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Perspective

Differentiable modelling to unify 
machine learning and physical 
models for geosciences

Abstract

Process-based modelling offers interpretability and physical 
consistency in many domains of geosciences but struggles to leverage 
large datasets efficiently. Machine-learning methods, especially deep 
networks, have strong predictive skills yet are unable to answer specific 
scientific questions. In this Perspective, we explore differentiable 
modelling as a pathway to dissolve the perceived barrier between 
process-based modelling and machine learning in the geosciences and 
demonstrate its potential with examples from hydrological modelling. 
‘Differentiable’ refers to accurately and efficiently calculating gradients 
with respect to model variables or parameters, enabling the discovery 
of high-dimensional unknown relationships. Differentiable modelling 
involves connecting (flexible amounts of) prior physical knowledge 
to neural networks, pushing the boundary of physics-informed 
machine learning. It offers better interpretability, generalizability, and 
extrapolation capabilities than purely data-driven machine learning, 
achieving a similar level of accuracy while requiring less training data. 
Additionally, the performance and efficiency of differentiable models 
scale well with increasing data volumes. Under data-scarce scenarios, 
differentiable models have outperformed machine-learning models in 
producing short-term dynamics and decadal-scale trends owing to the 
imposed physical constraints. Differentiable modelling approaches 
are primed to enable geoscientists to ask questions, test hypotheses, 
and discover unrecognized physical relationships. Future work should 
address computational challenges, reduce uncertainty, and verify the 
physical significance of outputs.
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Process-based models
Traditional PBMs use mathematical equations to describe physical 
processes and are deductively derived from established physical laws 
or empirical relationships23,24. They are used to understand system 
functions and behaviours, test hypotheses, and assess the response of 
a system to changes in the driving forces or properties. Further, they 
can simulate a wide range of observed variables (such as volumetric 
streamflow or leaf area index) and unobserved variables (for example, 
groundwater recharge or fine-root distribution). Such abilities are 
critical to advancing scientific understanding and providing a narra-
tive when communicating with the public and stakeholders who are 
engaged in decision making25. With PBMs, it is possible to ask specific 
questions regarding processes within the modelled system such as how 
land-cover change affects water and carbon cycles, by progressively 
improving the representations of processes23,26–28 and evaluating the 
results using controlled experiments.

However, PBMs have some important limitations. Notably, often 
PBMs cannot rapidly evolve with and fully exploit information from big 
data owing to the time needed to develop and test process representa-
tions and parameterizations29,30. The differences between model pre-
dictions and observations are first reconciled by parameter calibration, 
which can be non-trivial and add substantial uncertainty31. For model 
errors beyond parameter tuning, potential causes of the differences 
(for example, missing processes in the governing equation) must be 
hypothesized and structural changes implemented; then the updated 
model structure and underlying hypotheses are confronted with valida-
tion data23. This iterative process is very expensive (in both labour and 
time) and complex, and can be biased by the knowledge background 
of the modeller32. Consequently, the structural representation of a 
specific process in a geoscientific model can often stagnate for years 
or decades33–36, meaning no new knowledge is gained and prediction 
performance is not improved.

Knowledge gaps further compound PBM stagnation. Extensive 
physical, biological, and socioeconomic knowledge is required to 
adequately define model structures, and any deficiencies can amplify 
errors and ambiguity. Another major challenge is accounting for pro-
cess interactions that occur across disciplinary boundaries37. For 
instance, vegetation, microbes, human management, and socioeco-
nomic systems all interact with each other and affect water, carbon, and 
other biogeochemical cycles38–41. Interdisciplinary research is highly 
valuable but challenging; therefore, there is a lack of data on these 
cross-disciplinary processes, which limits progress towards obtaining 
accurate model predictions.

Machine-learning-based models
Data-driven ML approaches, especially deep neural networks (NNs), 
have rapidly permeated the vast majority of scientific disciplines and 
are transforming those disciplines at an unprecedented pace37,42. NNs 
have highly generic model structures and many parameters that are 
determined from training on data. ML has been applied to a wide range 
of scientific applications, and deep networks like long short-term mem-
ory (LSTM) networks43, transformers44,45, graph neural networks46, 
and convolutional neural networks (CNNs)47,48 have become widely 
known. In the geosciences, NNs have shown promise in predicting 
crop production49,50, precipitation fields51,52 and clouds53, water qual-
ity variables54,55 such as water temperature56–59, dissolved oxygen60,61, 
phosphorus62, and nitrogen63,64, and the full hydrologic cycle65 including 
soil moisture66–68, streamflow46,69–71, evapotranspiration72–74, ground-
water levels75, and snow76. Often state-of-the-art performance was 

Introduction
Geoscientific models encompass a wide range of domains, with evolv-
ing scopes and ever-increasing societal importance, especially in the 
face of climate change. For example, hydrological models can be used 
to help manage water resources1,2 and plan for extremes such as floods 
and droughts3. Vegetation models can predict the impacts of future 
climate changes on the carbon cycle and other key biogeochemical 
cycles on land4 or in the ocean5. Agricultural models can estimate 
crop yields and environmental impacts6. Geophysical models aim to 
predict land-surface changes caused by processes such as landslides7 
and subsidence8; the impact of future warming on glacial melt9; and 
the occurrence of earthquakes. Biogeochemical reactive transport 
models are used to understand and predict changes in surface and 
subsurface water chemistry and quality10–12. Earth system models13–15 
and integrated assessment models16–18 combine many of these model 
types to provide crucial climate projections and guidance for resource 
managers and policy makers19,20.

Geoscientific models describe the temporally dynamic responses 
of systems to time-dependent forcings, which are modulated by static 
landscape attributes; as such, the different model types often have 
features in common with one another. Many geoscientific models 
can describe multiple processes and are formulated as systems of 
nonlinear equations, ordinary differential equations (ODEs), or partial 
differential equations (PDEs). Some geoscientific processes are well 
understood whereas others are only assumed or empirically repre-
sented. Many such models extensively use parameterizations, where 
parameters either represent the processes too small for the compu-
tational grid, as in climate modelling, or modulate model behaviour  
based on landscape or vegetation characteristics, as in land-surface and  
hydrological modelling21,22. However, process representations  
and parameterizations are often subject to considerable uncertainty,  
some of which is due to the coarse scale of the models or data noise.

The rapid growth of machine learning (ML) since the 2010s offers 
new opportunities to learn from big data and fill knowledge gaps in 
geoscientific models. Although various forms of physics-informed 
ML have been proposed, there has been a lack of recognition of one 
core strength of ML — differentiable programming. ‘Differentiable’ 
refers to the ability to accurately and efficiently calculate gradients 
with respect to model variables or parameters, enabling the discovery 
of high-dimensional relationships. Understanding the potential of 
differentiable programming and its limitations will show a clear path 
towards combining the strengths of ML and physical models.

In this Perspective, we argue that differentiable implementations 
of geoscientific models offer a transformative approach to simulta-
neously improve process representations, parameter estimation, 
knowledge discovery, and predictive accuracy, by connecting com-
ponents from process-based models (PBMs) and ML-based models. 
We discuss the benefits and problems with traditional PBMs and ML. 
By contrasting them, we identify core strengths of ML and discuss the 
possibility of combining the strengths of both while mitigating their 
limitations. Then we formally introduce differentiable modelling (DM) 
as a new genre of modelling. We describe various classes of DM and give 
examples in geosciences to demonstrate its promise.

PBMs and ML in the geosciences
PBMs and purely data-driven ML are two valuable approaches for mod-
elling geoscientific systems; however, each has limitations. There are 
various similarities and differences between the two models, which 
shows that their advantages are not mutually exclusive (Box 1).
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reported when compared with conventional approaches, and such 
high-quality predictions can be made even when a good understanding 
of the underlying processes is not available. These results imply that 
previous models, despite their usefulness, were not fully exploiting the 
information available in the data29, and they can benefit from leveraging 
the strength of ML (Supplementary Table 1).

Nevertheless, purely data-driven ML approaches have important 
limitations. First, ML typically requires large volumes of data, which 
unfortunately are not often available in many geoscientific applica-
tions64,77, where variables are only measured at tens, hundreds, or 
thousands of sites. For example, water quality data are sparse and 
inconsistent in temporal and spatial coverage10,78. For rare and extreme 
events that critically affect human activities, such as floods, droughts, 
and earthquakes, available data are even scarcer.

Second, ML is not exempt from deficiencies and can struggle with 
data errors, incompleteness, out-of-sample or out-of-distribution 
predictions, and bias in the inputs or training data. The quality of ML 
models is therefore inherently limited by the quantity, diversity, and 
quality of the observations59,79,80. Purely data-driven ML models can, at 
best, nearly perfectly replicate patterns in the training data; therefore, 
they invariably inherit issues from the training data including explicit 
or spurious biases, inadequate spatiotemporal resolutions (such as 
with satellite-based observations), and the inability to account for 
non-stationarity (shifting background statistical properties) or unseen 
extremes in time series owing to the short data record.

Third, ML algorithms are based on correlations and not causal-
ity, regarding both attributes and temporal changes. There are often 
confounding factors in data, meaning that ML models can produce the 

Box 1

Comparing purely data-driven neural networks and process-based 
models
Similarities
Mathematical form: Purely data-driven neural networks (NNs) and 
purely process-based models (PBMs) have similar mathematical 
forms. NNs are described by

=y g u x A( , , ) (8)W

where y is the simulation output, x is the dynamic forcings, u is the 
state variables, A is the semi-static attributes and W = argmin(L(y,y*)), 
which describes the weights of the neural network, g, where L is the 
loss function, which quantifies the difference between simulation 
outputs y and observations y*.

PBMs have the form

=y f u x A( , , ) (9)θ

where θ = argmin(L(y,y*)), which describes the physical parameters of 
the PBM, f.

Programmatically differentiable: Purely data-driven NNs are 
programmatically differentiable, and although traditional PBMs are 
not programmatically differentiable they can be reimplemented in 
machine-learning (ML) platforms.

Differences
Training and calibration: NNs can be trained using data-driven 
training methods such as gradient descent, with gradient 
computations supported by differentiable programming, whereas 
PBMs are typically calibrated at limited numbers of sites or for a 
limited number of parameters, although efficient many-site,  
multi-objective methods exist.

Architecture: NNs have generic structures with many weights that 
allow the model to flexibly learn a wide range of functions. PBMs 
use physically based equations (structural priors) representing 

human understanding of physics, with a limited number  
of parameters.

Data: NNs are capable of efficiently gaining accuracy and 
generalizability as datasets grow, with beneficial scaling for  
big data. By contrast, PBM learning saturates at small quantities  
of data, although they can often make reasonable predictions 
despite limitations in data accuracy, resolution, and availability.

Unknown processes: NNs can discover patterns and functions 
from data that might be unknown or uncertain, whereas for PBMs all 
processes must be explicitly specified by the modeller, even if they 
are only assumptions.

Domain knowledge: The generic model architecture of NNs makes 
them easy to develop even without domain expertise, and they can 
accommodate large knowledge gaps. PBMs require specialized 
domain knowledge.

Physical laws: NNs are not guaranteed to respect physical laws, 
unlike PBMs, which always respect physical laws.

Inspection: NNs only output trained variables, whereas 
PBMs provide access to many intermediate variables that aid 
interpretability.

Interpretation: NNs require much effort to interpret, and internal 
variables are not guaranteed to have physical meaning. PBMs 
contain equations representing physical processes, allowing 
narration of model reasoning and formal tests of alternative 
representations.

Education: NNs are taught in computer science or data  
science curricula, whereas PBMs are taught in engineering  
or science curricula.
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right results for the wrong (causal) reasons, potentially making predic-
tions under different circumstances or outside the training domain 
less reliable. Although causal representation learning81 and explain-
able artificial intelligence (AI) methods82–84 are promising approaches 
for overcoming this limitation, challenges still remain with learning 
causality and interpretability.

Finally, purely data-driven ML models cannot predict untrained 
variables (those not provided as training targets) because ML-based 
models are inherently designed to only output the training targets. 
Therefore, it is difficult for ML approaches to elucidate how events 
unfolded. For example, if soil moisture is unobserved, pure ML models 
cannot state whether a flood occurred because the soil was saturated. 
Therefore, it is difficult to use ML for hypotheses formation and 
communicating with stakeholders.

In summary, ML alone is unlikely to satisfy geoscience modelling 
needs or answer specific scientific questions. Methods that can flexibly 
interrogate an ML model, encode causality and prior information, and 
identify missing physics anywhere in the model chain could be valuable.

Differentiable programming
Having considered the successes and limitations of NNs, it is important 
to identify their foundational strengths and work to overcome their 
limitations. In this section, we explain how differentiable program-
ming is a computing framework that supports the efficient training of 
NNs and how, when generalized, it could deliver many philosophically 
and practically transformative outcomes to geoscientific modelling.

Explaining the success of machine learning
Traditional process-based, statistical, or hybrid modelling approaches 
for Earth systems have long used optimization, such as for parameter 
calibration (see ‘Similarities’ in Box 1), but high-dimensional optimiza-
tion is always challenging because of computational expenses. Only 

gradient-based optimization, which updates the network weights 
by explicitly tracking their contributions to the outcome, makes it 
computationally tractable to learn from big data and efficiently train 
the large numbers of parameters necessary to approximate complex 
unknown functions.

The ability of generic NN architectures such as transformers, 
CNNs, and recurrent NNs to approximate unknown functions has 
produced desirable outcomes (Fig. 1). First, researchers from any 
field can concentrate on a few generic architectures, permitting cross-
domain sharing of knowledge and experience. Second, NNs can help 
to identify previously unrecognized physical relationships. Third, NN 
training can scale up with the data (in terms of accuracy, generaliz-
ability, and efficiency)79,85, unlike PBMs in which learning can quickly 
saturate after some limited calibration of parameters or functions59. 
All of these abilities are only possible because NNs can be trained with 
a large number of network weights, providing a large learnable func-
tion space86,87. The number of weights easily exceeds the capabilities 
of conventional optimization algorithms for PBMs. The LSTM models 
widely used in hydrology can contain ~500,000 weights whereas large 
language models developed since about 2018 already have trillions of 
weights, which can lead to the emergence of intelligence not observed 
at smaller scales88. In contrast, traditional evolutionary89–91, genetic92, 
or particle swarm optimization methods93 can hardly handle more than 
a few dozen independent parameters (Box 1).

The computing framework that trains NNs with large amounts of 
weights is known as differentiable programming94,95. This approach 
involves designing programmes in such a way that their outputs are 
differentiable with respect to inputs, using cheaply obtained gradients 
to update the parameters via various first-order gradient-descent meth-
ods96. Differentiable programming in NNs is largely enabled by auto-
matic differentiation (AD), which decomposes a complex algorithm into 
a sequence of elementary arithmetic operations and then applies the 

Di�erentiable
programming

Technology

Technical benefits

Scientific benefits

Knowledge outcomes

Data-driven training
methods

Physically based equations
(structural priors)

Pros of deep learning (DL)

Flexibly learns a wide
range of functions

Mid-size search space,
finds true function fast

Predicts even with
limited data availability

Accommodates large
knowledge gaps

Supports quick tests of
competing formulations

Can isolate specific
processes to investigate

Generates highly
accurate predictions

Aids rapid reduction
of knowledge gaps
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intermediate variables
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Benefits of di�erentiable modelling

Synergies from combining DL and PB Pros of process-based modelling (PBM)

Fig. 1 | Synergies from combining machine learning and process-based 
modelling. Machine learning (ML, blue boxes) produces accurate results with 
easy-to-use models, resulting from the complexity of neural networks and the 
technologies that make it feasible to train such complex models. The most 
fundamental of these technologies is differentiable programming. Process-based  

models (PBMs, green boxes) permit human definition and interpretation 
of model logic. With differentiable modelling (DM), which incorporates 
differentiable non-ML model components from PBMs such as physically based 
structural priors, additional features can be obtained (orange boxes) while 
retaining and augmenting the advantages of both ML models and PBMs.
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chain rule of differentiation to compute the derivatives. Reverse-mode 
or forward-mode AD is provided by ML platforms such as PyTorch97, 
JAX98, Julia99, and Tensorflow100. Models written on these platforms 
can often be easily made programmatically differentiable even with 
mathematically indifferentiable operations (such as thresholding or 
IF statements), as long as they are piecewise differentiable.

Therefore, we suggest that differentiable programming is the 
feature that distinguishes NNs from other types of models, owing 
to its ability to efficiently learn from large amounts of data and tune 
a very large number of parameters. Recognizing that differentiable 
programming is not exclusive to ML reveals a pathway to unify NNs and 
geoscientific PBMs. This unification requires only minor modifications 
to conceptual modelling and implementation strategies but could open 
new doors for scientific discovery.

Differentiable modelling
In this section, the scope of the discussion is expanded beyond differ-
entiable programming and AD, and the term differentiable modelling 
(DM) (Fig. 1) is used to refer to joint physics–NN modelling approaches 
that use any method for rapidly and accurately producing gradients to 
achieve the large-scale optimization of the combined system. A distinct 
feature of DM is the requirement for predominant programmatical 
differentiability — that is, the whole model must support gradient cal-
culation from the start to the end of the workflow — to ensure that the 
trained NNs can adapt and evolve based on the data. Purely data-driven 
NNs already use differentiable programming (almost entirely through 
AD), but ‘differentiable modelling’ is used here to also emphasize the 
hybrid nature of the overall approach.

An alternative to AD is adjoint methods, which solve accompany-
ing equations (called adjoint equations)101–103 for the derivatives and 
take advantage of the multiplicative nature of the chain rule to save 
computational time. AD differentiates through low-level calculations, 
whereas adjoint methods differentiate using higher-level functions 
or mathematical equations such as nonlinear equations or differen-
tial equations104. Other gradient estimation methods, such as finite 
difference approaches, are intractable for any reasonably sized NNs 
(10,000 weights would require 10,001 forward model evaluations). 
Second-order methods, such as the Newton–Raphson method, have 
not gained popularity for the training of NNs owing to the costs and 
challenges of computing the Hessian matrix. Many NNs are imple-
mented on platforms that support differentiable programming, 
whereas most existing PBMs are not.

DM pushes the boundary of physics-informed ML and can be 
considered a branch of scientific ML105,106 that emphasizes improving 
process representations and interpretations. There are two perspec-
tives from which differentiable models can be viewed (Fig. 2b). First, 
they can be viewed as ML models that are constrained to a smaller 
searchable space by the structural priors (model structures and equa-
tions representing scientific understanding or hypotheses and kept 
unchanged during model training). Thus, DM can still reap the benefits 
of big data when available. Second, they can be viewed as PBMs that 
are augmented with learnable and adaptable components (and thus 
an expanded searchable space) provided by NNs, can be trained in  
data-scarce scenarios, and provide elucidation of processes.

Approximating functions inside the model
Although efficient gradient calculation might seem to be merely a 
technical change, it could also lead to a transformation of modelling 
philosophies. First, the ability to approximate complex, unknown 

functions using data can broaden the type of questions that can be 
asked, by treating trusted model components as priors and focusing 
on improving representations of the uncertain components. This idea 
can be explained in concise mathematical terms using a physics-based 
model g,

y g u x θ= ( , , ), (1)

where y is the environmental variable to be predicted, and u, x, and θ 
represent state variables, dynamic forcings, and physical parameters, 
respectively. This representation of a physics-based model is generic 
and encompasses differential equations, for example:

u t g u x θ∂ /∂ = ( , , ). (2)

Traditional inversion algorithms estimate the values of parameters 
in question (essentially asking, “θ = ?”) and require that the functional 
form of the model g is assumed a priori (except for some rigid meth-
ods such as non-parametric regression, which require complicated 
derivations and specialized training algorithms, and thus have not 
gained popularity). However, differentiable models make it possible to 
interrogate the functional form of g, by training, for instance, a neural 
network (NN) on observed data to replace g:

y u x θ= NN ( , , ) (3)W

where W represents the high-dimensional weights. The function that is 
estimated with this approach could also be a parameterization scheme, 
as in differentiable parameter learning99, for example:

y g u x θ A= ( , , = NN ( )) (4)W

where A is some raw information relevant to the physical parameters θ.  
DM makes it possible to place questions precisely in the model, to 
extract fine-grained relationships from data (Supplementary Fig. 1). 
For example, for a model written simply as

y g g g g u x θ= ( , , ( , , )) (5)1 2 3

where g1, g2, g3 are process equations as subcomponents of the model, 
g3 can be replaced with an NN:

y g g g u x θ= ( , , NN ( , , )) (6)W
1 2

As mentioned earlier, equation (6) can also encompass differential 
equations:

u t g g g u x θ∂ /∂ = ( , , NN ( , , )) (7)W
1 2

The differential equation terms including the NNW will be inte-
grated in time using numerical approaches. NNW could represent  
rainfall–runoff relationships107, or a constitutive relationship produc-
ing effective hydraulic conductivities in a subsurface reactive transport 
model108,109.

In the above equations, the physical process equations provide a 
backbone (or inductive bias) for the overall model: in equation (4) the 
physical backbone is g; in equations (5–7), the physical backbone is g, 
g1, and g2. The unchanged parts (structural priors) such as g, g1, g2 serve 
as physical constraints. Insights can be gained by simply visualizing the 
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relationships learned from NNW (refs. 46,110) or by applying knowl-
edge distillation methods111. Better process representations can also 
be obtained for some model components such as g3, meaning that 
questions can be posed with high precision and flexibility. Moreo-
ver, as a purely data-driven NN learns an overall mapping from x to y,  
it can intertwine many processes, making it and its results difficult 
to interpret. By breaking the mapping down into multiple subparts 
and inserting prior knowledge, the scope of learning and the com-
plexities of the learned relationships are inherently reduced, improv-
ing the interpretability and robustness of the conclusions (Fig. 2a;  
Supplementary Fig. 1).

DM provides a framework for combining deductive reasoning and 
inductive learning. Purely data-driven models are inductive and seek 
to derive almost all relationships from data, whereas PBMs first posit 
hypotheses and then test them using data. DM posits a user-defined 
number of structural assumptions, and then identifies other parts of 
the model from the data. This design follows the traditional scientific 
approach that identifies parsimonious models to reflect the general 
properties of the phenomenon, along with a quantification of the 
predictable aspects that are not yet well understood112.

State-of-the-art predictive performance of DM
Purely data-driven ML architectures have set a high bar for accuracy in 
multiple geoscience domains; therefore, it could seem plausible that 
there would be a substantial loss in accuracy when less-flexible process-
based components are added. However, it is uncertain whether generic 
ML architectures are necessary to achieve good model accuracy when 
we can use NNs as components of a model to learn from and adapt to 
data. It is easy to see that ML-level performance could be achieved if the 
searchable space of the PBM is enlarged to include a good approxima-
tion of the true function (Fig. 2b), directed by gradient-based training. 
The paths taken to upgrade the models will be dependent on experts’ 
intuition; therefore, it could take some time for unified approaches 
to emerge.

Many dynamical systems in the geosciences, such as rainfall– 
runoff in a basin, crop growth, or nutrient release, can be described by  
ODEs. To solve these equations, the numerical model is run for many 
steps. This approach is mathematically similar to recurrent NNs, and 
the time integration operation is similar to the functionality achieved 
by some NNs such as residual networks113,114. Therefore, it should not be 
surprising that learnable PBMs with some ML components can perform 
as well as deep networks.

As we will discuss with some geoscience examples, it has already 
been demonstrated that the performance of differentiable, learnable 
models can approach that of purely data-driven models, and in some 
cases, when extrapolation is key, even exhibit advantages. Compared 
with purely data-driven ML, DM trades generality for interpretability 
and the ability to ask specific questions, and yet may also not sacrifice 
accuracy.

Differentiable modelling in geosciences
Here we advocate for a new modelling genre for Earth and environ-
mental processes, which we call DM in geosciences. DM in geosciences 
combines geoscientific physical equations (called structural priors) 
with NNs to simulate processes, update process representations, learn 
meaningful parameters, quantify uncertainty, and ask a range of ques-
tions (Box 2). DM could also exploit gradients for other purposes such 
as sensitivity analysis or trajectory optimization where human influ-
ences on Earth systems are simulated, such as with reservoir manage-
ment. DM seeks to integrate the optimizing and learning capabilities 
of NN models with geoscientific process descriptions. Differentiable 
models could evolve to gain process knowledge while improving the 
model predictions.

The features of a successful DM model could include predictive 
accuracy and transferability equal to or greater than that of purely 
data-driven models for extensively measured variables; structural 
evolution capabilities, which could improve the parameterization and 
formulation of the processes; accurate generalizability to data-sparse 
regions or the long-term future; conservation of mass, energy, and 
momentum; consistency of internal physical fluxes and states that can 
provide a full narrative of the events and full support to downstream 
processes; and efficient isolation of one uncertain model component 
at a time to learn physics with reduced ambiguity.

Suitability of DM for geosciences
DM is well suited to geoscience applications owing to the nature of the 
datasets and problems. First, geoscientific data are strongly imbal-
anced in spatial extent, in temporal coverage, and in the number of 
variables observed, and there is noise in the observational datasets 
owing to instrument limitations and observability. Although satellites 
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Fig. 2 | Why differentiable models are interpretable and performant. 
a, Purely data-driven machine-learning (ML) models learn direct mapping 
relationships from x to y, which intertwines many processes and is thus difficult 
to understand. Differentiable models make it possible to break the model into 
portions gn (for example, here g1 and g3 are unknown) to narrow the scope of 
the relationships to be learned (potentially with fewer data than training a pure 
ML model) for better interpretability. b, Differentiable models can be viewed 
as either: ML models that are guided into smaller searchable spaces (ovals) 
by structural priors; or process-based models with expanded search space 
supported by learnable units. The background colour gradient indicates model 
optimality, related to the cost function if there were an infinite amount of data 
available. The location marked as optimal (with a dot) indicates the ideal model 
solution. Differentiable models are more likely to contain and discover the ideal 
model solution, thus enhancing both process understanding and predictive 
accuracy.
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can be used to indirectly estimate many variables115 including global 
leaf area index116 and coarse-resolution surface soil moisture (SMOS, 
soil moisture and ocean salinity)117,118, other variables such as photosyn-
thesis rates119, soil respiration, and streamflow are only measured at a 
limited number of sites, especially in Africa and Asia120. Additionally, 
there is very limited knowledge of subsurface properties, such as the 
thicknesses, depths, and conductivities of aquifers. Purely data-driven 
ML can be biased by these data limitations; however, these biases could 
be partially alleviated by including physics as an inductive bias. Indeed, 
preliminary analysis shows that differentiable models with a PBM as the 
backbone can outperform LSTM in regional extrapolation121.

The second major motivation for using DM in the geosciences is 
the non-stationarity of processes such as climate and land-use land-
cover, which could drive many systems out of the previously observed 
range of variability122. Although the performance of ML models is highly 
competitive70,121, the accuracy declines substantially when faced with 
non-stationary processes121,123. Therefore, DM could potentially repre-
sent future trends better than purely data-driven models because it is 
constrained by physical formulations121.

Third, DM can output any diagnostic variable calculated using 
the process-based equations within a model; therefore, model con-
ditioning and/or data assimilation operations can be performed with 
sparse and scattered data. Model conditioning is where the model is 
constrained using observations to improve overall model dynamics. 
For example, a hydrological model can be conditioned by satellite 
soil moisture or streamflow data so that it can obtain more accurate 

predictions of vegetation water use124, primary productivity, or snow 
water equivalent125. For data assimilation, the model uses observations 
of one variable to improve the short-term forecast of another variable. 
Additionally, observations of the first variable can be used to update 
the state variables of the model.

Finally, DM could improve the quality of physical parameters, 
which strongly control the behaviours of the models. There is often no 
ground-truth information for the parameters, and they require inver-
sion from observations or high-resolution simulations. Since about 
the 1980s, parameter estimation has been fraught with uncertainty 
and ambiguity. Because different parameters can produce similar 
outputs and are sensitive to spatiotemporal resolutions, calibration 
at a geographic location can often lead to equifinality126–128. Extending 
parameters to unmonitored locations requires regionalization, which 
can improve robustness, but it is difficult for traditional regionaliza-
tion methods to achieve optimal results. Training NNs as parameter 
generators could improve parameter generalization and performance, 
while also providing insights about parameter sensitivity. Using all the 
available data points to constrain the parameters can generate favour-
able scaling behaviours with more training data leading to improved 
performance, efficiency, and generalizability124.

The cost of obtaining differentiability. Reimplementing a model 
into a differentiable form can incur non-trivial developmental costs. 
Mathematical changes might be required to adapt previously non-
differentiable mathematical operations, for example by replacing 

Box 2

Geoscience questions that differentiable modelling could help to 
answer
Differentiable modelling (DM) could help almost all geoscientific 
domains in knowledge discovery and improving simulation quality. 
Some core domains and example questions are as follows.

•• What is the relationship between x and y?
-- Hydraulics: How do we estimate floodplain hydraulic 

parameter values efficiently at large scales using new sensing 
data?

-- Hydrology: How does global groundwater-dominated baseflow 
respond to climate change?

•• What physics is missing from this differential equation?
-- Soil science: Can we find functional forms to express 

soil hydraulic properties (water retention and hydraulic 
conductivity) that describe non-equilibrium flow?

•• What should be the assumption here?
-- Ecosystems: What is the main driver of reduced plant 

production: vapour pressure deficit or deficit in soil moisture?
-- Hydrology: What is a proper, scale-appropriate way to 

parameterize groundwater storage and flow at the global scale?
•• How does factor A influence parameter β?

-- Geohazards: Can we use space-based observations of 
geohazards such as landslides to quantify subsurface 
properties (so that we can better predict future events)?

-- Water quality: How and to what extent do river chemistry and 
quality vary across gradients of climate, vegetation, land use 
and geology conditions? Thus, how do they change in a warmer 
climate and with intensified human modification?

•• Is a process causing phenomenon P?
-- Climate: Is CO2 fertilizing plants and increasing global 

photosynthesis?
•• What will happen under new environmental conditions?

-- Agriculture: How can we predict crop phenology dynamics  
(for example, planting, shooting, flowering, harvesting) and 
assess potential production risk under future climate change, 
which involves interconnected biotic, abiotic, and human 
influences?

-- Cryosphere: How can we use both physics and data to create 
more accurate models for ice dynamics within the cryosphere 
and better constrain its fate under climate change?

•• What is the information content of datasets (inputs, training 
targets)?
-- Coastal: How can we better leverage emerging sensing 

platforms while improving our model representations of 
sediment transport and nonlinear wave–wave interactions  
to infer nearshore bathymetry at large scales?
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indexing with convolutions, or to improve parallel efficiency. Although 
DM does not have to run on graphical processing units (GPUs), ena-
bling the use of GPUs would improve the computational efficiency 
by orders of magnitude compared with approaches that mainly use 
central processing units (CPUs), notwithstanding some current chal-
lenges. Our opinion is that in most cases, the cost incurred is worth 
the investment owing to the potential to interrogate the model, make 
changes, and learn physics. The reimplementation could also provide 
an opportunity to re-examine many of the common model assumptions 
or implementation choices.

Classes of DM in geosciences
NNs can be used in various ways for geoscientific problems, ranging 
from learning physical parameters124 to updating structural assump-
tions in a component of the model79, or estimating time-dependent 
forcing terms of the natural systems. However, we emphasize that 
DM is different from previous concepts introduced in physics-guided 
ML or not-fully-differentiable models in terms of methodology  
(the equations in DM must be fully differentiable), mission (DM aims to  
advance process understanding), and philosophy (whether DM treats 
physical laws as truth). This section briefly describes early explorations 
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and demonstrations of DM in geosciences, categorized by how the 
gradients are computed and used. The examples discussed in this sec-
tion, which are not exhaustive, explain the concepts and are meant to 
inspire further innovation.

Differentiating through numerical models. The most straightforward 
DM approach is to differentiate through numerical models by leverag-
ing ML platforms; this approach is also the most similar to traditional 
models. Both AD and customized backward functions (adjoint) can 
be used to keep track of gradients at relatively elementary levels of 
operations.

Automatic differentiation is the most obvious low-hanging fruit to 
adapt existing models into DM. For models without iterative solvers, ML 
platforms such as PyTorch, Julia, or JAX could be used to reimplement 
an existing physical model coded in Fortran or C/C++ to obtain a dif-
ferentiable model version through AD and ensure reproducibility. The 
differentiable model can then be connected to NNs by simply suppling 
inputs to the NN and feeding its outputs to the rest of the model. The 
physical laws are enforced, providing an efficient forward simulator 
for any initial, boundary,  and forcing conditions. The relationships 
learned using this approach could also be transferred to existing mod-
els to immediately support operational work such as flood and weather 
forecasting or food production estimates.

For problems that need iterative solvers, such as systems of nonlin-
ear equations or stiff ODEs that require implicit time-stepping, direct 
AD can consume too much memory, but adjoint-based backward func-
tions could be used instead at the iterative solver level (known as the 
discretize-then-optimize approach). This method can be mixed and 
matched with AD. Alternatively, adjoint functions could be written at 
the differential equation level, in which case the adjoint differential 
equation is solved backwards in time to compute the gradients (known 
as the optimize-then-discretize approach)114. Care must be taken with 
the optimize-then-discretize approach as sometimes low-accuracy 
gradients are obtained, which can interfere with the training of the 
model129.

Adjoint methods have also been used to solve optimization prob-
lems governed by PDEs, by either deriving the adjoint equations manu-
ally130 or more rarely with automated programmes131. Adjoint methods 
have the potential to be more computationally efficient than AD for 

certain problems. Adjoint solvers have long been successfully used 
for numerical weather predictions for the purpose of data assimila-
tion, with systems such as 4DVar132, and groundwater modelling133, 
for the purpose of calibration. However, these approaches did not 
use NN training machinery, perhaps because the role of differentiable 
programming was not clear at the time.

A geoscientific example of differentiating through numerical 
models is the adaptation of the conceptual hydrological model Hydrol-
ogiska Byråns Vattenbalansavdelning (HBV), a system of ODEs. HBV 
was reimplemented on PyTorch and coupled to NNs which provide 
a regionalized parameterization107 (with ‘regionalized’ meaning that 
the parameterization is trained by all sites simultaneously, which pro-
vides a strong constraint and improves the robustness of the model) 
(Fig. 3). Strikingly, the reimplemented HBV can simulate streamflow 
with accuracy close to that of LSTM107. The soil moisture–runoff rela-
tionship can be replaced with an NN to learn the relationship between 
soil moisture, precipitation, and runoff (similar to a constitutive rela-
tionship) for threshold-like watershed systems. This implementation 
also output untrained variables such as evapotranspiration and base-
flow, which agreed well with alternative estimates. AD was the main 
method of obtaining gradients, but to improve the numerical accuracy 
and parameter robustness of the model134,135 adjoint backward func-
tions for implicit time-stepping can also be incorporated. Moreover, 
in spatial extrapolation cases, the differentiable model moderately 
outperformed ML models (LSTM in this case) with respect to daily 
metrics like the Nash–Sutcliffe model efficiency coefficient, as well 
as decadal-scale trends121 (Fig. 3) owing to the structural constraints, 
demonstrating its potential for global hydrological modelling.

Similarly, the hydrological model EXP-HYDRO was encoded as 
a recurrent NN architecture and coupled with fully connected NNs,  
which served as the parameterization pipeline and the post-processor to  
improve runoff125. Integrating NNs with physics in these models led  
to robust transferability across basins. Additionally, hybrid neural ODE  
approaches, in which NNs replace the differential-equation-based 
hydrological model, produce more accurate predictions than single-
basin LSTMs, but retain the interpretability of a mechanistic model136. 
Differentiable models have also been used for biogeophysical and eco-
system modelling, to improve parameterization for photosynthesis137 
at large scales.

Fig. 3 | An example differentiable hydrological model. a, Sketch of a 
differentiable hydrological model using the process-based HBV model as a 
backbone. The purple dashed lines illustrate the back-propagation paths used 
to train the two embedded neural networks (NNs), but back-propagation can 
update any component including making corrections to precipitation. Green 
symbol backgrounds indicate static parameters while pink symbol backgrounds 
indicate time-dependent parameters. b, Differentiable models (δ with static 
parameters and δ(βt,γt) with two time-dependent parameters) can approach 
the performance of machine learning (ML) models such as long short-term 
memory (LSTM) networks and greatly outperform a traditional parameterization 
approach (multiscale parameter regionalization, MPR) applied to the mesoscale 
hydrological model (mHM) for the in-sample temporal test. They also 
outperform LSTM in a spatial extrapolation test for predictions in ungauged 
regions (PUR). Results are based on the basins from the Catchment Attributes 
and Meteorology for Large-sample Studies (CAMELS) dataset, where high 
Nash–Sutcliffe efficiency (NSE) values indicate better performance. Bottom, the 
differentiable models can output evapotranspiration with high accuracy whereas 
LSTM cannot at all. The accuracy was assessed using the correlation of the output 
with a satellite product. c, For PUR (representing spatial extrapolation: trained 

in some regions and tested in another large ungauged region), the performance 
of the differentiable models (black) surpasses that of the LSTM networks (pink) 
with higher R2 and lower root-mean-square error (RMSE) for predictions of the 
decadal-scale trends in annual mean streamflow (left) or high flow (right, Q98). 
This framework delivers high accuracy, robust generalizability, interpretability, 
multiphysical outputs, and computational efficiency at the same time. ET, 
evapotranspiration; P, precipitation; Q0, quick flow; Q1, shallow subsurface flow; 
Q2, baseflow; QS, simulated streamflow; Qobs, observed streamflow; Sp, snowpack 
water storage; Ss, soil water storage; Suz, upper subsurface zone water storage; 
Slz, lower subsurface zone water storage; T, temperature; θuzl, upper subsurface 
threshold for quick flow; θK0 recession coefficient for quick flow; θK1, recession 
coefficient for shallow subsurface flow; θK2, recession coefficient for baseflow; 
β, shape coefficient of the runoff relationship; γ, newly added dynamic shape 
coefficient of the evapotranspiration relationship. gA(A,x) is the neural network 
unit to learn physical parameters, which is fed static attributes (A) as well as 
meteorological forcing data (x). Figure 3a,b adapted with permission from 
ref. 107, Wiley. Figure 3b,c adapted with permission from ref. 121, CC BY 4.0, 
http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
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Apart from models similar to ODEs, direct differentiation can 
also be applied to models that operate on graphs to represent natural 
systems, such as river networks. An advective dispersion equation 
implemented on a river graph to simulate streamwater temperature 
performed better than LSTM in data-sparse situations138. Similarly, a dif-
ferentiable river routing model was trained on daily discharge at a gauge 
downstream of a river network to learn a parameterization scheme for  
Manning’s roughness coefficient (n) (ref. 139). It learned a power-law-like  
curve for the relationship between n and catchment area, which is  
consistent with the expected behaviour from the literature.

Another, more adjoint-focused example uses NNs to replace 
unknown functions or operators in a PDE, before discretizing the PDE 
using a finite element method, and calculating the gradient with the  
adjoint method; this approach recovered a nonlinear coefficient for  
the Poisson and heat equations130. To overcome the challenge with New-
ton iteration convergence (an approach to find the root to systems of  
nonlinear equations) owing to the incorporation of NN and the lack of a 
preconditioner, an operator-splitting approach was used to discretize 
the PDE into two subproblems. The first subproblem only has differ-
ential operators of the PDE, not NNs, whereas the other subproblem 
with NNs can be solved by integrating NNs using a Gaussian quadrature 
rule. This approach can be similarly applied to equations in geosciences 
such as subsurface reactive transport equations.

Connecting NNs with PBMs through surrogate models. If an NN 
is trained as a surrogate for a PBM (reproducing its behaviour), this 
surrogate model can then be connected to other NN components in 

a DM framework because the NN surrogate is programmatically dif-
ferentiable. Many studies trained surrogate models for hydrological, 
hydraulic140,141, and reactive transport models, and then further used 
the surrogate models for inversion142 and optimization. In 2021, dif-
ferentiable parameter learning (dPL) by Tsai et al.124 was able to exploit 
the differentiable nature of such a surrogate model for training. They 
connected a surrogate model of the Variable Infiltration Capacity 
(VIC) process-based hydrological model to a neural network ( g) that 
estimates physical parameters of VIC (θ) using some widely available 
attributes (A): θ = g(A). In an ‘end-to-end’ workflow, θ is then sent to VIC, 
whose outputs are compared with observations, effectively turning the 
parameter calibration problem into an ML problem, trained on all sites 
simultaneously using back-propagation and gradient descent (Fig. 4a). 
As a result of this global loss function, dPL exhibits advantages over 
traditional calibration on multiple fronts, for three different datasets 
(soil moisture, CAMELS streamflow, and global headwater runoff). 
The parameter sets are spatially coherent (Supplementary Fig. 2) and 
extrapolate better in space (Fig. 4b,c). dPL is hyperefficient: a job that 
normally takes a 100-CPU cluster two to three days now takes a single 
GPU one hour. dPL allows the combined model to output unobserved 
variables while alleviating the notorious problem of parameter equifi-
nality126, and exhibits a favourable scaling relationship (with increasing 
volumes of data).

The initial effort associated with the surrogate model approach 
is low compared with fully recoding a model; however, the surrogate 
models might need to be continuously retrained as the optimization 
goes to different regions of the parameter or state space. Furthermore, 
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Fig. 4 | Differentiable parameter learning. a, Diagram showing the basic 
structure of a model using the differentiable parameter learning (dPL) 
framework called gA. b,c, Comparisons of uncalibrated evapotranspiration (ET) 
rates (mm yr−1) estimated from dPL and traditional algorithms. dPL has a stronger 
correlation with observational data from the moderate resolution imaging 
spectroradiometer (MODIS) satellite product than the traditional site-by-site 

calibrated shuffled complex evolutionary algorithm (SCE-UA). Each point on the 
plot is the temporal mean ET from 1/8 of a latitude–longitude–degree NLDAS-2 
grid-cell. Yellow colour indicates higher density of points. The dPL algorithm 
works with both fully differentiable and surrogate models, and obtains good 
generalizability via a global loss function. This figure is adapted from ref. 124, 
CC BY 4.0, http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
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a surrogate model does not allow direct changes to the model structure. 
Therefore, this approach is only recommended for highly complex 
and computationally expensive models that are challenging to reim-
plement. Such cases could arise in climate models, or hydraulics or 
subsurface modelling, in which the governing PDEs that describe fluid 
dynamics and sediment transport must be solved with high spatial 
and temporal resolution requiring non-trivial computational code 
or complex boundary conditions. Although not the primary focus or 
philosophical theme of DM, surrogate models can certainly accelerate 
and aid its purpose. The possibility of solving PDEs with NNs has also 
attracted increasing attention, with NNs being used in many cases 
to approximate the numerical solution of the PDEs143–145, such as the 
Richards equation, which describes the movement of water in soil146. 
Differentiable surrogate models can also be used to invert bathymetry 
measurements for 2D hydraulic simulations147.

Physics-informed neural networks. Although first published in 2017, 
physics-informed neural networks (PINNs)109,148–150 could be perceived 
as a category of DM as the gradient information is critically used. PINNs 
pose problems in a unique way, seeking to train a neural network with 
space–time coordinates as inputs, h(t,x) where t is time and x represents 
spatial coordinates such that h(t,x) agrees with known data points at 
(t,x). The derivatives dh/dx, dh/dt and so forth, which can be obtained 
via AD, are forced to satisfy the governing partial differential equa-
tions. Physical parameters could also be part of the inputs to the h 
network150. PINNs have been tested on applications in many domains, 
and there have been a number of good reviews of this work145,151. PINNs 
have many uses such data assimilation149 and learning governing equa-
tions, but, as with other methods, there are also limitations. Obviously, 
the function h(t,x) is tied to the initial and boundary conditions, so it 
needs to be trained separately for each initial/boundary condition pair, 
and the form of the inputs limits the neural network to certain types 
(multilayer perceptron network) that are not easy to train. However, 

the learned parameters and constitutive relationships can describe the 
system under a wide range of boundary and initial conditions. Further-
more, the fidelity of the trained network to physical equations must be  
carefully examined.

In geosciences, a PINN method for learning unknown parameter 
fields and constitutive relationships was proposed109 (Fig. 5). As an 
example, steady-state groundwater flow in an aquifer with an unknown 
conductivity field and unsaturated flow in the vadose zone with an 
unknown pressure-dependent conductivity were considered. In the 
unsaturated flow application, it was assumed that only sparse measure-
ments of pressure head were available. The quantities of interest were 
the unsaturated conductivity as a function of the pressure head, and the 
pressure head field. Notably, it was assumed that no measurements of 
the unknown parameters were available. In the proposed PINN method, 
both quantities of interest were represented with neural networks 
(NNs) (with unknown parameters). This step created a differentiable 
model of the unsaturated flow in the vadose zone. It was also assumed 
that the pressure head measurements could be described by the steady-
state Richards equation. Substituting the NN approximations into this 
equation formed the axillary residual NN, which shared the (unknown) 
parameters with the primary NNs. For the primary NNs to satisfy the 
governing equation, the residual NN should be zero everywhere in  
the domain — in other words, the exact measurements of the residuals 
are available everywhere in the domain. The NNs were trained jointly 
using the pressure head measurements. Since the conductivity and 
residual NNs share the same parameters, estimating parameters in  
the residual NN also provides the parameterization of the conductivity 
NN. Figure 5a shows the reference pressure head field and the locations 
of the measurements. Figure 5b shows the point errors in the estimated 
pressure head field. The reference and estimated unsaturated conduc-
tivity functions are shown in Fig. 5c. These figures demonstrate that 
the PINN method can learn both the state variable and the constitutive 
relationship very accurately.
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Fig. 5 | Physics-informed neural networks for learning constitutive 
relationships in unsaturated flow models. a, The locations of observational 
pressure head measurements (dots) for steady-state groundwater flow in 
the vadose zone of an unconfined aquifer system with an unknown pressure-
dependent conductivity. The quantities of interest were the unsaturated 
conductivity k as a function of the pressure head u, and the pressure head 
field u(x). The physics-informed neural network (PINN) method was used to 
estimate the unknowns with neural networks in a differentiable model of the 

unsaturated flow in the vadose zone and the reference pressure head field 
(yellow–blue background colour). b, The point errors in the estimated head 
field. c, The reference and estimated conductivities as functions of the pressure 
head. The PINN method can be perceived as a genre of differentiable modelling, 
as the gradient information is critically employed. It can learn both the state 
variable and the constitutive relationship very accurately. Figure is adapted with 
permission from ref. 109, Wiley.
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Compared with DM methods, PINNs have a unique design that 
directly learns the problem-dependent space–time solution of states. 
As a result, PINNs focus on knowledge discovery rather than being 
efficient forward simulators.

ML-dominant hybrid models with limited physics. Another class  
of models that can be used for data-rich applications uses NNs for 
most of the modelling but inserts physical operators for imposing 
the restrictions from a limited number of physical laws. For exam-
ple, LSTM has been used to estimate physical surface fluxes such as 
evaporation, runoff, and recharge constrained only by the mass balance 
equations152. The only control on the fluxes was the observations of dis-
charge; therefore, it was uncertain whether the flux terms maintained 
their physical meaning. The system was later constrained using more 
observations153. A model learning from two data sources outperformed 
(raising the correlation with observations from 0.8 to 0.91) those learn-
ing from only one source when applied to the prediction of soil moisture 
using LSTM trained at 9-km resolution154. The solutions from the LSTM 
were fed into an averaging operation to obtain outputs with 36-km 
resolution, and loss functions were computed at both resolutions and 
compared with in situ and satellite-based observations. Overall, ML-
dominant systems can be strong predictors and a beneficial option 
in DM; however, the interpretability and physical significance of the 
diagnostic intermediate variables must be carefully assessed to avoid  
misinterpreting the results.

Differentiable modelling and physics-guided ML
DM has the potential to tackle a diverse array of questions across vari-
ous geoscientific domains (Box 2), pursuing ambitious goals ranging 
from high accuracy to knowledge discovery. Many strategies have 
been proposed to integrate ML with physics in a seemingly scattered 
manner with a range of complexities, such that it is difficult to classify 
these approaches155. It has not been sufficiently recognized that some 
of these algorithms work fundamentally because they leverage differ-
entiable programming. The scattered nature of the literature makes 
the landscape of ML–physics integration daunting and confusing, while 
hindering innovations based on first principles. However, the concept 
of differentiability can help understand proposed methods by identify-
ing whether a method is fully (end-to-end) differentiable, how it uses 
gradients, how much prior information is inserted, what questions are 
asked, and how it scales with data. Here we outline some similarities 
and differences between differentiable modelling in geosciences and 
some existing methods.

DM and physics-guided (or theory-guided, or knowledge-guided) 
machine learning (PGML)156–158 both seek to combine physics with 
ML, but they differ in their approaches, purposes, and philosophies. 
PGML has been used to introduce physical constraints, for example, 
as regularization or pretraining, to ML methods to gain better gener-
alizability with less training data. In theory, PGML does not need to 
use differentiable programming and usually enforces only a part of 
the physics. In contrast, DM uses numerical physical models as the 
backbone and demands that the entire workflow be differentiable.  
The goal of PGML is to make the ML model more robust, whereas DM 
seeks to update assumptions or discover new knowledge. Philosophi-
cally, when a physical law is introduced in PGML, which often includes 
all the calculations and assumptions to support the law, it is treated as 
truth (albeit sometimes with some tolerance level59). In DM, the physi-
cal laws are not presumed to be correct, and opportunities to update 
existing knowledge are constantly sought.

There are many methods that are not fully differentiable that could 
also be valuable but are beyond the scope of DM159. For example, ML 
algorithms trained offline on datasets could be incorporated into physi-
cal models, such as training an NN on turbulent heat fluxes and insert-
ing it into a hydrological model160; training pedotransfer functions 
that can infer soil parameters from soil hydraulic data161; training an 
atmospheric parameterization network on short-term cloud-resolving 
simulations162; or training ocean-mixing parameterizations on data 
and physical constraints163. Although this approach has the advantage 
that the physical meaning of the NN is clear, direct training data are 
needed for the variable of interest, and the network cannot evolve 
and adapt interactively, for instance to update the model following 
further observations. In the future, these NNs might be incorporated 
into DM. Other offline coupling methods include providing outputs 
of process-based models (PBMs) as inputs to NNs to integrate over 
spatiotemporal heterogeneity164,165, or training ML models to predict 
the PBM residuals166–168.

Summary and future perspectives
In this Perspective we discuss how DM allows varying amounts of struc-
tural priors to be flexibly used along with NNs, ranging from having 
just a few physically based operators to substantially physically based 
structures. Therefore, DM could dissolve the divide between ML and 
PBM. Understanding the role of differentiable programming makes 
it possible to break free from thinking about fixed methods or pos-
sibilities for integrating these two approaches, instead focusing on 
physical priors, uncertainty, unknown relationships, and data. DM is 
suitable for many geoscientific applications, can learn from multiple 
sources of data and multiscale datasets, and can leverage the benefits 
of big or small data. After the proof-of-concept stage of DM, the next 
stage can focus on science needs: updating inadequate assumptions, 
filling knowledge gaps, addressing long-term model deficiencies, and 
delivering practical, scalable benefits to science and society. Many 
geoscientific findings, habitual assumptions, and operational practices 
can be updated by DM.

Computational challenges will arise with DM and may spur 
advances in computer science. Memory usage and vanishing gradi-
ents are major issues when training NNs, especially in cases involving 
iterative numerical solvers. Keeping track of gradients requires storing 
information (this requirement is partly alleviated if checkpointing is 
applied but it is still a prominent issue) and thus uses memory, which  
is especially constrained with GPUs. ‘Vanishing gradients’ means that the 
parameters in deeper layers of the model have very small gradients, so  
they become difficult to train169,170. Vanishing gradients can occur with 
recurrent NNs, which are similar to differentiable models. Moreover, 
differentiable models might have heterogeneous operations (unlike 
NNs, which predominantly use matrix multiplications) so it might be 
challenging to optimize the use of the GPU. For the core DM algorithms, 
as DM opens up a new avenue, new challenges will emerge, driving new 
solutions to address them.

Although current differentiable computing platforms can read-
ily accommodate numerical solvers for ODEs, solving PDEs could 
still be challenging because it requires substantial computation and 
memory, which makes it expensive (in terms of computational power 
and memory usage) to train the connected NNs with a batch of exam-
ples. Architectures suitable for big-data ML training often use massive 
parallelism, which reduces the range of numerical algorithms that 
can be used. Modellers working in DM now need to understand both 
forward and backward methods, adding to the mathematical learning 
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curve. Nevertheless, some differentiable numerical PDE solvers have 
been proposed and tested in computational fluid mechanics, and seem 
to be a suitable alternative to standard solvers171. In the future, suitable 
methods are needed to improve the efficiency of gradient tracking for 
complex numerical schemes.

DM makes it possible to learn processes; therefore, it is to be 
expected that the problem of ‘process non-uniqueness’, also called 
‘process equifinality’, could arise. In traditional hydrological mod-
elling, multiple working hypotheses must be proposed to test dif-
ferent model formulations coupled together33. With DM, we need 
systematic development approaches that can solve part of the problem 
or determine one process at a time to reduce interactions between 
the modules. Furthermore, more mature uncertainty quantification 
techniques are needed to help assess the successes and failures of 
hypotheses going beyond ensemble methods166,172–174. Finally, large 
and multivariate benchmarks and extrapolation tests that match the 
intended use cases to verify the validity and realism of the physical 
outputs will be useful. For example, models for assessing the impact 
of climate change must be tested for long-term projection fidelity 
and models for global-scale applications must pass rigorous spatial  
extrapolation tests120.

The rise in the use of AI for big data and models has been aston-
ishing88,151. We argue that both prediction accuracy and knowledge 
discovery in the geosciences can be improved by combining advanced 
AI model architectures with physics using a differentiable program-
ming framework. Although it is perceived as a technological advance, 
DM can also lead to philosophical changes: for example, it could make it 
possible to ask new questions and test hypotheses on model structure 
or data usage, and therefore use data more effectively. We look forward 
to DM greatly advancing geosciences.
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