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Abstract

In order to train a learning-based prediction model, large
datasets are typically required. One of the major restrictions of
machine learning applications using customized databases is the
cost of human labor. In the previous papers [3, 4, 5], it is demon-
strated through experiments that the correlation between thin-film
nitrate sensor performance and surface texture exists. In the pre-
vious papers, several methods for extracting texture features from
sensor images are explored, repeated cross-validation and a hy-
perparameter auto-tuning method are performed, and several ma-
chine learning models are built to improve prediction accuracy. In
this paper, a new way to achieve the same accuracy with a much
smaller dataset of labels by using an active learning structure is
presented.

Introduction

The ultimate goal of this research is to develop an image-
based machine learning technique that will enable real-time qual-
ity evaluation of each sensor in the manufacturing pipeline. Prior
research has demonstrated that the texture of the sensor ion-
selective membrane (ISM) layer is related to its performance
[1, 2]. Our strategy aims to train a learning-based system to pre-
dict the performance of any given sensor from a still image of the
sensor’s active region using the established correlation. This is
an alternative to random sample testing which is time and labor-
intensive and hence cannot account for all of the individual sen-
sors.

This study presents a follow-up project building on previous
research [3, 4, 5]. The most recent improvement made in this re-
search is the introduction of an active learning approach [8, 9] and
two additional machine learning models [18, 19] to further opti-
mize our training model while reducing the size of the training
dataset. The new prediction system will comb through the unla-
beled dataset in search of the data in which it is least confident in
processing. Prioritizing human labor to label just the data that the
learning model struggles to identify, therefore reduces labor costs
and improves training effectiveness.

I'This material is based upon work supported by the National Science
Foundation under Grant No. 2134667.
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Figure 1. Overview of the Prediction System.

The methodology of the study is illustrated in Figure 1. The
texture feature vector extracted from the sensor image serves as
the feature vector, while the sensor fabrication date is used as the
label. The active learning structure with varying base models is
employed as the prediction model in this study. The output trained
model will be the trained base model in the saturation region.

Dataset Preparation

The data for this project is collected in-house, including the
feature vectors and their labels.

For research purposes, the labels will be the different fabri-
cation settings during the sensor manufacture procedure and will
be represented by the sensor fabrication date.

Feature Extraction

The feature vector utilized in this research is extracted from
sensor images. As hypothesized by the underlying physics model
[2], variations in fabrication factors are expected to influence the
texture difference exhibited by the sensor image, thereby impact-
ing the overall sensor performance.

In order to obtain the feature vector, a series of steps are
necessary, as outlined in this research [3]. To avoid distracting
our prediction system, we need to crop the sensor active region,
following the protocol depicted in Figure 2. Subsequently, the
cropped sensor active region image undergoes the preprocessing
procedure, as illustrated in Figure 3, to enhance the texture differ-
ences.
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Figure 2. Crop the sensor ROl Procedure.
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Figure 3. Sensor Image Preprocessing Procedure.

After processing the sensor images, the feature vectors are
extracted from the preprocessed sensor images. Two methods are
employed in this experiment to extract the feature vectors: the
uniform local binary pattern (LBP) method [6] and the angularly
averaged power spectrum (AAPS) method [7]. These two meth-
ods were chosen based on their consistent and precise prediction
outcomes in previous experiments [5].

Summary of the Dataset

As illustrated in Figure 4, several samples of the prepro-
cessed sensor region of interest (ROI) are presented for each sen-
sor fabrication date. It should be noted that each sensor fabrica-
tion label class comprises both defective and normal sensors. For
the purposes of this study, the customized dataset is comprised of
eight classes, corresponding to the sensor fabrication labels, and
in total includes 968 sensors. Although this dataset is unbalanced,
the active learning structure ensures that the unbalanced dataset
will not negatively affect the accuracy of the prediction.

Sensor Fabrication | 19-08-15 | 19-09-12 | 19-09-20 | 19-12-10 | 20-01-30 | 20-03-10 | 21-02-25 | 21-05-10
Date

# of sensors 88 126 123 97 150 140 129 115

Examples
of
the cropped & pre-
processed sensor
ROI

Figure 4. Summery of the Dataset.

Prediction System

The active learning algorithm, a form of semi-supervised
machine learning algorithm, has the potential to achieve superior
levels of accuracy while utilizing a smaller quantity of training la-
bels [8, 9]. This outcome may be attainable by enabling the algo-
rithm to prioritize the data that contributes the most to its learning
progress.

Overview of Active Learning Algorithm

The active learning algorithm leverages both labeled and un-
labeled data to train the model. Initially, the base model of the ac-
tive learning algorithm is trained using a limited labeled dataset.
Following this, a query strategy is selected to determine the un-
certainty of the data points in the unlabeled dataset. The algo-
rithm then selects the feature vectors that will be most beneficial
to learn from based on the sampling strategy chosen, and we will

provide the labels for the queried subset of the unlabeled dataset.
The updated labeled dataset is then employed to retrain the base
model, as depicted in Figure 5. Consequently, the labeled dataset
increases dynamically during the training phase, significantly re-
ducing the quantity of labeled data required to train the model
compared to traditional machine learning algorithms, and ulti-
mately decreases cost.

Unlabeled Data

Query for Labels Measure the Uncertainty
(Sampling Strategy) (Query Strategy)
Build the Model
Labeled Data (Base Model)

Validation Data

Figure 5. Overview of Active Learning Strategy.

In the active learning algorithm, three critical components re-
quire consideration, namely the query strategy, the sampling strat-
egy, and the calibrated base model. Moreover, we define the num-
ber of query iterations as the number of times the active learning
model queries for labels (also referred to as the number of repeat-
ing cycles). The initial training process will be denoted as query
iteration 0.

Query Strategy

Various query strategies are employed to calculate the uncer-
tainty of the unlabeled data. Typically, the data points with low
confidence are considered the most uncertain, such as those that
reside near the class boundaries. By selecting these data points,
the base model can benefit more and acquire more information
during the training process.

Unlabeled Data Query Strategy Unlabeled Datal Score

Figure 6. Query Strategy.

The least confidence (LC) strategy [10] is a query strategy
used to select the data point which has the least likelihood in its
most likely label as shown in equation (1). For each feature vector
x, the predicted class is denoted as y. Since the LC strategy tends
to choose data points with low confidence, such as those that lie
near the class boundaries, it may provide more information for the
base model to learn from. In the example experiment illustrated
in Figure 7, the accuracy increases significantly in the first few
iterations, but then gradually slows down over time.

Spc = argmin(P(9|x)) (1
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Figure 7. Example of Least Confidence Strategy.

The margin sampling (MS) strategy [11] illustrated by equa-
tion (2) selects the data point with the smallest difference between
the two most probable labels. The most likely predicted class is
denoted as ymax and the second most likely predicted class as
ymax —1. As shown in Figure 7 and Figure 8, the MS and LC
strategies have different selection criteria that influence the accu-
racy of the algorithm. In the initial iterations, the MS strategy
focuses on deciding between the two most likely labels, while the
LC strategy selects the most unsure data points. The accuracy
of the algorithm with MS strategy improves rapidly in the later
iterations.

Sys = arg min(P()A’max |x) —P(Pmax—1 |x)) 2)
X
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Figure 8. Example of Margin Sampling Strategy.

The entropy sampling (ES) strategy [12] illustrated by equa-
tion (3) selects the data with the greatest entropy value, where
entropy indicates the randomness of the data. The accuracy curve
performs between the LC and the MS strategies as shown in Fig-
ure 9.

Sgs :arg)rcnaX(—ZP(yAiM)) log(P(3i|x)) (€)
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Figure 9. Example of Entropy Sampling Strategy.
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The linear combination strategy will combine the uncertainty
score of the three strategies linearly by assigning the strategies
different weights as shown in equation (4). The accuracy curve
will depend on the different weights assigned to each strategy.

Scomb =wW1SLc +w2Sus —w3Sgs 4)

For the experiment outlined in this paper, the least confi-
dence (LC) strategy will be chosen to measure the uncertainty
score. This decision is motivated by the fact that the LC strategy
boosts the prediction accuracy at early iterations and therefore re-
duces the size of the labeled training dataset that is needed.

Sampling Strategy

In active learning, there are several sampling strategies that
can be applied to select the most informative data points from
the unlabeled dataset. These include stream-based selective sam-
pling, pool-based sampling, and membership query synthesis.
The selected subset will then be combined with the labeled train-
ing dataset and used to train the base model again. This process
is illustrated in Figure 10.

Unlabeled Data |Score Sampling Strategy

Figure 10. Sampling Strategy.

Selected Subset

Unlabeled Data

Membership query synthesis [15] involves the model gener-
ating its own feature vectors for labeling. This strategy does not
apply to our case as we are dealing with real sensors manufactured
with different fabrication settings.

In the stream-based strategy [14], the algorithm is presented
with a stream of unlabeled data, with each data point being con-
sidered individually based on a fixed threshold. As a result, the
number of data points in the selected subset may vary each time,
and some data points may never be selected for the subset, thus
never being used to train the base model.

On the other hand, pool-based sampling [13] involves select-
ing a fixed number of elements from the entire unlabeled dataset
based on the uncertainty score and using that as the selected sub-
set. This strategy has been selected for our experiment as it allows
us to use all the data points in the unlabeled dataset to train our
model, as long as the active learning algorithm is run for a suffi-
cient number of query iterations.

Base Model Selection

The choice of the base model for an active learning algorithm
plays a significant role in its overall performance. Previous stud-
ies have mainly used support vector for classification (SVC) [16]
and random forest (RF) models [17]. As part of this study, we
explore two additional methods, namely the XGBoost and KNN
models.

The XGBoost model [18] is a scalable, distributed gradient-
boosted decision tree (GBDT) machine learning model. It creates
an ensemble model by sequentially combining several weak deci-
sion trees to improve the overall accuracy of the system.
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On the other hand, the KNN (k nearest neighbors) model
[19] is a non-parametric, supervised model based on the k-nearest
neighbors’ vote. The weight of each neighbor can be uniform
or based on the distance between the testing data point and each
neighbor point.

Calibration Procedure

Calibrating the base model is crucial for calculating the un-
certainty of each data point, as it relies on the true likelihood [21].

A well-calibrated model ensures that the confidence level
of an event is accurately reflected in the model’s predictions. A
model is well-calibrated if, for any probability value p, a predic-
tion of a class with confidence p is correct p percent of the time,
as shown in Equation 5.

PF=y|P=p)=p Q)

To ensure the accuracy of the uncertainty measurements, it
is necessary to calibrate the base model. In this study, we use
a post-training calibration layer on top of the base model, which
maps classifier confidence levels to better probabilities, as illus-
trated in Figure 11. Specifically, the base model will serve as the
classification model and output the probability of each class. The
calibration model, on the other hand, will be a regression model
to map the true likelihoods to the predicted probabilities. In this
experiment, we adopt the Sigmoid method [20] as the calibration
model.

¥~ X (features)
Training Set Base Model
training
¥~ X (features)
Validation Set | Base Model »{ Calibration Model
predicting training
¥ ~ X (features)
Tesiing Set Base Mogel Galibration Model | ————- calibrated probability
prediciing predicting

Figure 11. Calibration Procedure.

It is important to note that there is no correlation between
calibration and accuracy, so accuracy may be improved or reduced
by calibrating the model.

Auto-tuning Procedure

To improve the accuracy of the predicted result, we will fol-
low the previous work to auto-tune the base model in order to get
the optimized hyperparameter settings for each base model [5].

Experimental Results

The prediction system used in this experiment is illustrated
in Figure 12. The dataset is composed of two components, the
feature vectors extracted from sensor images and the associated
fabrication labels. The customized dataset includes 968 sensors.
Initial training data constitutes 20% of the entire dataset, followed
by testing data constituting another 20%, and the remaining 60%
is considered “unlabeled”. During each iteration, the algorithm
selects 5% of the data from the “unlabeled” set, queries for the
label, and trains the base model with the newly acquired data. As
a result, by iteration 12, the “unlabeled” dataset is exhausted and
the base model behaves like a traditional machine learning model.
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Figure 12. Overview of the Prediction System.

In this experiment, we used four calibrated base models: RF,
XGBoost, KNN, and SVC models [17, 16, 18, 19]. For research
purposes, the stopping criterion for the active learning procedure
is to run the algorithm until the "unlabeled” set is empty. We ex-
tracted two types of feature vectors: LBP features [6] and AAPS
features [7] as discussed in the Dataset Preparation section.

With each base model and type of feature, we run the ac-
tive learning algorithm 200 times with randomly shuffled training,
testing, and "unlabeled” sets.

Table 1 presents the results of the active learning algorithm
using different base models with the feature vectors extracted us-
ing the LBP method. The SVC model provided the highest av-
erage accuracy and the smallest standard deviation at saturation.
Additionally, the active learning algorithm with the SVC base
model saturated at iteration 4, while the RF base model saturated
at iteration 2. That means the active learning structure with the
RF model could be well-trained using 30% of the entire dataset,
which is about 291 sensors. The SVC model with active learn-
ing structure will reach saturation status with 40% of the entire
dataset. The accuracy curve of the SVC model for the LBP fea-
ture is illustrated in Figure 13.

Table 1: Prediction Results for LBP Feature Vector

Base Average | Standard Saturated
Model Accuracy | Deviation | Query lteration
RF 0.9651 0.01416 2
XGBoost | 0.9583 0.01466 4
KNN 0.9737 0.01119 3
SVC 0.9743 0.01108 4
1.000
04975 —
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< 0875 /
0.850 ——  AVETA{e ACCUracy
0825 Max-min range
1 stdew range
. ! ? ¢ Query vt:ararion ’ " "

Figure 13. Active learning results for the SVC model with the LBP feature
set.

Table 2 shows the results of the active learning algorithm us-
ing different base models with the feature vectors extracted from
the AAPS method. The KNN model gives us the best average
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accuracy and smallest standard deviation at saturation, while the
active learning algorithm with KNN base model will saturate at
iteration 4 with 40% of the entire dataset. Figure 14 shows the ac-
curacy curve of the KNN model for the AAPS feature. It should
be note that the highest achievable accuracy with the AAPS fea-
ture set is 14.1% lower than that obtained with the LBP feature
set.

Table 2: Prediction Results for AAPS Feature Vector

Base Average | Standard Saturated
Model Accuracy | Deviation | Query lteration
RF 0.8208 0.02731 4
XGBoost 0.8221 0.02552 3
KNN 0.8333 0.02432 4
SvC 0.8239 0.02495 3
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Figure 14. Active learning results for the KNN model with the AAPS feature
set.

Conclusion

With the newly implemented prediction model with the ac-
tive learning structure, the same accuracy can be achieved with
a smaller number of training labels. The active learning algo-
rithm prioritizes the data that contributes the most to its learning
progress, reducing the quantity of labeled data required to train
the model, and ultimately decreasing cost.

The customized dataset comprised of eight classes and a to-
tal of 968 sensors demonstrates the effectiveness of the proposed
approach. We are able to reach about 97.43% accuracy with 40%
of the whole dataset as the training dataset.
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