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Abstract

Sections

Process-based modelling offers interpretability and physical
consistency in many domains of geosciences but struggles to leverage
large datasets efficiently. Machine-learning methods, especially deep
networks, have strong predictive skills yet are unable to answer specific
scientific questions. In this Perspective, we explore differentiable
modelling as a pathway to dissolve the perceived barrier between
process-based modelling and machinelearning in the geosciences and
demonstrate its potential with examples from hydrological modelling.
‘Differentiable’ refers to accurately and efficiently calculating gradients
withrespect to model variables or parameters, enabling the discovery
of high-dimensional unknown relationships. Differentiable modelling
involves connecting (flexible amounts of) prior physical knowledge

to neural networks, pushing the boundary of physics-informed
machinelearning. It offers better interpretability, generalizability, and
extrapolation capabilities than purely data-driven machine learning,
achieving asimilar level of accuracy while requiring less training data.
Additionally, the performance and efficiency of differentiable models
scale well with increasing data volumes. Under data-scarce scenarios,
differentiable models have outperformed machine-learning modelsin
producing short-term dynamics and decadal-scale trends owing to the
imposed physical constraints. Differentiable modelling approaches
are primed to enable geoscientists to ask questions, test hypotheses,
and discover unrecognized physical relationships. Future work should
address computational challenges, reduce uncertainty, and verify the
physical significance of outputs.
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Perspective

Introduction

Geoscientificmodels encompass awide range of domains, with evolv-
ing scopes and ever-increasing societal importance, especially in the
face of climate change. For example, hydrological models can be used
to help manage water resources”” and plan for extremes such as floods
and droughts®. Vegetation models can predict the impacts of future
climate changes on the carbon cycle and other key biogeochemical
cycles on land* or in the ocean®. Agricultural models can estimate
crop yields and environmental impacts®. Geophysical models aim to
predict land-surface changes caused by processes such as landslides’
and subsidence®; the impact of future warming on glacial melt’; and
the occurrence of earthquakes. Biogeochemical reactive transport
models are used to understand and predict changes in surface and
subsurface water chemistry and quality’® ™. Earth system models” ™
and integrated assessment models''® combine many of these model
types to provide crucial climate projections and guidance for resource
managers and policy makers"?°.

Geoscientific models describe the temporally dynamic responses
of systems to time-dependent forcings, which are modulated by static
landscape attributes; as such, the different model types often have
features in common with one another. Many geoscientific models
can describe multiple processes and are formulated as systems of
nonlinear equations, ordinary differential equations (ODEs), or partial
differential equations (PDEs). Some geoscientific processes are well
understood whereas others are only assumed or empirically repre-
sented. Many such models extensively use parameterizations, where
parameters either represent the processes too small for the compu-
tational grid, as in climate modelling, or modulate model behaviour
based onlandscape or vegetation characteristics, as inland-surface and
hydrological modelling??>. However, process representations
and parameterizations are often subject to considerable uncertainty,
some of whichis due to the coarse scale of the models or data noise.

Therapid growth of machinelearning (ML) since the 2010s offers
new opportunities to learn from big data and fill knowledge gaps in
geoscientific models. Although various forms of physics-informed
ML have been proposed, there has been a lack of recognition of one
core strength of ML — differentiable programming. ‘Differentiable’
refers to the ability to accurately and efficiently calculate gradients
withrespect to model variables or parameters, enabling the discovery
of high-dimensional relationships. Understanding the potential of
differentiable programming and its limitations will show a clear path
towards combining the strengths of ML and physical models.

Inthis Perspective, we argue that differentiable implementations
of geoscientific models offer a transformative approach to simulta-
neously improve process representations, parameter estimation,
knowledge discovery, and predictive accuracy, by connecting com-
ponents from process-based models (PBMs) and ML-based models.
We discuss the benefits and problems with traditional PBMs and ML.
By contrasting them, we identify core strengths of ML and discuss the
possibility of combining the strengths of both while mitigating their
limitations. Then we formally introduce differentiable modelling (DM)
asanew genre of modelling. We describe various classes of DM and give
examplesin geosciences to demonstrate its promise.

PBMs and ML in the geosciences

PBMs and purely data-driven ML are two valuable approaches for mod-
elling geoscientific systems; however, each has limitations. There are
various similarities and differences between the two models, which
shows that their advantages are not mutually exclusive (Box 1).

Process-based models

Traditional PBMs use mathematical equations to describe physical
processes and are deductively derived from established physical laws
or empirical relationships®?*. They are used to understand system
functions and behaviours, test hypotheses, and assess the response of
asystem to changes in the driving forces or properties. Further, they
can simulate a wide range of observed variables (such as volumetric
streamflow or leaf areaindex) and unobserved variables (for example,
groundwater recharge or fine-root distribution). Such abilities are
critical to advancing scientific understanding and providing a narra-
tive when communicating with the public and stakeholders who are
engaged in decision making®. With PBMs, it is possible to ask specific
questionsregarding processes within the modelled system such as how
land-cover change affects water and carbon cycles, by progressively
improving the representations of processes”***”® and evaluating the
results using controlled experiments.

However, PBMs have some important limitations. Notably, often
PBMs cannot rapidly evolve with and fully exploit information from big
dataowingtothetimeneeded todevelop and test process representa-
tions and parameterizations®°. The differences between model pre-
dictions and observations are first reconciled by parameter calibration,
which can be non-trivial and add substantial uncertainty®. For model
errors beyond parameter tuning, potential causes of the differences
(for example, missing processes in the governing equation) must be
hypothesized and structural changes implemented; then the updated
modelstructure and underlying hypotheses are confronted with valida-
tiondata®. Thisiterative processis very expensive (in both labour and
time) and complex, and can be biased by the knowledge background
of the modeller®. Consequently, the structural representation of a
specific process in a geoscientific model can often stagnate for years
or decades™>°, meaning no new knowledge is gained and prediction
performanceis notimproved.

Knowledge gaps further compound PBM stagnation. Extensive
physical, biological, and socioeconomic knowledge is required to
adequately define model structures, and any deficiencies can amplify
errors and ambiguity. Another major challenge is accounting for pro-
cess interactions that occur across disciplinary boundaries®. For
instance, vegetation, microbes, human management, and socioeco-
nomicsystems allinteract with each other and affect water, carbon, and
other biogeochemical cycles®® . Interdisciplinary research is highly
valuable but challenging; therefore, there is a lack of data on these
cross-disciplinary processes, which limits progress towards obtaining
accurate model predictions.

Machine-learning-based models

Data-driven ML approaches, especially deep neural networks (NNs),
have rapidly permeated the vast majority of scientific disciplines and
are transforming those disciplines at an unprecedented pace***. NNs
have highly generic model structures and many parameters that are
determined fromtraining on data. ML has been applied to awide range
of scientific applications, and deep networks like long short-term mem-
ory (LSTM) networks*, transformers***, graph neural networks*¢,
and convolutional neural networks (CNNs)*"*® have become widely
known. In the geosciences, NNs have shown promise in predicting
crop production*”*°, precipitation fields*"*> and clouds®, water qual-
ity variables®** such as water temperature®*’, dissolved oxygen®*,
phosphorus®, and nitrogen®>*, and the full hydrologic cycle® including
soil moisture®°%, streamflow****”", evapotranspiration’”, ground-
water levels”, and snow’®. Often state-of-the-art performance was
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Box 1

Comparing purely data-driven neural networks and process-based

models

Similarities

Mathematical form: Purely data-driven neural networks (NNs) and
purely process-based models (PBMs) have similar mathematical
forms. NNs are described by

y=a"(u,x, A) (8)

where y is the simulation output, x is the dynamic forcings, u is the
state variables, A is the semi-static attributes and W=argmin(L(y,y*)),
which describes the weights of the neural network, g, where L is the
loss function, which quantifies the difference between simulation
outputs y and observations y*.

PBMs have the form

y= fe(u, X, A) 9)

where 8=argmin(L(y,y*)), which describes the physical parameters of
the PBM, f.

Programmatically differentiable: Purely data-driven NNs are
programmatically differentiable, and although traditional PBMs are
not programmatically differentiable they can be reimplemented in
machine-learning (ML) platforms.

Differences

Training and calibration: NNs can be trained using data-driven
training methods such as gradient descent, with gradient
computations supported by differentiable programming, whereas
PBMs are typically calibrated at limited numbers of sites or for a
limited number of parameters, although efficient many-site,
multi-objective methods exist.

Architecture: NNs have generic structures with many weights that
allow the model to flexibly learn a wide range of functions. PBMs
use physically based equations (structural priors) representing

reported when compared with conventional approaches, and such
high-quality predictions canbe made evenwhenagood understanding
of the underlying processes is not available. These results imply that
previous models, despite their usefulness, were not fully exploiting the
information availablein the data”, and they can benefit from leveraging
the strength of ML (Supplementary Table 1).

Nevertheless, purely data-driven ML approaches haveimportant
limitations. First, ML typically requires large volumes of data, which
unfortunately are not often available in many geoscientific applica-
tions®*”’/, where variables are only measured at tens, hundreds, or
thousands of sites. For example, water quality data are sparse and
inconsistentin temporal and spatial coverage'*’®. For rare and extreme
events that critically affect human activities, such as floods, droughts,
and earthquakes, available data are even scarcer.

human understanding of physics, with a limited number
of parameters.

Data: NNs are capable of efficiently gaining accuracy and
generalizability as datasets grow, with beneficial scaling for

big data. By contrast, PBM learning saturates at small quantities
of data, although they can often make reasonable predictions
despite limitations in data accuracy, resolution, and availability.

Unknown processes: NNs can discover patterns and functions
from data that might be unknown or uncertain, whereas for PBMs all
processes must be explicitly specified by the modeller, even if they
are only assumptions.

Domain knowledge: The generic model architecture of NNs makes
them easy to develop even without domain expertise, and they can
accommodate large knowledge gaps. PBMs require specialized
domain knowledge.

Physical laws: NNs are not guaranteed to respect physical laws,
unlike PBMs, which always respect physical laws.

Inspection: NNs only output trained variables, whereas
PBMs provide access to many intermediate variables that aid
interpretability.

Interpretation: NNs require much effort to interpret, and internal
variables are not guaranteed to have physical meaning. PBMs
contain equations representing physical processes, allowing
narration of model reasoning and formal tests of alternative
representations.

Education: NNs are taught in computer science or data
science curricula, whereas PBMs are taught in engineering
or science curricula.

Second, MLis notexempt from deficiencies and can struggle with
data errors, incompleteness, out-of-sample or out-of-distribution
predictions, and bias in the inputs or training data. The quality of ML
models is therefore inherently limited by the quantity, diversity, and
quality of the observations®”°%, Purely data-driven ML models can, at
best, nearly perfectly replicate patternsin the training data; therefore,
theyinvariably inheritissues from the training dataincluding explicit
or spurious biases, inadequate spatiotemporal resolutions (such as
with satellite-based observations), and the inability to account for
non-stationarity (shifting background statistical properties) or unseen
extremes in time series owing to the short datarecord.

Third, ML algorithms are based on correlations and not causal-
ity, regarding both attributes and temporal changes. There are often
confoundingfactorsin data, meaning that ML models can produce the
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Fig.1|Synergies from combining machine learning and process-based
modelling. Machine learning (ML, blue boxes) produces accurate results with
easy-to-use models, resulting from the complexity of neural networks and the
technologies that make it feasible to train such complex models. The most
fundamental of these technologies is differentiable programming. Process-based

models (PBMs, green boxes) permit human definition and interpretation

of modellogic. With differentiable modelling (DM), which incorporates
differentiable non-ML model components from PBMs such as physically based
structural priors, additional features can be obtained (orange boxes) while
retaining and augmenting the advantages of both ML models and PBMs.

right results for the wrong (causal) reasons, potentially making predic-
tions under different circumstances or outside the training domain
less reliable. Although causal representation learning® and explain-
ableartificial intelligence (Al) methods®*®* are promising approaches
for overcoming this limitation, challenges still remain with learning
causality and interpretability.

Finally, purely data-driven ML models cannot predict untrained
variables (those not provided as training targets) because ML-based
models are inherently designed to only output the training targets.
Therefore, it is difficult for ML approaches to elucidate how events
unfolded. For example, if soil moisture isunobserved, pure ML models
cannot state whether aflood occurred because the soil was saturated.
Therefore, it is difficult to use ML for hypotheses formation and
communicating with stakeholders.

Insummary, ML alone is unlikely to satisfy geoscience modelling
needs or answer specific scientific questions. Methods that can flexibly
interrogate an ML model, encode causality and prior information, and
identify missing physics anywhereinthe model chain could be valuable.

Differentiable programming

Having considered the successes and limitations of NNs, it isimportant
to identify their foundational strengths and work to overcome their
limitations. In this section, we explain how differentiable program-
mingis acomputing framework that supports the efficient training of
NNsand how, whengeneralized, it could deliver many philosophically
and practically transformative outcomes to geoscientific modelling.

Explaining the success of machine learning

Traditional process-based, statistical, or hybrid modelling approaches
for Earth systems have long used optimization, such as for parameter
calibration (see ‘Similarities’in Box 1), but high-dimensional optimiza-
tion is always challenging because of computational expenses. Only

gradient-based optimization, which updates the network weights
by explicitly tracking their contributions to the outcome, makes it
computationally tractable to learn from big data and efficiently train
the large numbers of parameters necessary to approximate complex
unknown functions.

The ability of generic NN architectures such as transformers,
CNNs, and recurrent NNs to approximate unknown functions has
produced desirable outcomes (Fig. 1). First, researchers from any
field can concentrate onafew generic architectures, permitting cross-
domain sharing of knowledge and experience. Second, NNs can help
toidentify previously unrecognized physical relationships. Third, NN
training can scale up with the data (in terms of accuracy, generaliz-
ability, and efficiency)””®, unlike PBMs in which learning can quickly
saturate after some limited calibration of parameters or functions®.
Allof these abilities are only possible because NNs canbe trained with
alarge number of network weights, providing a large learnable func-
tion space®¥. The number of weights easily exceeds the capabilities
of conventional optimization algorithms for PBMs. The LSTM models
widely used in hydrology can contain~500,000 weights whereas large
language models developed since about 2018 already have trillions of
weights, which canlead to the emergence of intelligence not observed
atsmaller scales®. In contrast, traditional evolutionary®*, genetic®,
or particle swarm optimization methods® can hardly handle more than
afew dozenindependent parameters (Box 1).

The computing framework that trains NNs with large amounts of
weights is known as differentiable programming’*®, This approach
involves designing programmes in such a way that their outputs are
differentiable with respect toinputs, using cheaply obtained gradients
toupdate the parametersviavariousfirst-order gradient-descent meth-
ods’. Differentiable programming in NNs is largely enabled by auto-
matic differentiation (AD), whichdecomposes a complexalgorithminto
asequence of elementary arithmetic operations and then applies the
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chainrule of differentiation to compute the derivatives. Reverse-mode
or forward-mode AD is provided by ML platforms such as PyTorch”,
JAX?8, Julia®’, and Tensorflow'°°. Models written on these platforms
can often be easily made programmatically differentiable even with
mathematically indifferentiable operations (such as thresholding or
IF statements), as long as they are piecewise differentiable.

Therefore, we suggest that differentiable programming is the
feature that distinguishes NNs from other types of models, owing
to its ability to efficiently learn from large amounts of data and tune
avery large number of parameters. Recognizing that differentiable
programming is not exclusive to ML reveals a pathway to unify NNs and
geoscientific PBMs. This unification requires only minor modifications
to conceptual modelling and implementation strategies but could open
new doors for scientific discovery.

Differentiable modelling

Inthis section, the scope of the discussion is expanded beyond differ-
entiable programmingand AD, and the term differentiable modelling
(DM) (Fig.1) isused to refer tojoint physics—NN modelling approaches
that use any method for rapidly and accurately producing gradients to
achievethelarge-scale optimization of the combined system. A distinct
feature of DM is the requirement for predominant programmatical
differentiability — thatis, the whole model must support gradient cal-
culation fromthe start to the end of the workflow — to ensure that the
trained NNs canadapt and evolve based on the data. Purely data-driven
NNsalready use differentiable programming (almost entirely through
AD), but ‘differentiable modelling’is used here to also emphasize the
hybrid nature of the overall approach.

Analternative to AD is adjoint methods, which solve accompany-
ing equations (called adjoint equations)'°"'® for the derivatives and
take advantage of the multiplicative nature of the chain rule to save
computational time. AD differentiates through low-level calculations,
whereas adjoint methods differentiate using higher-level functions
or mathematical equations such as nonlinear equations or differen-
tial equations'®*. Other gradient estimation methods, such as finite
difference approaches, are intractable for any reasonably sized NNs
(10,000 weights would require 10,001 forward model evaluations).
Second-order methods, such as the Newton-Raphson method, have
not gained popularity for the training of NNs owing to the costs and
challenges of computing the Hessian matrix. Many NNs are imple-
mented on platforms that support differentiable programming,
whereas most existing PBMs are not.

DM pushes the boundary of physics-informed ML and can be
considered abranch of scientific ML'>'°° that emphasizes improving
process representations and interpretations. There are two perspec-
tives from which differentiable models can be viewed (Fig. 2b). First,
they can be viewed as ML models that are constrained to a smaller
searchable space by the structural priors (model structures and equa-
tions representing scientific understanding or hypotheses and kept
unchanged during model training). Thus, DM canstill reap the benefits
of big data when available. Second, they can be viewed as PBMs that
are augmented with learnable and adaptable components (and thus
an expanded searchable space) provided by NNs, can be trained in
data-scarce scenarios, and provide elucidation of processes.

Approximating functions inside the model

Although efficient gradient calculation might seem to be merely a
technical change, it could also lead to a transformation of modelling
philosophies. First, the ability to approximate complex, unknown

functions using data can broaden the type of questions that can be
asked, by treating trusted model components as priors and focusing
onimproving representations of the uncertain components. Thisidea
canbeexplainedin concise mathematical terms using a physics-based
model g,

y=8u,x,0), 1

where yis the environmental variable to be predicted, and u, x, and 8
represent state variables, dynamic forcings, and physical parameters,
respectively. This representation of a physics-based model is generic
and encompasses differential equations, for example:

ou/ot=g(u,x,0). (2)

Traditionalinversion algorithms estimate the values of parameters
inquestion (essentially asking, “0=?") and require that the functional
form of the model gis assumed a priori (except for some rigid meth-
ods such as non-parametric regression, which require complicated
derivations and specialized training algorithms, and thus have not
gained popularity). However, differentiable models make it possible to
interrogate the functional form of g, by training, for instance, aneural
network (NN) on observed datatoreplaceg:

y=NN¥(u,x, 0) (3)

where Wrepresents the high-dimensional weights. The function thatis
estimated with thisapproach could also be a parameterization scheme,
asindifferentiable parameter learning®, for example:

y=g(u,x,0=NN"(4)) 4)

where Aissome raw informationrelevant to the physical parameters 6.
DM makes it possible to place questions precisely in the model, to
extract fine-grained relationships from data (Supplementary Fig. 1).
For example, for amodel written simply as

y=8(8,, 8, 8,(u,x,0)) (5)

whereg,, g,,g;are process equations as subcomponents of the model,
g;canbereplaced withan NN:

y=8(8,,8,,NN" (u,x,6)) (6)

Asmentioned earlier, equation (6) can also encompass differential
equations:

ou/ot=g(g,, g, NN* (u,x, 6)) (7)

The differential equation terms including the NN" will be inte-
grated in time using numerical approaches. NN* could represent
rainfall-runoffrelationships'”, or a constitutive relationship produc-
ing effective hydraulic conductivitiesinasubsurface reactive transport
modell()&l()Q.

Inthe above equations, the physical process equations provide a
backbone (orinductive bias) for the overallmodel: in equation (4) the
physical backboneis g; in equations (5-7), the physical backboneis g,
g;,and g,. Theunchanged parts (structural priors) suchas g, g;, g, serve
as physical constraints. Insights can be gained by simply visualizing the
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Fig.2 | Why differentiable models are interpretable and performant.

a, Purely data-driven machine-learning (ML) models learn direct mapping
relationships fromx toy, which intertwines many processes and is thus difficult
to understand. Differentiable models make it possible to break the modelinto
portions g, (for example, here g, and g; are unknown) to narrow the scope of
the relationships to be learned (potentially with fewer data than training a pure
ML model) for better interpretability. b, Differentiable models can be viewed

as either: ML models that are guided into smaller searchable spaces (ovals)

by structural priors; or process-based models with expanded search space
supported by learnable units. The background colour gradient indicates model
optimality, related to the cost function if there were an infinite amount of data
available. The location marked as optimal (with a dot) indicates the ideal model
solution. Differentiable models are more likely to contain and discover the ideal
model solution, thus enhancing both process understanding and predictive
accuracy.

relationships learned from NNY (refs. 46,110) or by applying knowl-
edge distillation methods™. Better process representations can also
be obtained for some model components such as g;, meaning that
questions can be posed with high precision and flexibility. Moreo-
ver, as a purely data-driven NN learns an overall mapping fromxtoy,
it can intertwine many processes, making it and its results difficult
to interpret. By breaking the mapping down into multiple subparts
and inserting prior knowledge, the scope of learning and the com-
plexities of the learned relationships are inherently reduced, improv-
ing the interpretability and robustness of the conclusions (Fig. 2a;
Supplementary Fig.1).

DM provides aframework for combining deductive reasoning and
inductive learning. Purely data-driven models are inductive and seek
to derive almost all relationships from data, whereas PBMs first posit
hypotheses and then test them using data. DM posits a user-defined
number of structural assumptions, and then identifies other parts of
the model from the data. This design follows the traditional scientific
approach that identifies parsimonious models to reflect the general
properties of the phenomenon, along with a quantification of the
predictable aspects that are not yet well understood™.

State-of-the-art predictive performance of DM

Purely data-driven ML architectures have set a high bar foraccuracyin
multiple geoscience domains; therefore, it could seem plausible that
there would be a substantial loss inaccuracy when less-flexible process-
based components areadded. However, it is uncertain whether generic
ML architectures are necessary to achieve good model accuracy when
we can use NNs as components of a model to learn from and adapt to
data.Itiseasytosee that ML-level performance could be achievedifthe
searchable space of the PBM s enlarged toinclude agood approxima-
tion of the true function (Fig. 2b), directed by gradient-based training.
The paths taken to upgrade the models will be dependent on experts’
intuition; therefore, it could take some time for unified approaches
toemerge.

Many dynamical systems in the geosciences, such as rainfall-
runoffinabasin, crop growth, or nutrient release, can be described by
ODEs. To solve these equations, the numerical model is run for many
steps. This approach is mathematically similar to recurrent NNs, and
the timeintegration operationis similar to the functionality achieved
by some NNssuch as residual networks™"*, Therefore, it should not be
surprising that learnable PBMs with some ML components can perform
as well as deep networks.

As we will discuss with some geoscience examples, it has already
beendemonstrated that the performance of differentiable, learnable
models can approach that of purely data-driven models, and in some
cases, when extrapolation is key, even exhibit advantages. Compared
with purely data-driven ML, DM trades generality for interpretability
and the ability to ask specific questions, and yet may also not sacrifice
accuracy.

Differentiable modelling in geosciences

Here we advocate for anew modelling genre for Earth and environ-
mental processes, which we call DMin geosciences. DM in geosciences
combines geoscientific physical equations (called structural priors)
with NNs to simulate processes, update process representations, learn
meaningful parameters, quantify uncertainty, and ask arange of ques-
tions (Box 2). DM could also exploit gradients for other purposes such
as sensitivity analysis or trajectory optimization where human influ-
ences on Earth systems are simulated, such as with reservoir manage-
ment. DM seeks to integrate the optimizing and learning capabilities
of NN models with geoscientific process descriptions. Differentiable
models could evolve to gain process knowledge while improving the
model predictions.

The features of a successful DM model could include predictive
accuracy and transferability equal to or greater than that of purely
data-driven models for extensively measured variables; structural
evolution capabilities, which could improve the parameterization and
formulation of the processes; accurate generalizability to data-sparse
regions or the long-term future; conservation of mass, energy, and
momentum; consistency of internal physical fluxes and states that can
provide a full narrative of the events and full support to downstream
processes; and efficientisolation of one uncertain model component
atatime tolearn physics with reduced ambiguity.

Suitability of DM for geosciences

DMis well suited to geoscience applications owing to the nature of the
datasets and problems. First, geoscientific data are strongly imbal-
anced in spatial extent, in temporal coverage, and in the number of
variables observed, and there is noise in the observational datasets
owing toinstrument limitations and observability. Although satellites
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can be used to indirectly estimate many variables™ including global

leaf area index"® and coarse-resolution surface soil moisture (SMOS,
soilmoisture and ocean salinity)"”""%, other variables such as photosyn-
thesis rates™’, soil respiration, and streamflow are only measured ata
limited number of sites, especially in Africa and Asia™’. Additionally,
there is very limited knowledge of subsurface properties, such as the
thicknesses, depths, and conductivities of aquifers. Purely data-driven
ML canbe biased by these data limitations; however, these biases could
be partially alleviated by including physics as aninductive bias. Indeed,
preliminary analysis shows that differentiable models withaPBM as the
backbone can outperform LSTM in regional extrapolation'?.

The second major motivation for using DM in the geosciences is
the non-stationarity of processes such as climate and land-use land-
cover, which could drive many systems out of the previously observed
range of variability'”. Although the performance of ML models is highly
competitive’>'?, the accuracy declines substantially when faced with
non-stationary processes'?'?, Therefore, DM could potentially repre-
sent future trends better than purely data-driven models becauseiitis
constrained by physical formulations™.

Third, DM can output any diagnostic variable calculated using
the process-based equations within a model; therefore, model con-
ditioning and/or data assimilation operations can be performed with
sparse and scattered data. Model conditioning is where the model is
constrained using observations to improve overall model dynamics.
For example, a hydrological model can be conditioned by satellite
soil moisture or streamflow data so that it can obtain more accurate

Box 2

predictions of vegetation water use'*, primary productivity, or snow

water equivalent'”. For data assimilation, the model uses observations
of onevariable toimprove the short-term forecast of another variable.
Additionally, observations of the first variable can be used to update
the state variables of the model.

Finally, DM could improve the quality of physical parameters,
which strongly control the behaviours of the models. Thereis often no
ground-truth information for the parameters, and they require inver-
sion from observations or high-resolution simulations. Since about
the 1980s, parameter estimation has been fraught with uncertainty
and ambiguity. Because different parameters can produce similar
outputs and are sensitive to spatiotemporal resolutions, calibration
atageographiclocation can often lead to equifinality'* %%, Extending
parameters to unmonitored locations requires regionalization, which
canimprove robustness, but it is difficult for traditional regionaliza-
tion methods to achieve optimal results. Training NNs as parameter
generators could improve parameter generalization and performance,
while also providing insights about parameter sensitivity. Using all the
available data points to constrain the parameters can generate favour-
able scaling behaviours with more training data leading to improved

performance, efficiency, and generalizability'**.

The cost of obtaining differentiability. Reimplementing a model
into a differentiable form can incur non-trivial developmental costs.
Mathematical changes might be required to adapt previously non-
differentiable mathematical operations, for example by replacing

Geoscience questions that differentiable modelling could help to

answer

Differentiable modelling (DM) could help almost all geoscientific
domains in knowledge discovery and improving simulation quality.
Some core domains and example questions are as follows.

o Whatis the relationship between x and y?

- Hydraulics: How do we estimate floodplain hydraulic
parameter values efficiently at large scales using new sensing
data?

- Hydrology: How does global groundwater-dominated baseflow
respond to climate change?

o What physics is missing from this differential equation?

- Soil science: Can we find functional forms to express
soil hydraulic properties (water retention and hydraulic
conductivity) that describe non-equilibrium flow?

o What should be the assumption here?

- Ecosystems: What is the main driver of reduced plant
production: vapour pressure deficit or deficit in soil moisture?

- Hydrology: What is a proper, scale-appropriate way to
parameterize groundwater storage and flow at the global scale?

¢ How does factor A influence parameter 3?

- Geohazards: Can we use space-based observations of
geohazards such as landslides to quantify subsurface
properties (so that we can better predict future events)?

- Water quality: How and to what extent do river chemistry and
quality vary across gradients of climate, vegetation, land use
and geology conditions? Thus, how do they change in a warmer
climate and with intensified human modification?

¢ Isaprocess causing phenomenon P?

- Climate: Is CO, fertilizing plants and increasing global
photosynthesis?

o What will happen under new environmental conditions?

- Agriculture: How can we predict crop phenology dynamics
(for example, planting, shooting, flowering, harvesting) and
assess potential production risk under future climate change,
which involves interconnected biotic, abiotic, and human
influences?

Cryosphere: How can we use both physics and data to create

more accurate models for ice dynamics within the cryosphere

and better constrain its fate under climate change?

¢ What s the information content of datasets (inputs, training
targets)?

- Coastal: How can we better leverage emerging sensing
platforms while improving our model representations of
sediment transport and nonlinear wave-wave interactions
to infer nearshore bathymetry at large scales?
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a Differentiable hydrological model using
aprocess-based model as a backbone
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indexing with convolutions, or toimprove parallel efficiency. Although
DM does not have to run on graphical processing units (GPUs), ena-
bling the use of GPUs would improve the computational efficiency
by orders of magnitude compared with approaches that mainly use
central processing units (CPUs), notwithstanding some current chal-
lenges. Our opinion is that in most cases, the cost incurred is worth
theinvestment owingto the potential tointerrogate the model, make
changes, and learn physics. The reimplementation could also provide
anopportunity tore-examine many of the commonmodel assumptions
orimplementation choices.

Observed trend (m3 s yr)

Classes of DMin geosciences

NNs can be used in various ways for geoscientific problems, ranging
from learning physical parameters'** to updating structural assump-
tions in a component of the model”, or estimating time-dependent
forcing terms of the natural systems. However, we emphasize that
DMis different from previous conceptsintroduced in physics-guided
ML or not-fully-differentiable models in terms of methodology
(the equationsin DM must be fully differentiable), mission (DM aims to
advance process understanding), and philosophy (whether DM treats
physical laws astruth). This section briefly describes early explorations
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Fig.3|An example differentiable hydrological model. a, Sketch of a
differentiable hydrological model using the process-based HBV model as a
backbone. The purple dashed linesiillustrate the back-propagation paths used

to train the two embedded neural networks (NNs), but back-propagation can
update any component including making corrections to precipitation. Green
symbol backgrounds indicate static parameters while pink symbol backgrounds
indicate time-dependent parameters. b, Differentiable models (6 with static
parameters and 6(f',)") with two time-dependent parameters) can approach

the performance of machine learning (ML) models such aslong short-term
memory (LSTM) networks and greatly outperform a traditional parameterization
approach (multiscale parameter regionalization, MPR) applied to the mesoscale
hydrological model (mHM) for the in-sample temporal test. They also
outperform LSTM in a spatial extrapolation test for predictions in ungauged
regions (PUR). Results are based on the basins from the Catchment Attributes
and Meteorology for Large-sample Studies (CAMELS) dataset, where high
Nash-Sutcliffe efficiency (NSE) values indicate better performance. Bottom, the
differentiable models can output evapotranspiration with high accuracy whereas
LSTM cannotatall. The accuracy was assessed using the correlation of the output
withasatellite product. ¢, For PUR (representing spatial extrapolation: trained

insome regions and tested in another large ungauged region), the performance
of the differentiable models (black) surpasses that of the LSTM networks (pink)
with higher R*and lower root-mean-square error (RMSE) for predictions of the
decadal-scale trends in annual mean streamflow (left) or high flow (right, Q,g).
This framework delivers high accuracy, robust generalizability, interpretability,
multiphysical outputs, and computational efficiency at the same time. ET,
evapotranspiration; P, precipitation; Q,, quick flow; Q,, shallow subsurface flow;
Q,, baseflow; Qs, simulated streamflow; Q,,;, Observed streamflow; S, snowpack
water storage; S, soil water storage; S,,,, upper subsurface zone water storage;
S, lower subsurface zone water storage; T, temperature; ,,,, upper subsurface
threshold for quick flow; 6, recession coefficient for quick flow; 6y, recession
coefficient for shallow subsurface flow; 6;,, recession coefficient for baseflow;
B, shape coefficient of the runoffrelationship; y, newly added dynamic shape
coefficient of the evapotranspiration relationship. g,(4,x) is the neural network
unit to learn physical parameters, which is fed static attributes (4) as well as
meteorological forcing data (x). Figure 3a,b adapted with permission from
ref.107, Wiley. Figure 3b,c adapted with permission fromref. 121, CCBY 4.0,
http://creativecommons.org/licenses/by/4.0/.

and demonstrations of DM in geosciences, categorized by how the
gradients are computed and used. The examples discussed in this sec-
tion, which are not exhaustive, explain the concepts and are meant to
inspire further innovation.

Differentiating through numerical models. The most straightforward
DMapproachisto differentiate through numerical models by leverag-
ing ML platforms; this approach is also the most similar to traditional
models. Both AD and customized backward functions (adjoint) can
be used to keep track of gradients at relatively elementary levels of
operations.

Automatic differentiationis the most obvious low-hanging fruit to
adaptexistingmodelsinto DM. For models without iterative solvers, ML
platforms suchasPyTorch, Julia, or JAX could be used to reimplement
an existing physical model coded in Fortran or C/C++ to obtain a dif-
ferentiable model version through AD and ensure reproducibility. The
differentiable model canthen be connected to NNs by simply suppling
inputs to the NN and feeding its outputs to the rest of the model. The
physical laws are enforced, providing an efficient forward simulator
for any initial, boundary, and forcing conditions. The relationships
learned using this approach could also be transferred to existing mod-
elstoimmediately support operational work such as flood and weather
forecasting or food production estimates.

For problems that neediterative solvers, such as systems of nonlin-
ear equations or stiff ODEs that require implicit time-stepping, direct
AD can consume too much memory, but adjoint-based backward func-
tions could be used instead at the iterative solver level (known as the
discretize-then-optimize approach). This method can be mixed and
matched with AD. Alternatively, adjoint functions could be written at
the differential equation level, in which case the adjoint differential
equationissolved backwardsintimeto compute the gradients (known
as the optimize-then-discretize approach)'*. Care must be taken with
the optimize-then-discretize approach as sometimes low-accuracy
gradients are obtained, which can interfere with the training of the
model™”.

Adjoint methods have also been used to solve optimization prob-
lems governed by PDEs, by either deriving the adjoint equations manu-
ally”® or more rarely with automated programmes"'. Adjoint methods
have the potential to be more computationally efficient than AD for

certain problems. Adjoint solvers have long been successfully used
for numerical weather predictions for the purpose of data assimila-
tion, with systems such as 4DVar'*, and groundwater modelling'**,
for the purpose of calibration. However, these approaches did not
use NN training machinery, perhaps because therole of differentiable
programming was not clear at the time.

A geoscientific example of differentiating through numerical
modelsisthe adaptation of the conceptual hydrological model Hydrol-
ogiska Byrans Vattenbalansavdelning (HBV), a system of ODEs. HBV
was reimplemented on PyTorch and coupled to NNs which provide
aregionalized parameterization'” (with ‘regionalized’ meaning that
the parameterizationis trained by all sites simultaneously, which pro-
vides a strong constraint and improves the robustness of the model)
(Fig. 3). Strikingly, the reimplemented HBV can simulate streamflow
with accuracy close to that of LSTM'?, The soil moisture-runoff rela-
tionship canbereplaced withanNNto learnthe relationship between
soil moisture, precipitation, and runoff (similar to a constitutive rela-
tionship) for threshold-like watershed systems. Thisimplementation
also output untrained variables such as evapotranspiration and base-
flow, which agreed well with alternative estimates. AD was the main
method of obtaining gradients, but toimprove the numerical accuracy
and parameter robustness of the model”*'* adjoint backward func-
tions for implicit time-stepping can also be incorporated. Moreover,
in spatial extrapolation cases, the differentiable model moderately
outperformed ML models (LSTM in this case) with respect to daily
metrics like the Nash-Sutcliffe model efficiency coefficient, as well
as decadal-scale trends™ (Fig. 3) owing to the structural constraints,
demonstrating its potential for global hydrological modelling.

Similarly, the hydrological model EXP-HYDRO was encoded as
arecurrent NN architecture and coupled with fully connected NNs,
whichservedasthe parameterization pipeline and the post-processor to
improve runoff'®. Integrating NNs with physics in these models led
torobust transferability across basins. Additionally, hybrid neural ODE
approaches, in which NNs replace the differential-equation-based
hydrological model, produce more accurate predictions than single-
basin LSTMs, but retain the interpretability of amechanistic model™.
Differentiable models have also been used for biogeophysical and eco-
system modelling, toimprove parameterization for photosynthesis’
atlargescales.
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Apart from models similar to ODEs, direct differentiation can
alsobe applied to models that operate on graphsto represent natural
systems, such as river networks. An advective dispersion equation
implemented on a river graph to simulate streamwater temperature
performedbetter than LSTM in data-sparse situations™, Similarly, a dif-
ferentiable river routing model was trained on daily discharge at agauge
downstream of ariver network tolearna parameterization scheme for
Manning’s roughness coefficient (n) (ref. 139).Itlearned apower-law-like
curve for the relationship between n and catchment area, which is
consistent with the expected behaviour from the literature.

Another, more adjoint-focused example uses NNs to replace
unknown functions or operatorsinaPDE, before discretizing the PDE
using a finite element method, and calculating the gradient with the
adjoint method; this approach recovered a nonlinear coefficient for
the Poisson and heat equations™. To overcome the challenge with New-
toniteration convergence (an approach to find the root to systems of
nonlinear equations) owing totheincorporation of NNandthelack of a
preconditioner, an operator-splitting approach was used to discretize
the PDE into two subproblems. The first subproblem only has differ-
ential operators of the PDE, not NNs, whereas the other subproblem
with NNs canbe solved by integrating NNs using a Gaussian quadrature
rule. Thisapproach canbe similarly applied to equationsin geosciences
such as subsurface reactive transport equations.

Connecting NNs with PBMs through surrogate models. If an NN
is trained as a surrogate for a PBM (reproducing its behaviour), this
surrogate model can then be connected to other NN components in

a DM framework because the NN surrogate is programmatically dif-
ferentiable. Many studies trained surrogate models for hydrological,
hydraulic*®'*!, and reactive transport models, and then further used
the surrogate models for inversion'*? and optimization. In 2021, dif-
ferentiable parameter learning (dPL) by Tsai et al."* was able to exploit
the differentiable nature of such a surrogate model for training. They
connected a surrogate model of the Variable Infiltration Capacity
(VIC) process-based hydrological model to a neural network (g) that
estimates physical parameters of VIC (0) using some widely available
attributes (A):0 =g(A).Inan ‘end-to-end’ workflow, @is thensent to VIC,
whose outputs are compared with observations, effectively turning the
parameter calibration probleminto an ML problem, trained on all sites
simultaneously using back-propagation and gradient descent (Fig. 4a).
As a result of this global loss function, dPL exhibits advantages over
traditional calibration on multiple fronts, for three different datasets
(soil moisture, CAMELS streamflow, and global headwater runoff).
The parameter sets are spatially coherent (Supplementary Fig. 2) and
extrapolatebetterinspace (Fig. 4b,c). dPLis hyperefficient: ajob that
normally takes a100-CPU cluster two to three days now takes a single
GPU one hour. dPL allows the combined model to output unobserved
variables while alleviating the notorious problem of parameter equifi-
nality’®, and exhibits a favourable scaling relationship (withincreasing
volumes of data).

The initial effort associated with the surrogate model approach
is low compared with fully recoding a model; however, the surrogate
models might need to be continuously retrained as the optimization
goesto different regions of the parameter or state space. Furthermore,
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works with both fully differentiable and surrogate models, and obtains good
generalizability viaa global loss function. This figure is adapted fromref. 124,
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Physics-informed neural network for learning unknown parameter fields and relationships related to groundwater flow
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Fig. 5| Physics-informed neural networks for learning constitutive
relationships in unsaturated flow models. a, The locations of observational
pressure head measurements (dots) for steady-state groundwater flow in

the vadose zone of an unconfined aquifer system with an unknown pressure-
dependent conductivity. The quantities of interest were the unsaturated
conductivity kas a function of the pressure head u, and the pressure head
field u(x). The physics-informed neural network (PINN) method was used to
estimate the unknowns with neural networks in a differentiable model of the
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unsaturated flow in the vadose zone and the reference pressure head field
(yellow-blue background colour). b, The point errors in the estimated head
field. ¢, The reference and estimated conductivities as functions of the pressure
head. The PINN method can be perceived as a genre of differentiable modelling,
asthegradientinformation s critically employed. It can learn both the state
variable and the constitutive relationship very accurately. Figure is adapted with
permission fromref. 109, Wiley.

asurrogate model does not allow direct changes to the model structure.
Therefore, this approach is only recommended for highly complex
and computationally expensive models that are challenging to reim-
plement. Such cases could arise in climate models, or hydraulics or
subsurface modelling, inwhich the governing PDEs that describe fluid
dynamics and sediment transport must be solved with high spatial
and temporal resolution requiring non-trivial computational code
or complex boundary conditions. Although not the primary focus or
philosophical theme of DM, surrogate models can certainly accelerate
and aid its purpose. The possibility of solving PDEs with NNs has also
attracted increasing attention, with NNs being used in many cases
to approximate the numerical solution of the PDEs'*™*, such as the
Richards equation, which describes the movement of water in soil'*°.
Differentiable surrogate models can also be used toinvert bathymetry

measurements for 2D hydraulic simulations'’.

Physics-informed neural networks. Although first publishedin 2017,
physics-informed neural networks (PINNs)!%*#5150 could be perceived
asacategory of DM as the gradientinformationis critically used. PINNs
pose problemsinaunique way, seeking to train aneural network with
space-time coordinates asinputs, h(¢,x) where tistimeand xrepresents
spatial coordinates such that h(t,x) agrees with known data points at
(t,x). The derivatives dh/dx, dh/dt and so forth, which can be obtained
via AD, are forced to satisfy the governing partial differential equa-
tions. Physical parameters could also be part of the inputs to the A
network™. PINNs have been tested on applications in many domains,
and there have been anumber of good reviews of this work™*>"', PINNs
have many uses such data assimilation'*’ and learning governing equa-
tions, but, aswith other methods, there are also limitations. Obviously,
the function A(¢ x) is tied to the initial and boundary conditions, so it
needs tobe trained separately for eachinitial/boundary condition pair,
and the form of the inputs limits the neural network to certain types
(multilayer perceptron network) that are not easy to train. However,

thelearned parameters and constitutive relationships can describe the
systemunder awide range of boundary and initial conditions. Further-
more, the fidelity of the trained network to physical equations must be
carefully examined.

In geosciences, a PINN method for learning unknown parameter
fields and constitutive relationships was proposed'”’ (Fig. 5). As an
example, steady-state groundwater flowin an aquifer withanunknown
conductivity field and unsaturated flow in the vadose zone with an
unknown pressure-dependent conductivity were considered. In the
unsaturated flow application, it was assumed that only sparse measure-
ments of pressure head were available. The quantities of interest were
theunsaturated conductivity asa function of the pressure head, and the
pressure headfield. Notably, it was assumed that no measurements of
the unknown parameters were available. In the proposed PINN method,
both quantities of interest were represented with neural networks
(NNs) (with unknown parameters). This step created a differentiable
model of the unsaturated flow in the vadose zone. It was also assumed
thatthe pressure head measurements could be described by the steady-
state Richards equation. Substituting the NN approximations into this
equation formed the axillary residual NN, which shared the (unknown)
parameters with the primary NNs. For the primary NNs to satisfy the
governing equation, the residual NN should be zero everywhere in
the domain —in other words, the exact measurements of the residuals
are available everywhere in the domain. The NNs were trained jointly
using the pressure head measurements. Since the conductivity and
residual NNs share the same parameters, estimating parameters in
theresidual NN also provides the parameterization of the conductivity
NN. Figure 5ashows the reference pressure head field and the locations
ofthe measurements. Figure 5b shows the point errorsin the estimated
pressure head field. The reference and estimated unsaturated conduc-
tivity functions are shown in Fig. 5c. These figures demonstrate that
the PINN method canlearnboth the state variable and the constitutive
relationship very accurately.
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Compared with DM methods, PINNs have a unique design that
directly learns the problem-dependent space-time solution of states.
As a result, PINNs focus on knowledge discovery rather than being
efficient forward simulators.

ML-dominant hybrid models with limited physics. Another class
of models that can be used for data-rich applications uses NNs for
most of the modelling but inserts physical operators for imposing
the restrictions from a limited number of physical laws. For exam-
ple, LSTM has been used to estimate physical surface fluxes such as
evaporation, runoff, and recharge constrained only by the mass balance
equations™* The only control on the fluxes was the observations of dis-
charge; therefore, it was uncertain whether the flux terms maintained
their physical meaning. The system was later constrained using more
observations'. Amodel learning from two data sources outperformed
(raising the correlation with observations from 0.8 to 0.91) those learn-
ingfromonly one source when applied to the prediction of soil moisture
using LSTM trained at 9-kmresolution™*, The solutions from the LSTM
were fed into an averaging operation to obtain outputs with 36-km
resolution, and loss functions were computed at both resolutions and
compared with in situ and satellite-based observations. Overall, ML-
dominant systems can be strong predictors and a beneficial option
in DM; however, the interpretability and physical significance of the
diagnostic intermediate variables must be carefully assessed to avoid
misinterpreting the results.

Differentiable modelling and physics-guided ML

DM has the potential to tackle a diverse array of questions across vari-
ous geoscientific domains (Box 2), pursuing ambitious goals ranging
from high accuracy to knowledge discovery. Many strategies have
been proposed to integrate ML with physics in a seemingly scattered
manner with arange of complexities, such thatitis difficult to classify
these approaches™. It has not beensufficiently recognized that some
of these algorithms work fundamentally because they leverage differ-
entiable programming. The scattered nature of the literature makes
thelandscape of ML-physicsintegration daunting and confusing, while
hinderinginnovations based onfirst principles. However, the concept
of differentiability can help understand proposed methods by identify-
ing whether a method is fully (end-to-end) differentiable, how it uses
gradients, how much priorinformationisinserted, what questions are
asked, and how it scales with data. Here we outline some similarities
and differences between differentiable modelling in geosciences and
some existing methods.

DM and physics-guided (or theory-guided, or knowledge-guided)
machine learning (PGML)"***® both seek to combine physics with
ML, but they differ in their approaches, purposes, and philosophies.
PGML has been used to introduce physical constraints, for example,
as regularization or pretraining, to ML methods to gain better gener-
alizability with less training data. In theory, PGML does not need to
use differentiable programming and usually enforces only a part of
the physics. In contrast, DM uses numerical physical models as the
backbone and demands that the entire workflow be differentiable.
The goal of PGML is to make the ML model more robust, whereas DM
seeks to update assumptions or discover new knowledge. Philosophi-
cally, whenaphysical lawis introduced in PGML, which oftenincludes
allthe calculations and assumptions to supportthe law, itis treated as
truth (albeit sometimes with some tolerance level*’). In DM, the physi-
cal laws are not presumed to be correct, and opportunities to update
existing knowledge are constantly sought.

There are many methods that are not fully differentiable that could
also be valuable but are beyond the scope of DM™’, For example, ML
algorithms trained offline on datasets could be incorporatedinto physi-
calmodels, such as training an NN on turbulent heat fluxes and insert-
ing it into a hydrological model'*’; training pedotransfer functions
that can infer soil parameters from soil hydraulic data'’; training an
atmospheric parameterization network onshort-term cloud-resolving
simulations’®; or training ocean-mixing parameterizations on data
and physical constraints'®, Although this approach has the advantage
that the physical meaning of the NN is clear, direct training data are
needed for the variable of interest, and the network cannot evolve
and adapt interactively, for instance to update the model following
further observations. In the future, these NNs might be incorporated
into DM. Other offline coupling methods include providing outputs
of process-based models (PBMs) as inputs to NNs to integrate over
spatiotemporal heterogeneity'**'*, or training ML models to predict
the PBM residuals'®® 5,

Summary and future perspectives

Inthis Perspective we discuss how DM allows varying amounts of struc-
tural priors to be flexibly used along with NNs, ranging from having
justafew physically based operators to substantially physically based
structures. Therefore, DM could dissolve the divide between ML and
PBM. Understanding the role of differentiable programming makes
it possible to break free from thinking about fixed methods or pos-
sibilities for integrating these two approaches, instead focusing on
physical priors, uncertainty, unknown relationships, and data. DM is
suitable for many geoscientific applications, can learn from multiple
sources of dataand multiscale datasets, and can leverage the benefits
of big or small data. After the proof-of-concept stage of DM, the next
stage can focus on science needs: updating inadequate assumptions,
filling knowledge gaps, addressing long-term model deficiencies, and
delivering practical, scalable benefits to science and society. Many
geoscientific findings, habitual assumptions, and operational practices
can be updated by DM.

Computational challenges will arise with DM and may spur
advances in computer science. Memory usage and vanishing gradi-
ents are major issues when training NNs, especially in cases involving
iterative numerical solvers. Keeping track of gradients requires storing
information (this requirement is partly alleviated if checkpointing is
applied but it s still a prominent issue) and thus uses memory, which
isespecially constrained with GPUs. ‘Vanishing gradients’meansthatthe
parametersin deeper layers of the model have very small gradients, so
they become difficult to train'*>"°. Vanishing gradients can occur with
recurrent NNs, which are similar to differentiable models. Moreover,
differentiable models might have heterogeneous operations (unlike
NNs, which predominantly use matrix multiplications) so it might be
challenging to optimize the use of the GPU. For the core DM algorithms,
asDM opens up anew avenue, new challenges will emerge, driving new
solutions to address them.

Although current differentiable computing platforms can read-
ily accommodate numerical solvers for ODEs, solving PDEs could
still be challenging because it requires substantial computation and
memory, which makes it expensive (in terms of computational power
and memory usage) to train the connected NNs with a batch of exam-
ples. Architectures suitable for big-data ML training often use massive
parallelism, which reduces the range of numerical algorithms that
can be used. Modellers working in DM now need to understand both
forward and backward methods, adding to the mathematical learning
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curve. Nevertheless, some differentiable numerical PDE solvers have
been proposed and tested in computational fluid mechanics, and seem
to beasuitable alternative to standard solvers . In the future, suitable
methods are needed to improve the efficiency of gradient tracking for
complex numerical schemes.

DM makes it possible to learn processes; therefore, it is to be
expected that the problem of ‘process non-uniqueness’, also called
‘process equifinality’, could arise. In traditional hydrological mod-
elling, multiple working hypotheses must be proposed to test dif-
ferent model formulations coupled together®. With DM, we need
systematic development approachesthat cansolve part of the problem
or determine one process at a time to reduce interactions between
the modules. Furthermore, more mature uncertainty quantification
techniques are needed to help assess the successes and failures of
hypotheses going beyond ensemble methods'*"7>"""*, Finally, large
and multivariate benchmarks and extrapolation tests that match the
intended use cases to verify the validity and realism of the physical
outputs will be useful. For example, models for assessing the impact
of climate change must be tested for long-term projection fidelity
and models for global-scale applications must pass rigorous spatial
extrapolation tests'*’.

The rise in the use of Al for big data and models has been aston-
ishing®*">!, We argue that both prediction accuracy and knowledge
discoveryinthe geosciences can beimproved by combining advanced
Al model architectures with physics using a differentiable program-
ming framework. Althoughitis perceived asatechnological advance,
DM canalsolead to philosophical changes: for example, it could make it
possible to ask new questions and test hypotheses on model structure
ordatausage, and therefore use datamore effectively. We look forward
to DM greatly advancing geosciences.
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