fund manager 2 to take a
large negative position in S, aiming to win the competition. If A is sufficiently large,
then fund 2 already has a good chance of outperforming fund 1. Therefore, the decrease
in the investment in Sy is relatively small because it increases the risk in the relative
performance.

The above difference from [4, 40] is another consequence of the difference in
models. The risk aversion and competitiveness parameter in these papers only enter
into the utility function as powers of the fund value, so that the equilibrium portfolio
decomposes into the Merton portfolio plus a hedging component. In our model, fund
flow sensitivity enters into the dynamics of funds and affects the utility in a more subtle

in Sy. w5 /ﬂé"’ is increasing in A, and equals to >0ati=1and
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way. The simple decomposition above is not available anymore, and the manager’s
effective risk aversion is also affected by the fund flow sensitivity.

2 2
Proposition 3.4 Under the assumptions in Proposition 3.3, let A = (pppy 2ty 4

(+a)?pi
Then, |Betaf — 1| — [Beta! — 1| < 0 for both i = 1 and 2 if and only if one of the

following holds: (i) p12 > 0, or (ii) p12 < 0, 2% < — (%plz + ﬁ—gp—i) —JA.

Though fund 2 may behave differently according to Proposition 3.3, in most cases the
competition pushes both funds’ investments closer to their average. If pj» > 0 and A
is small, then nZM is small compared to JTIM , and with competition, 711* and JT;‘ move
toward each other, which supports the empirical evidence of herding in [11, 14, 17,
30]. If A is large, then m{ and 7} both become smaller positive numbers and thus are
also closer to the average. If pj2 < 0 and A is small, n; tends to be negative. Then,
with a negative correlation between S; and S3, the two funds actually become closer.
Only in the case of p12 < 0 and sufficiently large A, i.e., fund 2 has large peer pressure,
the decrease in S is limited, while fund 1’s risk-taking becomes much smaller. As a
result, both funds are further away from their average. It partially supports [36, 54],
which documents superior returns for mutual funds trading against the crowd, and [15,
19, 34], which suggests herding behavior change with market conditions, including
investor sentiment.

3.2 The Equilibrium Among N Funds

For more than two funds, the equilibrium depends on the model parameters, especially
the correlation structure, in a complex way. Explicit and simple characterization as
done for the two fund case is no longer available in the most general setting. For
example, it is not likely that the Beta coefficients of all funds move in the same
direction as in Proposition 3.4. We first consider some special cases in which we can
derive analytical results.

3.2.1 The Case of One Common Asset

Let us first consider a special case in which S, is the only risky investment opportunity
for each fund. With the investment strategy 6; in S, the dynamics of X; is

N
dXi N+ (N — Da; o;
— =Vt =Y Y |dt
Xi; N N "
N+ (N = D o &
— N 0 — Nl > 60 | (adt + bdB)).

J#i

Proposition 3.5 If S,, is the only risky investment opportunity for every fund as
described in (11), then there exists a unique equilibrium 0* € OV such that for
eachl1 <i <N,
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A 1 1 |
o = —+——=), (12)
b \1+oiyy 14wy

N ~ N
where 1/7 = 3 % /N and 1/(1 +&@) = 3. o /N.
i=1 [

=

Notice that in this case, though 0;*’s in (12) are constants, this equilibrium is unique
among all admissible strategies. Also, if there are no fund flows («; = 0), the manager
is facing a Merton problem with S, being the only risky investment opportunity. The
optimal strategy is OiM = Am/(by;) for each 1 < i < N. Compared to GiM , the
manager’s risk tolerance in 6 shifts to a linear combination between the manager’s
own risk tolerance 1/y; and 1/y, the average risk tolerance of all competing managers,
weighted by fund flows sensitivities.

Next, we check the herding effect of competition. Since every fund invests in a
common S,,, to analyze the similarities between them, it suffices to compare Oi*’s and
6M>s, and their industry average 0* and 6™, respectively. The next proposition shows
that relatively more risk-averse managers may take larger risks in face of competition.
Also, if the fund with the more risk-averse manager has larger flow sensitivity to the
relative performance, then on average the investment of the whole group becomes
riskier. In the special case of constant fund flow sensitivities, 6 is always closer to
the industry average, than the counterpart without competition. Notice that in the case
of common investment opportunities in [40], the authors derive similar equilibrium
strategies with effective risk tolerance shifted according to risk aversion and compet-
itiveness. However, our 6 is always decreasing in y; while the monotonicity may be
opposite for different combinations of risk aversion and competitiveness of the peer
group in their paper.

Proposition 3.6 Under the assumptions of Proposition 3.5, (i) If y; > ¥, then 6} >
GI.M , and vice versa.

(ii) If (vi — yj) (@i —aj) > O for every pair of 1 <i < j < N, then 0* > M and
vice versa.

(iii) If o; equals a constant @ > 0 for every 1 < i < N, then 6% =

0F — 0% = oz (0M — M),

oM and

The intuition for these results is that facing the same investment opportunity, the
funds with more risk-averse managers tend to take less risk and thus are less likely to
win the competition. The concern for relative performance pushes them to be more
aggressive to keep up. On the other hand, funds with less risk-averse managers are
in a better position in the competition and are thus more concerned about the risk of
poor performance. They invest less in S, to avoid possible outflows. Furthermore, if
the high risk aversion is accompanied by high sensitivity «; of fund flows, then the
effect of more risk-taking for more risk-averse managers is magnified compared to the
effect of less risk-taking for less risk-averse managers, and the average risk-taking of
all funds with competition is higher than the counterpart without.
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(a) a;’s form an arithmetic sequence from (b) a;’s form an arithmetic sequence from 1
0.1to1 to 0.1

Fig.3 BiM’s, Gi*’s and their average if managers only invest in Sy;. N = 10, 4, = 0.15,5 = 0.15 and y;’s
form an arithmetic sequence from 0.5 to 3.2

Figure 3 shows QiM’s, Oi*’s and their average, with N = 10, A,, = 0.15, b = 0.15
and y;’s being equally spaced between 0.5 and 3.2. The left panel shows the case
of increasing «;’s and 0* > 6. In the right panel, o;’s are decreasing, and the
inequality is reversed. In both graphs, similar to previous examples, 6’s are closer to
6*, compared to the distance between 6 and 6™, with an exception of 2 out of the 10
funds. In the special case of ¢;’s being equal, Proposition 3.6 (iii) confirms that this
comparison holds for every fund, and the competition does have herding effect on the
fund investment.

3.2.2 The Case of N Assets

In this section, we show some analytical results of the equilibrium under parameter
constraints and illustrate the more general cases with numerical examples.

Assumption3.3 o; = o and py; = n € [-1,1] (G # 1). p;j = p € [0, 1] for all
i,j=1,---,N—1.

First, we discuss a case with a dominant player who is not subject to performance-
based fund flows while all other funds have to benchmark their performance to this
player, and compare it to the case where this player also enters into the competition.

Proposition 3.7 Under Assumptions 3.2 (i = 1,..., N) and 3.3, and assume that
n=p.

. _ ) . 0 _
(i) If oy = 0, then the equilibrium strategies are ¥, =

AN-NPHN (VNN + Bhigy Inor) s and w0 =y fon, where
Ay, Py, y and )y are defined in Theorem 3.1. The subscript —N indicates deleting
the last row and the last column. 1 is a k-dimensional one vector.
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oy — o then th libri . o kP<X+)‘N~VN> d
(i) If an = o, then the equilibrium strategies are wy* = —— ———= an

_ _ op ~
7y = Ap-nPHZY (Vo4 O+ Soko (R4 Avy ) - In1)

T _ VN op .
and . =3 i NYN-Da—pa v
N ) _ ,oN2 0
(iii) If ANy = @ X j—1 Xjy; /N, where 0 = Gm—nd—payv—tTp) then 7° =

*ol : :
mw* foreveryi =1,---, N, and vice versa.

_ N
where kp = =15 ma

Notice that the parameters in the above proposition are set so that it is easy to compare
equilibrium strategies in the two cases, while the mechanism as explained below
follows similarly for general parameters. If fund N does not compete with others,
its manager takes the Merton strategy. However, once it enters into the competition,
if its own investment opportunity (summarized by Ay ,, ) is sufficiently good, then
the concern for the risk in the relative performance dominates and manager N lowers
the risk-taking. As a consequence, other funds also lower their risk-taking because
the need for hedging fund N is smaller. On the other hand, if fund N tends to lose
the competition, then the manager takes more risk in order to increase the chance of
winning, and every other fund does the same in response.

As pointed out at the end of Sect.?2.1, good performance of funds with lower flow
sensitivity (as fund N in Proposition 3.7 (i)) has a negative effect on the aggregate
fund flows because it pushes the industry average up for those funds with larger flow
sensitivities. However, since the manager’s utility only relies on his/her own fund
value and flows, the effect on the total cash flow of the whole sector is not part of the
manager’s consideration. Different oy ’s decide the equilibrium mainly through the
manager N’s portfolio choice, which affects other funds’ flow, as explained above.

As a by-product, notice that n]’f,o is the Merton strategy. Thus, Proposition 3.7 (iii)
shows that (with the parameters therein), compared to the case without competition,
managers tend to lower the risk-takings in order to hedge the risk in the relative per-
formance. The only exception is the case of poor investment opportunity or large risk
aversion (low Ay ,, ), in which the manager takes a larger risk under competition, in
order to increase the chance of winning, which is consistent with the results of N = 2.

Next, we examine the case where Sy is negatively correlated with all other S;’s.
The change in the portfolio choice follows similar patterns to the above. In a further
simplified setting, we show that every fund becomes closer to the industry average
under competition, though the investment strategy can change in different directions
compared to the Merton strategy.

Proposition 3.8 Under Assumptions 3.2 and 3.3, and assume that n = —p, with k,
and ¢ defined in Proposition 3.7,

(i) The unique constant equilibrium is ;" =k, ((—1)‘3N(i)3» + ki,yi> /oi, where 6

. o . 2 _ 1SN
is the indicator function of N and A = Z?’:] % iy

(ii) wM > 7% ifand only if Xi ; = (=)W D 3N (=)D /N.
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T A - N-1
(iii) Denoteas\ = )L/Ny%”’/\‘/’andy_N =S,
J=

fori=1,....,N—1,p=1,and®% # N — 1. Then,
foreveryl <i # N.

. Further assume’ thatAj = A, 0, = &

Betal — 1| < |Betaf"1 —1

Next, we check the effect of competition by numerical experiments in more general
settings. The results, which are generally consistent with the conclusions for the case
of N = 2 and the above analytical results given simplifying parameters, show that
the competition tends to push funds to decrease risk-takings in their idiosyncratic
investment opportunities, in order to decrease the risk in the relative performance. This
usually leads to worse performance in terms of Sharpe ratios. However, managers with
big disadvantages tend to take larger idiosyncratic risk in order to beat the average. In
terms of herding effect, while the fund flows generally push funds to become closer
to the industry average, if no funds are severely disadvantaged (in other words, the
competition is severe), then the competition may push all competitors to move away
from the industry average.

For N = 5, Fig.4plots the funds’ portfolios with (;*’s and 6;*’s) and without
competition (niM ’s and GiM ’s), the corresponding Sharpe ratios n;’s and nlM ’s, and
volatilities o* and o, with o; = 0.2, ¥; = 0.02, @ = 0.5, y; = 2, pjm = 0.1 for
every 1 < i <5, A;’s forming an arithmetic sequence from 0.1 to 0.5, p;; = 0.2
(1 <i#j<5),Ar, =015 b = 0.15,r = 0.05. Compared to the case where
the managers do not have to care about relative performance, all the funds facing
the competition have lower after-fee Sharpe ratios. The main reason is similar to the
case of N = 2 that the managers are concerned about the risk of underperformance.
Thus, they take less risk in the idiosyncratic opportunity S; and more in the common
investment opportunity S,,. This change is larger for funds with better investment
opportunities. It lowers the expected return of the fund. On the other hand, since the
decrease in 7 from niM is much larger than the increase in 6 from GiM , the total
risk-taking of the fund is also smaller, and thus the Sharpe ratio decreases, but not as
much.

Figure Sillustrates the case where A; = 0.3 and p;;,’s form an arithmetic sequence
from —0.2 to 0.6. Similar to the previous case, all the funds take less risk in their
idiosyncratic investment opportunities in face of competition. If S; is more positively
correlated with S,,,, fund i invests more in S,,, even changing from negative to positive
amount in some cases. Only for fund 1 with p1,, < 0, 91* < GIM , because the need
for hedging the risk in S is reduced. Similar to the previous case, the total risk of the

5 Though it is a simplified setting in which the first N — 1 assets are perfectly correlated and the last one is
perfectly negatively correlated with other assets, the manager’s portfolio choice problem is not trivial. For
fundi € {1, ..., N—1}, the fund flow due to the last fund brings positive exposure to their own idiosyncratic
risk. Yet to hedge such a risk manager i may not want to lower the risky investment by too much, because it
may hurt the absolute return of the fund. Also, this setting does not create arbitrage opportunities, because
each fund only has access to one investment opportunity.

6 IfX = N —1, then the industry average both with and without competition is riskless and Beta coefficients
are not well defined.
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Fig.4 Funds’ portfolios, volatility and Sharpe ratios, witho; = 0.2,¢; = 0.02,a = 0.5, y; = 2, pj, = 0.1
for every 1 < i <5, A;’s form an arithmetic sequence from 0.1 t0 0.5, p;; = 0.2 (1 < i # j <5),
Am =0.15,b=0.15,r = 0.05

funds and the Sharpe ratios decrease. Notice that in this case, A; /y; is a constant across
5 funds, and the result agrees with Proposition 3.3 in the change of Sharpe ratios.

Figure 6illustrates the case where A;’s form an arithmetic sequence from 0.1 to
1.3, y;’s form an arithmetic sequence from 0.5 to 4, p;;, = O forevery 1 <i <5,
pis = =02 @G #5), pij =020 <i # j <5), and other parameters are the
same as in the previous cases. It shows some features that we do not see in the case of
N = 2, due to the complex dependence on the correlation structure. ;’s have larger
differences than in the previous cases, but A; /y; actually become closer than in Fig. 4.
With negative correlations between some S;’s, while other funds behave similarly as
in 4, the most disadvantaged manager (of fund 1) takes the larger risk in the fund’s
idiosyncratic investment opportunity, and less in S,,, in order to have a better chance
of beating the competitors and attracting new investments. As a result, the total risk
of fund 1’s investments is larger compared to the case without competition.

Next, we use the Beta coefficients with respect to the industry average and S,
to measure the herding and specialization effect, respectively, of the competition. In
particular, if [Betay — 1| < |BetalM —1], then fund i is closer to the industry average, and
if |Beta),, — 1| > |Beta% — 1/, then fund i tends to specialize more in its idiosyncratic
investment opportunity rather than S,,.
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Fig.5 Funds’ portfolios, volatility and Sharpe ratios, with o; = 0.2, ¢; = 0.02, 0 = 0.5, y; =2,4; =0.3
forevery 1 <i <5, pij = 020 <i # j <95), pim’s form an arithmetic sequence from —0.2 to 0.6,
Am = 0.15,b6 =0.15,r = 0.05

Figure 7illustrates the case with the same parameters as for Fig. 4. From Fig. 4, to
hedge the risk from relative performance, the decrease in 7;* from niM is more than
the increase in 9;“ from GiM . Since pj;, > 0 forevery 1 <i < 5, the combined effect
is that each fund’s investment is further away from S, (Beta; ; is further away from 1
than Beta%), and at the same time closer to the industry average. In Fig. 8, the model
parameters are the same as for Fig.5. As shown in Fig.5, each fund decreases its
investment in the idiosyncratic investment opportunity, and most of them increase the
investment in S,,, except fund 1, because S; is negatively correlated with §,,. Thus,
though the Beta coefficients with respect to R, do not change much with and without
competition, Beta’s are always closer to 1 than BetalM ’s. Both the above results show
that in general, the competition pushes mutual funds to herd. Also, though 6 in most
cases are greater than GiM , because of the positive correlations between S;’s and S,
each fund is further away from the common investment opportunity.

In Fig. 9, the model parameters are the same as for Fig. 6, and the funds’ behaviors
change drastically. While funds 2-5 decrease their investment in their idiosyncratic
risk, the disadvantaged fund 1 takes an excessive risk in S;. It shifts the industry
average so large that |Betaj‘ -1 > |BetalM — 1] forevery 1 <i < 5, which means
that competition actually increases the risk in relative performance for every fund, even
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Fig.6 Funds’ portfolios, volatility and Sharpe ratios, with N = 5, 0; = 0.2, ¢; = 0.02, ¢ = 0.5, pj;, =0
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Fig.7 Funds’ Beta coefficients with and without competition, with N =5, y; = 2,; = 0.5,0; = 0.2 and
pim = 0.2, 1 <i <5, ;s form an arithmetic sequence from 0.1 to 0.5, and pij = Olforl <i#j<5
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1.4 T 0.7
—©— Beta" 06
131 —*—Beta’ |
0.5
121 4 04
0.3
1.1r
0.2
1 0.1
0
091
-0.1
08l . . . . 02l . . . .
1 2 3 4 5 1 2 3 4 5
Fund Fund

Fig. 8 Funds’ Beta coefficients with and without competition, with N = 5, 1; = 0.3, y; = 2, «; = 0.5,
0; =0.2,1 <i <5, pjp, s form an arithmetic sequence from —0.2 to 0.6, and pij = 02forl <i #j<5.
Am =0.15,b =0.15

08

0.6

Fund Fund

Fig.9 Funds’ Beta coefficients with and without competition, with N =5, 0; = 0.2, ¥; = 0.02,« = 0.5,
pim = 0 forevery 1 <i < 5, 4;’s form an arithmetic sequence from 0.1 to 1.3, y; form an arithmetic
sequence from 0.5t0 4, p;5 = =02 (@ #5), pjj =021 <i # j <5), lm =0.15,0=0.15,r = 0.05

though most of them choose the optimal portfolios to avoid this. In this case, funds
2-5 take more exposure in S, and only fund 1 specializes more in its idiosyncratic
risk. Notice that in this case, the risk aversion-adjusted Sharpe ratios for all funds are
very close to each other. Thus, this result offers some new insights into the effect of the
managers’ competition, which is not shown in the previous literature focusing on the
case of two funds. Instead of herding, severe competition may push all funds to move
away from their competitors. It is caused by the large risk exposure the disadvantaged
manager adopts, in order to survive the competition. However, from the systemic point
of view, it is not a big concern, because from Fig. 6, most funds take less risk under
competition, and the whole group takes a more diversified portfolio.

3.3 Wider Market Access

In the previous discussion, each fund has its own investment opportunities that are
not perfectly correlated, which is similar to the case of asset specialization in [2].
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Next, we discuss the case where one or more manager has access to more investment
opportunities, e.g., by hiring experts on new asset classes.

If there exists a common (and sufficiently large) set of assets that every fund has
access to, as in the case of diversification in [2, 4], then deriving the equilibrium
becomes simpler than the previous case, because every manager faces a complete
market. The constant equilibrium can be calculated also in closed form and is actually
the unique equilibrium among all possible strategies, similar to the case of Proposition
3.5.

The market completeness offers the manager a better deal and the need for specu-
lation and hedging can be spread among different assets, depending on their Sharpe
ratios and correlations. The asset allocation is still driven by the same two main consid-
erations: pursuing superior absolute returns and hedging against the risk in the relative
performance.

If N = 2 and both fund has access to S; and S>, and Assumption 3.2 holds so
that there is no investment in S,,, then the equilibrium portfolio for manager i in both
assets is

44201 +200 A — p12i2 o 44201 +200 A — p12ig
Qt+aN2+awm) (1—pX)oy’ 7 Q+e)2+m) (1 —pd)oryi

*
T =

Thus, each manager essentially takes the Merton strategy, with a decreased risk expo-
sure (4 + 2a1 + 200 < (2 + a1)(2 + a2)), and their Beta?’s are the same as in the
case without competition, which is different from the specialization case in Proposi-
tions 3.3 and 3.4. Next, we compare equilibrium strategies in the current setting of
diversification with those in the case of specialization. We omit the proof which only
involves algebraic calculations.

Proposition 3.9 For r{ and 75 in (10), 7/ > % ifand only if (j € {1,2} and j # i)

2+ <1+,012 aiAjvi )>2+011+C¥2 <1_p12)»j>
K1 Q+ajriy; 11— :0122 A

Whether manager i increases or decreases the investment in S; once fund i also has
access to S; mainly depends on the correlation between the two assets. Notice that

1@2pf) 2 2
OranCtay 1 — ppp, thus 2 +aj)/k1 < 2+ ar +a2)/(1 — ppy). If
P12 < 0, then % > 7 - manager i invests more in S; because S, can be used as a
hedging tool for the larger risk in S1, which achieves a better risk-return trade-off. If
p12 > 0, then with access to S;, manager i may not need as much risk exposure in S;
as in the specialization case. This does not always happen and depends on whether §;
is indeed a good substitute for §; (e.g., with large A ; compared to A;).

Next, we consider the case where fund 1 can only invest in asset 1, and fund 2 has
access to both asset 1 and 2. The excess return of the latter is d Ry; = o, (ua2dt +
02dWy;) 4 13: (1dt + o1d W), where w3, is fund 2’s proportional investment in S.
Their accounts follow

k1 =1-—
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dx 2+a
u (r ] w1 (uidt +o1dWyy)

24+«
= v+ 1//2) dt + 1
X1
o1
- = (ﬂz(Mzdt + 02d W) + m3(1dt + o1dWyy))

dXo ( 2 +a2
— =r-—
XZz

o
Yo+ — I/fl)dt - 7711(#16” +o1dWyy)

2
(2 (padt + 02d W) + m3(prdt + o1dWyy)) .

o
2
The equilibrium portfolios in this setting (following similar calculations to those for
Theorem 3.1) are

A 24« o
Q+ o +az)or 2 4+
P 2 A2y — P12A 1y,
2T Qtaor 1-ph
. 2 M,y = P12A2,y (%) [ o ]
¥ = ’ LS Aoy +—A ,
37T 2+ o 1-p, Qrar+aor |7 T 24 P

They immediately show the advantage fund 2 of obtaining wider market access, thus
facing a complete market. Fund 2 can focus on the risk-return trade-off of the absolute
return and not worry about the risk in the relative performance. Whatever 1 is, manage
2 can change w3 accordingly to completely eliminate the effect of 7r; on the dynamics
of X7 due to fund flows. Thus, essentially, 73 is of the form 73 = A + 21—327[1. Then,

manager 2 only has to make sure that H%nz and H%A equal the Merton strategy,
and that is where 775 and the first term of 773, which we refer to as Merton component;
and Merton components, come from.

For fund 1, the risk exposure to dWj is 22“‘711 - %m = %nl -
% Merton component;, and the exposure of to dW; is —3'7) = —3Merton

component,. Since dW» = p12d Wi + /1 — p2d B;, where B is a Brownian motion
independent of W1, and manager 1 can do nothing about, the manager essentially faces

. A N .
a Merton problem with an exposure of 24'2‘2;;“2 T — a21 +lo}? to W1, and thus 77, which
happens to be independent of p; in this case. Direct algebraic calculations show the

following:

Proposition 3.10 For 7r’s in (10), " > 7] ifand only if D > 0, and w} > 75 if and
only if p12D < 0, where

o A2
D =p1» (l — ) e

QC+a)2+az)

1o 2 (0% 2.2
- + 1-p)2).
( CranCran ™t a5 g “”m)

If p12 = 0, then manager 2 cannot hedge the risk in S by the investment in Sz thus, the

optimal choice of 7, does not change with access to S7. Notice that m <1
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and I — %pu + 575 (1 = pi) 2 > 0. Thus, if p12 < 0, then D < 0 and
7y > mj, because the risk exposure to S> can be hedged by investment in S, and
the optimal 75 becomes larger to achieve a better risk-return trade-off, and becomes
a Merton strategy. On the other hand, if pj2 > 0 and A2 /X is small so that D < 0,
then the Merton strategy is smaller than 75 because part of the desired risk exposure
is fulfilled by the investment in Sy. If A2 /A1 is sufficiently large so that D > 0, then
the Merton strategy is larger because, without access to Sy, the concerns for the risk
in the relative return make manager 2 conservative and cannot take full advantage of
the good investment opportunity in Ss.

On the other hand, the above discussion shows that in addition to fully eliminating
the risk from fund 1, fund 2 essentially takes the Merton portfolio, and the combined

effect of 73 and 77§ is a fixed negative exposure azlilazz to Wy. Thus, fund 1 optimally
increases 1 to hedge this risk, because 7 is relatively smaller in the case of spe-
cialization, either due to the positive exposure to Wy from fund flows (p12 < 0) or
relatively small A, (see Proposition 3.1(ii)). The only exception is the case of p12 > 0
and large A5/ so that D > 0. In this case 7} is larger (see Proposition 3.1) than 7},

which is needed to hedge a large negative exposure to Wj.

4 Forward Relative Performance Criteria

In this section, we investigate the Nash equilibrium under the forward performance
criterion introduced in [2]. It allows us to relax the assumption of the common planning
horizon and generalize our results to the setting of stochastic investment opportunities.
Since all the definitions follow closely to those in [2] and the calculations are quite
similar to previous sections, we omit all the proofs in this section.

Assume that the investment opportunities are described by (1) and (2), with r, b,
a, pi’s and 0;’s, p;m’s and p;;’s being F;-adapted processes. All the Sharpe ratios A,
and 2;’s are bounded. The admissible sets of trading strategies are .4;’s and ® can be
defined the same way. Instead of a given utility function, the managers’ preference is
characterized by the forward performance criterion in the following:

Definition 4.1 ([2][Definition 1 and Definition 2])

(i) Let U be the set of random functions u(¢, x), (¢, x) € Ry x Ry, such that for
each + > 0 and P-a.s., the mapping x — u(¢, x) is strictly concave and strictly
increasing, and u(z, x) € cl4,

(il) Given(w_;,0_;) € @ Ajx ON-1 an Fi-adapted process (Vi (¢, xi; w—i, 0—i));>0

1
is a best forward relgﬁve performance criteria for fund manager i if the following
conditions hold:

(a) Foreacht >0, V;(t, x;; m_;,0_;) € U ass.

(b) For each (;,6;) € A; x O, V;(t, Xi;; m—;i, 0_;) is a (local) supermartingale,
where X; follows 3 with (7r;, 6;) plugged in.
(c) There exists (m,@) € A x © such that Vi(t, X,t, mw_;,0_;) is a (local)

martingale, where X; ; follows (3) with (7;, 91) plugged in.

@ Springer



Journal of Optimization Theory and Applications

For tractability, we look for the locally riskless performance process V; such
that dV;(t, x;; m—i,0—;) = vi(t, xi; m—;i, 0_;)dt, for some F;-adapted process
vi(t, xi; m—;, 0_;), as in [2]. To compare with the results in the previous section,
we focus on the CRRA type of V;.

Lemma4.1 Given (n_;,0_;) € QA; x N1 and denote as
J#i
ni = hwih; — 2y; (r—lpl—n Cini + Hw wlerr)

+ yPa’ G ( w’_iwi_lw_i) Cim_i,

where 1},-, hi, wi, w_i, Ci, A_; are defined in the proof of Theorem 3.1 and Lemma
4.2, and p_; is the (N — 1) x (N — 1) correlation matrix of W;’s (j # i). Then, the
process

I_Vi , 1— 71

e

nids

‘/i(t’-xi;n—la 1)_
l_yl

is a locally riskless best-response forward criteria for manager i and the optimal
policy is

Tt = N Ait = PimtAme
TN+ (N = Dapai \ (1= p2, )Vie
Pijt — plmtp/mt
Z”N"ﬂ ’
j;éz 1 - 'Olmt
oF — N Amt = PimtAit
TN A (N = Daby \ (1= pZ)vie

N

= Pimt

We can then define the Nash equilibrium among all the funds based on the above
relative forward performance criteria.

Definition 4.2 A forward Nash equilibrium is an N-dimensional vector consisting of
Fy-adapted process (Vl-(t, Xis k0%, (F, 6; ) with the following properties: for
anyi=1,---, N,

(i) (7, 6]) e A x ©.
(i) Vi(t, Xj57m*,,0%,) €U as.
(iii) For every (71,, 0;)) € Ai x ©,V;(t, X;; *,;, 0%,) is a (local) supermartingale and
Vi(t, X} _,, 6*,) is a (local) martmgale where Xi, X7 follow (3) with (7;, 6;)
and (7, 6) plugged in, respectively.

i
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With closed-form best-response strategy derived in Lemma 4.1, we can easily
calculate the forward Nash equilibrium. The following proposition shows that the
equilibrium in Theorem 3.1 can be easily generalized to an equilibrium under the
forward performance criterion. Thus, our discussions about the equilibrium strategies
apply to the more general setting with stochastic market parameters and without the
assumption of the common planning horizon across all funds.

Proposition 4.1 With n* and 0* in (5) and (6) (after plugging the stochastic model
parameters), (Vi(t, Xi: nfl., 9:), (ni*, 91.*))1<l.<N is a forward Nash equilibrium.
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Appendix

The proof of Theorem 3.1 The first step is to find the optimal portfolio choice of
the fund i, given the investment strategies m_; and 6_; of other funds. Since we
focus on constant equilibria, assume that w_; and 6_; are constants. Then, with

Xi, = exp (— (r - 1/7,) t) Xir, where ¥ = (1 + NTfloa,-) vi— % Z;V#i ¥, Fubini’s
theorem implies that

v 1-vi
T .\ =vi T . 7 E[X' ]
E |:/ e—ﬁ,-t(l/fzxzt) dtj| 2/ e(—ﬁﬁ—r—l//,)twilfw—”dt_
0 l—y 0
For any (7;,6,) € Ai x @ (1 < i < N), let 7, = (14 2a) oy, 6 =

N
(1 + NTflozi) bBis,sothat w = (my, -+ ,my) = Ay7 and 0 = A0, where 7 and 6
are N-dimensional vectors with (7); = #; and (6); = 6;. Thus,
= N
dXi . ~ ~
L =y (hdt +dWi) + | 6 — Zc,-jej (Amdt + dBy)
Xit j#i
N
— ZC,‘]‘ (ﬁj(k]‘dl +det)) .
J#
it N W
. o . N . S i S it S
Wlth ¢lt - 9iz _ Z cljej ) hl — |:)\-mi| ) F'l — [ B[ ] ) )"—t —
J#L

[ Aic1 Aig -~-]/, and W_iy = [+ Wity Wity ---]/, the dynamics of X
is
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an

= ¢”(h idt +dFiy;) — 7 JCiO_idt +dW_yy),
it
where C; is an (N — 1)-dimensional matrix with diagonal entries ¢;j for1 < j < N
and j #i.
. 5]
Lemma 4.2 shows that qb, = —w hi +w; Tw_ ; C;m_; maximizes = . Since

it is a constant strategy 1ndependent of t, it also maximizes the discounted expected
utility from management fees for each manager i

T . E [X.l_yi]
/ e(*ﬁﬂrrfwi)twil—y,- i dt.
0

-y

q@i = —wi’lhi + wflwf,-Ciﬁ,,‘ for 1 <i < N are 2N equations of constants

7=, ,7n)andd = @y, ---,0y):
Pfﬁzy_lkfs Pmézy_lnm“‘(:ﬁ',

of which the solution corresponds to the equilibrium strategies of the N funds. Since
Lemma 4.3 shows that Py and P, are invertible, there exists a unique solution 7 =
Pfflyfl)\f, 6 = P,;] (Vflnm + Cfr). Therefore, 7* = AfPf*]yfl)»f, and 0* =

AnPy (v + CAT'7).

Sl—y;
g%, .

Lemma 4.2 Given constant m_; and 6_;,  arg max = = ¢ = y l_lh +
1

¢i:(m;,6) €A xO

~1 L oim (pi)/ ]
w; w—;Cim—;, for every 0 < t < T, where w; = ,W_j = o,
Pim 1 (pm)—i
and p; is the N-dimensional vector with (p;)j = pij.

Proof We prove the case of 0 < y; < 1 and focus on E [ ] because 1 — y; > 0.

The case of y > 1 follows similarly. Define a stochastic process & such that &y = 1
and

g

: = (M{w_j + M";p_j — ;) Cim—idt + M{dF;y + M ;dW_;,
t

where M; and M_; are two constant vectors to be determined later, which satisfy
w;M; +w_;M_; = h;. Then,

d R _
é:tXlt

— (M{w! + M_;w’_; — h}) ¢idt + (¢}, — M))d Fy,

— (@ ;Ci+M_)dw_;;
= (¢;, — M))dFiy — (n_;C; + M )dW_j;.
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Thus, & X/ isa nonnegative local martingale and hence a supermartingale. Therefore
(ignoring the positive 1 — y;), by Holder’s inequality and noticing that X;o = X;o = 1,

o 1—y; vl Vi vi-1 Vi
]E[X” ’] [gl ] E|:§tn:| S]E|:$, y,]

1
= exp ((1 = Vi) ((M,-’wi + M p_i — 1) Cim_i + — M]w; M,

2y,

1 1
+ —M p_iM_; + _Ml'/w—iM—i> l) )
2y; Yi

which is an upper bound for E [f( l.lfy"] corresponding to any (77;, 6;) € A; x O.

Next we search for the minimum among all such upper bounds corresponding to dif-
ferent choices of M; and M_;, by considering the following constrained minimization
problem:

1 1 1
min —MwM + Mﬂp iM_; + Mw_,M i+
(M;, M_,}2 2y; Vi

(M w_ + M. iP— )Cln—la
subject to: w;M; + w_;M_; = h;.

The corresponding Lagrangian function, with Lagrange multiplier /, is

1
L= o (M{wiM; + M ;p_iM_; +2M]w_;M_;) +
1

(M{w_i + Mlip_i) Cim_i +1U' (hj —wiM; —w_;M_;).
The first-order conditions for M;, M_; and [ are
M; =yl — wi_lw—iM—i - Viwi_lw—iciﬂ—i, (13)
1 1
0=—p_M_i+—w' ;M; +p_iCim—; —w’,1,
Vi Vi
O=h; —wiM; —w_;M_;. (14)

Plugging (13) into (14) implies that
0=<p i —ww; hw_ )(M +yiCim—;).

Instead of discussing the uniqueness of solutions to the above equation, we pick out
one of them M_; = —y;Cin_;, M; = yi¢;, | = ¢;, and verify that the candidate
strategy ¢; can achieve the upper bound corresponding to M_; and M;, which verifies

that qﬁ, is indeed the maximizer of £ [ llt Vi ]
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The upper bound corresponding to M_; = —y;C;w—_; and M; = y; ¢3,~ is

1
exp <(1 — i) <(M,'/w—i + M p_i =\ ;) Cim—i + Z—VM,-/wiMi
1

1 1
+ 5—MLp_iM_i + —M] w—iM—i> t)
2y; Yi
= exp (1= ) ((ndjw—i = yixl Cipy —3.;) iy

+ % (‘l;,{wifl;i + 7 Cip—iCim_i — 2¢A5,{w—iCi7T—i)) t)

(A=Y [~
= exp <<—(1 — )/,'))\/_l-CiJT,,' + % (¢;wi¢>i — 7T/_l-Ci,0iCiTL’i)) t) .
(15)

On the other hand, for X ; corresponding to q§,~,

Xis = exp ($/(hit + Fi) = 7, CiGuoit + Woir)

1., =~ 1 A
+ (—§¢fwi¢i - Eﬂ/_icip—iciﬂ—i + ¢fw—iciﬂ—i> t) .

Thus,
E|X 7
it
i / 1 1 " 1 /
=exp | —y)|djhi —n_;Cihi — §¢,-wi¢i - En,iCi,O—iCin_ﬁ
- A=y o o (=)
diw_;Cim_; + 5 —iwid, + 3 “n! Cip—iCim_

—(1 - Vi)‘i),{wficiﬂfi) l)

(L=9y) [~ =
= exp ((—(1 — vy Cir_i + % <¢,{wi¢,{ - 7T/_,-Ci/0iCiJTi)> l> ,

which coincides with the upper bound in (15). O

Lemma4.3 Py and Py, are invertible.

Proof P; and P, can be rewritten as Py = AiPjiagP1PdiagA2, and P, =
PjiagAleAz, where A1, Az and Pyjee are N x N diagonal matrices with (A1);; =

m, (A2)ii = o and (Pygjag)ii = /1 — pl.zm,and P; and P, are N x N matrices

with
L ifi = j,

P)) cij D Pimp (Py) {CL ifi =j,
Dij = = L PimbPim __ if; 2 2)ij =y " L. .
/1—/’;2”1 /l_pjz_m ) —1 ifi #j.
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On the other hand, for i # j, Brownian motions W; and W; can be written as

Wit = pim B: + vV - pizmzits Wir = pjmB: + \/ 1-— P.,Z-mzjt,

where Z;, Z; are Brownian motions independent of B. Suppose that (Z;, Z;), =
pit, and then pij = pimpim + \/(1 — p2)(1 = p2,)pf;, which implies that

(,0[_,‘ —Pim P_jm)z o 1
=pZ)(—p2) NFN-Da < N-T° both P; and P, are
strictly diagonally dominated matrices, and hence invertible. Therefore, Py and P,

are invertible, because the diagonal matrices A1, Az and Pyjqg are also invertible. O

= (,oizj)2 < 1. Since ¢;; =

*

The proof of Proposition 3.1 (i) The claim follows from the fact that i _

IA;
2(17,02, )
jm
@Fanoier and k1 > 0.
(ii) The claim follow from dmf 20413 —pimprm)
dAj 2+ai)2+aj)oiyjk

(iii) The claims are direct results of the following derivatives and the fact that (1 —
p12m)(1 — p%m) > (p12 — p1 m,ozm)z from the proof of Lemma 4.3.

2
? - _ 20 = pj)Pim [( L) (1—p2 (1 —p3,)
A (2 + ai)brayiki 2C+a)2+a)
200100 2
- m(mz — P1mP2m) :| ,
36 2a;(1 = p3,) [(1 N ajon ) .
0A;j 2+ a1)2 + az)biayjki QR+a)2+ an)
(1 - ,012m> (1 - ,O%m> Pjm — (2_50;13[% (P12 = Pimp2m)”
_ (1 - u® ) (1= p3,)(Pjm — 012/0im)} .
QC+a)2+a) S

O

The proof of Proposition 3.2 The claims follow from the derivatives of 7r;* with respect
to o; and ;.

* 1 — aj 2
37tl~ _ 2 P12 1 o 2+a.,~p12 Iy
da; (2 + ai)oiki 2+ aj 2+ o K1 1Y

o 2
=7 Plz)v
Q+apky "

2
Q2+ a2+ aj)oik?

(2P12)»j,y,~ - (2 + (1 - /0122)051‘) )\i,w) .
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om}* . 2 20{,-,0122 N
doj  Q4aoikr \ Q+a)Q2+apia "

_ @i [, 20; 0%, N
(24 «a;)? Q4+a)2+aj) )Y

_ 20 p12 ) 241 2
Q24 a)22 + ;)02 ( pizkiy = @+ (1= plz)ai)kj’y’) ’ H
i J ik

The proof of Proposition 3.3 Following (7) and (10), with p1 € (=1, 1) and A < 1,

. 2(1+ 525 p007) 20+ (1+ 5% p10k)
™ 2 = 201 _ 2
i (2+a>(1—(z%a) pﬁ) fotetlm o) +d
4+4
+ 4o L

< <
Ta2(1—ph) + 4+ 4

2
V(2 +a) (1 - (%) pfz) ( ’

) (- )

2h1,y, (1 + 2%0[,012?») Moy
_ e (2+ad —ppy) —2p12h)
224+ o)Ay, (1 + zj%aplz?_»)
ay (2 —21)

< — — < 0.
22+ @iy (1+ 220100 )

nt—nt! = —

On the other hand,

o - 2ap12 0&122 1)
w} | 2 (2—|—_01:012 + A) | Tra T\ 250 ~

& _i(2+a><1—(2%0,)2p%2) _x<2+a>(1—(2_%)2p%2).

2 2
. . o, T . . [07
Thus, 75 < 7T2M is equivalent to 21 4 o (ﬁ—‘; — 1) A < 0, which, since 2212 < 1,

24+« +a

always holds for p1» < 0, and is equivalent to A > 2p12

—=P2 if p, > 0. Finall
> Trati-py i P12 2 0. Finally,

it =V (2+all = pi) 2 —2p1)
21 — = _ .
22+ @iz, (A +$52)
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Thus,if p12 > 0,A4+552 > 0,and n3 < 53! ifandonlyif (2 + (1 — p7,)) A—2p12 >

24«
. bl 2 2 -
0, or equivalently A > _24_0{("1’—‘_2’)]22). If p12 < 0, (2 +a(l— ,012)) A —2p12 > 0, and
ns < ' if and only if A > —5212. o

The proof of Proposition 3.4 Following (8) and (9),

o) )

Kf
* o 2\ o - o
Ki=1[1+ H—a,olz)» +2p12| 1+ H—amzl F,Olz?»

2
+(F/012+ ) )
-2

Betallu_1=+ 20
14 2p12A2 + A2

Beta] — 1 =

ZO’

Therefore, if A = 1, Betal = Beta}/ = 1. Otherwise, since A < 1, the sign of
[Beta} — 1] — |Beta11” — 1| = Beta] — Beta’l"l is the same as that of

(1—<L)2p2>(1+2p X+I\2)—<1+ a I\)z
2t a 12 12 5 O11012

- o - o \?
—2p12 <1+2+ ;012)L> <2+0[ﬂ12+k>— (2+a012+k>

doa(l+a) , ( (Z—i—a 1 o >_ _2>
- 14 — + A+AT). 16
C+a2 2 I tapn 1+ta’? (16)

If p1p > 0, 1—1—(%13 nt 1+ap12) A+1% > 0,and hence |Beta1—1|—|Beta1 -1 <

0.If p12 < 0, [Beta} — 1| — |Beta1 — 1] < 0 is equivalent to

+(2+a L, @ )X+I\2>0 (17)
1+ 1+O5,012 = V.

Since — Toa +a P12 + e o piz is negative and is decreasing in p1; € [—1, 0), the maximum
value at pjp = —1is —2, and A > 0. Since A < 1, the two roots of the left hand side
of (17) are

24 / 24 /
o (I-;-La'o]z_i_ l+z plz) + (l+ap12+ l+g PIZ) —va
> >land 0 < > .

- —(tEentEE L )-va )
Thus, |Beta} — 1| — [Beta} — 1] < 0if A < (H 1; ”‘2) , and otherwise

the inequality is reversed.
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On the other hand, algebraic calculations show that Beta§ —1=- (Beta’lk — 1) <0
and Betag” —1=- (Beta’l"’ - 1) < 0. Therefore, the sign of |Betaj — 1| — |Beta§” —
1| = —Beta} + Betag’l is the same as (16), and equivalent conditions for Fund 1 still
hold. O

The proof of Proposition 3.5 Let f(it = exp (— (r — 1/?,) t) Xi;. Then, with ¢§; =
N, — % 5 600, X; follows
dX; 5
L — zy(adt +bdBy,), Xio= Xio=1.

it

We first calculate the optimal ¢; (or equivalently the optimal 6;) given 0;’s (j # i) of
other funds. With d&, /& = —AndB; and & = 1, d(& Xi;) = & Xis (Cirb — ) d By,
which is a nonnegative local martingale, and thus a supermartingale. Then, for 0 <
yi < 1 (the case of y; > 1 follows similarly), by Holder’s inequality, for any 6 =
1, ...,08) € OV,

SEap 5 (6%) 8|

1=y 1 —yi

1—y; _"Vi_yi
o ! Vi
E [th:z] E|§& exp (lz__yyl)‘%zt>
< =— < : :
1 —yi -y
X,
which gives an upper bound of E[ i 7| On the other hand, with 6;;, =
(4% £o) |
N| 2%+ 0 1=y ,2
yib ' N ¢ J - €X] L t
J#l _ L gl-v] _ P(zn m) PRI,
W, and thus ;it = m, E I:l—_}/ixit ] = 1_—]/1, which indi-

Sl—y;
. . x, . .
cates that ¢; is the maximizer of E |: - 7 | Since ¢y = % 1s a constant strategy,
1 1

independent of ¢, it also maximizes manager i’s expected utility

1

) E [5(.1‘”]
[ i
0

N
N (%’éﬁ’ ) 9,,)
and the optimal strategy given 6;’s (j # i) is 6;; = W
To find the equilibrium, it suffices to solve the system of N equations, each rep-

resenting the optimal strategy given the portfolio of other funds: P;0, = %’”y’le,

where 6; = (01, -+, On:)’, e is the N-dimensional vector with all entries equal to
NEW—Dai jpj = j

1, P; the N x N matrix with (P;); ; = o N L _and y is defined
- ifi # j,
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in Theorem 3.1. Since Pj is strictly dlagonally dominated and thus invertible, there
exists a unique solution 6* = A’” P, y le for every 0 <t < T. Furthermore, since

P = —%Az(D + ee’), where Ay is the diagonal matrix defined in the proof of
Lemma 4.3, D is an N x N diagonal matrix with (D);; = —% — 1,1 <i<N,by
Sherman—Morrison—Woodbury formula (See equation 2.1.4 in [26]),
1 4o o i _]
-1 I+o; 7N (1 200
(P] )i,jz{ﬁ a,(+a) l;é'
N (Fa)(+a)) J
and this solution reduces to Oi* = % (ﬁ% + liix,- %) forl <i <N. O

The proof of Propos:tlon 3.6 (i) Both 6 and GM are proportion to 22 wh11e the coef-
ficient for HM is 1 and that for 07 is a convex combination between m and L The
claim follows by the comparing the two coefficients.

(ii) Since Ni;] (1+oz,- ot T J;) =2,

le

_m
=55 and

:k_’"iz Ite N1
b NZ=\1+a Vi

Since (y; — yj)(a; — aj) > 0 for every pair of i and j, (H—g 1) S and
are similarly ordered, and from Tchebychef’s inequality [32, 2.17.1], the above is
greater than or equal to

N _
1N (1rd )1
bNi:1 1 +o N “

1

:O,

Al
-1 Vi
and the inequality is reversed if (y; — y;)(a; — ;) < O for every pair of i and j.

(iii) 6* = M follows from (ii). Furthermore, since % =

Z|—
=
|
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The proof of Proposition 3.7 (i) and (ii) follow the same calculation as for Theorem 3.1.
For (iii), notice that 71 nN = (ko (A +AN,yn) — AN,yy)/01. Thus, the comparison
between 7Y and n*" is reduced to

kp(i + )‘fN,yN) - )\N,)/N

N
= ap _ N+ —1+p)
“b\ L rwona et (‘ N )*N,VN
21 %
N-% D Ay,
_ a(N =1+ p)k, N = JoYj o
N (+ T =pa)N —(d—p)a) (N — (1 —p)y) Nw

N
a(N—1+4p)k, [ 1
=~ |’y ZM,W — ANy

Thus, if Axyy = @ 30 Ajy, /N, then Ay > ky(k + A1), and 770 > 7 for
every i. O

The proof of Proposition 3.8 (i), (ii) is a direct application of Theorem 3.1 and follows
similar arguments to those for Proposition 3.7 (iii).
(N+a)A—(N—Da

() (G—(N-1)) Thus,

(iii) leenrr S, BetaN Beta% =

(N D’

(I+a)(N=DG+D—(N-D (R +1)
(I+a)r— (N =1

‘Beta%f — 1’ — |Beta’,‘\, — 1| =

_ aN=DG+D
(14w — (N -1

N N Y=N
For fundi # N, Beta] = 1+a m i andBeta ~I==D 7 JIf

A > N — 1, both Beta’s are less than 1, and |Betal — l’ > |Betal — 1| because

N g
‘BetalM—l‘—|Betaf—1]= i (1+_ VN)zO. (18)
1+a P—(N—1) 7

IfA <N —1and V N > max(a, 1)Y= 1 % both Betas are greater than or equal to 1,
and

N7
[Beta — 1| — [Beta} — 1] = —— <1+_ VN)zo
e\ "I-(N-D n

Other cases of y_py /y; follow by similar arguments. O
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