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A Novel Team Formation Framework based on
Performance in a Cybersecurity Operations

Center
Ankit Shah, Rajesh Ganesan, Sushil Jajodia, Hasan Cam, Steve Hutchinson

Abstract—A Cybersecurity Operations Center (CSOC) performs various tasks to protect an organization from cyber threats. Several
types of personnel collaborate to function effectively as a team to analyze the threat signals, in the form of alerts, arriving from various
sources. Teams are often formed ad hoc, resulting in an imbalance in their performances and thereby increasing the risk associated
with the low-performing teams. The current approach taken by behavioral scientists in forming effective teams focuses on first
qualitatively assessing individuals such as analysts, who are then grouped into teams based on their credentials and expertise. Our
work takes a holistic view of the CSOC by first defining team requirements and then selecting individuals to form several collaborative
teams that meet these requirements for every shift of operation. We present a novel team formation framework that integrates
optimization, simulation, and scoring methods to form effective teams and introduce a new collaborative score metric that measures
their effectiveness. Results from simulated experiments show the formation of effective teams whose collaborative scores are
maximized and balanced. Our approach is also able to identify high and low performers within the first few months of implementing the
framework.

Index Terms—Cyber Team Formation, Team Collaborative Score, CSOC Performance, Combinatorial Optimization, Simulation Model,
Performance Scoring Model.

✦

1 INTRODUCTION

ACYBERSECURITY Operations Center (CSOC) performs
several tasks that include monitoring networks, threat

detection, analysis of alert logs, containment and mitigation
of threats, incident response and remediation, vulnerability
assessment, reporting, compliance with cybersecurity stan-
dards, and signature updates for building intelligence about
cyber threats [1]. Several types of personnel are employed
at a CSOC that include senior level lead, watch officers, first
responders that perform triage analysis, incident handlers
who analyze incidents and write reports, vulnerability engi-
neer for configuring the vulnerability scanner and schedul-
ing the various vulnerability scans, Information Technology
(IT) systems engineer for implementing remediating actions,
and subject matter experts such as researchers [2]. Threat
signals (alerts) for a CSOC arrive from various sources
such as Intrusion Detection Systems (IDS), Security Infor-
mation and Event Management (SIEM), emails, phone calls,
unauthorized access, data breach, and espionage activities
by personnel. Alert analysis is a critical and complex task
performed by a CSOC. Sensors monitoring different parts of
the network generate varying amounts and types of alerts.
Also, security personnel have varying characteristics, such
as they differ in their expertise and skill levels, among
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others. The above illustrates that a CSOC environment is
highly dynamic, and continuously changing and evolving.
In a continuously evolving environment, the personnel at
a CSOC collaborate with their team members and function
effectively as a team to achieve the primary objective of pro-
tecting the organization from cyber threats. Hence, effective
team formation is a critical need of the CSOC enterprise.

There is a limited amount of literature on team forma-
tion for cyber operations. Current research by behavioral
scientists focuses on selecting team members based on their
traits and working habits [2], [3], [4]. Malviya et al. [5] and
Granasen and Andersson [6] cite effective team bonding as
a critical trait for forming successful teams, while Valle et
al. [7] and Khanna [8] cite leadership as a necessary trait to
handle the time pressure of applying security skills in active
cyber threat scenarios. Dawson and Thompson [9] identify
team dynamics and social fitting within a cyber operation
team as important traits, while Brase et al. [10] identify
behavioral ratings and study their effects on patterns of
responses. Khanna et al. [11] focus on traits such as leader-
ship, attention to detail, adherence to deadlines, action over
reflection, and big picture over details to form cybersecurity
teams. Figure 1 shows a schematic of the current approach
in team formation for cyber operations. In this approach,
first, an individual profile for each of the personnel is
created. The individuals answer selected questions through
a survey identifying their personality traits. Next, teams are
formed with a balanced mix of these traits. The teams are
assigned tasks, and their performance is measured based
on the quality and timeliness of the results [11], [12]. The
teams are reconstituted based on the identified strengths
and weaknesses obtained from their psychometric profile
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compositions. However, the direct impact of the team’s
performance on its members is not quantified. As a result,
the performance of the individuals on the previous task(s)
is not considered when forming new teams.

Analysts also have specific skill-based characteristics,
which are critical for cyber operations and need to be
directly taken into consideration while forming teams. An-
alysts have different expertise levels (junior, intermediate,
and senior), tooling knowledge (such as SNORT, Suricata,
Snorby, Squil, OSSEC, and Bro [13]), and credentials (such
as confidential, secret, and top-secret security clearance
levels). The sub-optimal grouping of analysts in a team
directly impacts the performance of the CSOC. For example,
in a scenario from literature [14], it was observed that
the throughput of the alert investigation was significantly
impacted when proper analyst credentials were not met
during alert investigation tasks. In another scenario [11],
it was observed that while there was an abundance of a
specific skill set in a team, other essential skills needed
for the successful operation of the cybersecurity tasks were
absent. Hence, it is critical to identify and meet the team
requirements by considering the individuals’ technological
skills and past performances.

Our study focuses on taking a holistic view of the CSOC
by defining the team requirements and selecting individuals
based on their skills and performances to form effective
teams. The goal is to protect an organization from cyber
threats by forming balanced teams using a quantitative
approach. Each team must maximize the throughput of
investigated alerts and minimize false positive and negative
decisions. To quantify the team performance and its impact
on the team members, we propose a new metric, collaborative
score. This new performance metric measures the goodness
of a team by considering the quality (precision and recall
values) and timeliness (throughput rate) of the performed
tasks. We provide the related definitions in Section 3.3. The
research objective is to form optimal teams of cyber analysts
as needed such that 1) all teams have their collaborative
score maximized, and 2) all the collaborative scores are bal-
anced among teams (i.e., the maximum difference between
the collaborative scores of any two teams is minimized,
which means that the variance among the collaborative
scores of the teams is minimized). Since it is necessary
always to maintain effective teams to maintain performance,
it is also desired to have a decision-support framework that
assists in re-forming teams when disruptions occur. Teams
need to be re-formed to balance the performances in the face
of disruptions that may occur due to one or a combination
of factors, such as a high rate of alert generation beyond
normal levels (which includes adding new sites or activities
at the CSOC), personnel gaps, and deterioration in team
performance.

An optimal team, also known as an effective team, is
said to be formed if its collaborative team score is the
highest, which means that the team has the highest possible
throughput of analyzed alerts, and lowest possible false
positive and negative rates, while keeping the performances
among the teams balanced. The premise of the paper is
that good collaborative teams lead to best overall perfor-
mance of the alert analysis division of the CSOC. To our
knowledge, based on our discussions with the CSOCs, the

current process of team formation with only analysts and
their allocation to the alert analysis is not only manual
but also is executed at the local level of CSOC analysts.
There does not exist an efficient decision-support approach
in the literature that guides effective team formation as
needed for the CSOC. The individual performance score is
determined as follows using the team’s collaborative score
that has the following metrics. At the end of each shift,
throughput metric on the number of alerts analyzed by a
team is available. False positive information about an alert
is available as soon as the alert is determined to be benign by
a secondary check process. False negative information about
an alert is a more serious situation and is often detected only
when compromise is detected, which could take several
shifts of operation. It is assumed that alert analysis can be
traced to the team that performed the analysis (based on
the time-stamp of alert generation and its categorization).
Therefore, as soon as the above information on the team’s
performance is available, the throughput, false positive,
and false negative scores for a team are uniformly divided
among the team members, which will update the individ-
ual’s performance scores on the above metrics. Meeting the
research objectives and forming effective teams is nontrivial
because of the multitude factors given above. Hence, to meet
the research objectives, we present an integrated framework
comprising an optimization, simulation, and team scoring
model to form effective teams for each shift of operation.

The research in this paper differs from the authors’ prior
work to optimize the level of operational effectiveness (LOE)
of a CSOC [15], dynamic scheduling of analysts [16], and
grouping of sensors and allocation to analysts [14] in the
following manner. The aforementioned research studies do
not form teams, and it is assumed that as long as there is a
minimum expertise mix of senior, intermediate, and junior
analysts in a team, then such a team is supposed to have a
high quality of alert analysis. In other words, this means
that not only would such a team have high throughput
rate of alert analysis but also have negligible false-positive
and negative rates. In this paper, the above assumption
is broken, and individual team members are scored based
on their performance within a team. This information, as
described earlier, is used to form collaborative teams that
have high collaborative scores.

There are several contributions of this research. The pri-
mary contribution is the integrated framework that delivers
the teams for each shift of operation such that the research
objective is met. The framework benefits the CSOC that can
quickly put together an efficient team based on the inputs
such as team requirements, team member attributes, and
desired organizational performance for each shift of oper-
ation. The collaborative team scoring scheme from which
the individual member’s scores are determined using the
team’s throughput, false positive, and false negative rates
is another novel aspect of this research. It must be noted
that as time progresses, more information on the team’s
performance becomes available, which can be used to fine
tune the formation of the teams. Another unique and novel
aspect of the research objective is that not only does the
integrated framework seek to maximize the collaborative
team score of a team that is formed but also attempts
to balance the collaborative score among the teams such

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2023.3253307

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.



IEEE TRANSACTIONS ON SERVICES COMPUTING 3

Fig. 1. Schematic of Current Approach in Team Formation

that the difference in the collaborative score between any
two teams is minimum. Finally, the proposed framework
is also able to quickly identify the outliers (high- and low-
performers) with the performance scoring model. The paper
also delivers several meta-principles that provide insights
and also guide in effective team formation that can be used
by practitioners and researchers alike.

The paper is organized as follows. Section 2 provides
related literature pertaining to team formation. Section 3
describes the integrated framework for team formation. The
optimization, simulation, and scoring models are explained
in this section. Section 4 describes the experiments and
provides an analysis of results. Section 5 describes the
meta-principles obtained from this research study, which is
followed by the conclusions and future work.

2 RELATED LITERATURE

The environment of a CSOC is continuously evolving. An-
alysts are expected to adapt to this dynamic environment
and protect the organization from cyber-threats. Analysts
mitigate the threats by collaborating among each other and
functioning effectively as a team. Team members share the
workload comprising of various tasks and collaborate on
difficult tasks [17]. Steinke et al. [4] lists forming effec-
tive teams as a critical aspect that determines the success
of a CSOC. The effectiveness of a CSOC team depends
on the technological and behavioral characteristics of the
individual team members. In a recent study, Foley and
Rooney in [18] emphasize the role of people and their
experiences in the CSOC teams toward achieving optimal
functioning. They use grounded theory to qualitatively as-
sess the human experience of working in security environ-
ments. The technological characteristics of team members
include proficiency with the tools needed for analyzing
the tasks, member credentials, and their expertise level.
Behavioral characteristics, as identified by Steinke et al. [4],
include adaptation, collective problem-solving, communica-
tion, building trust, and sharing knowledge of expertise. For
instance, collective problem-solving require team members
with varying expertise levels so that difficult tasks can be
collaborated successfully. Hence, when forming effective
teams it is critical to have a mix of expertise levels and
proficiency with various tools among the team members.
Similarly, psychological safety or trust can be attained by
building teams where the team members work well with
each other.

The authors in [1] identify the following roles that are
consistent in CSOC teams: (1) senior level lead, (2) incident

handlers (analysts who analyze incidents and write re-
ports), (3) first responders (that perform triage analysis [19]),
and (4) subject matter experts. Killcrese et al. [20] identify
the first responders and the incident handlers as the core
members of the teams. The other roles are required on a
need basis. A team-based approach to computer network
defense has been studied by Deckard et al. [21], where
the team performance is assessed by post-event surveys.
Behavioral scientists have identified key characteristics [2],
[3] and strategies to improve the performance of a team.
The effectiveness of a team is derived from the individual
behavioral characteristics of the team members. Halfhill et
al. [22] define team personality composition as an aggre-
gation of personality traits in a team that influences its
effectiveness. The authors in [23] quantify and aggregate
individual characteristic scores to the team level score to
gauge the effectiveness of a team. In particular, they use
the mean characteristic score of the team members, the
lowest score of the team members, the highest score of the
team members, and the variance in the scores among the
team members for evaluation. Agreeableness is identified
as an important personality trait in composition of effective
teams [24]. Agreeable team members value affiliations and
are more trustworthy compared to others [25], [26]. As a
result, they are perceived to improve team cohesion.

The research so far has focused on the relationship
between individual characteristics and the effectiveness of
a team. In this paper, we study the characteristics of a team
and form effective teams such that the performances of the
teams are balanced. The literature is primarily focused on
the behavioral characteristics of team members where as
in this paper, we focus on technological and performance
related factors. In particular, we present a quantitative ap-
proach towards forming effective teams.

3 TEAM FORMATION AND PERFORMANCE EVALU-
ATION FRAMEWORK

Team formation and performance evaluation is a dynamic
exercise because teams can change in 1) the immediate
horizon (per shift) based on available personnel in a shift
(accounts for absenteeism), 2) the short-term (every 14-day
scheduling cycle) based on the analyst performances, and
3) the long-term as new analysts are added or existing
ones leave, analyst tool knowledge is enhanced, and analyst
credentials are updated. Figure 2 provides the framework
for team formation and performance evaluation. It consists
of three models, which are executed in a sequential manner
and iterated over many scheduling cycles. The framework
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aims to help the decision-makers at the CSOC by forming
optimal teams, whose collaborative scores are maximized
and balanced, that minimizes the risk to the organization
posed by sub-optimal team(s). Upon repeating the process
over several scheduling cycles, the framework aims to also
help identify outlier analyst performances (high and low).
Next, we explain each of these models in detail.

3.1 Optimization Model

The optimization model determines the optimal teams of
analysts with maximized and balanced collaborative scores
by taking into account several inputs and subject to sev-
eral constraints. We first explain the inputs to the model,
followed by the team requirements constraints.

Analysts have various attributes, including different ex-
pertise levels, proficiency with different tools, credentials,
and performance scores acquired from their past teams’ per-
formances (explained in Section 3.3). Analysts have access
to all the tools that are used to analyze alerts; however, the
expertise on these tools vary. For instance, a junior analyst
will have expertise on a few tools (such as SNORT), while
a senior analyst will be an expert on all the tools in the
entire set. Alerts coming from specific sensors must require
credentials such as security clearances due to the sensitive
nature of the data. A matrix of analysts and their attributes,
which include expertise level, tooling, credentials, through-
put score, precision score, recall score, and average time to
analyze an alert are provided as inputs to the model. It is
assumed that the CSOC is adequately staffed such that there
are appropriate numbers and types of analysts available
at the start of the shift to cover all the alerts generated
under normal operating conditions. The team requirements
gathered from literature and our conversations with the
CSOC managers, which are provided as constraints that the
team formation model must meet, are as follows. The mix of
analyst skill (expertise) levels must be maintained for each
team [16], [27]. Each team’s credentials and tooling needs
must be met [14]. Also, each team must have the required
number of analysts and each analyst must be assigned to a
team.

The output of the optimization model is the teams and
their respective composite collaborative scores, which are
maximized and balanced. The research objective of the
optimization model is to form teams and meet the team
requirements, maximize throughput, and minimize false
positives and negatives so that in the long run optimal
teams with highest collaborative scores are formed and the
collaborative scores among teams are balanced. The above
distinction between highest and balanced is justified as
follows.

Optimization for team formation is executed before sim-
ulating the work-shift with alerts. One of the inputs to
optimization is each analyst’s individual throughput, false
positive and negative scores. When teams are formed with
analysts who report to work, the sum total of all their
throughput and false positive and negative scores is a con-
stant, regardless of how teams are formed. For example an
ad hoc team formation method could result in a team with
all high performers (high collaborative score) and another
team with all low performers (low collaborative score), but

TABLE 1
Definitions of Notations

Notation Definition
Indices
i Analyst identity
j Team identity
k Skill level identity
t Tool identity
Inputs
I Total number of analysts available
J Total number of teams
K Total number of skill levels
T Total number of tools
Si Performance score of analyst i
Mj Total number of analysts required per team j
Nj,k Minimum number of analysts required per team j

from skill level k
Oj,t Minimum number of analysts required per team j

with tool t
Zi,k 1 if analyst i belongs to skill level k, and 0 otherwise
Ui,t 1 if analyst i is expert on tool t, and 0 otherwise
Variables
xi,j

(Binary)
1 if analyst i is assigned to team j, and 0 otherwise

d Maximum difference between the collaborative scores
of any two teams

the total throughput will still remain the same as that of two
teams with equal collaborative score. This is because of a
closed system, which cannot improve unless the individual
analyst’s performance improves. Since a team with all low
performers (low collaborative score) is undesirable as the
risk associated with incorrect alert categorization and low
throughput will be very high with this team, the goal is
to create teams of near-equal (or balanced) performances.
Hence, the objective of the optimization model is to form
teams such that the maximum difference among the collab-
orative team scores (say, d) is minimized while meeting the
team formation and performance requirement constraints.
The frequency of running the optimization model is every
14 days, although the conditions mentioned earlier in this
section can also trigger the need for running the model to
make readjustments. Next, the work-shift is simulated by
first generating the alerts, followed by the process of analyz-
ing them by the formed teams of analysts. The simulation
details are explained in the next section.

3.1.1 Mathematical formulation
The model formulation consists of the objective function,
constraints, and outputs, which are explained in detail be-
low. The notations for the parameters of the exact optimiza-
tion model are described in Table 1.

The constraints for the optimization model are as fol-
lows:

1) Each team must have the required number of ana-
lysts, which is given by∑

i

xi,j = Mj ∀j. (1)

2) Each team must meet the mix of analyst skill levels,
which is given by∑

i

xi,j ∗ Zi,k ≥ Nj,k ∀j, k. (2)
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Fig. 2. Team Formation and Performance Evaluation Framework

3) Each team must meet the credentials and tooling
needs, which is given by∑

i

xi,j ∗ Ui,t ≥ Oj,t ∀j, t. (3)

4) Each analyst must be assigned to a team, which is
given by ∑

j

xi,j = 1 ∀i. (4)

The objective of the optimization model is to balance the
collaborative scores among teams (i.e., the maximum dif-
ference between the collaborative scores of any two teams,
d, is minimized). The maximum difference in collaborative
scores among any two teams is measured by∑

i

xi,j ∗ Si ≤ d ∀j. (5)

The objective function equation is as follows:

w = Min d. (6)

The performance scores of the analysts (Si, ∀i) are cal-
culated by the scoring model (explained later in Section
3.3) and provided as an input to the optimization model.
The outputs from the optimization model are (1) teams of
analysts, i.e., xi,j ∀i, j, and (2) collaborative scores of all the
teams, i.e.,

∑
i xi,j ∗ Si ∀j.

3.1.2 Algorithm for the Optimization Model
Algorithm 1 provides the implementable steps for the opti-
mization model described above.

3.1.3 Computational Complexity
The decision problem presented in this paper of assigning
each member to a team is similar to a political district-
ing problem, where districts are formed by partitioning a
territory. The political districting problem is known to be
NP-complete [28]. The research problem is as hard as that

Algorithm 1: Optimization Algorithm for Team
Formation.

Input: Total number of analysts available I , total
number of teams J , total number of skill
levels K , performance score of each analyst
Si, total number of analysts required per team
Mj , minimum number of analysts required
per team from each skill level Nj,k, minimum
number of analysts required per team j with
tool t Oj,t, and skill levels and tool expertise
of all the analysts (Ui,t and Zi,k).

Output: Analysts assignments to teams, xi,j ∀i, j;
collaborative scores of the teams,∑

i xi,j ∗ Si ∀j.
/*Initiate a solution search using an integer
programming solver */

repeat
for a set of xi,j = 1, /*Potential solution obtained in
a search*/ Check for feasibility: do∑

i xi,j = Mj ∀j /* equation 1 */∑
i xi,j ∗ Zi,k ≥ Nj,k ∀j, k /* equation 2 */∑
i xi,j ∗ Ui,t ≥ Oj,t ∀j, t /* equation 3 */∑
j xi,j = 1 ∀i /* equation 4 */∑
i xi,j ∗ Si ≤ d ∀j /* equation 5 */

end
if Feasible then

w = Min d /*Min score difference*/
end

until Stopping criteria /*Optimal value for d is found*/ ;
return xi,j ∀i, j;

∑
i xi,j ∗ Si ∀j.

problem. The complexity of the algorithm is of the order
O(2I∗J ). However, due to a smaller number of teams to be
formed in a CSOC and constraints in forming the teams, the
number of potential solutions are decreased. The instances
shown in the experiments have a computational run time
of less than five minutes. The algorithm was developed in
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Python and solved using the Gurobi solver [29]. It is to be
noted that the teams are formed biweekly and there is ample
time between each decision to allow for more complex
data (in terms of number of teams and organization-specific
constraints) at a CSOC.

3.1.4 Advantages of Optimization Model
1) It allows for the constraints to be met via the

mathematical programming model, which could be
difficult to achieve manually via ad hoc (experience-
based) team formation.

2) It gives data-driven insights/recommendations to
a decision-maker and thereby helps in reducing
human error.

3) It helps in balancing the collaborative score, which
ensures that there are no teams with very low col-
laborative score (high risk).

3.2 Work-Shift (Simulation) Model
In real-world conditions, the output of the optimization
model, i.e., the analyst teams will be recommended to the
CSOC manager and schedules with the new teams will be
generated. To mimic the real-world CSOC operations, we
develop a simulated environment. A work-shift is simulated
using a discrete event simulation model as shown in Fig-
ure 2. Each simulation run corresponds to a 14-day time
period, which further consists of two shifts of 12 hours each
per day, and alerts are generated from various sensors in
a network using a Markovian distribution (Poisson arrival
process) [16]. The teams of analysts formed as a result of
the optimization model are used as inputs in the simulation
model, which are scheduled throughout the 14-day time
period [16]. Analysts have attributes such as the throughput,
false positive and false negative rates. First, sensors are
grouped together to form clusters [14]. This process helps
with balancing the alert workload and analyst credential re-
quirements. For each shift of operation, alerts are enqueued
based on their generation time. The alert analysis process
is then simulated. The analysts analyze alerts based on
the CSOC’s picking strategy. In this study, we consider the
selection of alerts that are oldest in the queue. If the alerts
are prioritized based on their criticality level, then they can
select alerts that are not only the oldest but also have the
highest criticality level. Finally, the total number of alerts
analyzed, false positives, and false negatives are reported
for each of the teams.

3.2.1 Algorithm for the Work-Shift (Simulation) Model
Algorithm 2 describes the steps in the simulation model for
the work-shift.

3.3 Performance (Scoring) Model
The performance of the CSOC is measured in many
ways [12]. In this paper, we consider the following metrics
to measure the performance of the alert analysis division.

1) Throughput of a team: It measures the number of
alerts investigated by a team. It is also a direct
function of 1) time elapsed between detected time of
potential attack/compromise (alert generation time)

Algorithm 2: Work-Shift Simulator Algorithm.
Input: Average number of alerts generated per

sensor, analyst teams from optimization
model, number of analysts and their
attributes: tooling/credentials, throughput
rate, false positive rate, and false negative
rate.

Output: Number of alerts analyzed, number of false
positives and false negatives.

repeat
Step 1: Simulate a work-shift;
Create groups of sensors to form clusters;
Create a queue to collect alerts generated from
sensors;

Create teams of analysts (obtained from the
optimization model);
timeindex = 0;
repeat

Step 2: Generate alerts per sensor using a
probability distribution with the given
average alert generation rate;

Step 3: Enqueue alerts generated from the
sensors based on their arrival times;

Step 4: Alerts are picked up for alert analysis
process by idle analysts using the CSOC’s
alert picking strategy;

Alerts are analyzed by the analysts by
picking a random value within their range
of throughput rates;

Alerts are marked as false positives and false
negatives based on the respective analyst’s
false positive and negative rates by picking
a random value within their ranges;
timeindex ++ (1 hr time steps);

until timeindex = 12 hrs*2 shifts*14 days;
Report the analyzed, false positive and false
negative alerts;

until the number of simulation replications have been
completed;

return Number of alerts analyzed, number of false
positives and false negatives.

and report writing (time at which the alert has
completed investigation), 2) the type of sensor (alert
type), and 3) tooling availability and credentials of
the team investigating the alert.

2) False positives of a team: It measures the number
of alerts that were incorrectly identified as attacks.
False positives result in wastage of team resource
by focusing their time on innocuous alerts. This in
turn reduces the throughput. Precision is defined as
follows:

Precision =
TruePositives

(TruePositives+ FalsePositives)
(7)

3) False negatives of a team: It measures the number
of alerts that were incorrectly identified as benign.
False negatives result in real harm to the organiza-
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tion. Recall is defined as follows:

Recall =
TruePositives

(TruePositives+ FalseNegatives)
(8)

4) Collaborative score of a team: It measures the good-
ness of a team. This proposed metric is a composite
score of three metrics that captures the combined
throughput of all the individual members on a
team, their combined precision, and their combined
recall scores. The collaborative score will follow
a value model wherein the value of normal or a
predetermined throughput (best value) is 1 on a
0-1 scale, and the value of precision and recall is
already expressed on a 0-1 scale where 1 is the best
value. The collaborative score Cj for team j is then a
weighted value of throughput, precision, and recall,
and is calculated for every shift in the day.

Cj = WTV (Tj) +WPV (Pj) +WRV (Rj), (9)

where V () is the value function and WT , WP , and
WR are the weights of throughput T , precision
P , and recall R, respectively. The weights provide
the flexibility for the CSOC to form teams by pri-
oritizing either of the three performance metrics,
throughput, precision, or recall, based on the prob-
lem type and importance of consequences.
The variance among Cj for J total number of teams
formed is given by

V ar(Cj) =

∑J
j=1(Cj − C̄)2

J − 1
, (10)

where C̄ is the average collaborative score of all
teams. V ar(Cj) is minimized, as explained later in
the optimization model (in Section 3.1). The overall
performance of the organization can be defined as
the sum of the collaborative scores of the J number
of individual teams, which can be calculated as

Total Collaborative Score =
J∑

j=1

Cj . (11)

Based on the output of the work-shifts observed over
each 14-day period, i.e., the biweekly performances of the
teams, the scoring model assigns individual scores to the
analysts. First, the throughput, precision, and recall values
are obtained for each team and their respective collaborative
scores are calculated using Equation 9. Next, these values
are equally distributed among the members of each team
and their respective performance scores are updated by
taking an average over the n number of biweekly periods.
The equation for calculating the performance score, Si, of
an analyst i from team j is given by

Si =
Si ∗ (n− 1) + Cj

n
∀i, j. (12)

These scores (Si, ∀i) are then used in the optimization
model (Equation 5) to form teams.

3.3.1 Performance Evaluation
The steps in this framework, as shown in Figure 2, are
repeated over many iterations. The CSOC environment is
simulated to observe the performances of the teams and the
individuals. The team performances are evaluated biweekly,
and the analyst scores are updated accordingly. The frame-
work then reports outliers, i.e., high (top) or low (weak)
performers, if any, over the long run.

For the overall performance metric, the collaborative
team scores are measured and the maximum difference
between the collaborative scores of any two teams is re-
ported. In an ideal situation, real-world data must be used
to measure aggregated throughput, and false positives and
negatives both with and without efficient team formation
over the same long period of time. There is a lack of such
data due to confidentiality reasons and the research would
prove the hypothesis that by balancing the collaborative
scores of the teams formed via optimization, the overall
risk associated with low performing teams (with lower
throughput and higher rates of false negative and positive
decisions) is minimized. Next, we present the experiments
and the analysis of results.

4 EXPERIMENTS AND ANALYSIS OF RESULTS

In this section, we first describe the setup for conducting
experiments, followed by the analysis of results.

4.1 Experimental Setup
We have been actively studying the problem of alert man-
agement and have had many discussions with managers
from various CSOCs (government, public, and private),
which include in-house and third-party service providers.
Our design decisions were based on these conversations and
observations. We consider three cases in our experiments,
which were obtained from our discussions with them. These
include one nominal case and two outlier cases, which are
explained as follows.

4.1.1 Nominal Case
We consider a CSOC with 40 analysts and four teams.
There are 12 senior analysts, 14 intermediate analysts, and
14 junior analysts. The analyst expertise mix required in a
team is a minimum of 20% seniors, 30% intermediates, and
30% juniors [27]. The number of members required in each
team is 10. All the junior analysts have access to basic tools
(such as SNORT), intermediate analysts have access to more
advanced tools, and seniors have access to the entire tool set
required at a CSOC [14]. An analyst expertise level is highly
correlated with the throughput and false positive and nega-
tive rates in cybersecurity tasks. For example, a senior level
analyst is expected to have the highest throughput and the
lowest false positive and negative rates. Table 2 shows the
analyst attribute ranges for the throughput, false positive,
and false negative rates used for the experiments, which
were obtained from our conversations with the CSOCs and
the literature survey [16], [27], [30].

Based on these conversations, we considered equal
weights (WT = WP = WR = 1) for the performance
metrics observed at a CSOC in the experiments shown
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TABLE 2
Input: Analyst Attributes

Attributes (Range) Senior Intermediate Junior
Analysis rate/hour 300-420

alerts
200-280
alerts

160-200
alerts

False positive rate 4-6% 6-8% 8-10%
False negative rate 0.04-0.06% 0.06-0.08% 0.08-0.10%

in this section. These weights are used to calculate the
collaborative score, Cj , of each team (in Equation 9). The
value for V (Tj) is calculated on a 0-1 scale as follows.
The highest throughput rate possible in a 14-day period
is determined for each team, which will be obtained if all
the analysts in the team analyzed the number of alerts (or
more) expected from them. This number takes a value of 1.
A value of 0 is assigned if no alerts are analyzed by the team.
The actual value of V (Tj) at the end of the 14-day period
is obtained by exponentially normalizing between these two
numbers. The value of V (Pj) and V (Rj) are obtained based
on equations 7 and 8, respectively, which are also described
in the introduction section.

We also set up a baseline case to compare against
our methodology. In this baseline case, we use an ad hoc
approach to form teams without the optimization model,
which is explained as follows. We measure each team’s
attribute values at the end of the biweekly period. If this
value does not meet a predetermined threshold, then we
select the lowest performing analyst(s) from the respective
team(s) and swap them with the average performer(s) of the
same skill level from the top performing team(s). Note that
we do not swap the lowest performing member with the
best performer from another team, as that will create even
more imbalanced teams. We selected the mean values of the
ranges shown in Table 2 (i.e., throughput of 240 alerts, false
positive rate of 7%, and false negative rate of 0.07%) as the
respective thresholds.

Next, we developed outlier cases for the experiments
to evaluate our methodology. These cases were developed
based on our conversations with the CSOC managers.
Through these conversations, we found multiple cases in
which it becomes difficult for a CSOC manager to attain
balanced teams, including cases with (a) a minimal number
of analysts and (b) many analysts with outlier characteristics
(under and over performing). We considered various cases
in our experiments and describe in detail two of these cases
to demonstrate the effectiveness of our approach. One case
considers only one outlier analyst, while the other considers
multiple outlier analysts from individual skill levels.

4.1.2 Outlier Case 1

The performances of two analysts are changed in this case.
1) The attributes of analyst ID 3 (a senior analyst) are
upgraded by 20% (i.e., analyst’s throughput, true positive
and true negative rates are upgraded by 20% from the
numbers listed in Table 2). 2) The attributes of analyst ID
38 (a junior analyst) are downgraded by 30%. All the other
inputs are used from the nominal case, as shown in Table 2.

Fig. 3. Convergence in Nominal Case

4.1.3 Outlier Case 2
We setup another outlier case, in which there are multiple
outliers considered in a CSOC. The attributes of analyst IDs
3, 6 (senior analysts) and 16 (an intermediate analyst) are
upgraded by 30%. Whereas, the attributes of analyst IDs
18 (an intermediate analyst) and 34 (a junior analyst) are
downgraded by 30%. All the other inputs are used from the
nominal case, as shown in Table 2.

In addition to the above case studies, we also fluctu-
ated the alert arrival rates by randomly generating adverse
events (Shah et al. [31]), to observe the impact on team
formation. Each experiment is run over 26 iterations (equiv-
alent to 52 weeks) to observe the characteristics of the teams
and the individual members. Next, the results are analyzed
and presented.

4.2 Analysis of Results

Below we analyze the results obtained from the experiments
conducted for the three cases.

4.2.1 Nominal Case
We ran this experiment by starting with the least opti-
mal team configurations in the first iteration. We selected
members for each team to maximize the difference among
the collaborative team scores in biweek #1. We wanted to
determine the maximum time it would take for teams to
balance their collaborative scores using our methodology.
In Figure 3, we plot the maximum difference among the
collaborative team scores (d) over a longer (two years)
period to observe any fluctuations. It can be seen that this
value converges around the eighth biweekly period. We
ran various experiments with different random seeds and
noticed similar results. We observed that it takes up to four
months for a CSOC to establish teams, where the maximum
difference in collaborative scores converges, when starting
from sub-optimal configurations. These results are due to
the sequential (biweekly) application of the optimization
algorithm in our framework and the correlation between
the analysts’ attributes (throughput, false positive, and false
negative values) and their expertise levels (senior, interme-
diate, and junior), which exists in cybersecurity tasks.

It is to be noted that without optimization, the team
formation is ad hoc and there will be fluctuations in the
difference in collaborative scores among the teams and the
value of this difference will be larger. Figure 3 shows the
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Fig. 4. Individual Performances in Nominal Case: (a) Junior Analysts and (b) Senior Analysts

Fig. 5. Average Analyst Performances in Nominal Case

fluctuation using the baseline case for this experiment. This
indicates that without optimization there will be teams with
lower collaborative scores than the average observed among
the teams, creating a high-risk scenario for the CSOC.

Figure 4 (a) shows the performance of the junior level
analysts and Figure 4 (b) shows the performance of the
senior level analysts. We have modified (magnified) the
scale on the y-axis to show the temporal patterns in the
analyst performance scores. In a nominal case where the
analysts are performing according to their expected at-
tribute values, there is no significant difference observed
among their individual scores over the 52 weeks. Similar
observations were made for the intermediate level analysts.
Furthermore, Figure 5 shows that the average performance
score of analysts is similar across all the expertise levels. This
is because the teams’ performances are nearly balanced from
the sixth biweekly period (see Figure 3), and the individual
scores of the analysts are calculated from their respective
teams’ scores. It is also observed that in a nominal case, the
% of times an analyst changed teams was the same (50%)
among all the performers. Figure 6 shows the % change for
the top and the weakest performers. In the baseline case, the
top performers did not change teams, and only the weakest
performers changed teams.

4.2.2 Outlier Case 1
This is the case in which two outliers (analysts), in terms
of their performances, were considered in a CSOC. It is to
be noted that this information was not directly known to
the optimization model. Figure 7 shows that the maximum

Fig. 6. % of Times an Analyst Changed Teams in Nominal Case: (a) Top
and (b) Weakest Performers

Fig. 7. Convergence in Outlier Case 1

difference among the team scores converges, approximately,
around the four-month period, which was also observed
in the nominal case. Through various experiments, we
observed that it takes around four months for a CSOC to
establish teams with the difference among their collabora-
tive scores optimally minimized (converged), irrespective of
outliers being present among the team members.

Figure 8 (a) shows the performance scores of a sample
set of senior analysts. It is easy to spot the top performer
using this visualization. It can also be noted from Figure 8
(b) that a top performer can be identified very quickly,
within the first two months. Similarly, Figure 9 (a) shows
the performance scores of a sample set of junior analysts. It
could be seen that it may take about three to four months
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Fig. 8. Individual Performances in Outlier Case 1: (a) Senior Analysts and (b) Top vs Average Performers

Fig. 9. Individual Performances in Outlier Case 1: (a) Junior Analysts and (b) Weak vs Average Performers

Fig. 10. Performances in Outlier Case 2: (a) Senior and Intermediate Analysts and (b) Top vs Average Performers

to clearly identify an outlier in terms of the weakest perfor-
mance (see Figure 9 (b)). Figure 12 shows the performance
of the outliers compared to the average performance of all
the team members. It is to be noted that such a visualization
of the analyst scores can help the CSOC manager effectively
identify the outliers in the teams. Figure 13 shows the %
of times an analyst changed teams. It can be seen that the
top performer changed teams most frequently compared to
all the other members. It is also noted that the outliers are
often assigned to different teams when compared with an
average team member. This is the reason why the scores of
weak performers fluctuate in the first few months before

significantly deviating from the average score of all the
analysts (see biweek #16 onward in Figure 9 (b)).

4.2.3 Outlier Case 2

In this case, more outliers, compared to the previous case,
were added to the CSOC work-shift simulator. Figure 14
shows that the maximum difference among the team scores
converges around the similar four-month period, as ob-
served in the other two cases. We observed similar results
for convergence in other experiments performed with vary-
ing number of outliers. Figure 10 (a) shows the performance
scores of a sample set of senior and intermediate analysts.
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Fig. 11. Performances in Outlier Case 2: (a) Junior and Intermediate Analysts and (b) Weak vs Average Performers

Fig. 12. Top vs Weakest Analyst Performances in Outlier Case 1

Fig. 13. % of Times an Analyst Changed Teams in Outlier Case 1: (a)
Average, (b) Top, and (c) Weakest Performers

Fig. 14. Convergence in Outlier Case 2

It is easy to spot the top performers using the visualization
shown in Figure 10 (b), which uses the average performance
score of the team members to identify the top performers.
Figure 11 (a) shows the performance scores of a sample set
of junior and intermediate analysts. Similar to the earlier
figure for top performers (Figure 10 (b)), it is easy to spot the
weak performers using the visualization shown in Figure 11
(b). In this case with more outliers, it takes under four
months to identify the weak performers. We noted that
% of times various analysts (average, top, and weakest
performers) changed teams were identical to those observed
in the results for the outlier case 1 (Figure 13). The top
performer changed teams most frequently compared to all
the other members and the outliers were assigned to a larger
number of (different) teams when compared to an average
team member.

We had conducted several other experiments, with
different weighing schemes for the performance metric
weights in Equation 9. We considered a higher weight for
each of them compared to the other two in different sets of
experiments. We obtained similar results to those described
in this section, where effective teams were formed that
met the CSOC requirements and performance goals, and
converged the collaborative score difference among them.
Next, we present our conclusions.

5 CONCLUSIONS, SUMMARY OF META-
PRINCIPLES, AND FUTURE WORK

In this paper, we investigated a quantitative approach us-
ing a novel amalgamation of optimization, simulation, and
performance scoring models to form effective teams, which
are able to maximize throughput and minimize the false
positive and negative rates in the alert analysis process at
a CSOC. Our team formation and performance evaluation
framework can optimally balance the teams’ performances,
measured using a new metric that calculates the collab-
orative effort of the team members to achieve the objec-
tives of the CSOC. Any CSOC can adopt our mathemati-
cal formulation for real-world implementation and set up
the organization-specific input parameter values to form
effective teams. We developed the simulator to mimic the
real-world CSOC operations based on published literature
and our communication with the CSOCs. We demonstrated
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that our framework could quickly form effective teams and
identify high and low-performing team members.

Below we present a summary of meta-principles ob-
tained from the experiments conducted in this research:

1) Our quantitative approach that integrates optimiza-
tion, simulation, and scoring models, along with the
proposed metric that measures the effectiveness of
the teams, helped form effective teams that were
able to maximize and balance their performances.

2) Our proposed team formation and performance
evaluation framework is able to form teams such
that the difference among their collaborative scores
is optimally minimized and reaches convergence
in no more than four months, even when starting
from sub-optimal configurations. We investigated
our approach under varying conditions, including
the presence of outliers (causing deterioration in
team performances) and fluctuations in alert gen-
eration rate (indicative of the addition of new sites
or activities at the CSOC).

3) The outliers were quickly identified with our frame-
work in the simulated experiments. The top per-
formers were identified within the first two months,
and the weakest performers were identified within
the first four months.

4) It was interesting to observe that the top-performing
analysts were selected to change teams more fre-
quently compared to the average-performing ana-
lysts to balance the collaborative scores and thereby
minimize the risk of low-performing teams.

5) In a team environment, identifying low performing
members is often challenging. We observed that, in
general, team members with below-average perfor-
mances are assigned to a greater number of teams
over a longer time compared to the others.

6) A temporal visualization of individual analyst
scores compared against the average score of all
the analysts can help a CSOC manager effectively
identify the outliers. In the case of low-performing
team members, such visualization or dashboard can
help identify the opportunities for intervention in
the form of specific training programs to improve
their performances.

As part of the future work, many improvements can
be made over time, influencing the analyst performance
scores. These improvements include using new signatures
for exploits, employing better network analysis tools, and
finding correlations among alerts from various sensors that
may reduce the false positives and negatives. Our focus was
on forming effective teams in this research study, and we did
not consider the impact of these factors on the performance
of the CSOC. However, this will be an interesting future
direction for the cybersecurity research community. Another
future research direction may include determining optimal
interventions through training programs to help security
analysts maintain the level of operational effectiveness of
the CSOC.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Jennifer Cowley who
works for the Chief Digital and AI Office at the US Defense
Information Systems Agency (DISA) for many helpful dis-
cussions. This work was partially supported by ARO grant
W911NF-13-1-0421, by ONR grants N00014-20-1-2407 and
N00014-18-1-2670, and by NSF grant CNS-1822094.

REFERENCES

[1] G. Killcrece, K.-P. Kossakowski, R. Ruefle, and M. Zajicek, “State of
the practice of computer security incident response teams (csirts),”
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, Tech. Rep. CMU/SEI-2003-TR-001, 2003.

[2] S. J. Zaccaro, “Trait-based perspectives of leadership,” American
Psychologist, vol. 62, no. 1, p. 6, 2007.

[3] S. T. Bell, “Deep-level composition variables as predictors of
team performance: A meta-analysis.” Journal of applied psychology,
vol. 92, no. 3, p. 595, 2007.

[4] J. Steinke, B. Bolunmez, L. Fletcher, V. Wang, A. J. Tomassetti, K. M.
Repchick, S. J. Zaccaro, R. S. Dalal, and L. E. Tetrick, “Improving
cybersecurity incident response team effectiveness using teams-
based research,” IEEE Security & Privacy, vol. 13, no. 4, pp. 20–29,
2015.

[5] A. Malviya, G. A. Fink, L. Sego, and B. Endicott-Popovsky, “Situa-
tional awareness as a measure of performance in cyber security
collaborative work,” in 2011 Eighth International Conference on
Information Technology: New Generations. IEEE, 2011, pp. 937–942.
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