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A B S T R A C T   

Ion mobility has become a ubiquitous tool in many aspects of Analytical Chemistry due to its ability to separate 
compounds in the gas phase prior to feeding them to a Mass Spectrometer. To understand how this complex 
separation occurs, it is necessary to thoroughly explain the ion-gas interaction. In particular, this manuscript 
aims to describe the physics behind the collisions at high fields using the two-temperature approximation. The 
two-temperature theory has been recently employed to describe the mobility of polyatomic ions quite success
fully and thus a proper account is warranted. A concise description is provided along with rigorous mathematical 
arguments behind its success at predicting the ion’s drift velocity. Moreover, a thorough procedure for obtaining 
the equations (including the matrix elements) for higher-order mobility approximations is also provided with 
high detail, making this work suitable for beginners and experts in ion mobility. In particular, a discussion is 
brought forth on the choice of the base temperature and its relation to both the effective temperature and the 
drift velocity of the ion. A comparison between a 12-6-4 potential and the Maxwell model is made, pointing at 
the possible errors of using the Maxwell model for low- and high-field calculations. Using our in-house algorithm 
IMoS, successive approximations up to the fourth are tested against previous ones and against experimental 
results, showing both, asymptotic convergence, as well as a good agreement for monoatomic gases and small 
ions.   

1. Introduction 

Ion Mobility Spectrometry (IMS) is maturing at an enormous rate, 
showing that gas phase separations are becoming key in analyte char
acterization [1–4]. This recognition is not unfounded as the technique 
has been shown to separate compounds such as isomers and isotopomers 
that cannot be resolved by Mass Spectrometry alone (MS) [5–7]. As 
instruments improve their resolution, some separations are no longer 
well-understood by the concurrent theory and new avenues must be 
explored and reasoned, while older ones may need to be dusted and 
improved [8,9]. 

This work falls on the latter aspect, where the main goal is to describe 
how and why the two-temperature theory is an acceptable approach, 
showing how to obtain the matrix elements (up to the fourth 

approximation) regardless of the orthogonal functions that are used. 
This laborious effort will ease the calculation of collision integrals for 
other theories and orthogonal sets (e.g., Hermite polynomials and the 
three-temperature theory). A major reason is that full derivations of the 
elements have never been shown in detail and are only tabulated to the 
second approximation [10,11]. A variation of the truncation method 
brought forth by Mason and Viehland is also shown as well as a novel 
way of obtaining the ion’s energy that greatly speeds up the calculation 
process. 

We have previously shown that the two-temperature theory is more 
than capable of describing the high-field (and or temperature) behaviour 
of all-atom models in light gases [1]. The results show good behaviour 
even for the first approximation although improvements are observed 
when higher-order approximations are included (up to the fourth). The 
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main reason for the success of the two-temperature theory relies on two 
interrelated features. The first one considers that the ion’s velocity 
distribution is a function of a temperature which varies with E /n and is 
different from that of the gas while the second one, a consequence of the 
first, is that all higher-order terms are bounded (something not possible 
in the one temperature theory) [9] so any approximation is valid at all 
fields. The assumptions are that the distribution is still nearly Gaussian 
even at high fields and that the ion has been accelerated to a constant 
drift velocity and has been heated to an effective temperature due to 
collisions with the gas at high relative speeds. [12] 

The manuscript is divided into two parts. First, an introduction to the 
theory together with an explanation of the mobility calculation and 
accompanied by a description of how to obtain the matrix elements (the 
full calculation of all necessary elements is provided in the supple
mentary information) as well as how to obtain the ion’s energy (or the 
relation between field over gas concentration (E /n) and the ion’s tem
perature). This is followed by a discussion on the collision integrals for 
hard spheres and 12-6-4 potentials and how their ratios vary from the 
normally accepted Maxwell model. The article also provides a compar
ison between the different approximations as a function of the electric 
field for different mass ratios. 

2. Theoretical description 

To introduce the concept of the two-temperature theory, one should 
start by describing the series of approximations that must be done for the 
Boltzmann equation employed to be valid [13]. The first and most 
important is that the ion is small enough that it does not perturb the gas. 
Other approximations are that collisions are assumed to be elastic, that 
the gas distribution may be considered Maxwellian (independent of 
position and time and fixed at a given temperature), and that the 
number-density of the ions, N, is small enough that ion-ion interactions 
may be neglected. Under these assumptions, the Boltzmann equation for 
an ion’s velocity distribution F(zi) in the presence of a neutral gas with 
distribution (f(ci)) is given by Viehland and Mason [11,14–16]: 

∂F
∂t

+ zj
∂F
∂xj

+ aj
∂F
∂zj

= n
∫ ∫ ∫

(f
′ F′

− fF)gbdbdϵdci (1) 

In the equation above, n is the number-density of gas, zi and ci are the 
ion and gas velocities respectively while gi = zi − ci is the relative ve
locity, b is the impact parameter (distance between the ion and gas in the 
transversal direction to the ion’s drift), ϵ is the intrinsic rotation angle 
and xi, ai and t are position, acceleration, and time. In Eq. (1), it is 
initially assumed that the ion’s velocity distribution depends on position 
and time and that the acceleration is general. The term on the right hand 
side corresponds to the collision term, where only interactions between 
gas and ion are accounted for. The collision term represents the 
replenishment (coming from prime sources) and extinguishment of ions 
of class velocity zi through collisions with gas molecule velocities be
tween ci and ci + dci (where dci = dc1dc2dc3). We shall simplify the 
equation even further by assuming that the distribution does not depend 
on position xi or time t and that the acceleration aj only depends on a 
constant field value E (relaxation effects are neglected) in the direction 
of ion movement z1 = w. Under such conditions, the equation becomes 
more manageable [17,18] 

eE
Mn

∂F
∂w

=

∫ ∫ ∫

(f
′ F′

− fF)gbdbdϵdci (1b)  

where, e is the elemental charge (assuming the ion is singly charged) and 
M is the mass of the ion. Despite the simplifications, the equation is still 
difficult to solve even when the gas and the ion are considered spherical 
atoms [17,18]. The main reason is that the term (f ′ F′

−fF) is dependant 
on the ion-gas interaction. In general, an assumption generally relies on 
choosing a solution dependant on orthogonal polynomials as [19]: 

F = F(0)
∑

p
apϕp =

(
M

2πkTb

)3
2

e−
M(zi)

2

2kTb

∑

p
apϕp (2)  

where ϕp are orthogonal functions, ap are unknown coefficients and F(0)

is the basis or zeroth function chosen for the two-temperature theory. k 
is the Boltzmann’s constant and Tb is a temperature-like parameter that 
needs to be defined (generally called the base temperature). It is nor
mally equated to the ion’s lab reference of frame temperature (see Eq. 
(17) for an analytical expression and further explanation) which in
cludes the kinetic energy from the field and heating due to the collisions 
with the gas, both effects contributing to the ion’s temperature above 
that of the equilibrium gas temperature T. Due to the addition of the 
kinetic energy, Tb is not a thermodynamic temperature as such, but more 
akin to a dynamic temperature. Note that the choice of F(0) is important. 
If the choice of the basis function was exactly F, then the sum of 
orthogonal functions would be one, not requiring one to obtain the ap 

coefficients. A close choice would allow the least number of coefficients 
to be calculated in order to get a solution [20–22]. 

Even with Eq. (2), solving Eq. (1b) is not possible in general [23–25]. 
An option is to resort to calculating moments of F. This is obtained by 
multiplying Eq. (1b) by a function of the ion’s velocity ψ (r)

lm and inte

grating over all possible velocities zi, i.e., ψ (r)
lm Av =

∫
Fψ (r)

lm dzi, obtaining 
average quantities (moments) and leading to [25]: 

eE
Mn

〈
∂ψ (r)

lm

∂w

〉

Av
= < J ψ (r)

lm >Av, (3)  

where, J is the operator given by: 

J ψ (r)

lm =

∫ ∫ ∫

f
(
ψ (r)

lm − ψ (r)

lm

’ )
gbdbdϵdci (4) 

To arrive at Eq. (3) from (1b), integration by parts and the inverse 
collision property have been used (refer to the supplementary infor
mation of this paper or Eqs. (B.4)–(B.9) in Ref. [9] or Ref. [26] to see the 
calculation) as well as the use of the basis function approximation (Eq. 
(2)). A solution to Eq. (3) may be obtained by choosing appropriate 
orthogonal functions ψ (r)

lm , and where the practicality of the solution 
heavily relies on how close the orthogonal functions are to eigenfunc
tions of the operator J . Commonly employed for the two-temperature 
theory are the Burnett spherical polar functions given by Spalding 
[27,28]: 

ψ (r)

lm =

(
M|z|

2

2kTb

) l
2

Pl

(
w
|z|

)

S(r)

l+1
2

(
M|z|

2

2kTb

)

eimϕ (5) 

Here Pl are the Legendre polynomials and S(r)
l+1

2 
are the Sonine (asso

ciated Laguerre) polynomials. The Burnett functions happen to be the 
eigenfunctions of the operator J for the Maxwell Model, and hence a 
suitable candidate [29]. The Maxwell model is a simple potential 
interaction that corresponds to a repulsion interaction of r−4 (showcased 
in Fig. 1). Its importance relies on the fact that its result can be computed 
analytically, (due to its eigenvalue properties) and hence becomes an 
important point of reference. Note that Tb is the same temperature used 
in the basis function in order to utilize the integral superposition method 
[30,31]. The Burnett functions are orthogonal to the inner product [16]: 

(
ψp, ψp′

)
=

∫

e−
M(zi)

2

2kTb ψ†
pψp′ dzi =

∫

F(0)ψ†
pψp′ dzi = Apδpp′ (6) 

With † describing complex conjugation and where the basis function 
F(0) appears as the required weight. For two functions formed using Eq. 
(5), the inner product yields [11,32]: 
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(
ψ (r)

lm , ψ (s)
pq

)
=

Γ
(

l + s + 3
2

)

(l + |m|)!

(2l + 1)s!Γ
(

3
2

)

(l − |m|)!

δlpδmqδrs (7)  

where, Γ and δlp indicates Gamma and Kronecker Delta functions 
respectively. One must now make an informed guess regarding what the 
general solution to the operator in Eq. (3) might be. Since it is expected 
for the gas-ion interaction to be close to the Maxwell model [33,34], the 
operator may be expanded using Burnett functions [35,36]: 

J ψ (r)

lm =
∑

s
ars(l)ψ (s)

lm (8)  

where, the sum of s goes from 0 to infinity. The choice of Eq. (8) stems 
from the fact that for the Maxwell model and the one-temperature the
ory, J Maxwellψ

(r)
lm = λ(r)

l ψ (r)
lm , where λ(r)

l and ψ (r)
lm are the eigenvalues and 

eigenvectors of the J Maxwell operator. For other cases, one may assume 
that the ars(l) are matrix elements that are larger the closer they are to 
the diagonal terms arr(l) [37]. For the two-temperature theory using the 
Maxwell model, the off-diagonal terms are not zero, although they 
vanish for s > r (more on this below). Using the orthogonal relation and 
Eq. (8), the matrix elements may be given by: 

ars(l) =

(
ψ (s)

lm , J ψ (r)

lm

)

(ψ (s)

lm , ψ (s)

lm )
(9) 

The matrix elements happen to be independent of the m index which 
can be dropped from the Burnett functions (m = 0) [35]. Making use of 
the recurrence relations of the Sonine and Legendre polynomials [10]: 

d
dx

S(n)
p (x) = −S(n−1)

p+1 (x) (10a)  

x2 − 1
n

d
dx

Pn(x) = xPn(x) − Pn−1(x) (10b)  

pS(n)
p (x) − xS(n−1)

p+1 (x) = (p + n)S(n)

p−1(x) (10c)  

(2n + 1)xPn(x) − (n + 1)Pn+1(x) = nPn−1(x) (10d)  

as well as Eq. (8), Eq. (3) may be written as (dropping the subscript Av 
and the index m) [8]: 
(

l +
1
2

)
∑

s
ars(l) < ψ (s)

l >= E

[

l
(

l +
1
2

+ r
)

< ψ (r)

l−1 > − (l + 1) < ψ (r−1)

l+1 >

]

(11)  

where, ψ (s)
l = 0 for any negative index, ψ (0)

0 = 1, and where [38,39]: 

E =

(
eE
Mn

)(
M

2kTb

)1
2

(12) 

How to arrive at Eq. (11) from Eq. (3) and the recurrence relations 
Eqs. (10a-d) are shown in the supplementary information. In Eq. (11), 
only the matrix elements and the temperature Tb are unknown. Eq. (11) 
is an infinite set of coupled equations with an infinite sum. Given that 
direct averages of the Burnett functions cannot be obtained without 
explicitly knowing F(zi) (except for very particular cases [34,39–43]), an 
iterative form is sought. To avoid the infinite sum, the procedure is to 
add one additional term over those of the Maxwell model (s > r = 0) to 
the sum for every higher order approximation [10,25]. As such, the 
truncation scheme may look like: 
(

l+
1
2

)

arr(l)<ψ (r)

l >n =E

[

l
(

l+
1
2

+r
)

<ψ (r)

l−1 >n−1 −(l+1)<ψ (r−1)

l+1 >n−1

]

−

(

l+
1
2

)
∑s=r−1

s=0
ars(l)<ψ (s)

l >n −

(

l+
1
2

)
∑s=n+r−1

s=r+1
ars(l)<ψ (s)

l >n+r−s

(13)  

where, the subindex n stands for the order of approximation (not to be 
confused with the gas density). Note that the summation index is kept 
from s = 0 to n + r − 1, so that all terms up to s = r always appear and 

Fig. 1. Representation of a gas-ion trajectory in 3D. The gas molecule with the velocity g→ is being deflected by an angle χ. The trajectory plane (blue) makes an angle 
ϵ with respect to a fixed reference plane (red). (Adapted from Vincenti and Kruger [74], and Larriba and Prell [9]). 
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the upper summation terms are subsequently added for higher approx
imations. Mason has tried a different approximation type by using n −1 
instead of n on the third term (first summation) on the right-hand side 
with similar success [11]. The last term of the right-hand side has an 
approximation n + r − s. The reason for this particular choice lies on the 
idea that each approximation contains only one additional (E/n)

2x term 
in their sum [11]. Note also that the minimum order is 1 for the terms 
with approximation n − 1 (there is no 0th approximation). 

To obtain the ion’s mobility, the Burnett function (from Eq. (5)) <

ψ (0)

1 >= 〈

(
M

2kTb

)1/2
w〉 =

(
M

2kTb

)1/2
vd may be used and where vd = KE is 

the average drift velocity of the ion, being K the mobility. Using this 
equation and Eq. (13), the first approximation may be given by: 

a00(1)< ψ (0)

1 >I = E or KI =

(
e

Mn

)

a00(1)
(14)  

where, a00(1) would need to be calculated but it is dependent on the 
base temperature whose value needs to be provided. Advancing the 
value of the matrix element (to be calculated below), the typical Mason- 
Schamp expression appears [16,26]: 

KI =
3e

16n

̅̅̅̅̅̅̅̅̅̅̅̅
2π

μkTeff

√
1

Ω(1,1)
(
Teff

) (15)  

where, μ is the reduced mass and Ω(1,1)(Teff ) is the momentum transfer 
collision integral calculated at the effective temperature Teff which may 
be related to Tb through [9,44]: 

Teff =
MT + mTb

M + m
(16) 

The physical importance of Teff will be described below. Before 
continuing to higher-order approximations, it is important to establish a 
relationship between the base temperature Tb (or Teff ) and the field over 
concentration E/n. Tb, as advanced previously, can be chosen to be the 
ion’s temperature in the laboratory frame, but any other choice could 
have been equally valid (and perhaps more optimal for convergence) 
[22,39,45–47]. With this choice, Tb is given by: 

1
2

M < z2 >=
3
2

kTb (17) 

Eq. (17) is equivalent to < ψ (1)

0 > = 0. Using Eq. (13) with < ψ (1)

0 >

will allow us to find an equation that establishes the relation between E 
/n (or E ) and Tb. 

2.1. Higher order approximations 

By repeated application of Eq. (13) one can reach higher-order ap
proximations that may be generally written as [48]: 

< K >n = < K >I

[

α0 + α1

(
E

a00(1)

)2

+ α2

(
E

a00(1)

)4

+ ...

+ αn−1

(
E

a00(1)

)2(n−1)]

(18)  

where, the number of higher-order terms depends on the approximation 

n. Here, the αi coefficients are complicated functions of the matrix ele
ments. For example, the second approximation may be given by (Eq. 
(13)): 

< ψ (0)

1 >II =
E

a00(1)
−

a01(1)

a00(1)
< ψ (1)

1 >I (19) 

Note the second term on the right-hand side (neglected in the first 
approximation) appears from the summation term since it is now 
terminated at s = 2 + 0 − 1 = 1. The first approximation for the Burnett 
function of the second term is given by: 

< ψ (1)

1 >I =
E

a11(1)

[
5
3
< ψ (1)

0 >I −
4
3
< ψ (0)

2 >I

]

−
a10(1)

a11(1)
< ψ (0)

1 >I (20) 

In Eq. (20), the additional last term on the right-hand side comes in 
this case from the summation when s = 0. The functions in the brackets 
may now be given by: 

< ψ (1)

0 >I = −
2E

a11(0)
< ψ (0)

1 >I −
a10(0)

a11(0)
(21)  

< ψ (0)

2 >I =
2E

a00(2)
< ψ (0)

1 >I (22) 

The second term in Eq. (21) comes from assuming the Maxwell 
condition for the first approximation where terms s ≤ r are added. 
However, having established Eq. (17) (< ψ (1)

0 > = 0), then Eq. (21) is no 
longer needed. Putting all the terms together and simplifying, we arrive 
at the second approximation to the two-temperature theory: 

< ψ (0)

1 >II = < ψ (0)

1 >I

⎡

⎢
⎢
⎢
⎢
⎣

1 +
a01(1)a10(1)

a00(1)a11(1)
+

5
3

a01(1)a10(0)

a11(0)a11(1)
+

(
E

a00(1)

)2 (
8
3

a01(1)a00(1)

a00(2)a11(1)
+

10
3

a01(1)a00(1)

a11(0)a11(1)

)

⎤

⎥
⎥
⎥
⎥
⎦

(23)  

or: 

< ψ (0)

1 >II = < ψ (0)

1 >I

[

1 +
a01(1)a10(1)

a00(1)a11(1)
+

(
E

a00(1)

)2 (
8
3

a01(1)a00(1)

a00(2)a11(1)

)]

(24)  

when Eq. (17) is considered. Eq. (19) now becomes an equation to 
establish the relationship between E/n and Tb. Note how aside from the 

quadratic term that depends on the field 
(

E
a00(1)

)2
, an additional term 

appears to correct the expression for mobility even at the zero field. 
For the third approximation, we proceed in a similar way. The main 

equation may be given by: 

< ψ (0)

1 >III =
E

a00(1)
−

a01(1)

a00(1)
< ψ (1)

1 >II −
a02(1)

a00(1)
< ψ (2)

1 >I (25)  

where, the third term appears due to the fact that the summation now 
terminates at s = 3 + 0 − 1 = 2. The functions on the right-hand side 
may also include additional terms as well due to their higher order. As 
such:  

< ψ (1)

1 >II =
E

a11(1)

[
5
3
< ψ (1)

0 >I −
4
3
< ψ (0)

2 >I

]

−
a10(1)

a11(1)
< ψ (0)

1 >I −
a12(1)

a11(1)
< ψ (2)

1 >I =

< ψ (1)

1 >I −
a12(1)

a11(1)
< ψ (2)

1 >I

(26)   
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< ψ (2)

1 >I =
E

a22(1)

[
7
3
< ψ (2)

0 >I −
4
3

< ψ (1)

2 >I

]

−
a20(1)

a22(1)
< ψ (0)

1 >I

−
a21(1)

a22(1)
< ψ (1)

1 >I (27)  

< ψ (2)

0 >I = −
2E

a22(0)
< ψ (1)

1 >I −
a20(0)

a22(0)
−

a21(0)

a22(0)
< ψ (1)

0 >I (28)  

< ψ (1)

2 >I =
E

a11(2)

[
14
5

< ψ (1)

1 >I −
6
5
< ψ (0)

3 >I

]

−
a10(2)

a11(2)
< ψ (0)

2 >I (29)  

< ψ (0)

3 >I =
3E

a00(3)
< ψ (0)

2 >I (30) 

Note that < ψ (2)

1 >I is only a first approximation instead of a second. 
This is due to the choice of reducing the approximation of the extra 
terms to n + r − s. If the second approximation were used instead in Eq. 
(25), it would bring higher powers of E/n. There is no necessity to 
substitute the different functions Eqs. (26)–((30)) to provide a full 
expression for the third approximation as it becomes unmanageable. The 
fourth approximation may equally be written to be: 

< ψ (0)

1 >IV =
E

a00(1)
−

a01(1)

a00(1)
< ψ (1)

1 >III −
a02(1)

a00(1)
< ψ (2)

1 >II

−
a03(1)

a00(1)
< ψ (3)

1 >I (31) 

Higher-order expressions can be easily obtained but are omitted here 
as they start to become too large to handle analytically. 

2.2. Ion’s energy 

One of the most difficult endeavors when dealing with the two- 
temperature approximation is establishing the relation between the 
field over the concentration E/n and the temperature Tb (or similarly 
Teff ) [19,39,49–53]. The reason for this is that the temperature Tb is a 
parameter used in the base function to describe that the ion’s velocity 
distribution is skewed (displaced) by the drift velocity vd and its stan
dard deviation is larger due to field-related heating over the thermal 
equilibrium with the gas [39,54]. Choosing Tb = Tion (temperature of 
the ion in the laboratory frame) establishes some important consider
ations. The first one is that 3

2 kTb = 1
2 m < z2 > so that the ion’s energy 

can be directly related to Tb. One would expect therefore that calculating 
the ion’s energy moment < ψ (1)

0 > would be sufficient. As advanced 
previously the moment yields: < ψ (1)

0 >= 3
2 − M<z2>

2kTb
= 0 . However, Eq. 

(13) may still be used to provide a relation between ion temperature and 
field. The degree of accuracy used to establish a relation between Tb and 
E/n can be any, but it is preferred to match the order of approximation of 
mobility. For example, for the first approximation: 

1
2

a11(0)< ψ (1)

0 >I = 0 = −E < ψ (0)

1 >I −
1
2
a10(0)< ψ (0)

0 >I (32) 

Or: 

E = −
1
2

a10(0)

< ψ (0)

1 >I
→E

2
= −

1
2

a10(0)a00(1) (33) 

To physically understand the meaning of Eq. (33), the expressions of 
the matrix elements (see their calculation below) must be introduced to 
yield a first approximation for E/n: 
(

E
n

)2

=
128

3
μ

M + m
k2Teff

e2

(
Tb − T

π

)

Ω(1,1)2 (
Teff

)
(34) 

This result coincides with Wannier’s equation [1,39]: 

3
2

kTb =
3
2

kT +
1
2

(m + M)< w >2 =
3
2

kT +
1
2

(m + M)< K >2
I E2 (35) 

This can be proven by using the solution from the first approximation 
to mobility < K >I = e

Mn
1

a00(1)
in Eq. (35) arriving at Eq. (34). For the first 

approximation, it can also be shown from the relation between Tb and 
Teff that 3

2 kTeff = 3
2 kT + 1

2 m< w >2 which has important consequences 
[23,55,56]. Eq. (35), while it is only a first-order approximation to the 
ion’s energy, it does provide a simple physical explanation of the two 
characteristic temperatures. 1

2 M< w >2 corresponds to the total field 
energy required for the ion to go from thermal equilibrium to its drift 
velocity [57–59] given it is the ion’s kinetic energy. This value is quite 
large so Tb can easily be in the tens of thousands of Kelvins, and it is not a 
good measure of the ion’s thermodynamic temperature [45,60–63]. 
However, subtracting the ion’s kinetic energy 12 M< w >2, the rest can be 
regarded as its translational thermal molecular energy which corre
sponds to 3

2 kTeff and where 1
2 m< w >2, corresponds to the thermal 

translational energy increase due to the higher relative velocity colli
sions with the gas. In this sense, the effective temperature is the ion’s 
equilibrium temperature due to the combination of the gas temperature 
and the effect of the field (assuming elastic collisions) [64–67]. 

For the second approximation, Viehland assumes that E can be 
thought of as having approximations in a similar way to the Burnett 
functions, e.g., E n. Viehland uses Eq. (13) for < ψ (0)

1 > as well as <

ψ (1)

0 >= 0 and combines them to arrive at [24]: 

2E n

a00(1)
=

∑n−1

s=1

a0s(1)

a00(1)
< ψ (s)

1 >n−s +

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

[
∑n−1

s=1

a0s(1)

a00(1)
< ψ (s)

1 >n−s

]2

−

2

[
a10(0)

a00(1)
+

∑n

s=2

a0s(1)

a00(1)
< ψ (s)

0 >n+1−s

]

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

1
2

(36) 

A different approach to obtain higher approximations of the ion’s 
energy is to use the recursive Eq. (13) relation for < ψ (1)

0 > but assuming 
that E is a constant to be calculated. This leads to a polynomial equation 
of powers of E 2. For example, for the second approximation: 

1
2
a11(0)< ψ (1)

0 >II = 0 = −E < ψ (0)

1 >I −
1
2

a10(0) −
1
2
a12(0)< ψ (2)

0 >I (37)  

E
2
II = −

1
2

a10(0)a00(1) −
1
2
a00(1)a12(0)< ψ(2)

0 >I (38) 

Substituting the appropriate approximations leads to a quadratic 
equation for E 2: 

AE
4
II + BE

2
II + C = 0 (39) 

With: 

A =
8
3

a12(0)

a11(1)a00(2)a22(0)

B = 1 +
a10(1)a12(0)

a11(1)a22(0)

C =
1
2
a00(1)

(

a10(0) −
a20(0)a12(0)

a22(0)

)

The solution that is chosen for the quadratic equation is the closest to 
that of the first approximation as it is expected that in Eq. (38) the bold 
term is a small correction. Using the same process, higher-order terms 
may be obtained. For the third: 

E < ψ (0)

1 >III = −
1
2

a10(0) −
1
2
a12(0)< ψ(2)

0 >II −
1
2

a13(0)< ψ(3)

0 >I (40) 

And where the full expanded equation for E III has been added to the 
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supplementary information. Whether this method or an iterative 
method is employed, the relation between Tb and E /n should be 
established and it is expected to have only a scaling effect over the values 
of mobility as a function of the field. 

It is important to note that, regardless of which method is employed, 
once E is calculated for a particular order of approximation, its value is 
fixed in the expression for mobility as different values of E would lead 
to different Tb − E/n relations. 

3. Calculation of the matrix elements 

At this point, the matrix elements need to be calculated to obtain 
detailed expressions for mobility as a function of the field. However, the 
matrix elements can only be analytically calculated for extremely simple 
potentials (like that of Maxwell) assuming monoatomic ions. For the rest 
of the cases, the matrix elements’ expressions can be left as a quadrature 
that may be integrated numerically by calculating the deflection angle 
[68–71]. Aisbett produced a general formula to obtain all the different 
matrix elements (see supplementary information or refer to Ref. [26]). 
The formula provided by Viehland contains a small error (a factor of 2 
corrected here) that will not affect the mobility results [11]. It is how
ever unadvisable to use the formula without prior knowledge of how the 
matrix coefficients are calculated. This exercise also serves the purpose 
that it can be used with any other orthogonal functions for which gen
eral formulas do not exist. The procedure of how the calculation is 
performed is laid out initially, followed by explicit solutions of some of 
the terms. The rest of the terms needed up to the third approximation 
have been added to the supplementary information, where many of 
them are also explicitly calculated. 

Each matrix element must be obtained using Eq. (9). While the de
nominator is given by Eq. (7) (assuming m = 0), the numerator is given 
by Larriba-Andaluz and Prell [9]: 

(
ψ (s)

l , J ψ (r)

l

)
=

(
M

2πkTb

)3
2( m

2πkT

)3
2
∫ ∫ ∫ ∫

e

(

− Mz2
2kTb

)

e

(

−mc2
2kT

)

×ψ (s)

l ( z→)
[
ψ (r)

l ( z→) − ψ (r)

l ( z→
′

)
]
| z→ − c→|bdbdϵd z→d c→

(41) 

Here, we have opted to use the more conventional vector notation 
instead of an index notation. The differential d z→ = dz1dz2dz3 stands for 
a triple integral over the three velocity directions and × stands for a 
regular multiplication to indicate a change of line. It is assumed that the 
gas has a fixed Maxwell–Boltzmann velocity distribution (f) at temper
ature T [72,73]. To make Eq. (41) more accessible, assuming a two-body 
problem, the independent velocity variables are changed into the rela
tive velocity g→ and the centre of mass velocity W→: 

z→ − c→ = g→

W→ =
(
1 − eμ

)
z→ + eμ c→; eμ =

m
m + M  

so that the matrix elements become: 

ars(l) =

(2l + 1)s!Γ
(

3
2

)

Γ
(

l + s +
3
2

)

(
M

2πkTb

)3
2( m

2πkT

)3
2

×

∫ ∫ ∫ ∫

e

(

−

(

M
2kTb

+ m
2kT

)

W2+2μ

(

1
2kTb− 1

2kT

)

W→⋅ g→+
μ

m+M

(

m
2kTb

+ M
2kT

)

g2

)

×ψ (s)

l

(
W→ + eμ g→

)[
ψ (r)

l

(
W→ + eμ g→

)
− ψ (r)

l

(
W→ + eμ g→′

)]
gbdbdϵdW→d g→

(42) 

Where the interpretation of the prime remains the same. Given the 
complexity of the exponential in Eq. (42), it is advisable to make a 

change of variables that will make it quadratic: 

W→q = W→ − f g→; dW→d g→ = dW→qd g→

where, 

f = eμd
M(Tb − T)

mTb
; d =

mTb

MT + mTb
; eμ + f = d; eμM = μ 

Dropping the q in Wq (for extra cleanliness) one arrives at: 

ars(l)=

(2l+1)s!Γ
(

3
2

)

Γ
(

l+s+
3
2

)

(
M

2πkTb

)3
2( m

2πkT

)3
2

×

∫ ∫ ∫ ∫

e

(

−

(
m

2dkT

)
W2−

(
μ

2kTeff

)

g2

)

×ψ (s)

l

(
W→+d g→

)[
ψ (r)

l

(
W→+eμ g→+f g→

)
−ψ (r)

l

(
W→+eμ g→

′

+f g→
)]

gbdbdϵdW→d g→

(43) 

Eq. (43) may be used as the basis for the matrix element calculations. 
After simplifications, the matrix elements may be expressed using con
ventional collision integrals which are given by McDaniel and Mason 
[13,18]: 

Ω(l,s)(T) =
2

(s + 1)!

( μ
2kT

)s+2
∫∞

0

e
−

(
μ

2kT

)
g2

g2s+3Q(l)(g)dg (44)  

Q(l) = 2π
(

2(l + 1)

2l + 1 − (−1)
l

) ∫∞

0

(
1 − coslχ(b)

)
bdb (45) 

The coefficients in Eqs. (44) and (45) are traditionally added so that 
the value of both integrals is πd2 for a hard sphere of diameter of in
fluence (radius of gas plus ion) d. The calculation of the matrix elements 
is now tedious but straightforward. To start, several examples are shown 
which are relevant to important discussions, while the rest of the cal
culations will be added to the supplementary information which in
cludes further elements never previously calculated. 

3.1. Calculation of a00(1)

Given that ψ (0)

1 = w
(

M
2kTb

)1/2
= z1

(
M

2kTb

)1/2 
with z→ = (z1 = w, z2, z3)

and the following expressions: 

(2l + 1)s!Γ
(

3
2

)

Γ
(

l + s + 3
2

) |l=1,s=0 = 2,

ψ (0)

1

(
W→+ d g→

)[
ψ (0)

1

(
W→+ eμ g→+ f g→

)
− ψ (0)

1

(
W→+ eμ g→

’

+ f g→
)]

=
eμM

(
g1 − g’

1

)
(dg1 + W1)

2kTb
,

one arrives at the integral to solve the matrix element: 

a00(1) = 2
(

M
2πkTb

)3
2( m

2πkT

)3
2

×

∫ ∫ ∫ ∫

e

(

−

(
m

2dkT

)
W2−

(
μ

2kTeff

)

g2

)

eμM
(
g1 − g

′

1

)
(dg1 + W1)

2kTb
gbdbdϵdW→d g→

(46) 

One can now integrate the center of mass velocity W from −∞ to ∞ 
for all three coordinates. This yields: 
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a00(1) = 2
(

M
2πkTb

)3
2( m

2πkT

)3
2

×

∫ ∫ ∫

e

(

−

(
μ

2kTeff

)

g2

)
̅̅̅
2

√
deμM
kTb

(
πdkT

m

)3
2(

g1 − g
′

1

)
g1gbdbdϵd g→

(47) 

To continue the integration, it is necessary to define proper general 
vectors for g→ and g→′ . Using cartesian coordinates and spherical angles, 
the relative velocity vector may be given by: g→ = (g1, g2, g3) = g(cosθg,

sinθgcosϕg,sinθgsinϕg), where θg and ϕg are the azimuthal and polar angle 
respectively. Due to the symmetry of elastic collisions and conservation 
of energy, g→′ can be interpreted at this point as the relative velocity of 
reemission of the trajectory of a gas molecule with the ion fixed in a 
centered position as shown in Fig. 1. If the gas molecule trajectory di
rection was inverted, the result would be a replenishment of class g→

velocities from class g→′ . Fig. 1 can also be used to understand the 
deflection angle χ and the out-of-plane angle ϵ that can be used for the 

definition of g→
′

: 

g→
’

= g(cosχ ĝ + sinχ cosϵ ê2 + sinχ sinϵ ê3) (48)  

where, ĝ is a unit vector in the direction of g→ and ê2 and ê3 are unit 
vectors perpendicular to ĝ and to each other. Note that due to the 
conservation of energy in the collision g→ and g→′ have the same 
magnitude. In Cartesian coordinates, the second and third terms in Eq. 
(48) may be given by: 

e→2⊥
= g

(
0, −sin

(
ϕg

)
, cos

(
ϕg

))
cosϵ sinχ (49)  

e→3⊥
= g

(
sin

(
θg

)
, −cos

(
ϕg

)
cos

(
θg

)
, −cos

(
θg

)
sin

(
ϕg

))
sinχ sinϵ (50)  

which are much simpler and more efficient to use than those produced 
by Vincenti and Kruger [74]. Substituting the incident and reemitted 
relative velocity vectors and integrating Eq. (47) for ϵ between 0 and 2π 
yields: 

a00(1) = 2
(

M
2πkTb

)3
2d5/2eμM

2kTb

∫ ∫

2π(1 − cosχ)bdb e

(

−

(
μ

2kTeff

)

g2

)

g2
1gd g→

Using the relation that Md
kTb

=
μ

kTeff 
and dg1dg2dg3 = g2sinθgdϕgdθgdg: 

a00(1) =
2

π3/2

(
μ

2kTeff

)5
2

∫∞

0

⎡

⎣
∫∞

0

2π(1 − cosχ)bdb

⎤

⎦

∫π

0

∫2π

0

e

(

−

(
μ

2kTeff

)

g2

)

g5cos2θgsinθgdϕgdθgdg  

where the term in brackets is Q(1)(g). Integrating over the velocity an

gles and multiplying and dividing by 
(

μ
2kTeff

)1/2
: 

a00(1) =
8
3

eμ

(
2kTeff

πμ

)1
2

⎡

⎣

(
μ

2kTeff

)3 ∫∞

0

e

(

−

(
μ

2kTeff

)

g2

)

g5Q(1)(g)dg

⎤

⎦ (51) 

The term in brackets corresponds to Ω(1,1)(Teff ) so that: 

a00(1) =
8
3

eμ

̅̅̅̅̅̅̅̅̅̅̅̅
2kTeff

πμ

√

Ω(1,1)
(
Teff

)
(52) 

A dimensionless matrix coefficient can be obtained by dividing Eq. 

(52) by eμ

̅̅̅̅̅̅̅̅̅
2kTeff

πμ

√

Ω(1,1)(Teff ): 

a∗
00(1) =

a00(1)

eμ

̅̅̅̅̅̅̅̅
2kTeff

πμ

√

Ω(1,1)
(
Teff

) =
8
3

(53) 

This coefficient is fundamental in obtaining the first approximation 
to mobility as shown in Eq. (14). 

3.2. Calculation of a02(1)

Given the following identities: 

ψ (0)

1 = w
(

M
2kTb

)1
2

, ψ (2)

1 =
1
2

w
(

M
2kTb

)1
2
[

35
4

− 7
M

2kTb
z2 +

(
M

2kTb

)2

z4
]

,

z→ = (z1 = w, z2, z3).

(2l + 1)s!Γ
(

3
2

)

Γ
(

l + s + 3
2

) |l=1,s=2 =
16
35   

Substituting the above into Eq. (43) and integrating over the center 
of mass velocities and over the polar angle ϵ yields: 

a02(1) =
4

35π1
2
eμ

(
μ

2kTeff

)5
2
∫ ∫

e

(

−

(
μ

2kTeff

)

g2

)

1
m2k2T2

b

[
d2M2(

d2g2m2

+ 14dg2kmT + 35k2T2)
− 14dkmMTb

(
dg2m + 5kT

)

+ 35m2k2T2
b

]
g2

1(1 − cos(χ))g2πbdbd g→

Integrating over the velocity angles and arranging: 

ψ (2)

1

(
W→+ d g→

)[
ψ (0)

1

(
W→+ eμ g→+ f g→

)
− ψ (0)

1

(
W→+ eμ g→

’

+ f g→
)]

=

eμM
(
g1 − g’

1

)
(dg1 + W1)

⎛

⎝
d4M2g2 + 35k2T2

b + 4d3M2g2 g→⋅W→ − 14kMTbW2+

M2W4 + 4dM g→⋅W→
(
MW2 − 7kTb

)
+ 2d2M

(
Mg2W2 − 7g2kTb + 2M

(
g→⋅W→

)(
g→⋅W→

)

⎞

⎠

16k3T3
b   
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a02(1) =
8

105π1
2
eμ

(
μ

2kTeff

)5
2
∫ ∫

e

(

−

(
μ

2kTeff

)

g2

)

×

[

d2g4
(

dM
kTb

)2

+ 14dg2
(

dM
kTb

)(
MTd
mTb

)

+ 35
(

MTd
mTb

)2

− 14
(

dg2
(

dM
kTb

)

+ 5
(

MTd
mTb

))

+ 35
]

g5(1 − cos(χ))2πbdbdg 

Using the CCS relations and the identities Md
kTb

=
μ

kTeff 
and dMT

mTb 
= (1 −d)

one can write: 

a02(1) =
8

105
eμ

(
2kTeff

μπ

)1
2

Ω(1,1)

[

48d2Ω(1,3)

Ω(1,1)
+ 84d(1 − d)

Ω(1,2)

Ω(1,1)
+ 35(1 − d)

2

− 84d
Ω(1,2)

Ω(1,1)
− 70(1 − d) + 35

]

Simplifying, rearranging, and using the common relations C∗ =

Ω(1,2)(Teff )

Ω(1,1)(Teff )
and B∗ = 5C∗ − 4 Ω(1,3)(Teff )

Ω(1,1)(Teff )
: 

a02(1) = −
8d2

105
eμ

(
2kTeff

μπ

)1
2

Ω(1,1)[3(4B∗ − 5) + 4(6C∗ − 5)]

Hence: 

a∗
02(1) = −

8d2

105
[3(4B∗ − 5) + 4(6C∗ − 5)] (54) 

The expressions are written following the behavior of the Maxwell 
model and the reason for such choice will be clarified in the discussion 
below. 

3.3. Calculation of a21(0)

Given that ψ (1)

0 = 3
2 − z2

(
M

2kTb

)

, ψ (2)

0 = 1
2

(

15
4 + M2z4

4k2T2
b

− 5Mz2

2kTb

)

, z→ =

(z1 = w,z2, z3)

(2l + 1)s! Γ
(

3
2

)

Γ
(

l + s + 3
2

) |l=0,s=1 =
2
3  

ψ (1)

0

(
W→+d g→

)[
ψ (2)

0

(
W→+eμ g→+ f g→

)
−ψ (2)

0

(
W→+eμ g→

’

+ f g→
)]

= −
eμM

(
f (g2 − g→⋅ g→

’

) + W→⋅( g→− g→
’

)
)(

M
(

d2g2 + W2 + 2d
(

g→⋅W→
))

8k3T3
b

(
M

(
2eμg2 +2eμ

(
f
(
g2 + g→⋅ g→

’ )
+ W→⋅( g→+ g→

’

)
)

+2
(

f 2g2 +W2 +2f g→⋅W→
))

−10kTb

)

Integrating over the center of mass velocities, over epsilon, and over 
the velocity angles yields: 

a21(0) = −
4

3dπ1
2
eμ

(
μ

2kTeff

)5
2
∫ ∫

e

(

−

(
μ

2kTeff

)

g2

)

1
m2k2T2

b
×

[
5d3kM2T

(
f g2m

+ 2kT
)

+ 3dfkmMT
((

e2
μ + f 2

)
g2M − 10kTb

)
− 3fkm2Tb

((
e2

μ

+ f 2
)

g2M − 5kTb

)
+ d2M

(
M

(
f
(
e2 + f 2)

g4m2 + 2
(
e2 + 3f 2)

g2kmT

+ 25f k2T2)
− 5kmTb

(
f g2m + 2kT

))
+ eμf g2mM

(
dM

(
df g2m + 4dkT

+ 3fkT
)

− 3fkmTb
)
(1 + cos(χ))

]
g5(1 − cos(χ))2πbdbdg 

Rearranging: 

a21(0) = −
4

3dπ1
2
eμ

(
μ

2kTeff

)5
2
∫ ∫

e

(

−

(
μ

2kTeff

)

g2

)
[

5
(

dM
kTb

)(
MTd
mTb

)

fdg2

+10
(

MTd
mTb

)2

d + 3
(

dM
kTb

)(
MTd
mTb

)
f
d

(
e2

μ + f 2
)

g2 − 30
(

MTd
mTb

)

f

−3
(

dM
kTb

)
f
d

(
e2

μ + f 2
)

g2 − 15f +

(
dM
kTb

)2

f
(

e2
μ + f 2

)
g4

+2
(

dM
kTb

)(
MTd
mTb

)(
e2

μ + 3f 2
)

g2 + 25
(

MTd
mTb

)2

f − 5
(

dM
kTb

)

df g2

−10
(

MTd
mTb

)

d

+eμf
((

dM
kTb

)2

f g4 + 4
(

dM
kTb

)(
MTd
mTb

)

g2 + 3
(

dM
kTb

)(
MTd
mTb

)
f
d

g2

−3
(

dM
kTb

)
f
d

g2
)

(1 + cos(χ))

]

g5(1 − cos(χ))2πbdbdg 

Using CCS expressions: 

a21(0) = −
4

3d
eμ

(
2kTeff

μπ

)1
2

Ω(1,1)

[

eμf
(

32f
Ω(2,3)

Ω(1,1)
+ 16(1 − d)

Ω(2,2)

Ω(1,1)

+ 12(1 − d)
f
d

Ω(2,2)

Ω(1,1)
− 12

f
d

Ω(2,2)

Ω(1,1)

)

+ 48f
(

e2
μ + f 2

) Ω(1,3)

Ω(1,1)

+
(

12(1 − d)
(

e2
μ + 3f 2

)
− 18f

(
e2

μ + f 2
)

− 30d2f
) Ω(1,2)

Ω(1,1)

+ 10d(1 − d)
2

− 30(1 − d)f + 15f + 25(1 − d)
2f − 10(1 − d)d

]

Using the known ratio expression and E∗ = Ω(2,3)

Ω(2,2) and A∗ = Ω(2,2)

Ω(1,1): 

a21(0) = −
4

3d
eμ

(
2kTeff

μπ

)1
2

Ω(1,1)
[
4eμf A∗

(
f (8E∗ − 7) + 4

(
1 − eμ

))

− 3f
(

e2
μ + f 2

)
(4B∗ − 5) + 2

(
d2(1 − d) − fd(2 − 3d + 11f )

+ f 2(4 + 7f )
)
(6C∗ − 5) + 10f

(
1 − 2eμ

)2
]

Hence: 

a∗
21(0) = −

4
3d

⎡

⎢
⎢
⎢
⎢
⎢
⎣

4eμf A∗
(
f (8E∗ − 7) + 4

(
1 − eμ

))
− 3f

(
e2

μ + f 2
)

(4B∗ − 5)+

2
(
d2(1 − d) − fd(2 − 3d + 11f ) + f 2(4 + 7f )

)

(6C∗ − 5) + 10f
(
1 − 2eμ

)2

⎤

⎥
⎥
⎥
⎥
⎥
⎦

(55) 

This matrix element contained an error in previous works by Vieh
land and Mason [11] that has been corrected here. The calculation for 
other matrix elements and their final format are given in the supple
mentary information. Several codes are available from the authors to 
calculate other matrix elements. 

4. Results and discussion 

While the two-temperature theory has been validated for single 
atoms in monoatomic gases [37,45,75–77], it has not been compre
hensively studied for all-atom models and all fields until recently [1,78, 
79]. The reason is that there is an expectancy that the elastic collision 
assumption would not hold at high enough fields [8,45,80]. In short, 
upon a highly energetic collision between ion and gas, the expectancy is 
that there would be an exchange of translational energy with internal 
degrees of freedom (rotational and vibrational), making the collision 
effectively inelastic and establishing an equilibrium temperature for the 
ion, that one can refer to as internal temperature Ti and that could be 
different from the effective temperature here established. This internal 
temperature may be defined as the temperature at which the internal 
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energy difference pre- and post-collision is zero on average. 
For monoatomic gases with molecular ions, once this new 

translational-internal equilibrium is established, the expectancy is that 
the collisions may be once again regarded as elastic on average, and Ti =

Teff ′ ; since the energy does not have any means of escaping the ion 
(neglecting radiation) other than through the translational degrees of 
freedom of the gas molecule [8,81]. This remains true as long as the 
relaxation time of the deformation caused by the ion-gas collision is 
smaller than the time between two consecutive collisions and the 
equilibrium may be established. 

For molecular gases, however, the internal degrees of freedom of the 
gas molecule will provide means for some of the energy to escape 
making the collision inevitably always inelastic. Under such circum
stances, it is unadvisable to use the two-temperature theory without an 
inelastic correction at least at moderate to high fields, and other 
methods are preferred [24,82]. Amongst other possibilities, although 
not the focus of this work, one can use the Wang–Uhlenbeck–de Boer 

(WUB) equation (which is an extension of the Boltzmann equation that 
takes into account the internal degrees of freedom). Another option is to 
simply assume an inelasticity or accommodation effect to describe the 
loss of energy [81]. This inelasticity coefficient is difficult to obtain 
theoretically but it can be obtained experimentally [80,83,84]. 

This work will therefore focus on the two-temperature theory for 
monoatomic gases, leaving the study of molecular gases for when suf
ficient data is available to study inelasticity appropriately. 

4.1. Regarding the success of Tb for the two-temperature theory 

The success of the two-temperature arguably relies on the choice of 
Tb for the base function. In general, however, one could presume that a 
more accurate basis function would instead include a drift velocity and 
an effective temperature such as: 

Fig. 2. The percentage difference between the first and the higher order approximations (for the hard sphere model) as a function of the dimensionless parameter E ∗

at different mass ratios (A) M/m = 0.1, (B) M/m = 0.5, (C) M/m = 1, (D) M/m = 4, (E) M/m = 100, (F) M/m = 1000. The y-axis is given by % deviation =
(〈vd〉x−〈vd〉I) × 100

〈vd〉I
. Calculations were performed in IMoS [85]. 
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G(0) = e−
M(zi−vdi)

2

2kTeff 

However, the reason for the success of F(0) and not G(0) is not clear 
until the matrix elements are calculated. When the product of F(0) and f 
is written in terms of relative kinetic energy, the moment integrals show 
a distribution that can be approximated as: 

e−
μg2

2kTeff (1 + ϕ(g))

where, ϕ(g) is a function that depends on the order of approximation. 
From a momentum transfer perspective, this new distribution is no 
different from Chapman–Enskog linearization of G(0)f (see A.27–28 from 
Larriba and Prell [9,18]). In all, since Tb includes the field energy (it 
relates to the ion’s energy in the lab reference frame), having Tb in the 
basis function includes both the widening of the distribution, which is 
related to Teff , and the translation of the distribution to the average 
velocity vd, as was demonstrated by arriving at Wannier’s equation for 
the ion’s energy. 

4.2. Effect of successive high field approximations for hard spheres and 
different mass ratios 

Depending on the choice of truncation scheme for both mobility and 
energy, the results of the approximations may vary. Amongst the mul
tiple options, we have opted to a) use n on the first term of the sum
mation in Eq. (13), b) the use of Eq. (36) to calculate E , and c) to use the 
same approximation is used for both mobility and energy. Finally, our 
scheme uses < ψ (1)

0 >i = 0 for all approximations and not only the 
highest approximation. The rigid sphere case corresponds to the case 
where the ion is large enough that attractive ion potentials are negli
gible, and the physical size of the ion dominates, greatly simplifying the 
interaction. For a hard sphere, all the CCS ratios, e.g., C∗, A∗,…, can be 
substituted by 1, making the calculation extremely fast for any 
approximation [24], once the appropriate matrix elements are known. 
The results for the hard-sphere model are shown in Fig. 2 where the 
different approximations are compared with the first as a function of the 
field. For the x-axis, a dimensionless parameter is used to represent the 
field such as [1]: 

E
∗

=

(
3π1/2

16kT

)(
m + M

M

)1/2(
ze

πd2

)
E
n 

The parameter of choice, akin to E , allows the curves to be universal 
despite the size of the ion d as long as the ion is spherical. The y-axis 

represents the deviation of successive approximations with respect to 
the first approximation in terms of percentage up to the fourth 
approximation as given by: 

% deviation =
(〈vd〉x − 〈vd〉I) × 100

〈vd〉I
,

where, x represents the order of approximation. The first approximation 
is therefore the x-axis and the difference between the other approxi
mations with respect to the first is given by Kox. As the matrix elements 
depend on the masses of both ion and gas, the results are shown for 
different mass ratios. It is interesting to see the variation from M/m < 1 
to M/m > 1. For low mass ratios, the variation from the first approxi
mation is largest at low fields. The opposite occurs for high mass ratios 
where the largest variation occurs at high fields. Two types of conver
gence can be observed. As M/m→∞ the deviation seems to reach an 
asymptote as there is little difference between the 100 and 1000 cases. In 
terms of overall convergence, the difference in the deviation between 
successive approximations seems to become smaller with higher ap
proximations. For this reason, and the fact that the ions of interest in ion 
mobility and analytical chemistry follow ratios M/m > 1 and E ∗

≤ 10, 
one can conclude that the 4th approximation should be sufficient to 
achieve acceptable results for all fields. It is important to mention that 
our results, although qualitatively similar, vary from those of Viehland 
and Mason [11]. 

4.3. The Maxwell Model and collision cross section ratios 

One of the most important criteria for truncation schemes used in the 
two-temperature theory relies on the assumption that a general solution 
for an ion gas pair will be similar to that of the Maxwell Model (a r−4 

interaction) [10]. The Maxwell Model was initially proposed for van
ishing fields (E/n→0) for the one-temperature theory where off-diagonal 
coefficients of the matrix elements are zero [25]. For the 
two-temperature theory, it has been stated that off-diagonal terms do 
survive although only those where s ≤ r. It is therefore important to 
study how molecular ions with a physical size and a 12-6-4 potential 
interaction evolve in comparison to the Maxwell model. This is prefer
ably done in terms of ratios of collision cross sections as their value is 
well known for the Maxwell model. A particularity of the Maxwell model 
is that the Q(l) integral is proportional to 1/g which can be used to obtain 
the ratios. For example, for C∗, B∗ or A∗ for the Maxwell model: 

Fig. 3. CCS ratios for O+ ion in helium gas as a function of E /n. The dashed 
and solid lines represent the CCS ratios for the Maxwell and 12-6-4 potential 
approximation model, respectively. 

Fig. 4. C* ratios for different ions in helium gas as a function of E/n. The 
dashed line represents the C* ratio for the Maxwell model. The C* ratio be
comes closer to 1 at low E/n as the ion size increases. 

V.D. Gandhi et al.                                                                                                                                                                                                                              



Talanta Open 7 (2023) 100191

11

Fig. 5. The percentage difference between the first and the higher order approximations (using the 12-6-4 Lennard-Jones trajectory method) as a function of the 
dimensionless parameter E ∗ at different mass ratios (A) M/m = 0.1, (B) M/m = 0.5, (C) M/m = 1, (D) M/m = 4, (E) M/m = 1000. The y-axis is given by 
% deviation =

(〈vd〉x−〈vd〉I ) × 100
〈vd〉I 

. Fig. 5F shows the experimental and the calculated mobility for O+, H2O+ and CH+
5 in helium as a function of E /n. For CH+

5 , the 
mobility using different approximations is illustrated. Calculations were performed in IMoS [ 85]. 
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C∗ =
Ω(1,2)

(
Teff

)

Ω(1,1)
(
Teff

) =

2
(3)!

(
μ

2kTeff

)4 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g7Q(1)(g)dg

2
(2)!

(
μ

2kTeff

)3 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g5Q(1)(g)dg

=

2
(3)!

(
μ

2kTeff

)4 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g6Q∗(1)dg

2
(2)!

(
μ

2kTeff

)3 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g4Q∗(1)dg

=
5
6

(56)  

B∗ = 5C∗ − 4
Ω(1,3)

(
Teff

)

Ω(1,1)
(
Teff

) = 5C∗ − 4

2
(4)!

(
μ

2kTeff

)5 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g8Q∗(1)dg

2
(2)!

(
μ

2kTeff

)3 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g4Q∗(1)dg

=

5C∗ − 4B
′
∗ = 5

5
6

−
35
48

=
5
4

(57)  

A∗ =
Ω(2,2)

(
Teff

)

Ω(1,1)
(
Teff

) =

2
(3)!

(
μ

2kTeff

)4 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g7Q(2)(g)dg

2
(2)!

(
μ

2kTeff

)3 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g5Q(1)(g)dg

=

2
(3)!

(
μ

2kTeff

)4 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g6Q∗(2)dg

2
(2)!

(
μ

2kTeff

)3 ∫ ∞

0
e

−

(
μ

2kTeff

)

g2

g4Q∗(1)dg

=
5Q∗(2)

6Q∗(1)

(58)  

where, Q∗(l) = gQ(l) and independent of g. The rest of the ratios can be 
equally calculated and are provided in the supplementary information. 

The ratios A∗ =
Ω(2,2)(Teff )

Ω(1,1)(Teff )
and F∗ =

Ω(3,3)(Teff )

Ω(1,1)(Teff )
are ratios whose numerical 

values depend on the angular pattern (see Eq. (56)) while the rest of the 
ratios have established values. 

The general expressions for the matrix elements a∗
rs(l) can then be 

written following the expectancy that general ratios are close to Maxwell 
model ratios results. It is then easy to see why those matrix elements 
with s > r are zero for the Maxwell model (as advanced previously). For 
one of the examples above, a∗

02(1) = − 8d2

105 [3(4B∗ − 5) + 4(6C∗ − 5)], in 
which s > r, the matrix element will be zero for the Maxwell model. 
Elements with s ≤ r always have a nonzero extra term, e.g., 
10f(1 − 2eμ)

2 for a∗
21(0). 

It would be interesting to study the deviation from the expected 
Maxwellian values of the ratios for small ions in He gas. The results for a 
few of the ratios are shown in Fig. 3 for O+ with a 12-6-4 potential. Very 
noticeable is that all ratios follow a similar tendency. They start below 
the Maxwell assumption and increase asymptotically to 1 as E 
/n increases. At the low field, the oxygen ion acts very similarly to how a 
4-interaction potential would, with an additional effect from the 6-inter
action potential. As the field increases, the ion starts acting more like a 
hard sphere due to the 12-interaction potential that becomes dominant. 
As such the CCS ratios become close to 1 the higher the field interaction 
is [13]. In all, note that for low fields, 0-40Td, substitution of the ratios 
for their Maxwell value is a decent approximation for monoatomic ions 
as shown by Mason and McDaniel [16]. As the ion becomes larger, 
however, the 4-6 interaction effect should become weaker compared to 
the effect of the physical size (or 12-interaction) even at lower fields. 
This can be observed for C∗ in Fig. 4 for ions of increasing size, namely 

O+, H2O+, CH+
5 and Tryphenilene. The larger the ion, the closer to 1 the 

ratios are and the further away from the Maxwell effect. It is therefore 
not recommended to use Maxwell ratios for molecular ions and perform 
the actual calculations. 

4.4. Calculations for small ions and spherical gases for arbitrary fields 

An ideal situation for the two-temperature theory is that of two 
monoatomic entities, ion and gas interacting together. Under such cir
cumstances, the collisions may be regarded as fully elastic, and the 
theory should be able to describe the collision quite accurately in the 
instances where quantum effects may be regarded as negligible [8,13, 
86]. For such cases, a 12-6-4 interaction potential between two mon
oatomic entities combines the most important long-range effects as well 
as the repulsion core. The r−4 corresponds to the ion-induced dipole 
attraction while the 6-12 is a simplified, numerically optimized inter
molecular interaction termed the Lennard-Jones potential, which rep
resents the combination of the induced-dipole/induced-dipole attraction 
(r−6) and the electron cloud repulsion (r−12). This interaction is typically 
expected to be quite accurate for all fields as long as the Lennard-Jones 
parameters, well-depth and zero potential energy crossing (ϵ and σ), are 
optimized. Given that the matrix elements heavily depend on the mass, 
one would also like to compare the different possible approximations, 
and their effect for different mass ratios and different potential in
teractions. Fig. 5 A–E shows the results of the difference between 
mobility approximations (akin to Fig. 2) for an oxygen atom with a 
12-6-4 potential interaction and for different ion-to-gas mass ratios. The 
Lennard-Jones potentials for Oxygen used were σ = 3.043Å and ϵ =

0.214668 e−21J. These results are expected to vary from the hard sphere 
ones in particular for smaller mass ratios, while for larger mass ratios the 
values are expected to be qualitatively similar. 

One would like to test the results of the two-temperature theory for 
small ions in light gases with respect to experiments. This is shown in 
Fig. 5F, where the reduced mobility of O+, H2O+ and CH+

5 are shown as a 
function of E/n both numerically (4th approximation) using IMoS [85, 
87] and experimentally in He [23,56]. The program is available and free 
of charge (www.imospedia.com) and uses a parallelized interface to 
calculate reduced mobilities and CCS for different gases. Similar results 
for a variety of small ions are shown in a companion paper to this one 
[1]. It is clear that for the monoatomic ion, the two-temperature theory 
reproduces the experimental results quite accurately. For the polyatomic 
ions, the theoretical results follow the experimental curves quite well 
(given that the experimental results have a 7% error). Finally, for CH+

5 , 
all approximations are shown (one through four). Given that the mass 
ratio is about 4, it is expected that the largest differences between the 
approximations will occur at high fields. This is visibly the case in 
Fig. 5F. The higher the approximation the closer the result is to the 
experimental values. One can also observe that the difference between 
the third and fourth approximation is rather small, hinting towards 
convergence. 

5. Limitations of the two-temperature theory 

The two-temperature theory has demonstrated its validity in pre
dicting ion mobility for monoatomic gases, but its viability for molecular 
gases remains uncertain. As advanced in the introduction, this uncer
tainty stems from the idea that as the ion increases its kinetic energy, its 
collisions with the gas will no longer be translationally elastic, breaking 
the elasticity assumption established in the two-temperature theory. 
This is a topic of ongoing research since 1983, when Larry Viehland 
conducted a series of experiments and obtained different values of 
effective temperatures theoretically and experimentally for a given 
mobility, thereby confirming the concept. The energy loss from inelastic 
collisions was condensed into the "inelasticity parameter (ξ)" which can 
be calculated by the equation [80]: 
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ξ =
M
m

(
Tel

eff

Tinel
eff

− 1

)

(59)  

where, Tinel
eff represents experimental effective temperature and Tel

eff rep
resents the two-temperature theory effective temperature for a given 
mobility. In general, this inelastic parameter should be very small for 
small molecular ions in monoatomic gases, as after an equilibrium 
effective temperature is reached in the internal degrees of freedom, 
there are no other modes of escape for the translational energy, and it 
becomes effectively elastic again. This has been proven previously for 
He [1,88]. However, if the molecular ion is sufficiently large, the 
effective equilibrium temperature might not be reached. The effect 
should be even more noticeable for molecular ions in monoatomic gases. 
In such a case, even if an effective temperature is reached internally in 
the molecular ion, there is always a mode of energy escape through the 
internal and rotational degrees of freedom of the gas molecule. There
fore, the expectancy is that inelasticity effects will be present for any ion 
in molecular gases under sufficiently high fields. For small to medium 
fields, the effect can be most likely neglected [89]. The theory to study 
the effects of internal degrees of freedom exists through the WUB 
equation. However, due to its complexity, its use is precluded for mo
lecular ions at least for now and initial data must be obtained through 
experimental to theory comparison. 

Given the lack of internal and rotational degrees of freedom in the 
Boltzmann equation for the two-temperature theory, another limitation 
is that any mobility differentiation due purely to rotational and vibra
tional degrees of freedom may not be obtained. One such case has been 
that of isotopomers (same structure and same mass, but different loca
tion of isotopic substitutions) [5–7], where it has recently been shown 
that they are separable by ion mobility due to shifts in their centre of 
mass and moment of inertia. 

6. Conclusions 

This manuscript aims to provide a concise description of the two- 
temperature theory along with rigorous mathematical arguments 
behind its success at predicting the ion’s drift velocity in monoatomic 
gases at high fields. Moreover, a thorough procedure for obtaining the 
equations (including the matrix elements) for higher-order mobility 
approximations is also provided with high detail, making this work 
suitable for beginners and experts in ion mobility. The work itself tries to 
explain the suitability of the two-temperature theory with concrete ar
guments of why the theory works and when it should be employed. The 
key takeaways of the manuscript can be consolidated as below:  

• The success of the two-temperature theory relies on the choice of a 
basis function with a base temperature (Tb) related to the ion’s 
temperature and different from the gas temperature (T). The base 
temperature starts as a parameter, but a relation between the tem
perature and the field over the concentration must be made at some 
point.  

• Different moments of the Boltzmann equation need to be solved to 
determine various transport properties, e.g., drift velocity (vd), en
ergy, etc. The solution assumes that the collision operator may be 
written in terms of an infinite sum of orthogonal functions (Burnett) 
with coefficients that are known as matrix elements. Since the mo
ments cannot be obtained without knowing the ion’s velocity dis
tribution a priori, a recursive relation is sought, for which different 
approximations can be obtained from lower-order approximations, 
starting with the first.  

• Different successive approximations are dependant on complicated 
functions of the matrix elements. The matrix elements themselves are 
as well complicated functions of ratios of Collision Integrals. The 
explanation of how to calculate these matrix elements has been 
thoroughly explained in this manuscript, for the first time to our 

knowledge. Full results are shown up to the third approximation, 
while numerically, up to the fourth approximation is calculated in 
IMoS. The expressions are written such that the off-diagonal terms 
get cancelled if the Maxwell model is used.  

• A choice needs to be made for the base temperature. If the 3/2kTb is 
chosen to be equivalent to the ion’s energy, a relation may be 
calculated that relates Tb to E/n to different approximations, leading 
to a closed-form equation of the ion mobility. The method chosen 
here can accurately solve higher-order mobility equations almost 
instantaneously once the collision integrals are calculated, in 
contrast to other methods, which might take several minutes or 
hours.  

• The first approximation of the ion’s energy yields Wannier’s energy 
equation. This establishes that 3/2kTb can be related to the kinetic 
energy of the ion due to the field plus the translational energy at a 
temperature higher than that of the gas, due to collisional heating, 
and that it is labelled the effective temperature Teff .  

• The effect of higher-order approximations was tested for different M/

m ratios first for the hard sphere case and then for a 12-6-4 potential. 
Interestingly, in all cases, the deviation in mobility between suc
cessive approximations was reduced, indicating convergence. 
Moreover, the two-temperature theory has been tested for monoa
tomic and polyatomic ions in Helium gas at high E/n showing 
excellent correlation with experimental results, further solidifying 
the hypothesis. 

• Several collision integral ratios of different ions (using a 12-6-4 po
tential) were calculated as a function of E/n. For monoatomic and 
small polyatomic ions, the ratios were found to be similar to those of 
the Maxwell model at moderate fields (0-40 Td), and similar to those 
for of the hard-sphere model at high fields (i.e., approaching 
asymptotically at 1). For monoatomic or very small polyatomic ions, 
substituting the ratios for their Maxwell values may therefore yield 
acceptable results at low fields. However, it is not practical to utilize 
the Maxwell model for bigger polyatomic ions because the ratios 
deviate even at negligible fields.  

• For polyatomic ions in high E/n, it is expected for collisions to be 
inelastic in the translational sense, meaning that some of the colli
sional energy is transferred to the internal degrees of freedom of both 
ion and gas molecule. For monoatomic gases, the inelasticity can be 
generally ignored because there is no mode of energy escape once the 
ion’s internal energy reaches equilibrium with the relative trans
lational energy of collision, and the two-temperature theory stays 
valid. For polyatomic gases, however, some of the energy can always 
escape the system through the internal degrees of freedom of the gas, 
making the two-temperature theory less accurate with increasing 
fields. 
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