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Ion mobility has become a ubiquitous tool in many aspects of Analytical Chemistry due to its ability to separate
compounds in the gas phase prior to feeding them to a Mass Spectrometer. To understand how this complex
separation occurs, it is necessary to thoroughly explain the ion-gas interaction. In particular, this manuscript
aims to describe the physics behind the collisions at high fields using the two-temperature approximation. The
two-temperature theory has been recently employed to describe the mobility of polyatomic ions quite success-
fully and thus a proper account is warranted. A concise description is provided along with rigorous mathematical
arguments behind its success at predicting the ion’s drift velocity. Moreover, a thorough procedure for obtaining
the equations (including the matrix elements) for higher-order mobility approximations is also provided with
high detail, making this work suitable for beginners and experts in ion mobility. In particular, a discussion is
brought forth on the choice of the base temperature and its relation to both the effective temperature and the
drift velocity of the ion. A comparison between a 12-6-4 potential and the Maxwell model is made, pointing at
the possible errors of using the Maxwell model for low- and high-field calculations. Using our in-house algorithm
IMoS, successive approximations up to the fourth are tested against previous ones and against experimental
results, showing both, asymptotic convergence, as well as a good agreement for monoatomic gases and small
ions.

1. Introduction approximation) regardless of the orthogonal functions that are used.

This laborious effort will ease the calculation of collision integrals for

Ion Mobility Spectrometry (IMS) is maturing at an enormous rate,
showing that gas phase separations are becoming key in analyte char-
acterization [1-4]. This recognition is not unfounded as the technique
has been shown to separate compounds such as isomers and isotopomers
that cannot be resolved by Mass Spectrometry alone (MS) [5-7]. As
instruments improve their resolution, some separations are no longer
well-understood by the concurrent theory and new avenues must be
explored and reasoned, while older ones may need to be dusted and
improved [8,9].

This work falls on the latter aspect, where the main goal is to describe
how and why the two-temperature theory is an acceptable approach,
showing how to obtain the matrix elements (up to the fourth
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other theories and orthogonal sets (e.g., Hermite polynomials and the
three-temperature theory). A major reason is that full derivations of the
elements have never been shown in detail and are only tabulated to the
second approximation [10,11]. A variation of the truncation method
brought forth by Mason and Viehland is also shown as well as a novel
way of obtaining the ion’s energy that greatly speeds up the calculation
process.

We have previously shown that the two-temperature theory is more
than capable of describing the high-field (and or temperature) behaviour
of all-atom models in light gases [1]. The results show good behaviour
even for the first approximation although improvements are observed
when higher-order approximations are included (up to the fourth). The
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main reason for the success of the two-temperature theory relies on two
interrelated features. The first one considers that the ion’s velocity
distribution is a function of a temperature which varies with E /n and is
different from that of the gas while the second one, a consequence of the
first, is that all higher-order terms are bounded (something not possible
in the one temperature theory) [9] so any approximation is valid at all
fields. The assumptions are that the distribution is still nearly Gaussian
even at high fields and that the ion has been accelerated to a constant
drift velocity and has been heated to an effective temperature due to
collisions with the gas at high relative speeds. [12]

The manuscript is divided into two parts. First, an introduction to the
theory together with an explanation of the mobility calculation and
accompanied by a description of how to obtain the matrix elements (the
full calculation of all necessary elements is provided in the supple-
mentary information) as well as how to obtain the ion’s energy (or the
relation between field over gas concentration (E /n) and the ion’s tem-
perature). This is followed by a discussion on the collision integrals for
hard spheres and 12-6-4 potentials and how their ratios vary from the
normally accepted Maxwell model. The article also provides a compar-
ison between the different approximations as a function of the electric
field for different mass ratios.

2. Theoretical description

To introduce the concept of the two-temperature theory, one should
start by describing the series of approximations that must be done for the
Boltzmann equation employed to be valid [13]. The first and most
important is that the ion is small enough that it does not perturb the gas.
Other approximations are that collisions are assumed to be elastic, that
the gas distribution may be considered Maxwellian (independent of
position and time and fixed at a given temperature), and that the
number-density of the ions, N, is small enough that ion-ion interactions
may be neglected. Under these assumptions, the Boltzmann equation for
an ion’s velocity distribution F(z;) in the presence of a neutral gas with
distribution (f(ci)) is given by Viehland and Mason [11,14-16]:

OF  OF
P fa n///(fF — fF)gbdbdedc; )

In the equation above, n is the number-density of gas, z; and c; are the
ion and gas velocities respectively while g = z; — ¢; is the relative ve-
locity, b is the impact parameter (distance between the ion and gas in the
transversal direction to the ion’s drift), ¢ is the intrinsic rotation angle
and x;, a; and t are position, acceleration, and time. In Eq. (1), it is
initially assumed that the ion’s velocity distribution depends on position
and time and that the acceleration is general. The term on the right hand
side corresponds to the collision term, where only interactions between
gas and ion are accounted for. The collision term represents the
replenishment (coming from prime sources) and extinguishment of ions
of class velocity z; through collisions with gas molecule velocities be-
tween ¢; and c; + dc; (where dc; = dcydcades). We shall simplify the
equation even further by assuming that the distribution does not depend
on position x; or time t and that the acceleration a; only depends on a
constant field value E (relaxation effects are neglected) in the direction
of ion movement z; = w. Under such conditions, the equation becomes
more manageable [17,18]

/ / / (f' F —fF)gbdbdedc; (1b)

where, e is the elemental charge (assuming the ion is singly charged) and
M is the mass of the ion. Despite the simplifications, the equation is still
difficult to solve even when the gas and the ion are considered spherical
atoms [17,18]. The main reason is that the term (f F —fF) is dependant
on the ion-gas interaction. In general, an assumption generally relies on
choosing a solution dependant on orthogonal polynomials as [19]:
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where ¢, are orthogonal functions, a, are unknown coefficients and F(©
is the basis or zeroth function chosen for the two-temperature theory. k
is the Boltzmann’s constant and Ty is a temperature-like parameter that
needs to be defined (generally called the base temperature). It is nor-
mally equated to the ion’s lab reference of frame temperature (see Eq.
(17) for an analytical expression and further explanation) which in-
cludes the kinetic energy from the field and heating due to the collisions
with the gas, both effects contributing to the ion’s temperature above
that of the equilibrium gas temperature T. Due to the addition of the
kinetic energy, T} is not a thermodynamic temperature as such, but more
akin to a dynamic temperature. Note that the choice of F(°) is important.
If the choice of the basis function was exactly F, then the sum of
orthogonal functions would be one, not requiring one to obtain the a,
coefficients. A close choice would allow the least number of coefficients
to be calculated in order to get a solution [20-22].

Even with Eq. (2), solving Eq. (1b) is not possible in general [23-25].
An option is to resort to calculating moments of F. This is obtained by
multiplying Eq. (1b) by a function of the ion’s velocity w(r) and inte-

grating over all possible velocities z;, i.e., l//lmAV =/ Fl//lm dz;, obtaining
average quantities (moments) and leading to [25]:

ek 61//,(,;) _ (r)
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where, / is the operator given by:

]W[m ///f W;m l//,m gbdbdedc, 4

To arrive at Eq. (3) from (1b), integration by parts and the inverse
collision property have been used (refer to the supplementary infor-
mation of this paper or Egs. (B.4)-(B.9) in Ref. [9] or Ref. [26] to see the
calculation) as well as the use of the basis function approximation (Eq.
(2)). A solution to Eq. (3) may be obtained by choosing appropriate
orthogonal functions y/l(,',f, and where the practicality of the solution
heavily relies on how close the orthogonal functions are to eigenfunc-
tions of the operator /. Commonly employed for the two-temperature
theory are the Burnett spherical polar functions given by Spalding
[27,28]:

n
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Here P, are the Legendre polynomials and Sl(?; are the Sonine (asso-
2

ciated Laguerre) polynomials. The Burnett functions happen to be the
eigenfunctions of the operator / for the Maxwell Model, and hence a
suitable candidate [29]. The Maxwell model is a simple potential
interaction that corresponds to a repulsion interaction of r—4 (showcased
in Fig. 1). Its importance relies on the fact that its result can be computed
analytically, (due to its eigenvalue properties) and hence becomes an
important point of reference. Note that T}, is the same temperature used
in the basis function in order to utilize the integral superposition method
[30,31]. The Burnett functions are orthogonal to the inner product [16]:

(W wy) = / e Ty dz = / FOwlyydz = 4,8, Q)

With { describing complex conjugation and where the basis function
(©) appears as the required weight. For two functions formed using Eq.
(5), the inner product yields [11,32]:
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Fig. 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity g is being deflected by an angle y. The trajectory plane (blue) makes an angle
¢ with respect to a fixed reference plane (red). (Adapted from Vincenti and Kruger [74], and Larriba and Prell [9]).
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where, I' and &, indicates Gamma and Kronecker Delta functions
respectively. One must now make an informed guess regarding what the
general solution to the operator in Eq. (3) might be. Since it is expected
for the gas-ion interaction to be close to the Maxwell model [33,34], the
operator may be expanded using Burnett functions [35,36]:

= anyy) (®)

where, the sum of s goes from 0 to infinity. The choice of Eq. (8) stems
from the fact that for the Maxwell model and the one-temperature the-
OrY, ./ aewart'sn = A"\, where 2 and v\ are the eigenvalues and
eigenvectors of the 7y, Operator. For other cases, one may assume
that the a(1) are matrix elements that are larger the closer they are to
the diagonal terms a,-(I) [37]. For the two-temperature theory using the
Maxwell model, the off-diagonal terms are not zero, although they
vanish for s > r (more on this below). Using the orthogonal relation and
Eq. (8), the matrix elements may be given by:

anll) = (v, 7wl
Wi wi)

The matrix elements happen to be independent of the m index which
can be dropped from the Burnett functions (m= 0) [35]. Making use of
the recurrence relations of the Sonine and Legendre polynomials [10]:

d

9

S8 =55 (10a)
P?—-1d
. aP,, (x) = xP,(x) — Py (x) (10b)

pSl(,"> (x) — xS;':ll)(x) =(p +n)S;"_)1(x) (100)

(2n+1)xP,(x) — (n+1)Pyy1(x) = nPy_1(x) (10d)
as well as Eq. (8), Eq. (3) may be written as (dropping the subscript Av
and the index m) [8]:

1 : 1 g .
(z+§) §: (1) <y >= g[z(z+§+r> <y > —(I+ 1)<yl V>
an

where, z//l(s) = 0 for any negative index, y/(()o) =1, and where [38,39]:

eE\ [ M \}
7= (i) (ai,) a2

How to arrive at Eq. (11) from Eq. (3) and the recurrence relations
Egs. (10a-d) are shown in the supplementary information. In Eq. (11),
only the matrix elements and the temperature T, are unknown. Eq. (11)
is an infinite set of coupled equations with an infinite sum. Given that
direct averages of the Burnett functions cannot be obtained without
explicitly knowing F(z;) (except for very particular cases [34,39-43]), an
iterative form is sought. To avoid the infinite sum, the procedure is to
add one additional term over those of the Maxwell model (s > r = 0) to
the sum for every higher order approximation [10,25]. As such, the
truncation scheme may look like:

1 T, 1 r r—
(’*5) ar )<y 5= & [’(’*5“) < = (D <y > | -

s=n+r—1

AR 8 ! B
(l+§) Sz:;a,s(l)qu, >, — (l+§) > an)<y) >ni

s=r+1

13

where, the subindex n stands for the order of approximation (not to be
confused with the gas density). Note that the summation index is kept
from s = 0 to n+ r— 1, so that all terms up to s = r always appear and
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the upper summation terms are subsequently added for higher approx-
imations. Mason has tried a different approximation type by using n —1
instead of n on the third term (first summation) on the right-hand side
with similar success [11]. The last term of the right-hand side has an
approximation n+ r — s. The reason for this particular choice lies on the
idea that each approximation contains only one additional (E/n)* term
in their sum [11]. Note also that the minimum order is 1 for the terms
with approximation n — 1 (there is no Oth approximation).

To obtain the ion’s mobility, the Burnett function (from Eq. (5)) <
1/2 1/2
y/(lo) >= <<TMT,,) w) = (%) v4 may be used and where v; = KE is

the average drift velocity of the ion, being K the mobility. Using this
equation and Eq. (13), the first approximation may be given by:

(%)

N 14
aoo(1) 14

ag (1)< yxﬁ") > =& or Ky =

where, ago(1) would need to be calculated but it is dependent on the
base temperature whose value needs to be provided. Advancing the
value of the matrix element (to be calculated below), the typical Mason-
Schamp expression appears [16,26]:

3e 2r 1

_ 3e 15
16n \| ukTr QD (Toq) as)

1

where, i is the reduced mass and Q'Y (T,y) is the momentum transfer
collision integral calculated at the effective temperature T, which may
be related to T}, through [9,44]:
MT + mT,

Lo = em (16)

The physical importance of T, will be described below. Before
continuing to higher-order approximations, it is important to establish a
relationship between the base temperature T;, (or T.y) and the field over
concentration E/n. Ty, as advanced previously, can be chosen to be the
ion’s temperature in the laboratory frame, but any other choice could
have been equally valid (and perhaps more optimal for convergence)
[22,39,45-47]. With this choice, T, is given by:

1 3
M < 2 >=2kT, 1
oM<= =3k, an

Eq. (17) is equivalent to < y/f)l) >= 0. Using Eq. (13) with < 1//81) >
will allow us to find an equation that establishes the relation between E
/n (or &) and Tp.

2.1. Higher order approximations

By repeated application of Eq. (13) one can reach higher-order ap-
proximations that may be generally written as [48]:

g, 2 ;(/ 4
<K>,=<K>l|a+a|——) v+ ——) +
1[ 0 1(“00(1)> 2(“00(1)>

@\ 2

n— RN 18

e 1(1100(1)> } a8

(1) o 2,( 5 (1) 4 (0) am(l) (0) dlz(l)
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<y’ >n an(D) {3 Yo' >1—3<¥, >1} an(l) Vi > an(l)
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where, the number of higher-order terms depends on the approximation
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n. Here, the a; coefficients are complicated functions of the matrix ele-
ments. For example, the second approximation may be given by (Eq.
(13)):

& an(l) 1
(1) aoo(l)<l”1 > 19)

Note the second term on the right-hand side (neglected in the first
approximation) appears from the summation term since it is now
terminated ats =2+ 0 — 1 = 1. The first approximation for the Burnett
function of the second term is given by:

0
< ll’(l) > =

(0)

& 5
{ <y >, (20)

al()(l)
< 7
a“(l) 3 W[

apg (1)
In Eq. (20), the additional last term on the right-hand side comes in

this case from the summation when s = 0. The functions in the brackets
may now be given by:

4 0
> —o< V>,

<yl > = 3

2& a(0)
(1) _ (0) 10
< > — - 21
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The second term in Eq. (21) comes from assuming the Maxwell
condition for the first approximation where terms s <r are added.
However, having established Eq. (17) (< 1//5,1) > =0), then Eq. (21) isno
longer needed. Putting all the terms together and simplifying, we arrive
at the second approximation to the two-temperature theory:

api (Daio(1) | 5 ag(1)an(0)
© ©) Hog(l)all(l) 3 a”(O)a“(l)T
<y, >cp =<y > 2
( & > <§ Llo](l)ago(l)_‘rg dg](l)aoo(l))
a()()(l) 3 000(2)(1“(1) 3 011(0)(411<1)

or:
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(24

when Eq. (17) is considered. Eq. (19) now becomes an equation to
establish the relationship between E/n and T;. Note how aside from the

2

quadratic term that depends on the field (m) , an additional term

appears to correct the expression for mobility even at the zero field.
For the third approximation, we proceed in a similar way. The main

equation may be given by:

& 71401(1) (1)

7%2(1)
ll()o(l) (100(1) ! u

aoo(l)

where, the third term appears due to the fact that the summation now
terminates at s = 3+ 0 — 1 = 2. The functions on the right-hand side
may also include additional terms as well due to their higher order. As
such:

<yl > = <y > (25)

\4
[

(26)
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Note that < 1//52) >; is only a first approximation instead of a second.
This is due to the choice of reducing the approximation of the extra
terms to n+ r — s. If the second approximation were used instead in Eq.
(25), it would bring higher powers of E/n. There is no necessity to
substitute the different functions Eqs. (26)-((30)) to provide a full
expression for the third approximation as it becomes unmanageable. The
fourth approximation may equally be written to be:

€ aoi (1) ap (1)

o = 01 (1) 02 o)

< >y = _ < S, dell) S

v ap(1)  ap(1) Wit zm (1) v >
an(l) @
TV 31
aw(l) Vi >

Higher-order expressions can be easily obtained but are omitted here
as they start to become too large to handle analytically.

2.2. Ion’s energy

One of the most difficult endeavors when dealing with the two-
temperature approximation is establishing the relation between the
field over the concentration E/n and the temperature T, (or similarly
Tey) [19,39,49-53]. The reason for this is that the temperature Tj, is a
parameter used in the base function to describe that the ion’s velocity
distribution is skewed (displaced) by the drift velocity v4 and its stan-
dard deviation is larger due to field-related heating over the thermal
equilibrium with the gas [39,54]. Choosing T, = Tion (temperature of
the ion in the laboratory frame) establishes some important consider-
ations. The first one is that kT, = 1m < 22 > so that the ion’s energy
can be directly related to T;. One would expect therefore that calculating
the ion’s energy moment < 1//81> > would be sufficient. As advanced
previously the moment yields: < 1//(()1) >= % - Mzi—?rzf =0 . However, Eq.
(13) may still be used to provide a relation between ion temperature and
field. The degree of accuracy used to establish a relation between T}, and
E/n can be any, but it is preferred to match the order of approximation of
mobility. For example, for the first approximation:

1 _ 1

7 (0)< V> =0=—z<y? >, - Sa0(0)< >, (32)
Or:

o 1 oan©) , 1

& = ) P v/(l[]) >1—>@p = ) 1110(0)(100(1) (33)

To physically understand the meaning of Eq. (33), the expressions of
the matrix elements (see their calculation below) must be introduced to
yield a first approximation for E/n:

E\® 128 u KTy (T,—T >
) -2t B2 (BT

This result coincides with Wannier’s equation [1,39]:
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§kT,,:§1<T+1(m+M)<w>2:§/<T+l(m+M)<K>?E2 (35)
2 2 2 2 2

This can be proven by using the solution from the first approximation
to mobility < K >; = W ﬁ in Eq. (35) arriving at Eq. (34). For the first
approximation, it can also be shown from the relation between T, and
Ty that 2kTr = 2kT +m< w >? which has important consequences
[23,55,56]. Eq. (35), while it is only a first-order approximation to the
ion’s energy, it does provide a simple physical explanation of the two
characteristic temperatures. %M< w >2 corresponds to the total field
energy required for the ion to go from thermal equilibrium to its drift
velocity [57-59] given it is the ion’s kinetic energy. This value is quite
large so T}, can easily be in the tens of thousands of Kelvins, and it is not a
good measure of the ion’s thermodynamic temperature [45,60-63].
However, subtracting the ion’s kinetic energy $ M< w >2, the rest can be
regarded as its translational thermal molecular energy which corre-
sponds to 3kT,; and where Jm<w >, corresponds to the thermal
translational energy increase due to the higher relative velocity colli-
sions with the gas. In this sense, the effective temperature is the ion’s
equilibrium temperature due to the combination of the gas temperature
and the effect of the field (assuming elastic collisions) [64-67].

For the second approximation, Viehland assumes that & can be
thought of as having approximations in a similar way to the Burnett

functions, e.g., #,. Viehland uses Eq. (13) for < y/<10) > as well as <

1//81) >= 0 and combines them to arrive at [24]:

n—1 2
dos ( 1) (s)
E — >l —
|: ap (1) v

s=1

20, -l aps(1) 5
0™ Loanm ¥ >t
s=1

tl()g(l)
0 " ap (1 s
2 |:a10( )+ § M< ll/((j) >n+1{|

an(1) —2 ap(1)

(36)

A different approach to obtain higher approximations of the ion’s
energy is to use the recursive Eq. (13) relation for < 1//81) > but assuming
that # is a constant to be calculated. This leads to a polynomial equation
of powers of 2. For example, for the second approximation:

1 . 1 1

Ea11(0)< l//(()l) >Sp=0=-£&< l//(lo) >; — 5&]0(0) — §a|2(0)< l//gz) > (37)
a1 1 "

&= —5 a(0)an(1) = sau(Dan(0)< W™ > (38)

Substituting the appropriate approximations leads to a quadratic
equation for &%

AEY+BEL+C=0 (39
With:
8 012(0)

3 an(Naw(2)ax (0)

alo(l)alz(())
ari (1)axn(0)

o azo(o)alz(o)
an(0) )

The solution that is chosen for the quadratic equation is the closest to
that of the first approximation as it is expected that in Eq. (38) the bold
term is a small correction. Using the same process, higher-order terms
may be obtained. For the third:

B=1+

1
C = Eago(l) (dlo(o)

1
2 0
&< l[/(] ) > = —=

1 1
3 alo(O) — 4112(0)< III‘()Z) > — Ea13(0)< ll!f]s) >r (40)

2
And where the full expanded equation for &; has been added to the
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supplementary information. Whether this method or an iterative
method is employed, the relation between T, and E /n should be
established and it is expected to have only a scaling effect over the values
of mobility as a function of the field.

It is important to note that, regardless of which method is employed,
once & is calculated for a particular order of approximation, its value is
fixed in the expression for mobility as different values of # would lead
to different T, — E/n relations.

3. Calculation of the matrix elements

At this point, the matrix elements need to be calculated to obtain
detailed expressions for mobility as a function of the field. However, the
matrix elements can only be analytically calculated for extremely simple
potentials (like that of Maxwell) assuming monoatomic ions. For the rest
of the cases, the matrix elements’ expressions can be left as a quadrature
that may be integrated numerically by calculating the deflection angle
[68-71]. Aisbett produced a general formula to obtain all the different
matrix elements (see supplementary information or refer to Ref. [26]).
The formula provided by Viehland contains a small error (a factor of 2
corrected here) that will not affect the mobility results [11]. It is how-
ever unadvisable to use the formula without prior knowledge of how the
matrix coefficients are calculated. This exercise also serves the purpose
that it can be used with any other orthogonal functions for which gen-
eral formulas do not exist. The procedure of how the calculation is
performed is laid out initially, followed by explicit solutions of some of
the terms. The rest of the terms needed up to the third approximation
have been added to the supplementary information, where many of
them are also explicitly calculated.

Each matrix element must be obtained using Eq. (9). While the de-
nominator is given by Eq. (7) (assuming m = 0), the numerator is given
by Larriba-Andaluz and Prell [9]:

me

) = (5o ) Gog) [ [ [ [N e o

<y (D) (D) v (T)]IT -
Here, we have opted to use the more conventional vector notation
instead of an index notation. The differential dz’ = dz; dz,dz; stands for
a triple integral over the three velocity directions and x stands for a
regular multiplication to indicate a change of line. It is assumed that the
gas has a fixed Maxwell-Boltzmann velocity distribution (f) at temper-
ature T [72,73]. To make Eq. (41) more accessible, assuming a two-body
problem, the independent velocity variables are changed into the rela-

C|bdbded 7 d T

tive velocity g and the centre of mass velocity w:

- — —
7—c=¢
— m
W= (l-e)7 +e,C; e,=

( u) R i

so that the matrix elements become:

i (21+1)S!F<Z)< y >< iy

3
r ( st 5) 27kT,) \2mkT

—
M 2 1 1 ] M 2
//// (’ (ZkTh+%> Witz (2mﬁm> W g tmm (zi’;,,*m)g )
X e

V() (7)o (i
(42)

Where the interpretation of the prime remains the same. Given the
complexity of the exponential in Eq. (42), it is advisable to make a
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change of variables that will make it quadratic:
W, =W —fg:dWdg = dW,dg
where,

M(Tb - T) me
d= d:e,M =
wT, T T om0 T EaM =

f=ed

Dropping the g in W, (for extra cleanliness) one arrives at:

PR

3
r (H—H—E) 27kT,) \2mkT

S )

) (W) [0 (V4,7 +77) v (W+e,,?' +/T ) |gbdbdedWag

(43)
Eq. (43) may be used as the basis for the matrix element calculations.
After simplifications, the matrix elements may be expressed using con-

ventional collision integrals which are given by McDaniel and Mason
[13,18]:

(Ls) _ w 2% (z)

Q1) = 55 (587) / ¢ 0" (g)dg (44)
0

(1)2271'( ) / (1= cos’y (b)) bdb 45

Q 21+17 - ) #(b “5)

The coefficients in Egs. (44) and (45) are traditionally added so that
the value of both integrals is zd? for a hard sphere of diameter of in-
fluence (radius of gas plus ion) d. The calculation of the matrix elements
is now tedious but straightforward. To start, several examples are shown
which are relevant to important discussions, while the rest of the cal-
culations will be added to the supplementary information which in-
cludes further elements never previously calculated.

3.1. Calculation of ago(1)

1/2 1/2
Given that w(lo) = w(%) =2 (%) with 7’ = (2, = w, 20, 23)
and the following expressions:

21+ 1)s'T( 3

‘1:1.;-:0 =2,

r<z+s+§

vy (W + d?’) [w(f” (V_V +te g +f E’) -
e”M(g, )(dg,+W,)
2kT, ’

one arrives at the integral to solve the matrix element:

3
M \?/ m \3
“00(1)’2(2nkn> (2nkT>

/ / / / <7 i <ﬁ)gz)e"M(gl_g,')(dgl+wl)gbdbdede§'

2kT,

(46)

One can now integrate the center of mass velocity W from —oo to oo
for all three coordinates. This yields:
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3
M \?/ m \3
D=2 ) (2
aon(1) <2nkn,> (2nkT>

(o)) N
3
V2de,M (ndkT\? :
x /// kT: <7> (g1 — 8,)g18bdbded g

To continue the integration, it is necessary to define proper general
vectors for g and g". Using cartesian coordinates and spherical angles,
the relative velocity vector may be given by: g = (g;,£,,8;) = g(costy,
sinfgcosd,, sindgsing, ), where 6, and ¢, are the azimuthal and polar angle
respectively. Due to the symmetry of elastic collisions and conservation

of energy, g can be interpreted at this point as the relative velocity of
reemission of the trajectory of a gas molecule with the ion fixed in a
centered position as shown in Fig. 1. If the gas molecule trajectory di-
rection was inverted, the result would be a replenishment of class g
velocities from class g . Fig. 1 can also be used to understand the
deflection angle y and the out-of-plane angle ¢ that can be used for the

definition of g :
?v = g(cosy g +siny cose @, + siny sine e3) (48)

where, g is a unit vector in the direction of g’ and €, and €5 are unit
vectors perpendicular to g and to each other. Note that due to the
conservation of energy in the collision g and g have the same
magnitude. In Cartesian coordinates, the second and third terms in Eq.
(48) may be given by:

e, =g(0, sm(d) ) cos(d) ))cose siny (49)
'3, = g(sin(0,), —cos (¢, ) cos (6, ), —cos (6, )sin (¢, ) )siny sine (50)

which are much simpler and more efficient to use than those produced
by Vincenti and Kruger [74]. Substituting the incident and reemitted
relative velocity vectors and integrating Eq. (47) for ¢ between 0 and 27
yields:

v (W+d2) [y (W+e 7 +r2) v (W+e7 +77)]

d'M>G + 35K°T + 4d° M’ G- W

eM(g, — g})(dg, + W)
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where the term in brackets is Q1) (g). Integrating over the velocity an-

1/2
gles and multiplying and dividing by (ZkMT) :

8 (ZkTEﬁ)
=2e, gl
3 b7

The term in brackets corresponds to Q!

am(1)

3 % (- )¢
( . ) /e( ( df)g)ng“)(g)dg (51)
0

2Ty

(Tef) so that:

8  [2KT,
5, vid

aoo(1) 3 T

Q'(1,) (52

A dimensionless matrix coefficient can be obtained by dividing Eq.
KT, : .
(52) by e,y /=2 Q! U(To):

1) = —ee___ 8 53)

e 2 (1)

This coefficient is fundamental in obtaining the first approximation
to mobility as shown in Eq. (14).

3.2. Calculation of ag2(1)

Given the following identities:

1 1 2
M} I (MN\35 .M M
(0) (2) 2 4
= E—— >y
Vi W(zm) Vi ZW(ZkT,,) [4 wr,° (2kT,,> ‘ }

7= (Zl :W722723)-

(21 + 1)sIT

3

2
‘l 1s=2 —

F(l—l—s-ﬁ-%)

— 14kMT, W+

MPW* + 4dMg-W (MW? — 7kT))) + 2d2M<Mg2W2 — 7¢kT, + 2M(?W) (?v‘v’)

16K°T;

3 u 2
Yo ((==)7)
ap(l) = 2( ) e, //271'(1 —cosy)bdb e o gigdg

Zﬂka Zka

Using the relation that § Md = ” and dg,dg.dg; =

s w[ o
2 o\’
ap(1) :m(m) /[/Zﬂ(l cos)()bdb:|
0

0

706
// g cos 0 sind,dp,df,dg

g2sind,de,d0,dg:

Substituting the above into Eq. (43) and integrating over the center
of mass velocities and over the polar angle ¢ yields:

app (1) = Sme“(ZkTe,,) // ( (Z“ ) ) Zklz Z[dZMZ(ngZmZ

+ 14dg*kmT + 35k°T?) — 14dkmMT, (dg’m + 5kT)
+35m’k°T;) g7 (1 — cos(y))g2mbdbd g

Integrating over the velocity angles and arranging:
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el 1))ty
e (2) (42 2o (2

+5 (MTd> ) + 35} &’ (1 —cos(y))2rbdbdg

ap(l) =

mT,,
Using the CCS relations and the identities 44 — it and ar=01-4d
one can write:
1
8 (2kTy\ 29< 3 Q2 2

an (1) 7ﬁeﬂ< o > QU |48 Iy —d) S+ 3501 = d)

Q(l 2)

~84d iy~ 70(1 —d) + 35}

Simplifying, rearranging, and using the common relations C*

(Tegy) v . 13)(Typ),
Qm f’andB 5C* — 4TT§)'

8d>  (2kT;\} v
= <—”) QUD[3(4B* — 5) 4+ 4(6C* - 5)]

(1) = =755 un
Hence:
* 8d2 * %
ap(1) =— 105 ——[3(4B" —5) +4(6C* —5)] (54)

The expressions are written following the behavior of the Maxwell
model and the reason for such choice will be clarified in the discussion
below.

3.3. Calculation of a1 (0)

2 (2 _ 115, M2 _ smMz®| - _
Given that 1// 3z (Zka) Vo =35t s~ uT, | 2=

(21 = w,22,23)

(2 +1)s'T

+ <2)<v_v’+eﬂ?+f§’)]
euM(f(gZ—??)JrW-(? g))( (d2g2+W2+2d( ))
8K’T3

(1 (200" + 26, (" + 88 )+ (T +7)) +2
(fzgz W2 +2f?W)) - IOka)

Integrating over the center of mass velocities, over epsilon, and over
the velocity angles yields:

aai0) == 3¢ (ZkTeﬂ> / / ( ( ) >mZI:2T§X

+2KT) + 3dfmMT (¢ +12) M — 10KT, ) = 3fin T, (¢

[SakMT (1gPm

n f2> &M — 5kT,7> + dM(M(F (& +£7) g'm? +2(¢> + 32 ghmT
+25fK°T?) — 5kmT, (fg*m + 2kT) ) + e, fg*mM (dM (df g°m + 4dkT
+ 3T — 3fkmT,) (1 + cos(){))] & (1 — cos(y))2nbdbdg

Rearranging:
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- ) (7<ﬁ)g2> dM\ (MTd
a21(0) = _%eﬂ (TTM) //e {5 (kT )< )fd 5
MTd\* am\ (MTd\ f /, VTd
+10<TT;,> d+3<ka> <me> d(e)l +f) 30<mT )f
am am\?
() (6 +r)e -1+ (i) ()¢
aM\ (MTd\ / 5 . 2\ MTd\ 2 o
+2(kT},> <me>(eu+3f )g +25(me> f—5<m)dfg
710<MTd>d
mT,
am\ (MTd\ , am\ (MTd\ f ,
+euf(( )f +4<kTh) (m—n)g +3(k_T,,) (mTJ ”

-3 (Z—JTVD ]:—ng) 1+ cos(;())] & (1 — cos(y))2nbdbdg

Using CCS expressions:

4 (2T, 5 Q3 Q2

021(0) :756#( ur ) Q( |:Mf(32f an +]6(1 d)Q“ )
f Q22 f Q22 Q13

w120 -dk S 120 +48f (¢ +7 )Q“ .

QU2

+(120-a)(g+37) - 187 (e +1) —30d2f) o
+10d(1 — d)’ —30(1 — d)f + 15f +25(1 — d)’f — 10(1 — d)d}

Q22),
RIBIE

(2,3)
g and A* =

Using the known ratio expression and E* = {7

a1(0) = — %eu (27];” )%Q(”) [4eua” (18 = 7) +4(1 - e,))
- 3f(e§ +f2> (4B" —5)+2(d°(1 —d) — fd(2 — 3d + 11f)
4 70))(6C = 5) + 10 (1 = 2¢,)’
Hence:
deuf A" (FBE" =7)+4(1 —,)) =3 (2 +) (48" =5)+
a3,(0) = —;id 2(d(1 —d) — fd(2—3d + 11f) +f2(4+7f))

(6C* —5)+10f (1 —2¢,)’
(55)

This matrix element contained an error in previous works by Vieh-
land and Mason [11] that has been corrected here. The calculation for
other matrix elements and their final format are given in the supple-
mentary information. Several codes are available from the authors to
calculate other matrix elements.

4. Results and discussion

While the two-temperature theory has been validated for single
atoms in monoatomic gases [37,45,75-77], it has not been compre-
hensively studied for all-atom models and all fields until recently [1,78,
79]. The reason is that there is an expectancy that the elastic collision
assumption would not hold at high enough fields [8,45,80]. In short,
upon a highly energetic collision between ion and gas, the expectancy is
that there would be an exchange of translational energy with internal
degrees of freedom (rotational and vibrational), making the collision
effectively inelastic and establishing an equilibrium temperature for the
ion, that one can refer to as internal temperature T; and that could be
different from the effective temperature here established. This internal
temperature may be defined as the temperature at which the internal
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Fig. 2. The percentage difference between the first and the higher order approximations (for the hard sphere model) as a function of the dimensionless parameter &*

at different mass ratios (A) M/m = 0.1, B)M/m = 0.5,(CQ)M/m = 1,(D)M/m = 4,(E)M/m = 100, (F) M/m

W. Calculations were performed in IMoS [85].

Va1

energy difference pre- and post-collision is zero on average.

For monoatomic gases with molecular ions, once this new
translational-internal equilibrium is established, the expectancy is that
the collisions may be once again regarded as elastic on average, and T;
T,g; since the energy does not have any means of escaping the ion
(neglecting radiation) other than through the translational degrees of
freedom of the gas molecule [8,81]. This remains true as long as the
relaxation time of the deformation caused by the ion-gas collision is
smaller than the time between two consecutive collisions and the
equilibrium may be established.

For molecular gases, however, the internal degrees of freedom of the
gas molecule will provide means for some of the energy to escape
making the collision inevitably always inelastic. Under such circum-
stances, it is unadvisable to use the two-temperature theory without an
inelastic correction at least at moderate to high fields, and other
methods are preferred [24,82]. Amongst other possibilities, although
not the focus of this work, one can use the Wang-Uhlenbeck-de Boer

1000. The y-axis is given by % deviation =

(WUB) equation (which is an extension of the Boltzmann equation that
takes into account the internal degrees of freedom). Another option is to
simply assume an inelasticity or accommodation effect to describe the
loss of energy [81]. This inelasticity coefficient is difficult to obtain
theoretically but it can be obtained experimentally [80,83,84].

This work will therefore focus on the two-temperature theory for
monoatomic gases, leaving the study of molecular gases for when suf-
ficient data is available to study inelasticity appropriately.

4.1. Regarding the success of T for the two-temperature theory

The success of the two-temperature arguably relies on the choice of
Ty, for the base function. In general, however, one could presume that a
more accurate basis function would instead include a drift velocity and
an effective temperature such as:
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[—Cst —B'st —Dst —Hst --Cmax --B’max --Dmax --Hmax]|
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Fig. 3. CCS ratios for O" ion in helium gas as a function of E /n. The dashed
and solid lines represent the CCS ratios for the Maxwell and 12-6-4 potential
approximation model, respectively.

_M(va)
GO — o Wy

However, the reason for the success of F(© and not G is not clear
until the matrix elements are calculated. When the product of F® and f
is written in terms of relative kinetic energy, the moment integrals show
a distribution that can be approximated as:

)

where, ¢(g) is a function that depends on the order of approximation.
From a momentum transfer perspective, this new distribution is no
different from Chapman—-Enskog linearization of G(Of (see A.27-28 from
Larriba and Prell [9,18]). In all, since T} includes the field energy (it
relates to the ion’s energy in the lab reference frame), having Tj in the
basis function includes both the widening of the distribution, which is
related to Ty, and the translation of the distribution to the average
velocity v4, as was demonstrated by arriving at Wannier’s equation for
the ion’s energy.

4.2. Effect of successive high field approximations for hard spheres and
different mass ratios

Depending on the choice of truncation scheme for both mobility and
energy, the results of the approximations may vary. Amongst the mul-
tiple options, we have opted to a) use n on the first term of the sum-
mation in Eq. (13), b) the use of Eq. (36) to calculate &, and c) to use the
same approximation is used for both mobility and energy. Finally, our
scheme uses < yfél) >; =0 for all approximations and not only the
highest approximation. The rigid sphere case corresponds to the case
where the ion is large enough that attractive ion potentials are negli-
gible, and the physical size of the ion dominates, greatly simplifying the
interaction. For a hard sphere, all the CCS ratios, e.g., C*, A*,..., can be
substituted by 1, making the calculation extremely fast for any
approximation [24], once the appropriate matrix elements are known.
The results for the hard-sphere model are shown in Fig. 2 where the
different approximations are compared with the first as a function of the
field. For the x-axis, a dimensionless parameter is used to represent the
field such as [1]:

& 322\ fm+M\'"?/ ze\ E
© \16kT M 7d?) n

The parameter of choice, akin to &, allows the curves to be universal
despite the size of the ion d as long as the ion is spherical. The y-axis

10

Talanta Open 7 (2023) 100191
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0.7 1 1 1 1

0 30 60 90 120
E/n (Td)

150

Fig. 4. C* ratios for different ions in helium gas as a function of E/n. The
dashed line represents the C* ratio for the Maxwell model. The C* ratio be-
comes closer to 1 at low E/n as the ion size increases.

represents the deviation of successive approximations with respect to
the first approximation in terms of percentage up to the fourth
approximation as given by:

((va)y = {va))

(va);

% deviation = X 100’

where, x represents the order of approximation. The first approximation
is therefore the x-axis and the difference between the other approxi-
mations with respect to the first is given by Kox. As the matrix elements
depend on the masses of both ion and gas, the results are shown for
different mass ratios. It is interesting to see the variation from M/m < 1

to M/m > 1. For low mass ratios, the variation from the first approxi-
mation is largest at low fields. The opposite occurs for high mass ratios
where the largest variation occurs at high fields. Two types of conver-
gence can be observed. As M/m— oo the deviation seems to reach an
asymptote as there is little difference between the 100 and 1000 cases. In
terms of overall convergence, the difference in the deviation between
successive approximations seems to become smaller with higher ap-
proximations. For this reason, and the fact that the ions of interest in ion
mobility and analytical chemistry follow ratios M/m > 1 and &* < 10,
one can conclude that the 4th approximation should be sufficient to
achieve acceptable results for all fields. It is important to mention that
our results, although qualitatively similar, vary from those of Viehland
and Mason [11].

4.3. The Maxwell Model and collision cross section ratios

One of the most important criteria for truncation schemes used in the
two-temperature theory relies on the assumption that a general solution
for an ion gas pair will be similar to that of the Maxwell Model (a r*
interaction) [10]. The Maxwell Model was initially proposed for van-
ishing fields (E/n—0) for the one-temperature theory where off-diagonal
coefficients of the matrix elements are zero [25]. For the
two-temperature theory, it has been stated that off-diagonal terms do
survive although only those where s <r. It is therefore important to
study how molecular ions with a physical size and a 12-6-4 potential
interaction evolve in comparison to the Maxwell model. This is prefer-
ably done in terms of ratios of collision cross sections as their value is
well known for the Maxwell model. A particularity of the Maxwell model
is that the Q®) integral is proportional to 1/g which can be used to obtain
the ratios. For example, for C*, B* or A* for the Maxwell model:
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Fig. 5. The percentage difference between the first and the higher order approximations (using the 12-6-4 Lennard-Jones trajectory method) as a function of the
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(va)r

0.5, (CQOM/m = 1,D)M/m = 4,(E)M/m =
. Fig. 5F shows the experimental and the calculated mobility for O*, H,O" and CH{ in helium as a function of E /n. For CHJ, the

mobility using different approximations is illustrated. Calculations were performed in IMoS [ 85].
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1000. The y-axis is given by
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. g) i
Q 1)(Tf//) 3 )2
2 u 0 wg )8 5
o\ur,) ), ¢ g0 (g)dg
H (56)
2 u 4 e ’<2k#ﬂﬂ)ﬁz 6e(1)
@(Mnff) /0 ¢ ¢olds
6
2 H 3o ’(uﬂﬁ>82 4oy
@(21{7‘@7‘) \/()' ¢ 8 Q 8
ey )5/eo 7(N£”>gZ 801
@) e g 0" dg
B =5C" —4 <13>(Te'”)75C*—4(4)'<2kTeff 0 _
(1)
of b u 3 poo — Zkfy/] & .
W(szd/) /0 ¢ g0 dg
5 35 5
4B =5--"—_—==
¢ 56 a8 1
(57)
2 u 4 oo 7(2[}(#)’(2 o
3)! d,
Lo (1) _ ) 2kTeﬁc> /0 ¢ g'0% (8)dg )
o (T,) 2\ ,<%)g2
eff
@) 2kaf> /0 ¢ £°0" (8)dg
e (58)
2 U 4 bl _(Ek#y/j)gz 6 1(2)
@(%Tw) /0 ¢ g0"dg 50
_6Q*“)

where, Q“® = gQ® and independent of g. The rest of the ratios can be
equally calculated and are provided in the supplementary information.

. Q22)(T,) QB 37(T )
* eff ok eff
The ratios A* = a1y and F* = (1)

values depend on the angular pattern (see Eq. (56)) while the rest of the
ratios have established values.

The general expressions for the matrix elements a’i(I) can then be
written following the expectancy that general ratios are close to Maxwell
model ratios results. It is then easy to see why those matrix elements
with s > r are zero for the Maxwell model (as advanced previously). For
one of the examples above, a;,(1) = — % [3(4B* —5) +4(6C* —5)], in
which s > r, the matrix element will be zero for the Maxwell model.
Elements with s <r always have a nonzero extra term, e.g.,
10f(1 — 2e,)* for a3, (0).

It would be interesting to study the deviation from the expected
Maxwellian values of the ratios for small ions in He gas. The results for a
few of the ratios are shown in Fig. 3 for O" with a 12-6-4 potential. Very
noticeable is that all ratios follow a similar tendency. They start below
the Maxwell assumption and increase asymptotically to 1 as E
/n increases. At the low field, the oxygen ion acts very similarly to how a
4-interaction potential would, with an additional effect from the 6-inter-
action potential. As the field increases, the ion starts acting more like a
hard sphere due to the 12-interaction potential that becomes dominant.
As such the CCS ratios become close to 1 the higher the field interaction
is [13]. In all, note that for low fields, 0-40Td, substitution of the ratios
for their Maxwell value is a decent approximation for monoatomic ions
as shown by Mason and McDaniel [16]. As the ion becomes larger,
however, the 4-6 interaction effect should become weaker compared to
the effect of the physical size (or 12-interaction) even at lower fields.
This can be observed for C* in Fig. 4 for ions of increasing size, namely

are ratios whose numerical
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0", H,O",CH{ and Tryphenilene. The larger the ion, the closer to 1 the
ratios are and the further away from the Maxwell effect. It is therefore
not recommended to use Maxwell ratios for molecular ions and perform
the actual calculations.

4.4. Calculations for small ions and spherical gases for arbitrary fields

An ideal situation for the two-temperature theory is that of two
monoatomic entities, ion and gas interacting together. Under such cir-
cumstances, the collisions may be regarded as fully elastic, and the
theory should be able to describe the collision quite accurately in the
instances where quantum effects may be regarded as negligible [8,13,
86]. For such cases, a 12-6-4 interaction potential between two mon-
oatomic entities combines the most important long-range effects as well
as the repulsion core. The r~* corresponds to the ion-induced dipole
attraction while the 6-12 is a simplified, numerically optimized inter-
molecular interaction termed the Lennard-Jones potential, which rep-
resents the combination of the induced-dipole/induced-dipole attraction
(r~®) and the electron cloud repulsion (r~12). This interaction is typically
expected to be quite accurate for all fields as long as the Lennard-Jones
parameters, well-depth and zero potential energy crossing (¢ and o), are
optimized. Given that the matrix elements heavily depend on the mass,
one would also like to compare the different possible approximations,
and their effect for different mass ratios and different potential in-
teractions. Fig. 5 A-E shows the results of the difference between
mobility approximations (akin to Fig. 2) for an oxygen atom with a
12-6-4 potential interaction and for different ion-to-gas mass ratios. The
Lennard-Jones potentials for Oxygen used were ¢ = 3.043A and ¢ =
0.214668 e21J. These results are expected to vary from the hard sphere
ones in particular for smaller mass ratios, while for larger mass ratios the
values are expected to be qualitatively similar.

One would like to test the results of the two-temperature theory for
small ions in light gases with respect to experiments. This is shown in
Fig. 5F, where the reduced mobility of O, H,O" and CH{ are shown asa
function of E/n both numerically (4th approximation) using IMoS [85,
87] and experimentally in He [23,56]. The program is available and free
of charge (www.imospedia.com) and uses a parallelized interface to
calculate reduced mobilities and CCS for different gases. Similar results
for a variety of small ions are shown in a companion paper to this one
[1]. It is clear that for the monoatomic ion, the two-temperature theory
reproduces the experimental results quite accurately. For the polyatomic
ions, the theoretical results follow the experimental curves quite well
(given that the experimental results have a 7% error). Finally, for CHJ,
all approximations are shown (one through four). Given that the mass
ratio is about 4, it is expected that the largest differences between the
approximations will occur at high fields. This is visibly the case in
Fig. 5F. The higher the approximation the closer the result is to the
experimental values. One can also observe that the difference between
the third and fourth approximation is rather small, hinting towards
convergence.

5. Limitations of the two-temperature theory

The two-temperature theory has demonstrated its validity in pre-
dicting ion mobility for monoatomic gases, but its viability for molecular
gases remains uncertain. As advanced in the introduction, this uncer-
tainty stems from the idea that as the ion increases its kinetic energy, its
collisions with the gas will no longer be translationally elastic, breaking
the elasticity assumption established in the two-temperature theory.
This is a topic of ongoing research since 1983, when Larry Viehland
conducted a series of experiments and obtained different values of
effective temperatures theoretically and experimentally for a given
mobility, thereby confirming the concept. The energy loss from inelastic
collisions was condensed into the "inelasticity parameter (¢)" which can
be calculated by the equation [80]:


http://www.imospedia.com
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eff
resents the two-temperature theory effective temperature for a given
mobility. In general, this inelastic parameter should be very small for
small molecular ions in monoatomic gases, as after an equilibrium
effective temperature is reached in the internal degrees of freedom,
there are no other modes of escape for the translational energy, and it
becomes effectively elastic again. This has been proven previously for
He [1,88]. However, if the molecular ion is sufficiently large, the
effective equilibrium temperature might not be reached. The effect
should be even more noticeable for molecular ions in monoatomic gases.
In such a case, even if an effective temperature is reached internally in
the molecular ion, there is always a mode of energy escape through the
internal and rotational degrees of freedom of the gas molecule. There-
fore, the expectancy is that inelasticity effects will be present for any ion
in molecular gases under sufficiently high fields. For small to medium
fields, the effect can be most likely neglected [89]. The theory to study
the effects of internal degrees of freedom exists through the WUB
equation. However, due to its complexity, its use is precluded for mo-
lecular ions at least for now and initial data must be obtained through
experimental to theory comparison.

Given the lack of internal and rotational degrees of freedom in the
Boltzmann equation for the two-temperature theory, another limitation
is that any mobility differentiation due purely to rotational and vibra-
tional degrees of freedom may not be obtained. One such case has been
that of isotopomers (same structure and same mass, but different loca-
tion of isotopic substitutions) [5-7], where it has recently been shown
that they are separable by ion mobility due to shifts in their centre of
mass and moment of inertia.

(59)

where, represents experimental effective temperature and T‘;}f rep-

6. Conclusions

This manuscript aims to provide a concise description of the two-
temperature theory along with rigorous mathematical arguments
behind its success at predicting the ion’s drift velocity in monoatomic
gases at high fields. Moreover, a thorough procedure for obtaining the
equations (including the matrix elements) for higher-order mobility
approximations is also provided with high detail, making this work
suitable for beginners and experts in ion mobility. The work itself tries to
explain the suitability of the two-temperature theory with concrete ar-
guments of why the theory works and when it should be employed. The
key takeaways of the manuscript can be consolidated as below:

e The success of the two-temperature theory relies on the choice of a
basis function with a base temperature (Tj) related to the ion’s
temperature and different from the gas temperature (T). The base
temperature starts as a parameter, but a relation between the tem-
perature and the field over the concentration must be made at some
point.

Different moments of the Boltzmann equation need to be solved to
determine various transport properties, e.g., drift velocity (v4), en-
ergy, etc. The solution assumes that the collision operator may be
written in terms of an infinite sum of orthogonal functions (Burnett)
with coefficients that are known as matrix elements. Since the mo-
ments cannot be obtained without knowing the ion’s velocity dis-
tribution a priori, a recursive relation is sought, for which different
approximations can be obtained from lower-order approximations,
starting with the first.

Different successive approximations are dependant on complicated
functions of the matrix elements. The matrix elements themselves are
as well complicated functions of ratios of Collision Integrals. The
explanation of how to calculate these matrix elements has been
thoroughly explained in this manuscript, for the first time to our
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knowledge. Full results are shown up to the third approximation,
while numerically, up to the fourth approximation is calculated in
IMoS. The expressions are written such that the off-diagonal terms
get cancelled if the Maxwell model is used.
A choice needs to be made for the base temperature. If the 3/2kT}, is
chosen to be equivalent to the ion’s energy, a relation may be
calculated that relates T}, to E/n to different approximations, leading
to a closed-form equation of the ion mobility. The method chosen
here can accurately solve higher-order mobility equations almost
instantaneously once the collision integrals are calculated, in
contrast to other methods, which might take several minutes or
hours.
The first approximation of the ion’s energy yields Wannier’s energy
equation. This establishes that 3/2kT; can be related to the kinetic
energy of the ion due to the field plus the translational energy at a
temperature higher than that of the gas, due to collisional heating,
and that it is labelled the effective temperature Ty.
The effect of higher-order approximations was tested for different M/
m ratios first for the hard sphere case and then for a 12-6-4 potential.
Interestingly, in all cases, the deviation in mobility between suc-
cessive approximations was reduced, indicating convergence.
Moreover, the two-temperature theory has been tested for monoa-
tomic and polyatomic ions in Helium gas at high E/n showing
excellent correlation with experimental results, further solidifying
the hypothesis.
Several collision integral ratios of different ions (using a 12-6-4 po-
tential) were calculated as a function of E/n. For monoatomic and
small polyatomic ions, the ratios were found to be similar to those of
the Maxwell model at moderate fields (0-40 Td), and similar to those
for of the hard-sphere model at high fields (i.e., approaching
asymptotically at 1). For monoatomic or very small polyatomic ions,
substituting the ratios for their Maxwell values may therefore yield
acceptable results at low fields. However, it is not practical to utilize
the Maxwell model for bigger polyatomic ions because the ratios
deviate even at negligible fields.

e For polyatomic ions in high E/n, it is expected for collisions to be
inelastic in the translational sense, meaning that some of the colli-
sional energy is transferred to the internal degrees of freedom of both
ion and gas molecule. For monoatomic gases, the inelasticity can be
generally ignored because there is no mode of energy escape once the
ion’s internal energy reaches equilibrium with the relative trans-
lational energy of collision, and the two-temperature theory stays
valid. For polyatomic gases, however, some of the energy can always
escape the system through the internal degrees of freedom of the gas,
making the two-temperature theory less accurate with increasing
fields.
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