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Abstract McCormick’s relaxation technique is one of the most versatile and com-
monly used methods for computing the convex relaxations necessary for determin-
istic global optimization. The core of the method is a set of rules for propagating
relaxations through basic arithmetic operations. Computationally, each rule oper-
ates on four-tuples describing each input argument in terms of a lower bound value,
an upper bound value, a convex relaxation value, and a concave relaxation value.
We call such tuples McCormick objects. This paper extends McCormick’s rules
to accommodate input objects that are empty (i.e., the convex relaxation value
lies above the concave, or both relaxation values lie outside the bounds). Empty
McCormick objects provide a natural way to represent infeasibility and are read-
ily generated by McCormick-based domain reduction techniques. The standard
McCormick rules are strictly undefined for empty inputs and applying them any-
way can yield relaxations that are non-convex/concave on infeasible parts of their
domains. In contrast, our extended rules always produce relaxations that are well-
defined and convex/concave on their entire domain. This capability has important
applications in reduced-space global optimization, global dynamic optimization,
and domain reduction.
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1 Introduction

In 1976, McCormick proposed methods for propagating pairs of convex and con-
cave relaxations through elementary operations including binary addition, binary
multiplication, and common univariate functions [4]. By applying these rules recur-
sively, convex and concave relaxations can be constructed for any function that can
be built by composition of these elementary operations (i.e., factorable functions).
As a result, McCormick’s technique is one of the most versatile and commonly
used methods for computing the convex relaxations necessary for deterministic
global optimization. It has proven particularly useful for constructing relaxations
of problems where the objective and/or constraints are defined either implicitly
(e.g., by the solutions of systems of di↵erential or algebraic equations [11,12,18,
10], or as the expected value of a random function [14]) or explicitly but in terms
of complex or deeply nested expression trees (e.g., by the output of certain classes
of algorithms [5,21] or neural networks [8]). Consequently, McCormick’s method
has been heavily studied in recent years. Important contributions include the con-
vergence analysis in [1] and the generalizations in [2,7,13,19].

To state the objective of this paper precisely, it is helpful to outline Mc-
Cormick’s procedure in more detail. Let f : D ⇢ Rn ! Rm and x : P ⇢ Rnp ! D
and define the composite function g : P ! Rm by g(p) = f(x(p)), 8p 2 P . Let
X = [xL,xU] ⇢ D be an interval and let xcv,xcc : P ! Rn. Suppose that X satis-
fies x(p) 2 X, 8p 2 P , and x

cv and x
cc are, respectively, convex and concave relax-

ations of x on P (i.e., xcv is convex, xcc is concave, and x
cv(p)  x(p)  x

cc(p),
8p 2 P ). Under these assumptions, McCormick’s relaxation technique provides
a procedure for propagating this data through the operations defining f to com-
pute analogous bounds and relaxations for g. Computationally, this is done point-
wise for each fixed p 2 P , with the data for x and g represented by tuples
X (p) = (xL,xU,xcv(p),xcc(p)) and G(p) = (gL,gU,gcv(p),gcc(p)), referred to
here as McCormick objects.

Naturally, it is always assumed that McCormick objects satisfy x
L  x

U,
x
cv(p)  x

cc(p), and [xL,xU] \ [xcv(p),xcc(p)] 6= ;, for all p 2 P . These condi-
tions are not only sensible, they are critical to the theoretical arguments estab-
lishing the validity of McCormick’s relaxations as well as important properties
such as inclusion monotonicity [9,13]. In contrast, the objective of this paper is
to present an extension of McCormick’s method to handle the case where X (p)
may violate x

cv(p)  x
cc(p) or [xL,xU] \ [xcv(p),xcc(p)] 6= ; for some p. Such

McCormick objects are called empty and are intended to represent the case where
the point p is infeasible in a related optimization problem to be described. Our
goal is to extend McCormick’s rules to this setting in such a way that the output
G(p) satisfies: (i) gcv is well-defined and convex on all of P , (ii) gcc is well-defined
and concave on all of P , and (iii) we have

g
L  g(p)  g

U and g
cv(p)  g(p)  g

cc(p), 8p 2 P ⇤, (1)

where P ⇤ is the feasible set

P ⇤ ⌘ {p 2 P : x(p) 2 X and x
cv(p)  x(p)  x

cc(p)}. (2)

The motivation for this extension is to enable advances in McCormick-based
algorithms for global dynamic optimization [11], reduced-space global optimization
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[18,20], and domain reduction for nonconvex NLPs [22]. All of these methods use
McCormick relaxations to construct convex enclosures of feasible sets in a similar
way, and while e↵ective methods for tightening these enclosures exist, they can lead
to empty McCormick objects that are problematic for subsequent calculations.

To be more specific, in these methods the decision variables are partitioned
into two vectors, (p,x), and some or all of the constraints are used to define x

as a function of p, x(p). In dynamic optimization, x contains the state variables
at some time, p contains the remaining decisions, and x(p) is defined as the
parametric solution of the dynamic system. In reduced-space global optimization,
x and p are dependent and independent variables, respectively, and x(p) is the
(explicit or implicit) solution of a system of equality constraints. Finally, in the
domain-reduction strategy in [22], the partition is arbitrary and x(p) is defined
as the set-valued map taking p into the set of x values that are feasible for p.
Given x(p), each method then constructs convex and concave relaxations of x to
obtain an enclosure of the feasible set of the form {(p,x) 2 P ⇥ X : xcv(p) 
x  x

cc(p)}. Once initial values of x
cv and x

cc have been computed, there is
an opportunity to tighten them based on problem constraints or optimality cuts
using iterative algorithms akin to the interval contractor and Newton methods
commonly used for domain reduction [18,22]. In addition to providing enhanced
domain reduction, these tightened relaxations can also be used as inputs to a
McCormick relaxation of the objective function, leading to a tighter relaxation that
incorporates feasibility information [22]. This type of relaxation refinement has
been shown to lead to significantly faster branch-and-bound convergence for several
standard and reduced-space global optimization problems in [17,22]. Moreover,
although it has not been applied in global dynamic optimization due to technical
di�culties described below, a similar approach has been applied for interval-based
bounding methods for dynamic systems and shown to lead to substantially tighter
enclosures [15,16].

Unfortunately, refining x
cv and x

cc can lead to empty McCormick objects for
some p, indicating that these values are infeasible. This is problematic because any
subsequent computation with the object (xL,xU,xcv(p),xcc(p)), such as relaxing
the objective function, is undefined. With the exception of [22], the refinement pro-
cedures used in previous studies were guaranteed to yield nonempty McCormick
objects due to special properties of the constraints being used [10,18]. In [22],
the occurrence of an empty object (vL, vU, vcv, vcc) was handled by immediately
setting vcv = vcc = NaN, indicating the empty set, with the result that all sub-
sequent computations with this object also returned NaN. While this is workable,
it has some critical drawbacks. First, when these relaxations are used to form
lower bounding problems for branch-and-bound, the objective and/or constraints
may have NaN values at some points in the search space, which is problematic for
numerical solvers. Second, obtaining a NaN value at some p 2 P only indicates
that p is infeasible, but provides no information about how to explicitly reduce
the domain P to exclude p.

Empty objects create even more serious problems in McCormick-based meth-
ods for global dynamic optimization [10,11]. In these methods, xcv and x

cc are
computed as the solutions of a relaxed dynamic system solved using a standard nu-
merical integration code. At each time step, it is necessary to compute relaxations
of the di↵erential equations using the current xcv and x

cc as input. However, due
to technical details of the relaxation theory, these inputs are first modified by as-
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signing either xcv
i  xcc

i or xcc
i  xcv

i for some i. This commonly leads to empty
objects, even when the relaxations are being computed for values of p that are
feasible in the original problem. Returning a NaN value as in [22] would cause the
integration code to terminate, and interpreting this outcome as infeasible would
be erroneous. In the current implementations of these methods, hybrid switching
conditions must be used to prevent the occurrence of empty objects, leading to
higher complexity, higher computational cost, and decreased numerical reliability.
Moreover, there is no known sensitivity theory for the class of hybrid systems used,
making it impossible to compute valid subgradients for optimization. Finally, there
is no clear way to extend the hybrid systems approach to handle the empty objects
that would arise from using constraints to refine x

cv and x
cc in each time step,

as is done to great e↵ect in the interval-based methods in [15,16]. Thus, better
methods for handling empty McCormick objects are critical for advancing global
dynamic optimization algorithms.

In this paper, we extend McCormick’s relaxation method to potentially empty
inputs. When the extended method is used to construct relaxations of the general
composition g(p) = f(x(p)) from relaxations of x(p), it yields functions gcv and
gcc that are convex and concave on the entire p domain, respectively, and which
bound g(p) for all feasible p. This is in contrast to the standard McCormick
rules, which are strictly undefined for infeasible p and can give nonconvex results
if applied despite this. The extended relaxations are also shown to be inclusion
monotonic and agree with the standard relaxations for all nonempty inputs. After
some foundational definitions and results in §2, the extended rules for elementary
operations are presented in §3 and their properties are established. In §4, we show
that these rules can be composed to compute relaxations of any factorable func-
tion with the desired properties. Section 5 presents a simple relaxation refinement
method based on linear constraints to demonstrate how empty objects can be
generated and propagated through subsequent computations, leading to tighter
relaxations. Finally, concluding remarks are given in §6.

2 Extended McCormick Analysis

By analogy to interval arithmetic, McCormick’s relaxation rules can be viewed
as arithmetic operations on McCormick objects. This view has several advantages
and closely resembles the implementation of McCormick relaxations in code. This
section develops the basic definitions required by this view. We largely follow the
development in [9], but with the necessary modifications to accommodate empty
McCormick objects.

Definition 1 For any x
L,xU 2 Rn, let [xL,xU] denote the interval {x 2 Rn :

x
L  x  x

U}. Let IRn denote the space of all nonempty intervals in Rn. Moreover,
for any D ⇢ Rn, define ID ⌘ {X 2 IRn : X ⇢ D}.

Computing a McCormick relaxation of a function f : Rn ! Rm on some
X 2 IRn results in four objects: upper and lower bounds on f(x) for all x 2 X,
denoted by f

L and f
U, and convex and concave relaxations of f on X, denoted by

f
cv(x) and f

cc(x). At any single x 2 X, this data can be compactly represented by
the tuple F(x) = (fL, fU, fcv(x), fcc(x)). This motivates the following definition.
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Definition 2 Define the space of McCormick objects by

MRn ⌘
n
(xL,xU,xcv,xcc) 2 Rn ⇥ Rn ⇥ Rn ⇥ Rn : xL  x

U
o
. (3)

Moreover, for D ⇢ Rn, define MD ⌘
�
(xL,xU,xcv,xcc) 2 MRn : [xL,xU] ⇢ D

 
.

McCormick objects are denoted by script capital letters throughout. Moreover,
for any X 2 MRn, the superscripts L, U, cv, and cc will be used to refer to the
components of X , as in X = (xL,xU,xcv,xcc).

The relaxation data for f described above can now be viewed as a function of
the form F : X ! MRm. More generally, operations on McCormick objects can
be viewed as functions of the form G : D ⇢ MRn ! MRm. We refer to functions
mapping into the space MRm as McCormick functions.

We now define empty McCormick objects, which are central to this paper.

Definition 3 Define the enclosure of a McCormick object X 2 MRn as the set

Encl(X ) ⌘ {x 2 Rn : xL  x  x
U, x

cv  x  x
cc}.

A McCormick object X 2 MRn is said to be empty if Encl(X ) = ; and nonempty
otherwise. Finally, a function F : D ⇢ MRn ! MRm is said to preserve nonempti-
ness on D if F(X ) is nonempty for every nonempty X 2 D.

In [9], the space MRn was defined to include only nonempty objects. Therefore,
none of the methods or results therein apply to empty objects. The extension of
MRn to include empty objects in Definition 2 is therefore a major distinction be-
tween the present work and [9]. The next definition extends the notion of inclusion
(i.e., X1 ⇢ X2) used in [9] to a more general order relation that is well-defined for
empty objects.

Definition 4 Let X1,X2 2 MRn. We say that X1 � X2 if:

1. [xL
1 ,x

U
1 ] ⇢ [xL

2 ,x
U
2 ],

2. x
cv
1 � x

cv
2 ,

3. x
cc
1  x

cc
2 .

Remark 1 It is straightforward to show that � is a partial order on MRn; i.e., it
is reflexive, antisymmetric, and transitive.

Definitions 5–9 introduce several properties of McCormick functions, culminat-
ing in the central notion of a relaxation function. We then show in Theorem 1 that
the cv and cc components of a relaxation function provide convex and concave
relaxations with the desired properties outlined in §1.

Definition 5 For any X ,Y 2 MRn, we say that X and Y are coherent, or X is
coherent to Y, if [xL,xU] = [yL,yU]. A set D ⇢ MRn is closed under coherence if,
for every coherent X ,Y 2 MRn, X 2 D implies that Y 2 D. If D is closed under
coherence, then Q 2 IRn is said to be represented in D if there exists X 2 D with
[xL,xU] = Q. A function F : D ⇢ MRn ! MRm is coherent if D is closed under
coherence and F(X ) is coherent to F(Y) for every coherent X ,Y 2 D.
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Definition 6 A function F : D ⇢ MRn ! MRm is (fully) inclusion monotonic
on D if F(X1) � F(X2) for every X1,X2 2 D satisfying X1 � X2. F is coherently
inclusion monotonic on D if F is coherent and F(X1) � F(X2) for every coherent
X1,X2 2 D satisfying X1 � X2.

Definition 7 For every � 2 [0, 1] and every coherent X1,X2 2 MRn with common
interval part X = [xL,xU], define the convex combination Conv(�,X1,X2) ⌘
(xL,xU,�xcv

1 + (1� �)xcv
2 ,�xcc

1 + (1� �)xcc
2 ) 2 MRn.

Definition 8 F : D ⇢ MRn ! MRm is coherently concave on D if F is coherent
and, for every � 2 [0, 1] and every coherent X ,Y 2 D,

F(Conv(�,X ,Y)) ⌫ Conv(�,F(X ),F(Y)). (4)

Definition 9 Let f : D ⇢ Rn ! Rm. A mapping F : D ⇢ MRn ! MRm

is a relaxation function for f on D if it is coherently concave on D, coherently
inclusion monotonic on D, and every X 2 D \MD satisfies f(x) 2 Encl(F(X )),
8x 2 Encl(X ).

As stated in §1, our aim is to develop a method for computing relaxations of
composite functions of the form g(p) = f(x(p)) that satisfy certain properties
even when the input objects X (p) are empty for some p. Theorem 1 shows that
this problem is solved by computing a relaxation function for f . In fact, Definition
9 has been designed to include precisely the conditions needed for this result.

Theorem 1 Let f : D ⇢ Rn ! Rm and x : P ⇢ Rnp ! D and define the
composite function g : P ! Rm by g(p) = f(x(p)), 8p 2 P . Let F : D ⇢
MRn ! MRm be a relaxation function for f on D. Let X = [xL,xU] 2 ID be
represented in D, let xcv,xcc : P ! Rn be convex and concave on P , respectively,
and define X : P ! MRn by X (p) ⌘ (xL,xU,xcv(p),xcc(p)), 8p 2 P . Finally,
define G : P ! MRm by

G(p) = (gL,gU,gcv(p),gcc(p)) ⌘ F(X (p)), 8p 2 P. (5)

Then, gcv is convex on P , gcc is concave on P , and

g
L  g(p)  g

U and g
cv(p)  g(p)  g

cc(p), 8p 2 P ⇤, (6)

where P ⇤ is the feasible set

P ⇤ ⌘ {p 2 P : x(p) 2 X and x
cv(p)  x(p)  x

cc(p)}. (7)

Proof Choose any p 2 P ⇤. Since F is a relaxation function, D is closed under
coherence. Since [xL,xU] is represented in D, we have X (p) 2 D \MD. By (7),
x(p) 2 Encl(X (p)). Definition 9 then implies that

g(p) = f(x(p)) 2 Encl(F(X (p)) = Encl(G(p)). (8)

Therefore, (6) holds.
Next, choose any p1,p2 2 P and � 2 [0, 1] and define p� ⌘ �p1 + (1 � �)p2.

By the convexity and concavity of xcv and x
cc,

x
cv(p�)  �xcv(p1) + (1� �)xcv(p2), (9)

x
cc(p�) � �xcc(p1) + (1� �)xcc(p2). (10)
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By Definitions 4 and 7, this implies that

Conv(�,X (p1),X (p2)) � X (p�). (11)

The objects Conv(�,X (p1),X (p2)) and X (p�) both have interval part [xL,xU],
so they are coherent and both are in D. Then, since F is coherently inclusion
monotonic on D,

F(Conv(�,X (p1),X (p2))) � F(X (p�)). (12)

Additionally, since F is coherently concave,

F(Conv(�,X (p1),X (p2))) ⌫ Conv(�,F(X (p1)),F(X (p2))). (13)

Combining, this gives

G(p�) = F(X (p�)), (14)

⌫ Conv(�,F(X (p1)),F(X (p2))),

= Conv(�,G(p1),G(p2)).

This implies that

g
cv(p�)  �gcv(p1) + (1� �)gcv(p2), (15)

g
cc(p�) � �gcc(p1) + (1� �)gcc(p2). (16)

Since p1 and p2 were chosen arbitrarily, it follows that g
cv and g

cc are, respec-
tively, convex and concave on P . ut

The following corollary shows that relaxation functions also solve the simpler
problem of relaxing f over an interval X. In this case, there is no place for empty
objects to arise and the result is essentially equivalent to Lemma 2.4.11 in [9].

Corollary 1 Let f : D ⇢ Rn ! Rm and let F : D ⇢ MRn ! MRm be a
relaxation function for f on D. For any X = [xL,xU] 2 ID that is represented in
D, define X (x) ⌘ (xL,xU,x,x), 8x 2 X. Finally, define

(fL, fU, fcv(x), fcc(x)) ⌘ F(X (x)), 8x 2 X. (17)

Then, fcv is convex on X, fcc is concave on X, and

f
L  f(x)  f

U and f
cv(x)  f(x)  f

cc(x), 8x 2 X. (18)

Proof The result follows from applying Theorem 1 with P = X and x
cv(p) =

x
cc(p) = x(p) = p for all p 2 P . ut

Remark 2 Coherent inclusion monotonicity was not required in the original defi-
nition of a relaxation function in [9]. This di↵erence is not directly related to the
need to handle empty objects here. Rather, it is related to our focus on relaxing
composite functions g(p) = f(x(p)) as in Theorem 1, which is more general than
the relaxation considered in Corollary 1 and is the context in which empty ob-
jects arise. Coherent inclusion monotonicity is essential for Theorem 1, which has
no analogue in [9], but can be done without in Corollary 1, which is essentially
Lemma 2.4.11 in [9].
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In light of Theorem 1, the main goal is now to develop a method for computing
relaxation functions as per Definition 9. As with the existing McCormick relax-
ation method, we aim to do this by developing relaxation functions for a library
of elementary operations and then composing them recursively to construct relax-
ation functions for more complex functions. This task is taken up in §3. In the
remainder of this section, it remains to establish that the properties of relaxation
functions are actually preserved under composition. To facilitate this, we first in-
troduce the much simpler concept of a McCormick extension and show that, in the
presence of a few other properties, McCormick extensions are always relaxation
functions. This results in Theorem 2, which is analogous to the central result of in-
terval analysis linking interval extensions to inclusion functions [6]. Subsequently,
we show in Lemma 2 that all of properties required by Theorem 2 are preserved
under compositions.

Definition 10 Let D ⇢ Rn. A set D ⇢ MRn is a McCormick extension of D if
every x 2 D satisfies (x,x,x,x) 2 D. Let f : D ! Rm. A mapping F : D ! MRm

is a McCormick extension of f if D is a McCormick extension of D and

F((x,x,x,x)) = (f(x), f(x), f(x), f(x)), 8x 2 D. (19)

Lemma 1 Let f : D ⇢ Rn ! Rm and let F : D ⇢ MRn ! MRm be a McCormick
extension of f . If F is inclusion monotonic on the set of nonempty inputs {X 2
D \MD : Encl(X ) 6= ;}, then every X 2 D \MD satisfies f(x) 2 Encl(F(X )),
8x 2 Encl(X ). In particular, F preserves nonemptiness on D \MD.

Proof Choose any X 2 D \MD. If Encl(X ) = ;, then the result holds trivially.
Suppose Encl(X ) 6= ; and choose any x 2 Encl(X ). Then, x 2 [xL,xU] ⇢ D
and hence (x,x,x,x) 2 D and F((x,x,x,x)) = (f(x), f(x), f(x), f(x)). There-
fore, f(x) 2 Encl(F((x,x,x,x))). Moreover, since both (x,x,x,x) and X have
nonempty enclosures and (x,x,x,x) � X , inclusion monotonicity implies that
F((x,x,x,x)) � F(X ), and hence Encl(F((x,x,x,x))) ⇢ Encl(F(X )). Therefore,
f(x) 2 Encl(F(X )). ut

Theorem 2 Let f : D ⇢ Rn ! Rm and let F : D ⇢ MRn ! MRm be a Mc-
Cormick extension of f . If F is coherently concave on D\MD, coherently inclusion
monotonic on D\MD, and inclusion monotonic on {X 2 D\MD : Encl(X ) 6= ;},
then F is a relaxation function for f on D \MD.

Proof The result follows immediately from Definition 9 and Lemma 1. ut

The following lemma shows that all of the properties required by Theorem 2,
as well as some others, are preserved when McCormick functions carrying these
properties are composed.

Lemma 2 Let D1 ⇢ MRn and D2 ⇢ MRm be closed under coherence and let
F1 : D1 ! MRm and F2 : D2 ! MRk. Let D12 ⌘ {X 2 D1 : F1(X ) 2 D2} and
consider the composition F2 � F1 : D12 ! MRk.

1. If F1 and F2 are coherent, then F2 � F1 is coherent;
2. If F1 and F2 preserve nonemptiness on D1 and D2, respectively, then F2 �F1

preserves nonemptiness on D12;
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3. If F1 and F2 are coherently concave on D1 and D2, respectively, and F2 is
coherently inclusion monotonic on D2, then F2 � F1 is coherently concave on
D12;

4. If F1 and F2 are coherently inclusion monotonic on D1 and D2, respectively,
then F2 � F1 is coherently inclusion monotonic on D12;

5. If F1 and F2 are inclusion monotonic on {X 2 D1 : Encl(X ) 6= ;} and {X 2
D2 : Encl(X ) 6= ;}, respectively, and F1 preserves nonemptiness on D1, then
F2 � F1 is inclusion monotonic on {X 2 D12 : Encl(X ) 6= ;}.

6. Let f1 : D1 ⇢ Rn ! Rm and f2 : D2 ⇢ Rm ! Rk, define D12 ⌘ {x 2 D1 :
f1(x) 2 D2}, and consider f2 � f1 : D12 ! Rk. If F1 and F2 are McCormick
extensions of f1 and f2, respectively, then F2 � F1 is a McCormick extension
of f2 � f1.

Proof

1. To show that D12 is closed under coherence, choose any X 2 D12 and let
Y 2 MRn be coherent to X . Since X is in D12, it is also in D1, and since D1

is closed under coherence, Y 2 D1. Since F1 is coherent, it follows that F1(X )
and F1(Y) are coherent. But X 2 D12 implies that F1(X ) 2 D2, and since D2

is closed under coherence, this implies that F1(Y) 2 D2. Therefore, Y 2 D12,
and since Y was chosen arbitrarily, D12 is closed under coherence.

To show that F2 � F1 is coherent, choose any coherent X ,Y 2 D12. Since F1

is coherent, it follows that F1(X ) and F1(Y) are coherent. Then, since F2 is
coherent, it follows that F2 �F1(X ) and F2 �F1(Y) are coherent. Since X and
Y were chosen arbitrarily, F2 � F1 is coherent.

2. Choose any nonempty X 2 D12. Since F1 preserves nonemptiness onD1, F1(X )
is a nonempty element of D2, and since F2 preserves nonemptiness on D2,
F2(F1(X )) is nonempty as well.

3. It follows from Part 1 of the proof that F2�F1 is coherent. Choose any coherent
X ,Y 2 D12 and any � 2 [0, 1]. Since F1 is coherently concave on D1,

F1(Conv(�,X ,Y)) ⌫ Conv(�,F1(X ),F1(Y)) (20)

and F1(X ) and F1(Y) are coherent. Since F2 is coherently concave on D2,

F2(Conv(�,F1(X ),F1(Y))) ⌫ Conv(�,F2(F1(X )),F2(F1(Y))). (21)

To combine these, additionally note that F1(Conv(�,X ,Y)) is coherent to
F1(X ). Since F1(X ) 2 D2 and D2 is closed under coherence, it follows that
F1(Conv(�,X ,Y)) 2 D2. Then, since F2 is coherently inclusion monotonic on
D2, combining (20) and (21) yields

F2(F1(Conv(�,X ,Y))) ⌫ Conv(�,F2(F1(X )),F2(F1(Y))), (22)

which shows that F2 � F1 is coherently concave on D12.
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4. It follows from Part 1 of the proof that F2 � F1 is coherent. Choose any co-
herent X ,Y 2 D12 such that X � Y. Coherent inclusion monotonicity of
F1 on D1 gives F1(X ) � F1(Y). Moreover, F1(X ) and F1(Y) are coher-
ent elements of D2, so coherent inclusion monotonicity of F2 on D2 gives
F2(F1(X )) � F2(F1(Y)). Therefore, F2 � F1 is coherently inclusion mono-
tonic on D12.

5. Choose any X ,Y 2 {Z 2 D12 : Encl(Z) 6= ;} such that X � Y. Inclu-
sion monotonicity of F1 on {Z 2 D1 : Encl(Z) 6= ;} gives F1(X ) � F1(Y).
Moreover, since F1 preserves nonemptiness on D1, F1(X ) and F1(Y) are el-
ements of D2 with nonempty enclosures. Thus, inclusion monotonicity of F2

on {Z 2 D2 : Encl(Z) 6= ;} gives F2(F1(X )) � F2(F1(Y)). Thus, F2 � F1 is
inclusion monotonic on {Z 2 D12 : Encl(Z) 6= ;}.

6. First it is shown that x 2 D12 implies (x,x,x,x) 2 D12. For any x 2 D12, x 2
D1 implies that (x,x,x,x) 2 D1 because D1 is a McCormick extension of D1.
Because F1 is a McCormick extension of f1 on D1, we have F1((x,x,x,x)) =
(f1(x), f1(x), f1(x), f1(x)). Since x 2 D12, we have f1(x) 2 D2, which implies
that F1((x,x,x,x)) 2 D2 because D2 is a McCormick extension of D2. By
definition, this implies (x,x,x,x) 2 D12.

To show that F2 � F1 is a McCormick extension of f2 � f1 on D12, choose any
x 2 D12. Since D12 is a McCormick extension of D12, (x,x,x,x) 2 D12. Then,
since F2 is a McCormick extension of f2 on D2, we have

F2(F1((x,x,x,x))) = F2((f1(x), f1(x), f1(x), f1(x))),

= (f2(f1(x)), f2(f1(x)), f2(f1(x)), f2(f1(x))). ut

3 Extended McCormick Rules for Elementary Operations

This section presents extended McCormick rules for propagating potentially empty
McCormick objects through elementary functions. Specifically, we consider binary
addition, binary multiplication, and composition with common univariate func-
tions. In §4, these rules will be combined to construct relaxation functions for
arbitrary factorable functions using Lemma 2 and Theorem 2. In preparation,
several key properties are proven for each elementary function here, including co-
herent concavity, inclusion monotonicity, and the McCormick extension property.

3.1 The Cut Operation

We begin by establishing some properties of the Cut operation, which will be used
in the definition of the extended McCormick rules. In the following definition and
elsewhere, the min and max of vector arguments are taken elementwise.

Definition 11 Let Cut : MRn ! MRn be defined for every X 2 MRn by

Cut(X ) ⌘ (xL,xU,max(xL,xcv),min(xU,xcc)). (23)
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Lemma 3 For any coherent X1,X2 2 MRn with common interval part X =
[xL,xU] and any � 2 [0, 1],

max(xL,�xcv
1 + (1� �)xcv

2 )  �max(xL,xcv
1 ) + (1� �)max(xL,xcv

2 ), (24)

min(xU,�xcc
1 + (1� �)xcc

2 ) � �min(xU,xcc
1 ) + (1� �)min(xU,xcc

2 ). (25)

Proof The proof follows directly from convexity of max(xL, ·) and concavity of
min(xU, ·) on R. ut

Corollary 2 Cut : MRn ! MRn is coherently concave on MRn.

Proof By Definition 11, Cut is clearly coherent. Choose any � 2 [0, 1] and any
coherent X1,X2 2 MRn. It su�ces to show that

Cut(Conv(�,X1,X2)) ⌫ Conv(�,Cut(X1),Cut(X2)). (26)

This is an immediate consequence of (24) and (25). ut

Theorem 3 Cut : MRn ! MRn is inclusion monotonic on MRn.

Proof Choose X1,X2 2 MRn such that X1 � X2. We must prove that Cut(X1) �
Cut(X2). By Definition 11, it su�ces to show that max(xL

1 ,x
cv
1 ) � max(xL

2 ,x
cv
2 )

and min(xU
1 ,x

cc
1 )  min(xU

2 ,x
cc
2 ). Since X1 � X2, we have x

cv
1 � x

cv
2 and x

L
1 � x

L
2 .

Since max(a, b)  max(a0, b0) if a  a0 and b  b0, this implies that max(xL
1 ,x

cv
1 ) �

max(xL
2 ,x

cv
2 ). Analogous arguments show that min(xU

1 ,x
cc
1 )  min(xU

2 ,x
cc
2 ). ut

Corollary 3 Cut : MRn ! MRn is coherently inclusion monotonic on MRn.

Proof Since Cut : MRnx ! MRnx is fully inclusion monotonic by Theorem 3, it
only remains to argue that it is coherent, which follows from (23). ut

Theorem 4 Cut : MRn ! MRn preserves nonemptiness on MRn.

Proof The proof follows immediately from Definitions 3 and 11. ut

3.2 Binary Addition

We now introduce the extended McCormick rule for binary addition. In the re-
mainder of the paper, we will refer to binary addition and a few other functions
using the triplet notation (+,R2,R) that explicitly specifies the domain R2 and
codomain R. This allows us to reuse the same symbol to denote the McCormick
version as well without ambiguity, as in (+,MR2,MR).

Definition 12 Define (+,MR2,MR) by

+(X ,Y) = X + Y ⌘ (xL + yL, xU + yU, x̄cv + ȳcv, x̄cc + ȳcc), (27)

where (xL, xU, x̄cv, x̄cc) = Cut(X ) and (yL, yU, ȳcv, ȳcc) = Cut(Y).

Aside from the use of Cut, which originates in [9], Definition 12 is the same
as McCormick’s original rule [4]. However, on account of Definition 2, the domain
MR2 includes empty objects here, whereas it included only non-empty objects in
prior work. Therefore, it is still necessary to prove the desired properties of the
rule on this extended domain.
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Theorem 5 (+,MR2,MR) is a McCormick extension of (+,R2,R) on MR2.

Proof For any (x, y) 2 R2, the object ((x, y), (x, y), (x, y), (x, y)) must be in MR2.
Thus, MR2 is a McCormick extension of R2. Choose any (X ,Y) 2 MR2 such that
X = (x, x, x, x) and Y = (y, y, y, y) and let Z = X + Y. It su�ces the show that
Z = (x+ y, x+ y, x+ y, x+ y), which follows immediately from (27). ut

Theorem 6 (+,MR2,MR) is coherently concave on MR2.

Proof Choose any coherent (X1,Y1), (X2,Y2) 2 MR2 and denote their common in-
terval part by X⇥Y = [xL, xU]⇥[yL, yU] without subscripts. Let Z1 ⌘ X1+Y1 and
Z2 ⌘ X2 + Y2. Furthermore, choose any � 2 [0, 1] and let X� = Conv(�,X1,X2),
Y� = Conv(�,Y1,Y2), and Z� = X� + Y�. We must show that

Z� ⌫ Conv(�,Z1,Z2). (28)

Since (X1,Y1) and (X2,Y2) are coherent, Z1 and Z2 are coherent as well, with
common interval part X + Y . By Definition 7, this implies that the interval part
of Conv(�,Z1,Z2) is also X + Y . Similarly, the convex combinations X� and Y�

have interval parts X and Y , respectively, which implies that the interval part of
Z� = X� + Y� is X + Y as well. Therefore, the left-hand and right-hand sides of
(28) have the same interval parts. Then, to prove (28), it only remains to show
that zcv�  �zcv1 +(1��)zcv2 and zcc� � �zcc1 +(1��)zcc2 . Using Lemma 3, we have

zcv� = max(xL, xcv
� ) + max(yL, ycv� ),

= max(xL,�xcv
1 + (1� �)xcv

2 ) + max(yL,�ycv1 + (1� �)ycv2 ),

 �max(xL, xcv
1 ) + (1� �)max(xL, xcv

2 )

+ �max(yL, ycv1 ) + (1� �)max(yL, ycv2 ),

= �(max(xL, xcv
1 ) + max(yL, ycv1 ))

+ (1� �)(max(xL, xcv
2 ) + max(yL, ycv2 )),

= �zcv1 + (1� �)zcv2 .

This proves that zcv�  �zcv1 +(1��)zcv2 , and zcc� � �zcc1 +(1��)zcc2 can be proven
analogously. ut

Theorem 7 (+,MR2,MR) is inclusion monotonic on MR2.

Proof Choose any (X1,Y1), (X2,Y2) 2 MR2 with (X1,Y1) � (X2,Y2). By Defini-
tion 4, it follows that X1 � X2 and Y1 � Y2. Let Z1 = X1+Y1 and Z2 = X2+Y2.
We must prove that Z1 � Z2. Since the interval parts of Z1 and Z2 are computed
using standard interval arithmetic, [zL1 , z

U
1 ] ⇢ [zL2 , z

U
2 ] by Theorem 2.3.7 in [9]. It

remains to prove that zcv1 � zcv2 and zcc1  zcc2 . Since max(a, b)  max(a0, b0) if
a  a0 and b  b0, the relations X1 � X2 and Y1 � Y2 imply that

zcv1 = max(xL
1 , x

cv
1 ) + max(yL1 , y

cv
1 ),

� max(xL
2 , x

cv
2 ) + max(yL2 , y

cv
2 ),

= zcv2 .

This proves that zcv1 � zcv2 , and zcc1  zcc2 can be proven analogously. ut
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Corollary 4 (+,MR2,MR) is coherently inclusion monotonic on MR2.

Proof Since (+,MR2,MR) is fully inclusion monotonic by Theorem 7, it only re-
mains to argue that it is coherent, which follows immediately from (27). ut

Theorem 8 (+,MR2,MR) preserves nonemptiness on MR2.

Proof The result follows from Lemma 1 with Theorems 5 and 7. ut

Theorem 9 (+,MR2,MR) is a relaxation function for (+,R2,R).

Proof The result follows from Theorem 2 with Corollary 4 and Theorems 5–7. ut

3.3 Binary Multiplication

The conventional McCormick multiplication rule is often written in two di↵erent
ways. These two forms are equivalent for nonempty objects. However, we show be-
low that they are not equivalent for empty objects, and only one of them retains the
desired properties. Therefore, our extended McCormick rule for binary multiplica-
tion is a particular form of the conventional rule. The two forms are defined below
as (⇥,MR2,MR) and (⇥̂,MR2,MR). Subsequently, we show that (⇥,MR2,MR)
satisfies all of the required properties on the extended domain MR2.

Definition 13 Define  cv, cc,  ̂cv,  ̂cc : R⇥MR! R by

 cv(↵,X ) ⌘
⇢
↵xcv if ↵ � 0
↵xcc otherwise

,  cc(↵,X ) ⌘
⇢
↵xcc if ↵ � 0
↵xcv otherwise

, (29)

 ̂cv(↵,X ) ⌘ min(↵xcv,↵xcc),  ̂cc(↵,X ) ⌘ max(↵xcv,↵xcc). (30)

Definition 14 Define (⇥,MR2,MR) by

⇥(X ,Y) = XY ⌘ (zL, zU, zcv, zcc), (31)

where, zL, zU, zcv, and zcc are defined as follows with X̄ = Cut(X ) and Ȳ =
Cut(Y):

zL = min(xLyL, xLyU, xUyL, xUyU), (32)

zU = max(xLyL, xLyU, xUyL, xUyU), (33)

zcv = max( cv(yL, X̄ ) +  cv(xL, Ȳ)� xLyL, (34)

 cv(yU, X̄ ) +  cv(xU, Ȳ)� xUyU),

zcc = min( cc(yL, X̄ ) +  cc(xU, Ȳ)� xUyL, (35)

 cc(yU, X̄ ) +  cc(xL, Ȳ)� xLyU).

Definition 15 Define (⇥̂,MR2,MR) by

⇥̂(X ,Y) ⌘ (zL, zU, ẑcv, ẑcc), (36)

where zL and zU are defined by (32)–(33) and ẑcv and ẑcc are defined as in (34)–
(35) but with  cv and  cc replaced by  ̂cv and  ̂cc, respectively.



14 Jason Ye, Joseph K. Scott

For any nonempty X 2 MR, we have xcv  xcc, and it follows that  cv(↵,X ) =
 ̂cv(↵,X ) and  cc(↵,X ) =  ̂cc(↵,X ), 8↵ 2 R. Thus, ⇥(X ,Y) = ⇥̂(X ,Y) for all
nonempty X ,Y 2 MR. Accordingly, prior literature uses Definitions 14 and 15
interchangeably, although Definition 15 is more common and is used in [9]. In con-
trast, if either X or Y is empty, then ⇥(X ,Y) may not equal ⇥̂(X ,Y) (specifically,
when xcv > xcc or ycv > ycc). The results below show that ⇥(X ,Y) still satisfies
the appropriate properties in this case, while §3.3.1 shows by counterexample that
⇥̂(X ,Y) does not.

Theorem 10 (⇥,MR2,MR) is a McCormick extension of (⇥,R2,R) on MR2.

Proof For any (x, y) 2 R2, the object ((x, y), (x, y), (x, y), (x, y)) must be in MR2.
Thus, MR2 is a McCormick extension of R2. Choose any (X ,Y) 2 MR2 such
that X = (x, x, x, x) and Y = (y, y, y, y), and let Z = XY. It will be shown that
Z = (xy, xy, xy, xy). Equations (32)–(33) clearly give zL = zU = xy, so it remains
to prove that zcv = zcc = xy. The definition of Cut gives X̄ = Cut(X ) = (x, x, x, x)
and Ȳ = Cut(Y) = (y, y, y, y). Substituting these into (34) gives

zcv = max( cv(yL, X̄ ) +  cv(xL, Ȳ)� xLyL, cv(yU, X̄ ) +  cv(xU, Ȳ)� xUyU),

= max(yx+ xy � xy, yx+ xy � xy),

= xy.

This proves that zcv = xy, and zcc = xy can be proven analogously. ut

Lemma 4 will assist in proving the coherent concavity of (⇥,MR2,MR).

Lemma 4 Choose any coherent X1,X2 2 MR and let X = [xL, xU] without sub-
scripts denote their common interval part. Choose any � 2 [0, 1] and let X� =
Conv(�,X1,X2). Let X̄1 = Cut(X1), X̄2 = Cut(X2), and X̄� = Cut(X�). For any
↵ 2 R, we must have

 cv(↵, X̄�)  � cv(↵, X̄1) + (1� �) cv(↵, X̄2), (37)

 cc(↵, X̄�) � � cc(↵, X̄1) + (1� �) cc(↵, X̄2). (38)

Proof If ↵ � 0, then

 cv(↵, X̄�) = ↵max(xL,�xcv
1 + (1� �)xcv

2 ). (39)

Since ↵ � 0, ↵max(xL, ·) is convex on R, and hence

 cv(↵, X̄�)  �[↵max(xL, xcv
1 )] + (1� �)[↵max(xL, xcv

2 )], (40)

= � cv(↵, X̄1) + (1� �) cv(↵, X̄2).

Similarly, if ↵ < 0, then

 cv(↵, X̄�) = ↵min(xU,�xcc
1 + (1� �)xcc

2 ). (41)

Since ↵ < 0, ↵min(xU, ·) is convex on R, and hence

 cv(↵, X̄�)  �[↵min(xU, xcc
1 )] + (1� �)[↵min(xU, xcc

2 )], (42)

= � cv(↵, X̄1) + (1� �) cv(↵, X̄2).

This proves (37), and (38) can be proven analogously. ut
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Theorem 11 (⇥,MR2,MR) is coherently concave on MR2.

Proof Choose any coherent (X1,Y1), (X2,Y2) 2 MR2 and let X ⇥ Y = [xL, xU]⇥
[yL, yU] without subscripts denote their common interval part. Let Z1 ⌘ X1Y1

and Z2 ⌘ X2Y2. Furthermore, choose any � 2 [0, 1] and let X� = Conv(�,X1,X2),
Y� = Conv(�,Y1,Y2), and Z� = X�Y�. We must show that

Z� ⌫ Conv(�,Z1,Z2). (43)

Since (X1,Y1) and (X2,Y2) are coherent, Z1 and Z2 are coherent as well with
common interval part XY . By Definition 7, this implies that the interval part
of Conv(�,Z1,Z2) is also XY . Similarly, the convex combinations X� and Y�

have interval parts X and Y , respectively, which implies that the interval part of
Z� = X�Y� is XY as well. Therefore, the left-hand and right-hand sides of (43)
have the same interval parts. Then, to prove (43), it only remains to show that
zcv�  �zcv1 + (1� �)zcv2 and zcc� � �zcc1 + (1� �)zcc2 .

Letting X̄ = Cut(X ) for all X 2 MR, by Definition 14, we have

zcv� = max( cv(yL, X̄�) +  cv(xL, Ȳ�)� xLyL, (44)

 cv(yU, X̄�) +  cv(xU, Ȳ�)� xUyU).

Considering the first term in the max in (44) and applying Lemma 4 to  cv(yL, X̄�)
and  cv(xL, Ȳ�),

 cv(yL, X̄�) +  cv(xL, Ȳ�)� xLyL  �
h
 cv(yL, X̄1) +  cv(xL, Ȳ1)� xLyL

i
(45)

+(1� �)
h
 cv(yL, X̄2) +  cv(xL, Ȳ2)� xLyL

i
.

Similarly for the second term in (44), applying Lemma 4 to  cv(yU, X̄�) and
 cv(xU, Ȳ�) gives

 cv(yU, X̄�) +  cv(xU, Ȳ�)� xUyU

�
h
 cv(yU, X̄1) +  cv(xU, Ȳ1)� xUyU

i

+ (1� �)
h
 cv(yU, X̄2) +  cv(xU, Ȳ2)� xUyU

i
. (46)

Since max(a, b)  max(a0, b0) if a  a0 and b  b0, it follows that

zcv�  max(�
h
 cv(yL, X̄1) +  cv(xL, Ȳ1)� xLyL

i

+ (1� �)
h
 cv(yL, X̄2) +  cv(xL, Ȳ2)� xLyL

i
,

�
h
 cv(yU, X̄1) +  cv(xU, Ȳ1)� xUyU

i

+ (1� �)
h
 cv(yU, X̄2) +  cv(xU, Ȳ2)� xUyU

i
).
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Since max is convex on R2, it follows that

zcv� �max( cv(yL, X̄1) +  cv(xL, Ȳ1)� xLyL,

 cv(yU, X̄1) +  cv(xU, Ȳ1)� xUyU)

+ (1� �)max( cv(yL, X̄2) +  cv(xL, Ȳ2)� xLyL,

 cv(yU, X̄2) +  cv(xU, Ȳ2)� xUyU).

By Definition 14, the previous inequality is exactly zcv�  �zcv1 + (1 � �)zcv2 .
An analogous proof can be given for zcc� � �zcc1 + (1� �)zcc2 . ut

Theorem 12 (⇥,MR2,MR) is inclusion monotonic on the set {(X ,Y) 2 MR2 :
Encl(X ) 6= ;,Encl(Y) 6= ;}.

Proof Choose any nonempty (X1,Y1), (X2,Y2) 2 MR2 with (X1,Y1) � (X2,Y2).
It follows that X1 � X2 and Y1 � Y2. Let Z1 = X1Y1 and Z2 = X2Y2. We must
prove that Z1 � Z2.

Let X̄1 = Cut(X1), X̄2 = Cut(X2), Ȳ1 = Cut(Y1) and Ȳ2 = Cut(Y2). Theo-
rems 3–4 imply X̄1 � X̄2 and Ȳ1 � Ȳ2 and that X̄1, X̄2, Ȳ1 and Ȳ2 are nonempty.

We now prove Z1 � Z2 by applying Theorem 2.4.23 from [9], which establishes
inclusion monotonicity of the alternate multiplication rule (⇥̂,MR2,MR) on the
set of nonempty McCormick objects. A little care is required because [9] uses a
slightly di↵erent definition of inclusion monotonicity.

Let Ẑ1 = ⇥̂(X1,Y1) and Ẑ2 = ⇥̂(X2,Y2). By Definition 3, the fact that
Encl(X1) 6= ; implies that xL

1  xU
1 , xcv

1  xcc
1 and [xL

1 , x
U
1 ] \ [xcv

1 , xcc
1 ] 6= ;.

Moreover, the interval [xL
1 , x

U
1 ]⇥ [xcv

1 , xcc
1 ] is a nonempty subset of R2. The same

is clearly true of Y1, X2, and Y2. Using this subset notation, Theorem 2.4.23 in [9]
establishes that ⇥̂ is inclusion monotonic in the sense that

[xL
1 , x

U
1 ]⇥ [xcv

1 , xcc
1 ] ⇢ [xL

2 , x
U
2 ]⇥ [xcv

2 , xcc
2 ] and (47)

[yL1 , y
U
1 ]⇥ [ycv1 , ycc1 ] ⇢ [yL2 , y

U
2 ]⇥ [ycv2 , ycc2 ]

=) [ẑL1 , ẑ
U
1 ]⇥ [ẑcv1 , ẑcc1 ] ⇢ [ẑL2 , ẑ

U
2 ]⇥ [ẑcv2 , ẑcc2 ]. (48)

To apply this result to (⇥,MR2,MR), we observe that

⇥̂(X ,Y) = ⇥(X ,Y), 8X ,Y 2 MR s.t. Encl(X ) 6= ;,Encl(Y) 6= ;. (49)

Thus, Ẑ1 = Z1 and Ẑ2 = Z2, so (48) gives

[zL1 , z
U
1 ]⇥ [zcv1 , zcc1 ] ⇢ [zL2 , z

U
2 ]⇥ [zcv2 , zcc2 ]. (50)

It follows immediately that Z1 � Z2, as desired. ut

Theorem 13 (⇥,MR2,MR) is coherently inclusion monotonic on MR2.
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Proof Choose any coherent (X1,Y1), (X2,Y2) 2 MR2 with (X1,Y1) � (X2,Y2) and
let X ⇥ Y = [xL, xU] ⇥ [yL, yU] without subscripts denote their common interval
part. It follows that X1 � X2 and Y1 � Y2. Let Z1 = X1Y1 and Z2 = X2Y2. We
must prove that Z1 � Z2. Since the interval parts of Z1 and Z2 depend only on
[xL, xU] and [yL, yU], we must have [zL1 , z

U
1 ] = [zL2 , z

U
2 ]. It remains to prove that

zcv1 � zcv2 and zcc1  zcc2 .

Let X̄1 = Cut(X1), Ȳ1 = Cut(Y1), X̄2 = Cut(X2) and Ȳ2 = Cut(Y2). It will be
shown that

zcv2 = max( cv(yL, X̄2) +  cv(xL, Ȳ2)� xLyL, (51)

 cv(yU, X̄2) +  cv(xU, Ȳ2)� xUyU),

 max( cv(yL, X̄1) +  cv(xL, Ȳ1)� xLyL,

 cv(yU, X̄1) +  cv(xU, Ȳ1)� xUyU) = zcv1 .

Since max(a, b)  max(a0, b0) if a  a0 and b  b0, (51) holds provided that

 cv(yL, X̄2) +  cv(xL, Ȳ2)� xLyL   cv(yL, X̄1) +  cv(xL, Ȳ1)� xLyL, (52)

 cv(yU, X̄2) +  cv(xU, Ȳ2)� xUyU   cv(yU, X̄1) +  cv(xU, Ȳ1)� xUyU. (53)

If yL � 0, then  cv(yL, X̄2) = yLmax(xL, xcv
2 ) and  cv(yL, X̄1) = yLmax(xL, xcv

1 ).
Therefore, X1 � X2 implies that  cv(yL, X̄2)   cv(yL, X̄1). If yL < 0, then
 cv(yL, X̄2) = yLmin(xU, xcc

2 ) and  cv(yL, X̄1) = yLmin(xU, xcc
1 ). Therefore, X1 �

X2 still implies  cv(yL, X̄2)   cv(yL, X̄1). By similar reasoning, it can be verified
that  cv(xL, Ȳ2)   cv(xL, Ȳ1),  

cv(yU, X̄2)   cv(yU, X̄1), and  cv(xU, Ȳ2) 
 cv(xU, Ȳ1). Thus, (52) and (53) hold. This proves that zcv1 � zcv2 , and zcc1  zcc2
can be proven analogously. ut

Theorem 14 (⇥,MR2,MR) preserves nonemptiness on MR2.

Proof The result follows from Lemma 1 with Theorems 10 and 12. ut

Theorem 15 (⇥,MR2,MR) is a relaxation function for (⇥,R2,R).

Proof The result follows from Theorem 2 with Theorems 10–13. ut

3.3.1 A Multiplication Example

Let x : P ! R be an arbitrary function on P = [�2, 2]. We consider computing
relaxations of the composite function

f(p) = �2x(p) (54)

on P given relaxation information for x on P in the form of a McCormick function
X : P ! MR. When computing McCormick relaxations, a scalar multiplication
like this is typically handled as a composition with a univariate function, not as
a binary multiplication. However, it can be viewed as a special case of the binary
multiplication f(p) = y(p)x(p) with y(p) = �2, and this provides a simple example
to illustrate the distinction between ⇥ and ⇥̂. Accordingly, we consider the binary
multiplications F(p) = Y(p) ⇥ X (p) and F̂(p) = Y(p)⇥̂X (p), respectively, with
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Y(p) = (�2,�2,�2,�2) and X (p) = (xL, xU, xcv(p), xcc(p)) defined as in the left
panel of Figure 1. Note that X (p) is nonempty for all p 2 P ⇤ ⌘ [�0.87, 0.87] and
empty otherwise. Even so, xcv and xcc are convex and concave, respectively, on all
of P . As shown in the middle and right panels of Figure 1, the two multiplication
rules agree for all p such that X (p) is nonempty. However, they clearly di↵er
at infeasible p values. While F̂(p) remains nonempty for all p, f̂cv and f̂cc are
clearly not convex and concave. In contrast, F(p) takes empty values for some
p /2 P ⇤ to ensure that fcv and fcc are convex and concave on all of P , which is the
desired behavior. This di↵erence can be traced back to the fact that  cv(↵, X̄ (p)) 6=
 ̂cv(↵, X̄ (p)) and  cc(↵, X̄ (p)) 6=  ̂cc(↵, X̄ (p)) when ↵ = �2 and X is empty.

To reiterate the significance of this di↵erence, suppose that X can be inter-
preted as a relaxation of x in the sense that it satisfies x(p) 2 Encl(X (p)) for
all p in some feasible set of interest, P feas ⇢ P . For example, P feas may be de-
fined as the subset of P for which some constraint g(x(p), p)  0 holds, and X
may be the result of a domain reduction procedure that begins with a nonempty
initial relaxation X0(p) and yields a tighter relaxation X (p) � X0(p) such that
x(p) 2 Encl(X (p)) for all p 2 P feas (a simple example of such a procedure is given
in §5). In such a situation, it follows that P feas ⇢ P ⇤, and the fact that fcv is a
valid underestimator for f on P ⇤ implies that it is also a valid underestimator on
P feas (i.e., where it “matters”). At the same time, fcv is well-defined and convex
on all of P , meaning that it can be easily minimized to obtain a lower bound for
f on P feas. In contrast, the standard McCormick rule (as stated in [9]) yields an
underestimator f̂cv that is valid on all of P , but nonconvex, which is much less
useful. More generally, we will eventually show that F(p) has the right properties
to be propagated through subsequent McCormick operations if needed, while F̂(p)
does not.
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Fig. 1 Left: McCormick object X (p) corresponding to x(p) in (54) defined by its bounds
xL and xU (solid), convex component xcv(p) (filled triangles), and concave component xcc(p)
(open triangles). Middle: McCormick object F̂(p) corresponding to f(p) in (54) defined by its

bounds fL and fU (solid), convex component f̂cv(p) (filled squares), and concave component

f̂cc(p) (open squares). Right: McCormick object F(p) corresponding to f(p) in (54) defined by
its bounds fL and fU (solid), convex component fcv(p) (filled circles), and concave component

fcc(p) (open circles). For all p 2 [�0.87, 0.87], f̂cv(p)/f̂cc(p) are identical to fcv(p)/fcc(p).

3.4 Composition with Univariate Functions

This section presents an extension of McCormick’s rule for relaxing compositions
with univariate functions such as ln(x), exp(x), sin(x), xn, �x, etc. Compared to
binary addition and multiplication, the composition rule requires a much more
significant modification to handle empty inputs. We first state the new rule and
subsequently discuss its relation to the original rule from [4] as presented in [9].

Let L be a library of univariate functions (u,B,R), where B ⇢ R. To propogate
McCormick relaxations through a function from this library, several pieces of infor-
mation about the function must be available. These requirements are very similar
to those of the original rule (see Remark 3) and are formalized in Assumption 1.
Recall that IB denotes the set of all intervals contained in B and MB denotes the
set of all McCormick objects with interval part contained in B.

Assumption 1 For every (u,B,R) 2 L, functions u : IB ! IR, ucv, ucc : IB ⇥
R! R, and xmin, xmax : IB ! R [ {�1,+1} are known such that:

1. (u, IB, IR) is an inclusion monotonic interval extension of (u,B,R) on IB.
2. For every X 2 IB, ucv(X, ·) and ucc(X, ·) are convex and concave on R, re-

spectively, and satisfy ucv(X,x)  u(x)  ucc(X,x) for all x 2 X.
3. For every X 2 IB, xmin(X) is a minimizer of ucv(X, ·) on R and xmax(X) is a

maximizer of ucc(X, ·) on R; i.e., limx!xmin(X)[u
cv(X,x)] = infx2R[u

cv(X,x)]
and limx!xmax(X)[u

cc(X,x)] = supx2R[u
cc(X,x)].

4. For any X1, X2 2 IB with X1 ⇢ X2, we have ucv(X2, x)  ucv(X1, x) and
ucc(X2, x) � ucc(X1, x) for all x 2 X1.
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5. ucv([x, x], x) = ucc([x, x], x) = u(x) for every x 2 B.

Remark 3 Assumption 1 is analogous to Assumptions 2.3.8 and 2.4.25 in [9] but
includes two generalizations. First, ucv(X, ·) and ucc(X, ·) are defined on all of R,
and are convex and concave there, instead of only on X as in [9]. Second, xmin

and xmax minimize ucv(X, ·) and maximize ucc(X, ·), respectively, on R, rather
than on X. These changes are necessary for handling empty McCormick objects
without causing domain violations.

Remark 4 The Supplementary Information for this paper provides all of the in-
formation required by Assumption 1 for a variety of common univariate functions.
For some, the provided definitions of ucv, ucc, xmin, and xmax di↵er from those in
standard libraries due to the di↵erences highlighted in Remark 3.

The extended composition rule is defined as follows.

Definition 16 Let (u,B,R) 2 L. Define (u,MB,MR) by

u(X ) ⌘ (zL, zU, zcv, zcc), (55)

where [zL, zU] = u(X) is the interval extension specified by Assumption 1.1 and

zcv = ucv(X,min(x̄cc, xmin(X))) + ucv(X,max(x̄cv, xmin(X))) (56)

� ucv(X,xmin(X)),

zcc = ucc(X,min(x̄cc, xmax(X))) + ucc(X,max(x̄cv, xmax(X))) (57)

� ucc(X,xmax(X)),

where X̄ = Cut(X ). If xmin(X) = ±1, then (56) is replaced with

zcv =

⇢
ucv(X, x̄cc) if xmin(X) = +1
ucv(X, x̄cv) if xmin(X) = �1 . (58)

Similarly, if xmax(X) = ±1, then (57) is replaced with

zcc =

⇢
ucc(X, x̄cc) if xmax(X) = +1
ucc(X, x̄cv) if xmax(X) = �1 . (59)

Remark 5 All of the cases (56)–(59) can be represented by the single definitions

zcv = lim
x!xmin(X)

[ucv(X,min(x̄cc, x)) + ucv(X,max(x̄cv, x))� ucv(X,x)], (60)

zcc = lim
x!xmax(X)

[ucc(X,min(x̄cc, x)) + ucc(X,max(x̄cv, x))� ucc(X,x)]. (61)

Since ucv(X, ·) is convex on R, it must be continuous, and therefore (60) is equiv-
alent to (56) whenever xmin(X) is finite. Similarly, (61) is equivalent to (57)
whenever xmax(X) is finite. If xmin(X) = +1, then as x approaches xmin(X),
the terms ucv(X,max(x̄cv, x)) and ucv(X,min(x̄cc, x)) in (60) eventually sim-
plify to ucv(X,x) and ucv(X, x̄cc), respectively. Thus, we have from (60) that
zcv = ucv(X, x̄cc), as in (58). Similarly, if xmin(X) = �1, then analogous ar-
guments show that (60) simplifies to zcv = ucv(X, x̄cv), as in (58). Analogous
arguments also show that (61) simplifies to (59) if xmax(X) = ±1.
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To explain the relationship between the definition of (u,MB,MR) above and
the standard rule in [9], a few preliminary results and definitions are needed.
The next proposition will also be used extensively in proving several properties of
(u,MB,MR).

Proposition 1 Let gcv, gcc : R ! R and xmin, xmax 2 R [ {�1,+1}. Assume
that gcv is convex and gcv(x) approaches the infimum of gcv on R as x approaches
xmin. Then, gcv is non-increasing for all x 2 (�1, xmin) and is non-decreasing for
all x 2 (xmin,+1). Likewise, assume that gcc is concave and gcc(x) approaches
the supremum of gcc on R as x approaches xmax. Then, gcc is non-decreasing for
all x 2 (�1, xmax) and is non-increasing for all x 2 (xmax,+1).

Proof We first prove that gcv is non-decreasing for all x 2 (xmin,+1). If xmin =
+1, then there is nothing to prove. Suppose xmin < +1 and choose any x1, x2 2
(xmin,+1) such that x1  x2. Choose any ✏ > 0. Since gcv(x) approaches the
infimum of g on R as x approaches xmin, there must exist z 2 (xmin, x1] such that
gcv(z)  gcv(x2) + ✏. Since z  x1  x2, there must exist � 2 [0, 1] such that
x1 = �z + (1� �)x2. By the convexity of gcv, this implies that

gcv(x1)  �gcv(z) + (1� �)gcv(x2), (62)

 �(gcv(x2) + ✏) + (1� �)gcv(x2),

 gcv(x2) + ✏.

Since (62) holds for any ✏ > 0, we have gcv(x1)  gcv(x2). Finally, since this
is true for any x1, x2 2 (xmin,+1), we have shown that gcv is non-decreasing
on (xmin,1). The facts that gcv is non-increasing on (�1, xmin), gcc is non-
decreasing on (�1, xmax), and gcc is non-increasing on (xmax,1) can all be proven
analogously. ut

We now define modified versions of xmin and xmax, denoted xmin0
and xmax0

,
that bear the same meaning as xmin and xmax in [9]. This provides a critical link
between the extended and standard composition rules. The necessary interpreta-
tion of xmin0

and xmax0
is then established in Lemma 5 using Proposition 1.

Definition 17 For all (u,B,R) 2 L, define xmin0
, xmax0

: IB ! R by

xmin0
(X) ⌘ mid(xL, xU, xmin(X)), (63)

xmax0
(X) ⌘ mid(xL, xU, xmax(X)), (64)

where mid returns the middle value of its three arguments.

Lemma 5 For any (u,B,R) 2 L and any X 2 IB,

1. ucv(X, ·) reaches its minimum on X at the point xmin0
(X), and

2. ucc(X, ·) reaches its maximum on X at the point xmax0
(X).

Proof Choose any (u,B,R) 2 L and any X 2 IB. To prove the first claim, first
assume that xmin(X) < xL  xU. Since ucv(X,x) approaches its infimum on R as
x approaches xmin(X), Proposition 1 shows that ucv(X, ·) is non-decreasing on X.
Thus, ucv(X, ·) must reach its minimum on X at xL = mid(xL, xU, xmin(X)) =

xmin0
(X). Next, assume that xL  xU < xmin(X). In this case, Proposition 1 shows
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that ucv(X, ·) is non-increasing on X. Therefore, ucv(X, ·) must reach its minimum

on X at xU = mid(xL, xU, xmin(X)) = xmin0
(X). Finally, assume that xL 

xmin(X)  xU. In this case, xmin0
(X) = xmin(X) by definition, and since ucv(X,x)

approaches its infimum on R as x approaches xmin(X), it must also approach its
infimum on X as x approaches xmin(X). This again shows that ucv(X, ·) reaches

its minimum on X at xmin0
(X), and completes the proof of the first claim. The

second claim can be proven analogously. ut

Definition 18 now gives the standard composition rule [4] as presented in [9].

Definition 18 Let (u,B,R) 2 L. Define (û,MB,MR) by

û(X ) ⌘ (zL, zU, ẑcv, ẑcc), (65)

where [zL, zU] = u(X) is the interval extension specified by Assumption 1.1 and

ẑcv = ucv(X,mid(x̄cv, x̄cc, xmin0
(X))), (66)

ẑcc = ucc(X,mid(x̄cv, x̄cc, xmax0
(X))), (67)

where X̄ = Cut(X ).

Remark 6 Definition 18 uses u(X), ucv, ucc, xmin0
(X), and xmax0

(X) from this
paper. For this to be consistent with [9], these quantities need to satisfy Assump-
tions 2.3.8 and 2.4.25 in [9]. The required properties of u(X), ucv, and ucc all
follow from Conditions 1, 2, 4, and 5 of Assumption 1 in this paper, while the
required properties of xmin0

(X) and xmax0
(X) were proven in Lemma 5.

Remark 7 Actually, in both [9] and McCormick’s original paper [4], ẑcv and ẑcc

are given as

ẑcv = ucv(X,mid(xcv, xcc, xmin0
(X))), (68)

ẑcc = ucc(X,mid(xcv, xcc, xmax0
(X))). (69)

However, it is straightforward to show that (68)–(69) are equivalent to (66)–(67)
for all nonempty X 2 MB. We prefer (66)–(67) because they are easier to relate
to Definition 16.

Lemma 6 establishes the connection between the extended and standard com-
position rules by showing that they agree for all nonempty inputs. The proof also
sheds some light on the relationship between (56)–(57) and (66)–(67).

Lemma 6 Let (u,B,R) 2 L and choose any X 2 MB. If Encl(X ) 6= ;, then

u(X ) = û(X ). (70)

Proof Choose any X 2 MB such that Encl(X ) 6= ; and let X̄ = Cut(X ) and
Z = u(X ). By Definition 16 and Remark 5,

zcv = lim
x!xmin(X)

[ucv(X,min(x̄cc, x)) + ucv(X,max(x̄cv, x))� ucv(X,x)], (71)

zcc = lim
x!xmax(X)

[ucc(X,min(x̄cc, x)) + ucc(X,max(x̄cv, x))� ucc(X,x)]. (72)

First, assume that xmin(X) 2 X. Since Encl(X ) 6= ;, we have x̄cv  x̄cc. Thus,
one of the following sub-cases must occur:
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1. xmin(X) < x̄cv  x̄cc,
2. x̄cv  x̄cc < xmin(X),
3. x̄cv  xmin(X)  x̄cc.

In the first sub-case, (71) gives

zcv = lim
x!xmin(X)

[ucv(X,min(x̄cc, x)) + ucv(X,max(x̄cv, x))� ucv(X,x)], (73)

= lim
x!xmin(X)

[ucv(X,x) + ucv(X, x̄cv)� ucv(X,x)], (74)

= ucv(X, x̄cv). (75)

Since xmin(X) 2 X, Definition 17 implies that xmin0
(X) = xmin(X). Therefore,

x̄cv = mid(x̄cv, x̄cc, xmin0
(X)). Plugging this into (75) gives (66) as claimed.

In the second sub-case, (71) gives

zcv = lim
x!xmin(X)

[ucv(X,min(x̄cc, x)) + ucv(X,max(x̄cv, x))� ucv(X,x)], (76)

= lim
x!xmin(X)

[ucv(X, x̄cc) + ucv(X,x)� ucv(X,x)], (77)

= ucv(X, x̄cc). (78)

Since xmin(X) 2 X, we have x̄cc = mid(x̄cv, x̄cc, xmin0
(X)). Plugging this into (78)

gives (66) as claimed.
In the third sub-case, (71) gives

zcv = lim
x!xmin(X)

[ucv(X,min(x̄cc, x)) + ucv(X,max(x̄cv, x))� ucv(X,x)], (79)

= lim
x!xmin(X)

[ucv(X,x) + ucv(X,x)� ucv(X,x)], (80)

= ucv(X,xmin(X)). (81)

Since xmin(X) 2 X, we have xmin(X) = mid(x̄cv, x̄cc, xmin0
(X)). Plugging this

into (81) gives (66) as claimed.
Next, assume that xmin(X) 62 X. One of the following sub-cases must occur:

1. xmin(X) < xL  xU,
2. xL  xU < xmin(X).

Since Encl(X ) 6= ;, the definition of Cut (Definition 11) implies xL  x̄cv  x̄cc 
xU. Thus, in the first sub-case, we have xmin(X) < x̄cv  x̄cc. We have already
shown in (73)–(75) that (71) gives zcv = ucv(X, x̄cv) if xmin(X) < x̄cv  x̄cc. Since
xL  x̄cv  x̄cc  xU, we have zcv = ucv(X,mid(x̄cv, x̄cc, xL)). Moreover, Defi-

nition 17 implies that xmin0
(X) = mid(xL, xU, xmin(X)) = xL. Hence, it follows

that zcv = ucv(X,mid(x̄cv, x̄cc, xmin0
(X))), which gives (66) as claimed.

In the second sub-case, it follows from Encl(X ) 6= ; and from the definition
of Cut (Definition 11) that we must have x̄cv  x̄cc < xmin(X). We have already
shown in (76)–(78) that (71) gives zcv = ucv(X, x̄cc) if x̄cv  x̄cc < xmin(X). Since
xL  x̄cv  x̄cc  xU, we have zcv = ucv(X,mid(x̄cv, x̄cc, xU)). Moreover, Defi-

nition 17 implies that xmin0
(X) = mid(xL, xU, xmin(X)) = xU. Hence, it follows

that zcv = ucv(X,mid(x̄cv, x̄cc, xmin0
(X))), which again gives (66) as claimed.

Since X was chosen arbitrarily, we have shown that (71) and (66) are equivalent
for all X 2 MB satisfying Encl(X ) 6= ;. The equivalence of (72) and (67) under
this condition can be proven analogously. This proves that u(X ) = û(X ). ut
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Remark 8 The equivalence (70) is only guaranteed when both the standard and
extended rules use the same ucv and ucc. The properties of ucv and ucc required
by Assumption 1 here are stronger than in [9] (see Remark 3). Thus, any ucv and
ucc used in the extended rule can always be used in the standard rule and will
satisfy (70). However, some choices of ucv and ucc commonly used in the standard
rule cannot be used in the extended rule, and modifying these as needed may lead
to violations of (70) in practice.

The last result shows that u(X ) = û(X ) whenever X is nonempty. In contrast,
if X is empty, then u(X ) 6= û(X ). The results below show that u(X ) still satisfies
the appropriate properties in this case. §3.4.1 shows by counterexample that û(X )
does not.

Theorem 16 For every (u,B,R) 2 L, (u,MB,MR) is a McCormick extension of
(u,B,R) on MB.

Proof Choose any (u,B,R) 2 L. By the definition of MB, for any x 2 B, we
must have (x, x, x, x) 2 MB. Hence, MB is a McCormick extension of B. Now,
choose any X 2 MB with X = (x, x, x, x). Moreover, let Z = u(X ). It will be
shown that Z = (u(x), u(x), u(x), u(x)). By Condition 1 of Assumption 1, we have
zL = zU = u(x). Thus, it remains to prove that zcv = zcc = u(x).

By the definition of Cut (Definition 11), X̄ = Cut(X ) = (x, x, x, x). Therefore,
(60) yields

zcv = lim
t!xmin(X)

[ucv(X,min(x, t)) + ucv(X,max(x, t))� ucv(X, t)]. (82)

If xmin(X)  x, then

zcv = lim
t!xmin(X)

[ucv(X, t) + ucv(X,x)� ucv(X, t)], (83)

= ucv(X,x).

Alternatively, if xmin(X) > x, then

zcv = lim
t!xmin(X)

[ucv(X,x) + ucv(X, t)� ucv(X, t)], (84)

= ucv(X,x).

Therefore, in either case, we have zcv = ucv(X,x). But since X = [x, x], Condition
5 of Assumption 1 ensures that zcv = ucv(X,x) = u(x). It can be shown in a similar
way that zcc = u(x). Therefore, zcv = zcc = u(x) as desired. ut

Theorem 17 For all (u,B,R) 2 L, (u,MB,MR) is coherently concave on MB.

Proof Choose any (u,B,R) 2 L. By definition, MB is closed under coherence.
Choose any coherent X1,X2 2 MB and let X = [xL, xU] without subscripts denote
their common interval part. Let Z1 = u(X1) and Z2 = u(X2). Furthermore, choose
any � 2 [0, 1] and let X� = Conv(�,X1,X2) and Z� = u(X�). We must show that

Z� ⌫ Conv(�,Z1,Z2). (85)

Since X1 and X2 are coherent, Z1 and Z2 are coherent as well with common interval
part u(X). By Definition 7, this implies that the interval part of Conv(�,Z1,Z2)
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is also u(X). Similarly, the convex combination X� has interval part X, which
implies that the interval part of Z� = u(X�) is u(X) as well. Therefore, the left-
hand and right-hand sides of (85) have the same interval parts. Then, to prove
(85), it su�ces to show that zcv�  �zcv1 + (1� �)zcv2 and zcc� � �zcc1 + (1� �)zcc2 .
Only the first inequality will be shown. The second is proven analogously.

Suppose first that xmin(X) is finite. By Definition 16, in this case zcv1 , zcv2 , and
zcv� are all given by (56). In particular,

zcv� = ucv(X,max(x̄cv
� , xmin(X))) + ucv(X,min(x̄cc

� , xmin(X))) (86)

� ucv(X,xmin(X)),

where X̄� = Cut(X�). Using the definition of x̄cv
� and the convexity of max(·, ·)

with respect to both arguments,

max(x̄cv
� , xmin(X)) = max(max(xL,�xcv

1 + (1� �)xcv
2 ), xmin(X)), (87)

 max(�max(xL, xcv
1 ) + (1� �)max(xL, xcv

2 ), xmin(X)),

= max(�x̄cv
1 + (1� �)x̄cv

2 , xmin(X)),

 �max(x̄cv
1 , xmin(X)) + (1� �)max(x̄cv

2 , xmin(X)).

Since max(x̄cv
� , xmin(X)) is to the right of xmin(X) and ucv(X, ·) is non-decreasing

to the right of xmin(X) by Proposition 1, Eq. (87) implies that

ucv(X,max(x̄cv
� , xmin(X))) (88)

ucv(X,�max(x̄cv
1 , xmin(X)) + (1� �)max(x̄cv

2 , xmin(X))).

By the convexity of ucv(X, ·) on R, (88) further implies that

ucv(X,max(x̄cv
� , xmin(X)))  �

h
ucv(X,max(x̄cv

1 , xmin(X)))
i

(89)

+ (1� �)
h
ucv(X,max(x̄cv

2 , xmin(X)))
i
.

By an analogous sequence of arguments using the facts that min(·, ·) is concave
with respect to both arguments, min(x̄cc

� , xmin(X)) is to the left of xmin(X),
ucv(X, ·) is non-increasing to the left of xmin(X), and ucv(X, ·) is convex on R, we
can establish that

ucv(X,min(x̄cc
� , xmin(X)))  �

h
ucv(X,min(x̄cc

1 , xmin(X)))
i

(90)

+ (1� �)
h
ucv(X,min(x̄cc

2 , xmin(X)))
i
.

Combining (86), (89), and (90), we have

zcv� = ucv(X,max(x̄cv
� , xmin(X))) (91)

+ ucv(X,min(x̄cc
� , xmin(X)))� ucv(X,xmin(X)),

 �[ucv(X,max(x̄cv
1 , xmin(X)))

+ ucv(X,min(x̄cc
1 , xmin(X)))� ucv(X,xmin(X))]

+ (1� �)[ucv(X,max(x̄cv
2 , xmin(X)))

+ ucv(X,min(x̄cc
2 , xmin(X)))� ucv(X,xmin(X))],

 �zcv1 + (1� �)zcv2 ,
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as desired.
Suppose now that xmin(X) = +1. By Definition 16, in this case zcv1 , zcv2 , and

zcv� are all given by (58). Thus, beginning from (58) we have,

zcv� = ucv(X, x̄cc
� ), (92)

= ucv(X,min(xU, xcc
� )),

= ucv(X,min(xU,�xcc
1 + (1� �)xcc

2 )).

Since xmin(X) = +1, ucv(X, ·) is non-increasing on all of R. Using this along
with the facts that min(xU, ·) is concave on R and ucv(X, ·) is convex on R, (92)
implies that

zcv�  ucv(X,�min(xU, xcc
1 ) + (1� �)min(xU, xcc

2 )), (93)

 �ucv(X,min(xU, xcc
1 )) + (1� �)ucv(X,min(xU, xcc

2 )),

= �ucv(X, x̄cc
1 ) + (1� �)ucv(X, x̄cc

2 ),

= �zcv1 + (1� �)zcv2 .

This proves zcv�  �zcv1 + (1� �)zcv2 for the case where xmin(X) = +1. The case
where xmin(X) = �1 can be proven analogously. ut

Theorem 18 For all (u,B,R) 2 L, (u,MB,MR) is inclusion monotonic on {X 2
MB : Encl(X ) 6= ;}.

Proof Choose any (u,B,R) 2 L and any nonempty X1,X2 2 MB with X1 � X2.
Let Z1 = u(X1) and Z2 = u(X2). We must prove that Z1 � Z2.

We prove Z1 � Z2 by applying Theorem 2.4.29 from [9], which establishes the
inclusion monotonicity of (û,MB,MR), but using slightly di↵erent definitions of
MB and inclusion monotonicity than are used here. Let Ẑ1 = û(X1) and Ẑ2 =
û(X2). By Definition 3, the fact that Encl(X1) 6= ; implies that xL

1  xU
1 , x

cv
1 

xcc
1 , and [xL

1 , x
U
1 ] \ [xcv

1 , xcc
1 ] 6= ;. Moreover, the interval [xL

1 , x
U
1 ] ⇥ [xcv

1 , xcc
1 ] is

a nonempty subset of B ⇥ R. The same is clearly true of X2. Using this subset
interpretation, Theorem 2.4.29 in [9] establishes that û is inclusion monotonic in
the sense that

[xL
1 , x

U
1 ]⇥ [xcv

1 , xcc
1 ] ⇢ [xL

2 , x
U
2 ]⇥ [xcv

2 , xcc
2 ] (94)

=) [ẑL1 , ẑ
U
1 ]⇥ [ẑcv1 , ẑcc1 ] ⇢ [ẑL2 , ẑ

U
2 ]⇥ [ẑcv2 , ẑcc2 ]. (95)

Since (94) follows from the fact that X1 � X2, (95) holds. To apply this result to
(u,MB,MR), we use Lemma 6, which shows that

û(X ) = u(X ), 8X 2 MB s.t. Encl(X ) 6= ;. (96)

Applying this relation to X1 and X2 shows that Ẑ1 = Z1 and Ẑ2 = Z2. Substitut-
ing these relations into (95) gives

[zL1 , z
U
1 ]⇥ [zcv1 , zcc1 ] ⇢ [zL2 , z

U
2 ]⇥ [zcv2 , zcc2 ]. (97)

From this, it follows immediately that Z1 � Z2, as desired. ut
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Theorem 19 For all (u,B,R) 2 L, (u,MB,MR) is coherently inclusion mono-
tonic on MB.

Proof Choose any (u,B,R) 2 L and any coherent X1,X2 2 MB with X1 � X2

and let X = [xL, xU] without subscripts denote their common interval part. Let
Z1 = u(X1) and Z2 = u(X2). We must prove that Z1 � Z2. Since the interval
parts of Z1 and Z2 depend only on [xL, xU], we must have [zL1 , z

U
1 ] = [zL2 , z

U
2 ]. It

remains to prove that zcv1 � zcv2 and zcc1  zcc2 .
If both X1 and X2 are nonempty, then the result follows immediately from

Theorem 18. Thus, we assume that at least one of X1 and X2 is empty. Since
X1 � X2, we cannot have X1 nonempty and X2 empty. Therefore, there are only
two remaining cases: (i) both X1 and X2 are empty, and (ii) X1 is empty and
X2 is nonempty. For these remaining cases, we prove that zcv1 � zcv2 . The proof
that zcc1  zcc2 is analogous. Let X̄1 = Cut(X1) and X̄2 = Cut(X2) and note that
X̄1 � X̄2 by Theorem 3. Recall from Remark 5 that

zcv1 = lim
x!xmin(X)

[ucv(X,min(x̄cc
1 , x)) + ucv(X,max(x̄cv

1 , x))� ucv(X,x)], (98)

zcv2 = lim
x!xmin(X)

[ucv(X,min(x̄cc
2 , x)) + ucv(X,max(x̄cv

2 , x))� ucv(X,x)].

Case (i): Encl(X1) = ;, Encl(X2) = ;.

Since X2 is empty, X̄2 must satisfy x̄cc
2  x̄cv

2 . Since X̄1 � X̄2, we can addition-
ally conclude that x̄cc

1  x̄cc
2  x̄cv

2  x̄cv
1 . Thus, we consider five subcases based

on where the value of xmin(X) falls within this chain of inequalities.

Case (i)(a): xmin(X)  x̄cc
1  x̄cc

2  x̄cv
2  x̄cv

1 . By (98), zcv2 simplifies to
ucv(X, x̄cv

2 ) and zcv1 simplifies to ucv(X, x̄cv
1 ). Since ucv(X, ·) is convex, it is non-

decreasing to the right of xmin(X) by Proposition 1. Since xmin(X)  x̄cv
2  x̄cv

1 ,
it follows that zcv1 = ucv(X, x̄cv

1 ) � ucv(X, x̄cv
2 ) = zcv2 , as desired.

Case (i)(b): x̄cc
1  xmin(X)  x̄cc

2  x̄cv
2  x̄cv

1 . By (98), zcv2 simplifies to
ucv(X,xmin(X))+ucv(X, x̄cv

2 )�ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc
1 )+

ucv(X, x̄cv
1 )�ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2

as desired if ucv(X, x̄cc
1 ) � ucv(X,xmin(X)) and ucv(X, x̄cv

1 ) � ucv(X, x̄cv
2 ). The

former follows from the definition of xmin(X), while the latter follows from the
fact that ucv(X, ·) is non-decreasing to the right of xmin(X) (Proposition 1) and
xmin(X)  x̄cv

2  x̄cv
1 .

Case (i)(c): x̄cc
1  x̄cc

2  xmin(X)  x̄cv
2  x̄cv

1 . By (98), zcv2 simplifies to
ucv(X, x̄cc

2 ) + ucv(X, x̄cv
2 ) � ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc

1 ) +
ucv(X, x̄cv

1 )�ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2
as desired if ucv(X, x̄cc

1 ) � ucv(X, x̄cc
2 ) and ucv(X, x̄cv

1 ) � ucv(X, x̄cv
2 ). The former

holds because ucv(X, ·) is non-increasing to the left of xmin(X) (Proposition 1) and
x̄cc
1  x̄cc

2  xmin(X), while the latter holds because ucv(X, ·) is non-decreasing to
the right of xmin(X) and xmin(X)  x̄cv

2  x̄cv
1 .

Case (i)(d): x̄cc
1  x̄cc

2  x̄cv
2  xmin(X)  x̄cv

1 . By (98), zcv2 simplifies to
ucv(X, x̄cc

2 )+ucv(X,xmin(X))�ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc
1 )+
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ucv(X, x̄cv
1 )�ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2

as desired if ucv(X, x̄cc
1 ) � ucv(X, x̄cc

2 ) and ucv(X, x̄cv
1 ) � ucv(X,xmin(X)). The

former holds because ucv(X, ·) is non-increasing to the left of xmin(X) (Proposition
1) and x̄cc

1  x̄cc
2  xmin(X), while the latter holds by the definition of xmin(X).

Case (i)(e): x̄cc
1  x̄cc

2  x̄cv
2  x̄cv

1  xmin(X). By (98), zcv2 simplifies to
ucv(X, x̄cc

2 ) and zcv1 simplifies to ucv(X, x̄cc
1 ). Since ucv(X, ·) is non-increasing to

the left of xmin(X) and x̄cc
1  x̄cc

2  xmin(X), it follows that zcv1 = ucv(X, x̄cc
1 ) �

ucv(X, x̄cc
2 ) = zcv2 , as desired.

From the previous five subcases, we conclude that zcv1 � zcv2 in Case (i).

Case (ii): Encl(X1) = ;, Encl(X2) 6= ;.

Since X1 is empty, X2 is nonempty, and X1 � X2, the definition of Cut (Defini-
tion 11) and Theorems 3–4 imply that X̄1 is empty, X̄2 is nonempty, and X̄1 � X̄2.
In turn, these conditions imply the four requirements below:

x̄cc
1  x̄cv

1 , (99)

x̄cv
2  x̄cc

2 , (100)

x̄cc
1  x̄cc

2 , (101)

x̄cv
2  x̄cv

1 . (102)

Assign the four values x̄cv
1 , x̄cc

1 , x̄cv
2 , and x̄cc

2 to the notations r1, r2, r3, and r4 in
such a way that r1  r2  r3  r4. We now consider five subcases based on where
xmin(X) lies within this chain of inequalities.

Case (ii)(a): xmin(X)  r1  r2  r3  r4. By (98), zcv2 simplifies to
ucv(X, x̄cv

2 ) and zcv1 simplifies to ucv(X, x̄cv
1 ). Since ucv(X, ·) is non-decreasing to

the right of xmin(X) and xmin(X)  x̄cv
2  x̄cv

1 , it follows that zcv1 = ucv(X, x̄cv
1 ) �

ucv(X, x̄cv
2 ) = zcv2 , as desired.

Case (ii)(b): r1  xmin(X)  r2  r3  r4. Considering (99)–(102), either
r1 = x̄cv

2 or r1 = x̄cc
1 .

Case (ii)(b)(i): r1 = x̄cv
2 . By (98), zcv2 simplifies to ucv(X,xmin(X)) and zcv1

simplifies to ucv(X, x̄cv
1 ). By the definition of xmin(X), it follows that zcv1 =

ucv(X, x̄cv
1 ) � ucv(X,xmin(X)) = zcv2 , as desired.

Case (ii)(b)(ii): r1 = x̄cc
1 . By (98), zcv2 can be simplified to ucv(X,xmin(X))+

ucv(X, x̄cv
2 ) � ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc

1 ) + ucv(X, x̄cv
1 ) �

ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2 as desired
provided that ucv(X, x̄cc

1 ) � ucv(X,xmin(X)) and ucv(X, x̄cv
1 ) � ucv(X, x̄cv

2 ). The
former follows from the definition of xmin(X), while the latter holds because
ucv(X, ·) is non-decreasing to the right of xmin(X) and xmin(X)  x̄cv

2  x̄cv
1 .

Case (ii)(c): r1  r2  xmin(X)  r3  r4. The inequalities (99)–(102) imply
that max(x̄cv

2 , x̄cc
1 )  min(x̄cc

2 , x̄cv
1 ). Therefore, we must have x̄cv

2  xmin(X)  x̄cc
2

and x̄cc
1  xmin(X)  x̄cv

1 . Then, by (98), zcv2 simplifies to ucv(X,xmin(X)) +
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ucv(X,xmin(X))�ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc
1 )+ucv(X, x̄cv

1 )�
ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2 as desired
provided that ucv(X, x̄cc

1 ) � ucv(X,xmin(X)) and ucv(X, x̄cv
1 ) � ucv(X,xmin(X)).

Both the former and the latter follow from the definition of xmin(X).

Case (ii)(d): r1  r2  r3  xmin(X)  r4. Considering (99)–(102), either
r4 = x̄cv

1 or r4 = x̄cc
2 .

Case (ii)(d)(i): r4 = x̄cv
1 . By (98), zcv2 can be simplified to ucv(X, x̄cc

2 ) +
ucv(X,xmin(X))�ucv(X,xmin(X)) and zcv1 simplifies to ucv(X, x̄cc

1 )+ucv(X, x̄cv
1 )�

ucv(X,xmin(X)). Comparing these term-wise, we will have zcv1 � zcv2 as desired
provided that ucv(X, x̄cc

1 ) � ucv(X, x̄cc
2 ) and ucv(X, x̄cv

1 ) � ucv(X,xmin(X)).
The former holds because ucv(X, ·) is non-increasing to the left of xmin(X) and
x̄cc
1  x̄cc

2  xmin(X), while the latter follows from the definition of xmin(X).

Case (ii)(d)(ii): r4 = x̄cc
2 . By (98), zcv2 simplifies to ucv(X,xmin(X)) and

zcv1 simplifies to ucv(X, x̄cc
1 ). By the definition of xmin(X), it follows that zcv1 =

ucv(X, x̄cc
1 ) � ucv(X,xmin(X)) = zcv2 , as desired.

Case (ii)(e): r1  r2  r3  r4  xmin(X). By (98), zcv2 simplifies to
ucv(X, x̄cc

2 ) and zcv1 simplifies to ucv(X, x̄cc
1 ). Since ucv(X, ·) is non-increasing to

the left of xmin(X) and x̄cc
1  x̄cc

2  xmin(X), it follows that zcv1 = ucv(X, x̄cc
1 ) �

ucv(X, x̄cc
2 ) = zcv2 , as desired.

From the previous five subcases, we conclude that zcv1 � zcv2 also holds in Case
(ii). ut

Theorem 20 (u,MB,MR) preserves nonemptiness on MB.

Proof The result follows from Lemma 1 with Theorems 16 and 18. ut

Theorem 21 (u,MB,MR) is a relaxation function of (u,B,R).

Proof The result follows from Theorem 2 with Theorems 16–19. ut

3.4.1 A Composition Example

Let x : P ! R be an arbitrary function on P = [�2, 2]. We consider computing
relaxations of the composite function

f(p) = exp(x(p)) (103)

on P given relaxation information for x on P in the form of a McCormick function
X : P ! MR. Accordingly, let u = exp, let (u,MR,MR) and (û,MR,MR) denote
the extended and standard relaxation functions for u defined above, and let F(p) =
u(X (p)) and F̂(p) = û(X (p)) with X (p) defined as in the left panel of Figure 2.
Note that X (p) is nonempty for all p 2 P ⇤ ⌘ [�0.87, 0.87] and empty otherwise.
Even so, xcv and xcc are convex and concave, respectively, on all of P . As shown
in the middle and right panels of Figure 2, the two composition rules agree for all
p such that X (p) is nonempty. However, they clearly di↵er at infeasible p values.
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While F̂(p) remains nonempty for all p, f̂cc is clearly not concave. In contrast, F(p)
takes empty values for some infeasible p to ensure that fcv and fcc are convex
and concave on all of P , which is the desired behavior. Although the standard
rule failed by producing a nonconcave f̂cc in this case, in general its behavior is
unpredictable when X (p) is empty; f̂cv may be nonconvex, F̂(p) may be empty,
or û(X (p)) may be undefined due to a domain violation (this can occur when
ucv(X, ·) and ucc(X, ·) are not defined on all of R).
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Fig. 2 Left: McCormick object X (p) corresponding to x(p) in (103) defined by its bounds
xL and xU (solid), convex component xcv(p) (filled triangles), and concave component xcc(p)
(open triangles). Middle: McCormick object F̂(p) corresponding to f(p) in (103) defined by its

bounds fL and fU (solid), convex component f̂cv(p) (filled squares), and concave component

f̂cc(p) (open squares). Right: McCormick object F(p) corresponding to f(p) in (103) defined by
its bounds fL and fU (solid), convex component fcv(p) (filled circles), and concave component

fcc(p) (open circles). For all p 2 [�0.87, 0.87], f̂cv(p) and f̂cc(p) are actually identical to fcv(p)
and fcc(p), respectively.

4 Natural McCormick Extension

In this section, we define the natural McCormick extension of a factorable func-
tion, which is obtained by recursively applying the rules defined in the previous
section to a sequence of elementary operations that defines the function. Using the
composition results (Lemma 2) from §2, we then prove that this provides a valid
relaxation function for the original function, which can be used to obtain convex
and concave relaxations via Theorem 1 and Corollary 1.

To define factorable functions precisely, following [9] we first define the notion
of a computational sequence, which is essentially an ordered list of elementary op-
erations along with some indexing maps that connect the inputs of each operation
to the outputs of earlier operations. Next, we define the functions created by ap-
plying the operations in this list recursively up to a generic step k (termed factors),
which ultimately produces the complete function encoded by the list (termed the
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natural function). The notation below is heavier than is usually necessary to intro-
duce these concepts, but it o↵ers the precision needed to clearly define the natural
McCormick extension and establish its properties.

Definition 19 Let ni, no, nf 2 N. An L-computational sequence with ni inputs,
no outputs, and nf factors is a pair (S,⇡o) where:
1. S is a finite sequence of pairs {((ok, Bk,R), (⇡k,Rk�1,Rdk))}nf

k=ni+1, where

(ok, Bk,R) is an elementary operation and (⇡k,Rk�1,Rdk) is an input selection
map. Specifically, every element of S is defined by one of the following options:
(a) (ok, Bk,R) is either (+,R2,R) or (⇥,R2,R) and ⇡k : Rk�1 ! R2 is defined

by ⇡k(v) = (vi, vj) for some integers i, j 2 {1, . . . , k � 1}.
(b) (ok, Bk,R) 2 L where L is a library of univariate functions (see §3.4) and

⇡k : Rk�1 ! R is defined by ⇡k(v) = vi for some integer i 2 {1, . . . , k� 1}.
2. ⇡o : Rnf ! Rno is an output selection map defined by ⇡o(v) = (vi(1), . . . , vi(no))

for some integers i(1), . . . , i(no) 2 {1, . . . , nf}.

Definition 20 Let (S,⇡o) be an L-computational sequence with ni inputs and
no outputs. Define the sequence of factors {(vk, Dk,R)}nf

k=1 as follows:

1. For k = 1, . . . , ni, Dk = Rni and vk(x) = xk, 8x 2 Dk,
2. For k = ni + 1, . . . , nf , Dk = {x 2 Dk�1 : ⇡k(v1(x), . . . , vk�1(x)) 2 Bk} and

vk(x) = ok � ⇡k � (v1(x), . . . , vk�1(x)), 8x 2 Dk.

The set DS ⌘ Dnf is called the natural domain of (S,⇡o), and the natural function
(fS , DS ,Rno) is defined by fS(x) = ⇡o � (v1(x), . . . , vnf (x)), 8x 2 DS .

Definition 21 A function f : D ⇢ Rn ! Rm is called L-factorable if there exists
an L-computational sequence (S,⇡o) with n inputs and m outputs such that the
natural function (fS , DS ,Rno) satisfies D ⇢ DS and f = fS |D.

We are now prepared to define the natural McCormick extension of an L-
computational sequence (and hence one possible natural McCormick extension
of an L-factorable function) using the extended McCormick rules from §3. Since
each (ok, Bk,R) in the sequence is one of the elementary operations considered in
§3, McCormick extensions (ok,MBk,MR) satisfying all of the required properties
have already been established. We also require McCormick versions of the input
selections maps, (⇡k,MRk�1,MRdk), which simply select the same element(s) from
the input vector as the corresponding real-valued version.

Definition 22 Let (S,⇡o) be an L-computational sequence with ni inputs and
no outputs. Define the sequence of relaxation factors {(Vk,Dk,MR)}nf

k=1, with
Dk ⇢ MRni , as follows:

1. For all k = 1, . . . , ni, Dk = MRni and Vk(X ) = Xk, 8X 2 Dk,
2. For all k = ni + 1, . . . , nf , Dk = {X 2 Dk�1 : ⇡k � (V1(X ), . . . ,Vk�1(X )) 2

MBk} and Vk(X ) = ok � ⇡k � (V1(X ), . . . ,Vk�1(X )), 8X 2 Dk.

The natural McCormick extension of (S,⇡o) is the function (FS ,DS ,MRno) de-
fined by DS ⌘ Dnf and FS(X ) = ⇡o � (V1(X ), . . . ,Vnf (X )), 8X 2 DS .

Definition 23 Let f : D ⇢ Rn ! Rm be an L-factorable function. Then, for
any L-computational sequence describing f , the natural McCormick extension
(FS ,DS ,MRm) is called a natural McCormick extension of f .
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The next two results establish the properties of the natural McCormick ex-
tension, ultimately concluding that it is a relaxation function, as desired. In the
proof by induction for establishing Theorem 22, the fact that (oK ,MBK ,MR) sat-
isfies the required conditions is evident if oK corresponds to either (+,MR2,MR),
(⇥,MR2,MR), or (u,MB,MR), as defined in §3.

Theorem 22 Let (S,⇡o) be an L-computational sequence with natural function
(fS , DS ,Rno). The natural McCormick extension (FS ,DS ,MRno) is a McCormick
extension of (fS , DS ,Rno) on DS . Moreover, it is coherently concave and coherently
inclusion monotonic on DS , is fully inclusion monotonic on {X 2 DS : Encl(X ) 6=
;}, and preserves nonemptiness on DS .

Proof Consider the sequence of factors {(vk, Dk,R)}nf

k=1 and the sequence of re-
laxation factors {(Vk,Dk,MR)}nf

k=1. To set up an inductive argument, choose any
K 2 {ni+1, . . . , nf} and assume that, for all k < K, (Vk,Dk,MR) is a McCormick
extension of (vk, Dk,R) on Dk, is coherently concave and coherently inclusion
monotonic on Dk, is fully inclusion monotonic on {X 2 Dk : Encl(X ) 6= ;}, and
preserves nonemptiness on Dk. This assumption is straightforward to verify for
K = ni + 1 because, for every k < ni + 1, we have vk(x) = xk and Vk(X ) = Xk.
Assuming it holds for an arbitrary K, we now prove that VK satisfies these con-
ditions as well. Recall that

vK(x) = oK � ⇡K � (v1, . . . , vK�1),

VK(X ) = oK � ⇡K � (V1, . . . ,VK�1).

Since ⇡K merely selects one or two of its arguments, the inductive hypothesis im-
plies that ⇡K � (V1, . . . ,VK�1) is a McCormick extension of ⇡K � (v1, . . . , vK�1) on
DK�1, is coherently concave and coherently inclusion monotonic on DK�1, is fully
inclusion monotonic on {X 2 DK�1 : Encl(X ) 6= ;}, and preserves nonemptiness
on DK�1. Moreover, regardless of the identity of the operation (oK , BK ,R), the re-
sults in §3 ensure that (oK ,MBK ,MR) is a McCormick extension of (oK , BK ,R)
on MBK (Thm. 5, 10, 16), is coherently concave on MBK (Thm. 6, 11, 17), is
coherently inclusion monotonic on MBK (Cor. 4, Thm. 13, 19), is fully inclu-
sion monotonic on {X 2 MBK : Encl(X ) 6= ;} (Thm. 7, 12, 18), and preserves
nonemptiness on MBK (Thm. 8, 14, 20). Given these facts, Parts 2–6 of Lemma
2 show that (VK ,DK ,MR) is a McCormick extension of (vK , DK ,R) on DK , is
coherently concave and coherently inclusion monotonic on DK , is fully inclusion
monotonic on {X 2 DK : Encl(X ) 6= ;}, and preserves nonemptiness on DK . By
induction, this holds for every K 2 {1, . . . , nf}, and the result then follows from
the definition of (FS ,DS ,MRno). ut

Corollary 5 The natural McCormick extension (FS ,DS ,MRno) is a relaxation
function of the natural function (fS , DS ,Rno) on DS .

Proof The result follows immediately from Theorems 2 and 22. ut

5 A Relaxation Refinement Operation

This section describes a constraint-based relaxation refinement algorithm that
can be used to tighten the relaxations used in reduced space global optimization
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algorithms (see discussion in §1). This algorithm is very simple and only applies to
linear constraints. It is included here primarily as a concrete example of how empty
McCormick objects can be generated in the first place, and hence why we have
emphasized the ability to compute with such objects throughout this paper. We
begin by defining the notion of a relaxation refinement operator for a given set of
constraints, which is analogous to the definition of a relaxation function for a given
real function. Theorem 23 then shows that relaxation refinement operators have the
desired behavior for use in reduced space global optimization; i.e., they produce
convex and concave relaxations of the function of interest that are potentially
tighter but still valid over the feasible domain. This use case is explored further
by example in §5.1.

Definition 24 Let g : Rn ! Rnc . A function (I,MRn,MRn) is a relaxation
refinement operator for the constraints g(x)  0 if it is coherently concave, coher-
ently inclusion monotonic, and satisfies

Encl(I(X )) � {x 2 Encl(X ) : g(x)  0} , 8X 2 MRn.

Remark 9 For a relaxation refinement operator to be useful, Encl(I(X )) should
be a strict subset of Encl(X ) for at least some X , but this is not required by the
definition.

Theorem 23 Let x : P ⇢ Rnp ! Rnx and g : Rnx ! Rnc . Let X : P ! MRnx

be a McCormick function with components X (p) = (xL,xU,xcv(p),xcc(p)) such
that x

cv and x
cc are convex and concave on P , respectively. If (I,MRnx ,MRnx)

is a relaxation refinement operator for the constraints g(x)  0, then the object
defined by

X ⇤(p) ⌘ I(X (p)), 8p 2 P,

satisfies

1. x
⇤,cv and x

⇤,cc are convex and concave on P , respectively, and
2. x

⇤,L  x(p)  x
⇤,U and x

⇤,cv(p)  x(p)  x
⇤,cc(p) for all p 2 P feas, where

P feas ⌘
n
p 2 P : xL  x(p)  x

U, x
cv(p)  x(p)  x

cc(p), g(x(p))  0

o
.

Proof Let x, g, X , and X ⇤ be defined as in the theorem statement and assume
I is a relaxation refinement operator for g(x)  0. To prove the first conclusion,
choose any p1,p2 2 P and any � 2 [0, 1] and define p� = �p1 + (1� �)p2. Since
x
cv and x

cc are convex and concave, it is straightforward to show that

X (p�) ⌫ Conv(�,X (p1),X (p2)). (104)

Since I is coherently inclusion monotonic, it follows that

I[X (p�)] ⌫ I[Conv(�,X (p1),X (p2))]. (105)

Since I is coherently concave, this implies that

I[X (p�)] ⌫ Conv(�, I[X (p1)], I[X (p2)]). (106)
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By definition, this is equivalent to

X ⇤(p�) ⌫ Conv(�,X ⇤(p1),X ⇤(p2)). (107)

By Definition 4, this implies that

x
⇤,cv(p�)  �x⇤,cv(p1) + (1� �)x⇤,cv(p2), (108)

x
⇤,cc(p�) � �x⇤,cc(p1) + (1� �)x⇤,cc(p2), (109)

which establishes convexity and concavity of x⇤,cv and x
⇤,cc on P , respectively.

To prove the second conclusion, choose any p 2 P feas. By the definition of
P feas, we must have x(p) 2 Encl(X (p)) and g(x(p))  0. By Definition 24, this
implies that x(p) 2 Encl(I(X (p))) = Encl(X ⇤(p)). Therefore, x⇤,L  x(p)  x

⇤,U

and x
⇤,cv(p)  x(p)  x

⇤,cc(p), as desired. ut

The goal in the remainder of this section is to define a specific relaxation refine-
ment operator for linear constraints. To do so, we require a notion of intersection
between two McCormick objects. This is defined next and several useful properties
are subsequently proven.

Definition 25 Define (\,MR2,MR) by

X \ Y ⌘ (max(xL, yL),min(xU, yU),max(xcv, ycv),min(xcc, ycc)) (110)

if max(xL, yL)  min(xU, yU), and otherwise by

X \ Y ⌘ (min(xU, yU),max(xL, yL),max(xL, yL),min(xU, yU)). (111)

Remark 10 When max(xL, yL) > min(xU, yU), the interval parts of X and Y do
not overlap. The value we assign to X \ Y in this case is arbitrary because there
is no reason to do any further computations with such an intersection in the
applications we have in mind (see Remark 11). However, it is useful to have X \Y
produce an element of MR even in this case so that concepts such as coherent
concavity and inclusion monotonicity, which were defined for functions mapping
into MR, can be applied to \ without caveat. Thus, we use (111) in this case,
which defines X \ Y as an empty element of MR, rather than (110), which does
not produce an element of MR.

Lemma 7 For any X ,Y 2 MR,

Encl(X ) \ Encl(Y) = Encl(X \ Y). (112)

Proof Choose any X ,Y 2 MR and any z 2 R. The point z is in Encl(X )\Encl(Y)
if and only if

max(xL, xcv)  z  min(xU, xcc), (113)

max(yL, ycv)  z  min(yU, ycc).

On the other hand, z is in Encl(X \ Y) if and only if

max(xL, yL)  z  min(xU, yU), (114)

max(xcv, ycv)  z  min(xcc, ycc).

The result follows from the fact that (113) implies (114) and vice versa. ut
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Theorem 24 (\,MR2,MR) is coherently concave on MR2.

Proof Choose any coherent (X1,Y1), (X2,Y2) 2 MR2 and let X ⇥ Y = [xL, xU]⇥
[yL, yU] without subscripts denote their common interval part. Let Z1 ⌘ X1 \ Y1

and Z2 ⌘ X2\Y2. Furthermore, choose any � 2 [0, 1] and let X� = Conv(�,X1,X2),
Y� = Conv(�,Y1,Y2), and Z� = X� \ Y�. We must show that

Z� ⌫ Conv(�,Z1,Z2). (115)

Since (X1,Y1) and (X2,Y2) are coherent, Z1 and Z2 are coherent as well. By
Definition 7, Conv(�,Z1,Z2) must also be coherent to Z1. Similarly, the convex
combinations X� and Y� are coherent to X1 and Y1, respectively, which implies
that Z� = X� \ Y� is coherent to Z1 as well. Therefore, the left-hand and right-
hand sides of (115) have the same interval parts. Then, to prove (115), it only
remains to show that zcv�  �zcv1 + (1 � �)zcv2 and zcc� � �zcc1 + (1 � �)zcc2 . We
prove the former and note that the latter follows from analogous arguments. If
max(xL, yL)  min(xU, yU), then the intersections defining Z1, Z2, and Z� are all
defined by (110). From (110), we have

zcv� = max(�xcv
1 + (1� �)xcv

2 ,�ycv1 + (1� �)ycv2 ) (116)

 �max(xcv
1 , ycv1 ) + (1� �)max(xcv

2 , ycv2 ),

= �zcv1 + (1� �)zcv2 ,

where the inequality follows from convexity of max on R2. Alternatively, if max(xL, yL) >
min(xU, yU), then the intersections defining Z1, Z2, and Z� are all defined by
(111). From (111), we have

zcv� = max(xL, yL) (117)

= �max(xL
1 , y

L
1 ) + (1� �)max(xL

2 , y
L
2 ),

= �zcv1 + (1� �)zcv2 .

ut

Theorem 25 (\,MR2,MR) is coherently inclusion monotonic on MR2.

Proof Choose any coherent (X1,Y1), (X2,Y2) 2 MR2 with (X1,Y1) � (X2,Y2),
and letX⇥Y = [xL, xU]⇥[yL, yU] without subscripts denote their common interval
part. By Definition 4, it follows that X1 � X2 and Y1 � Y2. Let Z1 = X1 \ Y1

and Z2 = X2 \ Y2. We must prove that Z1 � Z2. Since the interval parts of Z1

and Z2 depend only on [xL, xU] and [yL, yU], we must have [zL1 , z
U
1 ] = [zL2 , z

U
2 ]. It

remains to prove that zcv1 � zcv2 and zcc1  zcc2 .
Suppose first that max(xL, yL)  min(xU, yU), so that the intersections defin-

ing Z1 and Z2 are given by (110). In this case, zcv1 � zcv2 and zcc1  zcc2 hold
if

max(xcv
1 , ycv1 ) � max(xcv

2 , ycv2 ), (118)

min(xcc
1 , ycc1 )  min(xcc

2 , ycc2 ). (119)

Since X1 � X2 and Y1 � Y2, Definition 4 implies that xcv
1 � xcv

2 , xcc
1  xcc

2 ,
ycv1 � ycv2 , and ycc1  ycc2 . Thus, the inequalities (118)–(119) follow from the fact
that max(a0, b0) � max(a, b) and min(a, b)  min(a0, b0) when a  a0 and b  b0.
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Next, suppose that max(xL, yL) > min(xU, yU), so that the intersections defin-
ing Z1 and Z2 are given by (111). In this case, Z1 = Z2 because (111) only depends
on the input bounds. Thus, we trivially have zcv1 � zcv2 and zcc1  zcc2 . ut

We now apply the McCormick intersection to define a valid relaxation refine-
ment operator for constraints of the form Ax = b with A 2 Rnc⇥n and b 2 Rnc .
The basic idea is to consider all possible rearrangements of the individual con-
straints into the form

xk =
bi
Aik

+
X

j 6=k

�Aij

Aik
xj . (120)

For each one, we then take the natural McCormick extension of the right-hand
side using the extended McCormick rules from §3 and intersect the result with the
original enclosure Xk. The complete refinement operator based on this approach
is defined in Algorithm 1.

Algorithm 1 A relaxation refinement operator for Ax = b

1: function RelaxRefine(X ,A,b, tol)
2: X  Cut(X )
3: for i 1 to nc do
4: for k  1 to n do
5: if |Aik| > tol then

6: Xupdated
k  bi

Aik
+

P
j 6=k

⇣�Aij

Aik

⌘
Xj

7: Xk  Xk \ Xupdated
k

8: end if
9: end for
10: end for
11: return X
12: end function

The next several results prove that Algorithm 1 defines a valid relaxation
refinement operator.

Theorem 26 The function (I,MRn,MRn) defined by Algorithm 1 satisfies

Encl(I(X )) � {x 2 Encl(X ) : Ax = b} , 8X 2 MRn.

Proof Choose any X 2 MRn and any x 2 Encl(X ) such that Ax = b. Suppose
X is given as input to Algorithm 1. Clearly, we have x 2 Encl(X ) upon entry
to the algorithm, and it follows that x 2 Encl(X ) when line 6 is reached for
the first time. To set up an inductive argument, assume that x 2 Encl(X ) when
line 6 is reached for `th time for some ` � 1. Whatever the values of k and
i may be upon this visit to line 6, the fact that Ax = b ensures that (120)
holds. Since line 6 defines X updated

k as the natural McCormick extension of the

right-hand side of (120), it follows that xk 2 Encl(X updated
k ) immediately after

line 6. Since we also have xk 2 Encl(Xk) at this point, Lemma 7 ensures that
xk 2 Encl(Xk \ X updated

k ). Therefore, x 2 Encl(X ) still holds after line 7. This
recovers the inductive hypothesis and ensures that x 2 Encl(X ) at all times during
the execution of Algorithm 1. Thus, x 2 Encl(I(X )). ut
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Theorem 27 The function (I,MRn,MRn) defined by Algorithm 1 is coherently
concave and coherently inclusion monotonic on MRn.

Proof For every i 2 {1, . . . , nc} and k 2 {1, . . . , n}, let Gi,k : MRn ! MRn denote
the update of X that occurs on lines 6–7 of Algorithm 1; i.e.,

[Gi,k(X )]j ⌘ Xj , 8j 6= k, (121)

[Gi,k(X )]k ⌘ Xk \

2

4 bi
Aik

+
X

j 6=k

✓
�Aij

Aik

◆
Xj

3

5 . (122)

Algorithm 1 defines I as a finite composition of these functions. Specifically,

I(X ) ⌘ Gnc,n �Gnc,n�1 � . . . �G1,2 �G1,1 � Cut(X ), 8X 2 MRn. (123)

Parts 3 and 4 of Lemma 2 state that, if two functions are both coherently concave
and coherently inclusion monotonic on MRn, then their composition is also co-
herently concave and coherently inclusion monotonic on MRn. The Cut operator
has these two properties by Corollaries 2 and 3. If each Gi,k has these properties,
then it follows by induction that I does as well. Thus, it su�ces to establish these
properties for an arbitrary Gi,k.

Each Gi,k is itself a composition of intersections, binary additions, and the
univariate operations of adding and multiplying by a constant. Thus, by another
application of Lemma 2, it su�ces to show that these four basic operations are
coherently concave and coherently inclusion monotonic on MR and MR2. The
intersection has these properties by Theorems 24 and 25, binary addition has
them by Theorems 6 and 7, and both the addition of and multiplication by a
constant has them by Theorems 17 and 19 (noting in the last case that B = R for
the univariate functions u(x) = a+ x and u(x) = ax). ut

Theorem 28 The function (I,MRn,MRn) defined by Algorithm 1 is a relaxation
refinement operator for the constraints Ax = b.

Proof The result follows immediately from Theorems 26 and 27. ut

Remark 11 Consider the set up of Theorem 23 with I defined by Algorithm 1.
Suppose that, during the evaluation of I(X (p)) for some p 2 P , the intersection
in line 7 of Algorithm 1 triggers the case defined by (111). Since I(X (p)) will be
empty, it follows from Theorem 26 that this p is not in P feas. Moreover, since
the condition leading to (111) only depends on the bound components of the two
operands of \, it is guaranteed that (111) will again be used when evaluating
I(X (p)) for any other p 2 P . Thus, if (111) is ever encountered within Algorithm
1, we can conclude immediately that P feas = ;. In the context of reduced-space
optimization, this is grounds to fathom P without further calculation. This is why
is was said in Remark 10 that, if (111) occurs in the applications we have in mind,
then there is no reason to do any further computations with the result of the
intersection, and hence the definition in (111) is somewhat arbitrary.
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5.1 A Relaxation Refinement Example

Let P ⌘ [�3, 3] and let x1, x2 : P ! R be defined as x1(p) = p2 and x2(p) = ep,
8p 2 P . Furthermore, let X1,X2 : P ! R be the McCormick functions shown in
Figures 3 and 4 (red), which are defined componentwise by

X1(p) =
⇣
0, 9, p2, 9

⌘
, X2(p) =

✓
e�3, e3, ep,

e3 � e�3

6
(p+ 3) + e�3

◆
.

Consider a situation where X1 and X2 represent initial relaxations of x1 and x2,
providing valid enclosures on all of P , and it is desirable to refine them based on
the constraint

x1(p) + x2(p) = 5. (124)

Specifically, we are interested in tighter relaxations that remain convex and concave
on all of P , but need only provide a valid enclosure on the subset of P for which
(124) holds, P feas. In this case, P feas contains only two isolated points marked by
the black dots in Figures 3 and 4. To accomplish this, we apply Algorithm 1.
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Fig. 3 Relaxations of x1 before (left) and after (right) refinement with (124). The left panel
shows the original function x1 (solid black) and the McCormick object X1(p) defined by its
bounds xL

1 and xU
1 (solid red) and its relaxations xcv

1 and xcc
1 (filled and open red triangles,

resp.) prior to refinement. The right panel shows the original function x1 (solid black) and the

McCormick object X ⇤
1 (p) defined by its bounds xL,⇤

1 and xU,⇤
1 (solid green) and its relaxations

xcv,⇤
1 and xcc,⇤

1 (filled and open green triangles, resp.) after refinement. Black dots represent
the values of p that are feasible in (124).
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Fig. 4 Relaxations of x2 before (left) and after (right) refinement with (124). The left panel
shows the original function x2 (solid black) and the McCormick object X2(p) defined by its
bounds xL

2 and xU
2 (solid red) and its relaxations xcv

2 and xcc
2 (filled and open red triangles,

resp.) prior to refinement. The right panel shows the original function x2 (solid black) and the

McCormick object X ⇤
2 (p) defined by its bounds xL,⇤

2 and xU,⇤
2 (solid green) and its relaxations

xcv,⇤
2 and xcc,⇤

2 (filled and open green triangles, resp.) after refinement. Black dots represent
the values of p that are feasible in (124).

Letting I denote the refinement operator defined by Algorithm 1, the refined
McCormick objects defined by X ⇤(p) ⌘ I(X (p)) are shown in Figures 3 and 4
(green). Both the bound and relaxation components of the refined relaxations are
significantly tighter than before refinement. Even so, the refined relaxations remain
convex and concave. Moreover, although the objects X ⇤

1 (p) and X ⇤
2 (p) are empty

for many p, they are nonempty on P feas, as desired. In fact, they are nonempty
on the convex set P ⇤ = [�2.2, 1.2], which contains P feas.

To demonstrate the utility of these refined relaxations, next suppose that the
constraint (124) is part of the reduced-space optimization problem

min
p2P

� x1(p)x2(p) (125)

s.t. x1(p) + x2(p) = 5

Recall that, in the reduced-space formulations of interest, x1(p) and x2(p) would
be defined as the (explicit or implicit) solutions of some system of equations not
shown, and the initial relaxations X1 and X2 would be computed by specialized
methods [11,18,20]. In this context, we are interested in formulating a convex
lower bounding problem on P by constructing a relaxation of the objective f(p) =
�x1(p)x2(p). The standard approach is to relax both f and the constraint using
X1 and X2. Specifically, the relaxation of f is obtained by natural McCormick
extension as F(p) = �[X1(p)X2(p)]. However, since our extended McCormick rules
enable computations with empty objects, we can instead consider the relaxation
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F⇤(p) = �[X ⇤
1 (p)X ⇤

2 (p)], which implicitly carries information about the feasible
domain that can lead to less underestimation of f .

These two approaches are compared in Figure 5. Clearly, F⇤ provides a much
tighter convex relaxation while still underestimating f at all feasible points. No-
tably, f⇤,cv is not just tighter on the infeasible space, but dominates fcv even on
the convex hull of the feasible set, P feas. It follows that minimizing f⇤,cv on P will
produce a tighter lower bound than the usual approach of minimizing fcv over a
convex relaxation of P feas.
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Fig. 5 Relaxations of f before (left) and after (right) refinement with (124). The left panel
shows the original function f (solid black) and the McCormick object F(p) defined by its
bounds fL and fU (solid red) and its relaxations fcv and fcc (filled and open red triangles,
resp.) prior to such refinement. The right panel shows the original function f (solid black)
and the McCormick object F⇤(p) defined by its bounds fL,⇤ and fU,⇤ (solid green) and its
relaxations fcv,⇤ and fcc,⇤ (filled and open green triangles, resp.) after such refinement. Black
dots represent the values of p that are feasible in (124).

Figure 6 shows that the refined relaxation f⇤,cv cannot be achieved without
the extended McCormick rules developed in this paper. Specifically, the figure
compares F⇤(p) (green) with the result of the same procedure using the standard
McCormick rules (blue); namely, F̂⇤(p) = �̂[X ⇤

1 (p)⇥̂X ⇤
2 (p)], where the hat over the

minus sign indicates that the standard univariate composition rule is used for the
multiplication by �1. While the resulting relaxation f̂⇤,cv is e↵ectively just as tight
as f⇤,cv, it is clearly nonconvex. Therefore, it does not produce a convex lower-
bounding problem for (125). Similarly, although the McCormick-based refinement
and relaxation methods in [20] could also be used to compute versions of X ⇤

1 , X ⇤
2 ,

and f⇤,cv, that approach would yield f⇤,cv(p) = NaN for many values of p, which
again fails to produce a computationally useful lower-bounding problem.
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Fig. 6 Refined relaxations of f computed using the original McCormick’s rules [4] (left) and
using the extended McCormick’s rules in this paper (right). The left panel shows the refined

relaxations of f , f̂cv,⇤ and f̂cc,⇤ (filled and open blue squares, resp.), computed using the
original McCormick’s rules. The right panel shows the refined relaxations of f , fcv,⇤ and fcc,⇤

(filled and open green circles, resp.), computed using the extended McCormick’s rules. Black
dots represent the values of p that are feasible in (124).

6 Conclusion

In this paper, we extended the notion of a McCormick object – the basic computa-
tional object in McCormick relaxation routines – to include empty objects where
either xcv > xcc or [xcv, xcc] \ [xL, xU] = ;. We then generalized McCormick’s
relaxation rules for binary addition, binary multiplication, and univariate compo-
sition to be well-defined and preserve their essential properties on this extended
domain of objects. Empty McCormick objects provide a natural way to represent
infeasibility in reduced-space global optimization formulations and can be read-
ily generated by domain reduction procedures in that context. We showed in §5
that allowing emptiness enables a very natural intersection operation between Mc-
Cormick objects that preserves desirable convexity and concavity properties, and
that this intersection can further be used to develop constraint-based refinement
procedures in a straightforward way. Our extended McCormick relaxation rules
then enable subsequent calculations to be done with the possibly-empty refined
objects. For example, they can be used to compute objective function relaxations
that are tighter on the feasible parts of the domain without compromising convex-
ity (and hence ease of minimization) anywhere on the domain. We hope that these
capabilities will significantly ease the development of improved McCormick-based
algorithms for reduced-space global optimization, global dynamic optimization,
and domain reduction for nonconvex NLPs.
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This document provides some suitable choices of the data required by Assumption 1

in the main paper for some common univariate functions. Specifically, it provides choices

for the data (u, IB, IR), ucv
, ucc

, xmin
, and xmax

, as defined in Assumption 1.

I Data Satisfying Assumption 1 for Common Univari-

ate Functions

Addition of a constant

u(x) = x+ c, B = R
uL

(X) = xL
+ c, uU

(X) = xU
+ c

ucv
(X,x) = x+ c, xmin

(X) = �1
ucc

(X,x) = x+ c, xmax
(X) = +1

Multiplication by a non-negative constant

u(x) = cx, c � 0, B = R
uL

(X) = cxL, uU
(X) = cxU

ucv
(X,x) = cx, xmin

(X) = �1
ucc

(X,x) = cx, xmax
(X) = +1

Multiplication by a negative constant

u(x) = cx, c < 0, B = R
uL

(X) = cxU, uU
(X) = cxL

ucv
(X,x) = cx, xmin

(X) = +1
ucc

(X,x) = cx, xmax
(X) = �1
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Reciprocal

u(x) =
1

x
, B = R� {0}

uL
(X) =

1

xU
, uU

(X) =
1

xL

The definitions of ucv
(X,x) and ucc

(X,x) are separated into cases where X > 0 or

X < 0. Since B does not include 0 for this operation, any X 2 IB is either all positive or

all negative.

When X > 0,
1
x is convex on X. For standard McCormick relaxations, ucv

(X,x) is

typically defined as
1
x and ucc

(X,x) is defined as the secant of
1
x on X. However, this

choice of ucv
(X,x) violates Assumption 1.2 because it is not defined on all of R. To correct

this, ucv
(X,x) is defined here as

1
x for x above a threshold �, and as a linearization of

1
x

at � for all x < �.

ucv
(X,x) =

⇢
1
x if x � �

�1
�2 x+

2
� if x < �

.

ucc
(X,x) =

1

xL
+

1/xU � 1/xL

xU � xL
(x� xL

).

xmin
(X) = +1, xmax

(X) = �1

Note that � may depend on X. A reasonable choice is � = min(10
�3, xL

).

When X < 0, an analogous strategy is used with � < 0.

ucv
(X,x) =

1

xL
+

1/xU � 1/xL

xU � xL
(x� xL

).

ucc
(X,x) =

⇢
1
x if x  �

�1
�2 x+

2
� if x > �

.

xmin
(X) = +1, xmax

(X) = �1

A reasonable choice for � in this case is � = max(�10
�3, xU

).

Exponential

u(x) = exp(x), B = R

uL
(X) = exp(xL

), uU
(X) = exp(xU

)

ucv
(X,x) = exp(x)

ucc
(X,x) = exp(xL

) +
(exp(xU

)� exp(xL
))

xU � xL
(x� xL

)

xmin
(X) = �1, xmax

(X) = +1

2



Natural log

u(x) = ln(x), B = (0,+1)

uL
(X) = ln(xL

), uU
(X) = ln(xU

)

ucv
(X,x) = ln(xL

) +
ln(xU

)� ln(xL
)

xU � xL
(x� xL

)

xmin
(X) = �1

The usual definition ucc
(X,x) = ln(x) needs to be extended onto all of R to satisfy As-

sumption 1.2. This is accomplished by following a linearization of ln(x) below a threshold

� > 0.

ucc
(X,x) =

⇢
ln(x) if x � �

1
�x+ [(ln �)� 1] if x < �

xmax
(X) = +1

Note that � may depend on X. A reasonable choice is � = min(10
�3, xL

).

xln(x)

u(x) = x ln(x), B = (0,+1)

This function is convex and takes a minimum value of � exp(�1) at x = exp(�1).

uL
(X) =

⇢
� exp(�1) if exp(�1) 2 [xL, xU

]

min(xL
lnxL, xU

lnxU
) otherwise

uU
(X) = max(xL

lnxL, xU
lnxU

)

ucc
(X,x) = xL

ln(xL
) +

xU
ln(xU

)� xL
ln(xL

)

xU � xL
(x� xL

)

xmax
(X) =

⇢
�1 if xL

lnxL � xU
lnxU

+1 otherwise

The usual definition ucc
(X,x) = x lnx needs to be extended onto all of R to satisfy As-

sumption 1.2. This is accomplished by following a linearization of x lnx below a threshold

� > 0. The value of � is chosen to be less than exp(�1), which is where x lnx takes its

minimum.

ucv
(X,x) =

⇢
x ln(x) if x � �

(1 + ln(�))x� � if x < �

xmin
(X) = exp(�1)

Note that � may depend on X. A reasonable choice is � = min(10
�3, xL

).
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Square root

u(x) =
p
x, B = [0,+1)

uL
(X) =

p
xL, uU

(X) =

p
xU

ucv
(X,x) =

p
xL +

p
xU �

p
xL

xU � xL
(x� xL

)

xmin
(X) = �1

The usual definition ucc
(X,x) =

p
x needs to be extended onto all of R to satisfy As-

sumption 1.2. This is accomplished by following a linearization of
p
x below a threshold

� > 0.

ucc
(X,x) =

( p
x if x � �

1
2
p
�
x+

p
�
2 if x < �

xmax
(X) = +1

Note that � may depend on X. A reasonable choice is � = min(10
�3, xL

).

Even integer powers

u(x) = xn, n = 2, 4, 6, . . . , B = R

uL
(X) =

⇢
0 if 0 2 [xL, xU

]

min((xL
)
n, (xU

)
n
) otherwise

uU
(X) = max((xL

)
n, (xU

)
n
)

ucv
(X,x) = xn

ucc
(X,x) = (xL

)
n
+

(xU
)
n � (xL

)
n

xU � xL
(x� xL

)

xmin
(X) = 0

xmax
(X) =

⇢
�1 if (xL

)
n � (xU

)
n

+1 otherwise

Odd integer powers

u(x) = xn, n = 3, 5, 7, . . . , B = R

uL
(X) = (xL

)
n

uU
(X) = (xU

)
n

If xU  0:

ucv
(X,x) = (xL

)
n
+

(xU
)
n � (xL

)
n

xU � xL
(x� xL

).

ucc
(X,x) =

⇢
xn

if x  0

0 if x > 0
.

If xL � 0:

ucv
(X,x) =

⇢
0 if x < 0

xn
if x � 0

.
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ucc
(X,x) = (xL

)
n
+

(xU
)
n � (xL

)
n

xU � xL
(x� xL

).

If 0 2 [xL, xU
]:

Let x0
and x00

be the solutions of

(n� 1)(x0
)
n � nxL

(x0
)
n�1

+ (xL
)
n
= 0,

(n� 1)(x00
)
n � nxU

(x00
)
n�1

+ (xU
)
n
= 0.

If x0 > xU
,

ucv
(X,x) = (xL

)
n
+

(xU
)
n � (xL

)
n

xU � xL
(x� xL

).

Else

ucv
(X,x) =

(
(xL

)
n
+

(x0)n�(xL)n

x0�xL (x� xL
) if x  x0

xn
if x > x0 .

If x00 < xL
,

ucc
(X,x) = (xL

)
n
+

(xU
)
n � (xL

)
n

xU � xL
(x� xL

).

Else

ucc
(X,x) =

(
(x00

)
n
+

(xU)n�(x00)n

xU�x00 (x� x00
) if x � x00

xn
if x < x00 .

For all cases, xmin
(X) = �1 and xmax

(X) = +1.
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