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ABSTRACT

In the modern industrial setting, there is an increasing de-
mand for all types of sensors. The demand for both the quantity
and quality of sensors is increasing annually. Our research fo-
cuses on thin-film nitrate sensors in particular, and it seeks to
provide a robust method to monitor the quality of the sensors
while reducing the cost of production.

We are researching an image-based machine learning
method to allow for real-time quality assessment of every sensor
in the manufacturing pipeline. It opens up the possibility of real-
time production parameter adjustments to enhance sensor perfor-
mance. This technology has the potential to significantly reduce
the cost of quality control and improve sensor quality at the same
time. Previous research has proven that the texture of the topical
layer (ion-selective membrane (ISM) layer) of the sensor directly
correlates with the performance of the sensor. Our method seeks
to use the correlation so established to train a learning-based sys-
tem to predict the performance of any given sensor from a still
photo of the sensor active region, i.e. the ISM. This will allow for
the real-time assessment of every sensor instead of sample test-
ing. Random sample testing is both costly in time and labor, and
therefore, it does not account for all of the individual sensors.

Sensor measurement is a crucial portion of the data collec-
tion process. To measure the performance of the sensors, the
sensors are taken to a specialized lab to be measured for per-
formance. During the measurement process, noise and error are
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unavoidable; therefore, we generated credibility data based on
the performance data to show the reliability of each sensor per-
formance signal at each sample time.

In this paper, we propose a machine learning based method
to predict sensor performance using image features extracted
from the non-contact sensor images guided by the credibility
data. This will eliminate the need to test every sensor as it is
manufactured, which is not practical in a high-speed roll-to-roll
setting, thus truely enabling a certify as built framework.

NOMENCLATURE
SMART Scalable Manufacturing of Aware and Responsive
Thin Films

R2R Roll-to-roll

ISM Ion-selective membrane

IoT Internet of Things

PET Polyethylene terephthalate

EOS Electro-Optical System

NI National Instruments

MF Manufacturing factors

WE Working electrode

RE Reference electrode

CF Curve fitting

GT Ground truth

LMA Levenberg-Marquardt algorithm
CLAHE Contrast limited adaptive histogram equalization
LBP Local binary pattern

GP Gaussian pyramid
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MMNM Min-max normalization method
CV  Cross-validation

SVR  Support vector regression

RBF Radial basis function

RF Random forest

ATRF Alpha-trimmed random forest
RMSE Root-mean-square error

1 INTRODUCTION

This project is sponsored by the Purdue SMART (Scalable
Manufacturing of Aware and Responsive Thin Films) consor-
tium [1], which is comprised of industry leaders and interdis-
ciplinary researchers. The consortium’s goal is to develop and
produce affordable internet of things (IoT) sensors at commer-
cial volumes and distribute the sensors at a national level. To
accomplish this objective, the roll-to-roll (R2R) manufacturing
system shown in Figure 1 (a) is used to print the electrodes on
a polyethylene terephthalate (PET) substrate, and then coat the
electrodes with the ion-selective membrane (ISM) and a silicon
passivation layer. Figure 1 (b) shows an example of a fabricated
thin-film nitrate sensor batch.

A major challenge of this manufacturing method is efficient
and economical quality control. According to the study of nitrate
sensors, the sensor performance is influenced by the non-uniform
coating of the ISM [2], [3]. These variations in coating thickness
will create a visible texture of the sensor surface. Based on this
hypothesis, we have been researching and developing a learning-
based non-contact imaging approach to predict the performance
of a sensor. The experimental results from the past [4], [5], have
confirmed the validity of the hypothesis. In this paper, the re-

Dataset Preparation

sults from these previous studies are combined in an integrated
manner. Figure 2 shows the modified prediction system structure
described in this paper.
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FIGURE 1. (a) R2R Sensor Manufacturing System;
(b) Example of Fabricated Sensor Batch.
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FIGURE 2. Overview of Prediction System for Training and Inferencing.
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As with the previous procedure [4], we apply segmenta-
tion and texture enhancement techniques to the captured non-
contact sensor images to create the image dataset for our pre-
diction model. A logarithmic function derived from the physics
model [3] is applied to represent the sensor performance curve,
as mentioned in the previous study. The objective of this paper
is to use the credibility data to guide this performance data col-
lection process. Details will be discussed in Section 3 (the blue
region shown in Figure 2).

Since the texture difference in the nitrate sensor surface is
related to the sensor performance, we need to extract meaningful
texture features from the sensor image [4]. The feature vector is
generated by combining the extracted features and some manu-
facturing factors as input to the prediction model. In Section 4,
we will discuss this in further detail (the yellow region shown in
Figure 2).

The normalization process for the input feature vector has
been modified for the prediction system part. Other machine
learning models were explored to further optimize the predic-
tion accuracy. This will be discussed in greater detail in Section
5 (the green region shown in Figure 2).

2 Experiment Setup
2.1 Sensor Image Capture Setup
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FIGURE 3. (a) Experiment Setup for Capturing Sensor Images:
(b) Example of Captured Sensor Active Region Image;
(c) Diagram of the Thin-film Nitrate Sensor.

To ensure the consistency of the experiment, the exact equip-
ment setup shown in Figure 3 (a) and procedure are followed as
previously [6] to capture the non-contact sensor images in this
experiment.

The active region of the nitrate sensor is the electrode coated
with the ISM as shown in Figure 3 (c). This is the region that
draws the most attention and correlates with sensor performance.
An Electro-Optical System (EOS)' camera with a microscope is
used to capture the active region of the sensor image as demon-
strated in Figure 3 (b).

2.2 Sensor Performance Measurement Setup
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FIGURE 4. (a) Sensor Voltage Measurement Experiment Setup;
(b) Structure of Indicator Electrode;
(¢) Structure of Reference Electrode.

During the sensor performance measurement procedure, the
active region of the working electrode (also known as indicator
electrode shown in Figure 4 (b)) will be soaked in the nitrate so-
lution, while the non-coated electrode connection region will be

'Electro—Optical System Inc, Phoenixville, PA 19460.
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connected to the National Instruments (NI) Module? to record
the potential voltage data as shown in Figure 4 (a). Meanwhile,
the reference electrode (shown in Figure 4 (c)) with the solid
electrolyte coating is connected to the NI Module in the same
way to provide a stable reference electrochemical potential sig-
nal. The sensor performance signal of the working electrode is
the difference in voltage between the two [7].

3 Dataset Preparation
3.1 Image Data Preparation

The non-uniform ISM coating causes the texture difference
displayed in the captured sensor active region image and affects
the sensor performance. A segmentation method is implemented
so that the prediction model only focuses on the pattern of the
active region shown in the top row of Figure 5. A preprocess-
ing step is added to the overall prediction system to enhance the
texture details of the sensor active region image as shown in the
bottom row of Figure 5.
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FIGURE 5. Image Data Preparation Procedure.

To segment the sensor active region image, we are using
the template matching technique [8]. The preprocessing step is
mainly based on the contrast limited adaptive histogram equal-
ization (CLAHE) method [9] applied to the lightness channel.
Due to the fact that the texture extraction methods (will discuss
in Section 4) are applied to grayscale images, we select the light-
ness channel based on the previous experiments. A description of

NI (formerly National Instruments), Austin, TX 78759-3504)

the implementation details is provided in the previous work [4].

3.2 Sensor Performance Data Preparation

The sensor potentiometric responses used in this experiment
are measured by the setup shown in Figure 4 (a) for around 22
hours using 0.001 molar nitrate solutions. The sensor potential
signals will achieve their saturated phase after about 4.5 hours.
Outlier sensor response signals caused by measurement error
need to be eliminated before generating the ground truth parame-
ters. The modified curve fitting method is then applied to the sen-
sor saturated region suggested by the physics-based model for all
the inlier sensor responses. The generated ground truth param-
eters will represent the entire measured performance signal and
will be fed into the prediction model.

3.2.1 Dynamic Credibility Data Generation

In the ground truth dataset, we want to exclude the faulty
sensors so that they do not affect our training process. If a sen-
sor becomes defective due to imperfect manufacturing or electri-
cal measurement, the potential response of the sensor will de-
viate from the rest of the sensors in the group. In that case,
we assign low credibility to the sensor. We calculate credibil-
ity using the Bayesian Maximum Likelihood Estimation (MLE)
approach [10]. In this approach, we give the continuous time
potential response of a group of sensors as input. We first cal-
ibrate the potential response of all sensors to bring them to the
same level since reliable sensors can show constant bias due to
manufacturing or measurement variability. We then divide the
full-time series data into short time periods and assign a credi-
bility score to each sensor at each time period based on the MLE
approach. MLE gives high credibility to a sensor that frequently
agrees with the majority of that period for a given time period.
We use overlapping time windows to keep the memory of the
previous time window. Thus, MLE gives a dynamically evolving
credibility score of each sensor for the whole time frame.

The dynamic credibility data plays a significant role in both
procedures, the outlier exclusion procedure and ground truth pa-
rameter generation procedure. The dynamic credibility data is
calculated by comparing the shape of each performance signal
among all the performance signals in the same manufacturing
run based on a Bayesian model [10]. We denote the raw sensor
performance signal as V,,, then the dynamic credibility data is
calculated from V,, with a window size equal to 20 data points,
and overlap of 5 data points [11]. Thus for a given sensor, we
obtain a credibility value at each time-point.

3.2.2 Ouitlier Exclusion

The outliers in this experiment are caused by human error
during the measurement of sensor performance rather than sensor
defects.
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calculated again after eliminating the outliers that fail to meet the

threshold criterion. We repeat this process until the average cred-

» ibility data is above 70% for all the remaining sensors, indicating

B that only inliers are left. The dynamic credibility data, denoted

i as ¢, will be used to guide the curve fitting process for each inlier

e sensor later.

e b Figure 6 provides an example of excluding the outliers from

e an example sensor run. Figure 6 (a) provides the original mea-

=4t sured sensor performance signal where the solid lines represent

Ca the outlier signals caused by measurement error. The x-axis rep-

resents time and the y-axis represents the potential voltage in mV.

: ' ' ' ' Figure 6 (b) shows the average credibility data of each sensor cal-

° 2 T & 0 culated with all the sensors. The x-axis represents sensor index,

(a) and the y-axis represents the average credibility data in percent-

Sensor Run: 19-08-15 age. Figure 6 (c) shows the average credibility data of the inlier

100 feossbossebeses | sesstosssbossstsess vue sensors. The axes are same as Figure 6 (b). Notice that the verti-

cal scales of Figures 6 (b) and (c) are different since the credibil-
80 1 ity data are calculated based on different sensor groups.
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3.2.3 Curve Fitting Process for Inliers
The modified curve fitting process simplifies the sensor per-
formance curve into the ground truth parameters for all the inlier
sensor performance signals, as shown in Figure 7. A 5th order
Savitzky-Golay smoothing filter [12] with window length equal
: ? | to 100 data points is applied on the raw measured data, the same
e as before [4].

40 4

Average Credibility (%)
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Sensor Index The physics-based model [3] suggests that the change of po-
(b) tential voltage over time is a logarithmic growth. Hence, the

Sensor Run: 19-08-15
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following equation is used here to generate the ground truth pa-
rameters a and b.
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Vin(t) =a-log(t)+b €))
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The weighted Levenberg-Marquardt algorithm [13], [14] is
used to find the ground truth parameter combination 8 = (a,b)
that gives the best fitting logarithmic curve Vy; (¢, B) for the satu-
rated region of V. The relationship between the weighting factor
o and the dynamic credibility data c is 0 = % Here, V, denotes

Average Credibility (%)
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s 55 60 e 7 75 80 e the downsampled and smoothed sensor performance signal.
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FIGURE 6. Outlier Exclusion Example. B O O;

(a) Raw Sensor Performance Data; X 5
(b) Average Credibility Data for Entire Sensor Run; = argmin Z [ei(Vs (i) = V5 (i, B))] 3
(c) Average Credibility Data for Inliers. i=1

To eliminate the outliers, a binary threshold is set at 70% for
the average credibility data. The dynamic credibility data is then

5 Copyright © 2022 by ASME
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FIGURE 7. Ground Truth Data Preparation Procedure Applied to the Inlier Sensor Data after Outlier Exclusion Based on the Credibility Analysis.

The accuracy of the fitted curve is evaluated by the weighted
root-mean-square error (RMSE) (denoted as RMSEcr), where
CF stands for the curve fitting process and N is the total number
of time points.

N
RMSEcr(mV) = \/11’ Y ci (Vru(i) _Vs(i))z “)
i=1

Figure 8 (a) illustrates the difference between the downsam-
pled original measured sensor performance signal V,,, the down-
sampled and smoothed signal Vj, and the fitted curve Vy;; in the
saturated region. The RMSEy,, is the weighted RMSE calculated
between Vy;; and the downsampled V,, while the RMSEy; is the
weighted RMSE calculated between Vy;; and the downsampled
smoothed V;. Figure 8 (b) shows the dynamic credibility ¢ for
the corresponding sensor.

The dataset generated for this experiment contains 108 sen-
sors. The average RMSEcr for the curve fitting process is around
0.5566 mV between Vy; and the downsampled smoothed data
V4, and 0.9915 mV between Vy;; and the downsampled raw data
V. The result indicates that the idea of using the ground truth
parameters 3 to represent the saturated region of the sensor’s po-
tentiometric response is reliable.

4 Texture Feature Extraction

The visual texture differences of the sensor active region
caused by the non-uniform ISM coating is related to the sen-
sor performance. Hence, extracting meaningful texture features
from the collected sensor image data is critical to predicting sen-
sor performance accurately. Two types of local binary pattern
(LBP) descriptors [15] and the Gaussian pyramid (GP) method
[16] were discussed in the previous experiments [4], and they
will be used again in the following experiment.

In the study of pattern classification in computer vision, the
LBP texture operator is one of the most common operators. The
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FIGURE 8. (a) Example of Fitted Logarithmic Curve;
(b) Dynamic Credibility Data.

LBP operator encodes the texture pattern of each pixel in the
grayscale image based on the predefined small neighborhood re-
gion to an LBP number. Figure 9 shows an example of applying
an LBP descriptor on the given sensor image. The x-axis of the
LBP histogram is the LBP number. The y-axis of the LBP his-
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togram is the percentage among all the pixels of that LBP value.
Each highlighted LBP number shown in the LBP histogram rep-
resents the highlighted region in the given sensor image.

200 400

corner

Percentage

0 5
LBP Histogram

FIGURE 9. Example of LBP Patterns and LBP Histograms.

The GP method is a multiscale image processing technique
based on applying a Gaussian filter on the image and then down-
sampling the image so that the resolution for each layer will be
1/4 of that of the previous layer. The number of GP layers in this
experiment was set to three (as seen in Figure 10)

FIGURE 10. Example of Gaussian Pyramid.

The feature vector used by the prediction model is con-
structed by combining the manufacturing factors and the texture
features extracted from the preprocessed sensor active region im-
ages. The manufacturing factors include the average measured
sensor thickness data and three R2R sensor manufacturing set-
ting parameters: solid content, line speed, and flow rate.

As the features are in various ranges, data normalization
is necessary before feeding the feature vectors to our predic-
tion model. Here, we use the min-max normalization method
(MMNM) to normalize each feature to range [0, 1], as shown
in Equation (5). We denote i as the data sample index, j as the
feature index, x; ; as the j-th feature of the i-th data, and x7; as
the normalized x; ;. The structure of the feature vector for each
sample data is shown in Figure 11.

~ xi j —min(x;)

Xij=

&)

max(x;) —min(x;)

Feature index j

I Feature 0 | Feature 1 | Feature 2 I I Feature n

Feature array I Feature n

for data index i Feature 0 |

Feature 1 | Feature 2 I I

| Feature 0 | Feature 1 | Feature 2 | | Feature n

FIGURE 11. Structure of Feature Vectors for Each Data Sample.

5 Prediction Models

The structure of the expanded image-based prediction sys-
tem is shown in Figure 12.

Relative to what we reported in [4], we have modified the
feature vector normalization process and changed the prediction
model to a multi-output regression model [17] with two types of
regressors. Multi-output regression is a strategy that allows one
to run several regressors in parallel.

Because of the two target variables a and b (the ground
truth parameters), a multi-output regression model combined
with other regressors is considered in the prediction system. This
strategy consists of fitting one regressor per target variable and
running them in parallel.

Let us denote the fitted curve generated based on the ground
truth parameters a and b as V;; and the predicted curve calculated
based on the predicted parameters @’ and b’ as Vyyeq.

Vii(t) = a-log(t) +b (6)
Vorea(t) = d' -log(t) + b @)
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FIGURE 12. Structure of The Prediction Model.

The root-mean-square error (RMSE) is used to evaluate the
prediction performance of the prediction system. RMSE . cal-
culates the error between the predicted curve V.4 and the fitted
curve V.

1
RSME preq = \/N Z(Vpred(i) — Vi (i))? ®)

5.1 Support Vector Regression (SVR)

The SVR model has been used in our previous research [4],
[5] as it is the most commonly used machine learning model for
the regression problem. The SVR model [18] deals with the re-
gression problem by finding an appropriate hyperplane that fits
the input data in higher dimensions under the proper hyperpa-
rameter setting. The radial basis function (RBF) kernel [19] is
used in our SVR model because of the non-linear relationship
between the feature vector and the performance parameters.

5.2 Alpha-trimmed Random Forest (ATRF)

The alpha-trimmed random forest (ATRF) method is con-
structed from the random forest (RF) method.

The random forest (RF) method [20] is an ensemble learn-
ing method that constructs a number of decision trees and uses
the bagging technique [21] simultaneously to ensure randomness

during training. Samples are randomly chosen from the whole
training dataset with replacement to form unique training sub-
sets based on the concept of the bagging technique. Each deci-
sion tree is then trained by the given subset, and the trees running
in parallel build a random forest. The predicted value of the RF
is the average of the predicted values from the trees.

The alpha-trimmed random forest (ATRF) method is exe-
cuted by applying the concept of the alpha-trimmed mean fil-
ter [22] to the predicted values from the decision trees inside the
forest to obtain the predicted value of the ATRFE. The concept
of the alpha-trimmed filter is to deduct the percentage & /2 of the
smallest and largest values from the group and output the average
value of the remaining variables in the group as demonstrated in
Figure 13 [23]. 20% of the total predicted variables in the for-
est are trimmed in this experiment. The structure of the ATRF is

Inal-anlll- ol 28

FIGURE 13. Example of Alpha-trimmed Mean Filter Calculation.

I
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FIGURE 14. Alpha-trimmed Random Forest Structure.

6 Experimental Results

The dataset used in this experiment contains 108 sensors
from four different manufacturing runs indicated by different col-
ors shown in Figure 15.

As shown in Figure 15, sensors from different manufactur-
ing runs show various performance behaviors. From the physics
hypothesis model, we learned that this variation is caused by the
non-uniform ISM coating on the sensor active region during the
manufacturing process. Rows 1-3 in Figure 16 (solid content,
line speed, flow rate) are the setting parameters during the sen-
sor fabrication process for each sensor manufacturing run. Row
4 is the measured average thickness of the sensor in each sen-
sor run. The columns are the manufacturing factors for the four
different sensor manufacturing runs. Row 5 provides two sen-

sor active region images for each sensor run. Row 6 provides
the monochrome images generated from the images in Row 5.
From Figure 16 and Figure 15, we could notice that the sensor
surface texture, the sensor performance signal, and the manu-
facturing factors for each sensor run are all different. Therefore
using dataset containing the four sensor runs can prove the gen-
eralization of our orediction svstem in some sense.

140 4
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FIGURE 15. Sensor Performance Signals from Four Sensor Manu-
facuring Runs.

The image dataset and the ground truth dataset are collected
as discussed in Section 3. The 5-fold cross-validation method
is applied during the training and evaluation procedure of the
image-based prediction system. The overall system performance
is represented by the average predicted performance among all
folds.

Sensor Run (Date of Coating) 2019-08-15 2019-09-12 2019-12-10_C
1 Coating solution solids (wt. %) 223 223 22.3 26.1
Manufacturing 2 Line speed (m/min) 0.25 0.15 0.2 0.15
Factors
(MF) 3 Flow rate (mL/min) 0.6 0.36 0.48 0.6
4 Thickness (micron) 11.8 104 14.4 23.7
5 Active region image
examples of each
sensor run
Preprocessed active
6 region image examples
of each sensor run T‘ ;
(e
IR
Hi!b‘:’;‘rli? ik

FIGURE 16. Difference Between Sensor Manufacturing Runs.
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TABLE 1.
tion System

Feature Vectors Implemented in the Image-based Predic-

Method Feature Vector # of Features
Ml LBP(uniform) + MF 14
M2 LBP(nri_uniform) + MF 62
M3 GP + LBP(uniform) + MF 34
M4 GP + LBP(nri_uniform) + MF 178

The feature vectors with which we have experimented are
listed in Table 1. Each feature in each method will be normal-
ized to the range [0, 1] using Equation (5) and then fed into the
prediction system. As discussed previously [4], the uniform and
nri_uniform LBP descriptors are under the same setting: P = §
pixels and R = 3 pixels. The Gaussian pyramid (GP) contains
three layers, and MF represents the settings for the manufactur-
ing factors during the sensor fabrication process.

The RMSE (calculated with Equation (8)) is used to eval-
uate the accuracy of the predicted sensor performance for each
fold. The average RMSE and the standard deviation of the RMSE
in each fold are used to estimate the performance of the image-
based prediction system. The accuracy and the robustness of the
image-based prediction system are shown in Table 2 for the SVR
model and in Table 3 for the ATRF model.

TABLE 2. Prediction Results for SVR Model

Method | RMSE(mV) | StDev(mV)
M1 5.9094 1.1194
M2 6.7825 1.3033
M3 6.2308 1.1690
M4 6.5245 1.0633

TABLE 3. Prediction Results for ATRF Model

Method | RMSE(mV) | StDev(mV)
M1 6.0726 1.0214
M2 6.1380 1.0258
M3 6.1213 1.0362
M4 6.5588 1.1077

10

7 Conclusion

Our image-based prediction system is designed to accurately
predict the potentiometric responses of thin-film nitrate sensors
given their preprocessed active region images.

The two models perform similarly in terms of accuracy.
However, the SVR model achieves a better prediction perfor-
mance, which is 5.9094 mV, while the standard deviation for the
AMRF model is somewhat lower than that of the SVR model.

Compared to what we reported previously [4], in this paper,
a novel way of generating the ground truth parameters for in-
lier sensors using the dynamic credibility data is proposed in the
dataset preparation section. The average credibility data is cal-
culated repeatedly to exclude the outlier sensors. The weighted
Levenberg-Marquardt algorithm helps us to generate more accu-
rate ground truth parameters guided by the dynamic credibility
data. The prediction model is modified using the multi-output
regression model. The AMRF method is implemented as an ad-
ditional machine learning model. With these advances, we can
achieve a robust system that can support high-volume manufac-
turing of low-cost thin film nitrate sensors.
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