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Abstract McCormick’s relaxation technique is one of the most versatile and com-
monly used methods for computing the convex relaxations necessary for determin-
istic global optimization. The core of the method is a set of rules for propagating
relaxations through basic arithmetic operations. Computationally, each rule oper-
ates on four-tuples describing each input argument in terms of a lower bound value,
an upper bound value, a convex relaxation value, and a concave relaxation value.
We call such tuples McCormick objects. This paper extends McCormick’s rules
to accommodate input objects that are empty (i.e., the convex relaxation value
lies above the concave, or both relaxation values lie outside the bounds). Empty
McCormick objects provide a natural way to represent infeasibility and are read-
ily generated by McCormick-based domain reduction techniques. The standard
McCormick rules are strictly undefined for empty inputs and applying them any-
way can yield relaxations that are non-convex/concave on infeasible parts of their
domains. In contrast, our extended rules always produce relaxations that are well-
defined and convex/concave on their entire domain. This capability has important
applications in reduced-space global optimization, global dynamic optimization,
and domain reduction.
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1 Introduction

In 1976, McCormick proposed methods for propagating pairs of convex and con-
cave relaxations through elementary operations including binary addition, binary
multiplication, and common univariate functions [4]. By applying these rules recur-
sively, convex and concave relaxations can be constructed for any function that can
be built by composition of these elementary operations (i.e., factorable functions).
As a result, McCormick’s technique is one of the most versatile and commonly
used methods for computing the convex relaxations necessary for deterministic
global optimization. It has proven particularly useful for constructing relaxations
of problems where the objective and/or constraints are defined either implicitly
(e.g., by the solutions of systems of differential or algebraic equations [11,12,18,
10], or as the expected value of a random function [14]) or explicitly but in terms
of complex or deeply nested expression trees (e.g., by the output of certain classes
of algorithms [5,21] or neural networks [8]). Consequently, McCormick’s method
has been heavily studied in recent years. Important contributions include the con-
vergence analysis in [1] and the generalizations in [2,7,13,19].

To state the objective of this paper precisely, it is helpful to outline Mc-
Cormick’s procedure in more detail. Let f: D C R" - R™ and x: PCR" — D
and define the composite function g : P — R™ by g(p) = f(x(p)), Vp € P. Let
X = [x,xY] € D be an interval and let x°¥,x°° : P — R™. Suppose that X satis-
fiesx(p) € X, Vp € P, and x°" and x°© are, respectively, convex and concave relax-
ations of x on P (i.e., x°¥ is convex, x°° is concave, and x°V(p) < x(p) < x°(p),
Vp € P). Under these assumptions, McCormick’s relaxation technique provides
a procedure for propagating this data through the operations defining f to com-
pute analogous bounds and relaxations for g. Computationally, this is done point-
wise for each fixed p € P, with the data for x and g represented by tuples
X(p) = (x",x7,xV(p),x*(p)) and G(p) = (g", 8", (), 8°(P)), referred to
here as McCormick objects.

Naturally, it is always assumed that McCormick objects satisfy xt < xY,
x%V(p) < x°°(p), and [x",xV] N [x(p),x*°(p)] # 0, for all p € P. These condi-
tions are not only sensible, they are critical to the theoretical arguments estab-
lishing the validity of McCormick’s relaxations as well as important properties
such as inclusion monotonicity [9,13]. In contrast, the objective of this paper is
to present an extension of McCormick’s method to handle the case where X (p)
may violate x*(p) < x°°(p) or [x",x"] N [xV(p),x*(p)] # 0 for some p. Such
McCormick objects are called empty and are intended to represent the case where
the point p is infeasible in a related optimization problem to be described. Our
goal is to extend McCormick’s rules to this setting in such a way that the output
G(p) satisfies: (i) g is well-defined and convex on all of P, (ii) g is well-defined
and concave on all of P, and (iii) we have

g" <g(p) < g” and g% (p) < g(p) < g“(p), Vpe€ P~ (1)
where P* is the feasible set
P"={peP:x(p) € X and xV(p) < x(p) < x*°(p)}. (2)

The motivation for this extension is to enable advances in McCormick-based
algorithms for global dynamic optimization [11], reduced-space global optimization
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[18,20], and domain reduction for nonconvex NLPs [22]. All of these methods use
McCormick relaxations to construct convex enclosures of feasible sets in a similar
way, and while effective methods for tightening these enclosures exist, they can lead
to empty McCormick objects that are problematic for subsequent calculations.

To be more specific, in these methods the decision variables are partitioned
into two vectors, (p,x), and some or all of the constraints are used to define x
as a function of p, x(p). In dynamic optimization, x contains the state variables
at some time, p contains the remaining decisions, and x(p) is defined as the
parametric solution of the dynamic system. In reduced-space global optimization,
x and p are dependent and independent variables, respectively, and x(p) is the
(explicit or implicit) solution of a system of equality constraints. Finally, in the
domain-reduction strategy in [22], the partition is arbitrary and x(p) is defined
as the set-valued map taking p into the set of x values that are feasible for p.
Given x(p), each method then constructs convex and concave relaxations of x to
obtain an enclosure of the feasible set of the form {(p,x) € P x X : x“(p) <
x < x°“(p)}. Once initial values of x°V and x°° have been computed, there is
an opportunity to tighten them based on problem constraints or optimality cuts
using iterative algorithms akin to the interval contractor and Newton methods
commonly used for domain reduction [18,22]. In addition to providing enhanced
domain reduction, these tightened relaxations can also be used as inputs to a
McCormick relaxation of the objective function, leading to a tighter relaxation that
incorporates feasibility information [22]. This type of relaxation refinement has
been shown to lead to significantly faster branch-and-bound convergence for several
standard and reduced-space global optimization problems in [17,22]. Moreover,
although it has not been applied in global dynamic optimization due to technical
difficulties described below, a similar approach has been applied for interval-based
bounding methods for dynamic systems and shown to lead to substantially tighter
enclosures [15,16].

Unfortunately, refining x¥ and x°“ can lead to empty McCormick objects for
some p, indicating that these values are infeasible. This is problematic because any
subsequent computation with the object (x*,xY, x"(p),x°°(p)), such as relaxing
the objective function, is undefined. With the exception of [22], the refinement pro-
cedures used in previous studies were guaranteed to yield nonempty McCormick
objects due to special properties of the constraints being used [10,18]. In [22],
the occurrence of an empty object (v, vY, v, v°°) was handled by immediately
setting vV = v° = NaN, indicating the empty set, with the result that all sub-
sequent computations with this object also returned NaN. While this is workable,
it has some critical drawbacks. First, when these relaxations are used to form
lower bounding problems for branch-and-bound, the objective and/or constraints
may have NaN values at some points in the search space, which is problematic for
numerical solvers. Second, obtaining a NaN value at some p € P only indicates
that p is infeasible, but provides no information about how to explicitly reduce
the domain P to exclude p.

Empty objects create even more serious problems in McCormick-based meth-
ods for global dynamic optimization [10,11]. In these methods, x¥ and x°° are
computed as the solutions of a relaxed dynamic system solved using a standard nu-
merical integration code. At each time step, it is necessary to compute relaxations
of the differential equations using the current x°V and x°° as input. However, due
to technical details of the relaxation theory, these inputs are first modified by as-
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signing either z§¥ <+ ¢ or z{¢ « z¥ for some 7. This commonly leads to empty
objects, even when the relaxations are being computed for values of p that are
feasible in the original problem. Returning a NaN value as in [22] would cause the
integration code to terminate, and interpreting this outcome as infeasible would
be erroneous. In the current implementations of these methods, hybrid switching
conditions must be used to prevent the occurrence of empty objects, leading to
higher complexity, higher computational cost, and decreased numerical reliability.
Moreover, there is no known sensitivity theory for the class of hybrid systems used,
making it impossible to compute valid subgradients for optimization. Finally, there
is no clear way to extend the hybrid systems approach to handle the empty objects
that would arise from using constraints to refine x® and x°° in each time step,
as is done to great effect in the interval-based methods in [15,16]. Thus, better
methods for handling empty McCormick objects are critical for advancing global
dynamic optimization algorithms.

In this paper, we extend McCormick’s relaxation method to potentially empty
inputs. When the extended method is used to construct relaxations of the general
composition g(p) = f(x(p)) from relaxations of x(p), it yields functions gV and
g°¢ that are convex and concave on the entire p domain, respectively, and which
bound g(p) for all feasible p. This is in contrast to the standard McCormick
rules, which are strictly undefined for infeasible p and can give nonconvex results
if applied despite this. The extended relaxations are also shown to be inclusion
monotonic and agree with the standard relaxations for all nonempty inputs. After
some foundational definitions and results in §2, the extended rules for elementary
operations are presented in §3 and their properties are established. In §4, we show
that these rules can be composed to compute relaxations of any factorable func-
tion with the desired properties. Section 5 presents a simple relaxation refinement
method based on linear constraints to demonstrate how empty objects can be
generated and propagated through subsequent computations, leading to tighter
relaxations. Finally, concluding remarks are given in §6.

2 Extended McCormick Analysis

By analogy to interval arithmetic, McCormick’s relaxation rules can be viewed
as arithmetic operations on McCormick objects. This view has several advantages
and closely resembles the implementation of McCormick relaxations in code. This
section develops the basic definitions required by this view. We largely follow the
development in [9], but with the necessary modifications to accommodate empty
McCormick objects.

Definition 1 For any x",x" € R™, let [x",xV] denote the interval {x € R™ :
xF<x< XU}. Let IR™ denote the space of all nonempty intervals in R™. Moreover,
for any D C R", define ID = {X € IR" : X C D}.

Computing a McCormick relaxation of a function f : R®™ — R™ on some
X € IR™ results in four objects: upper and lower bounds on f(x) for all x € X,
denoted by f* and fY, and convex and concave relaxations of f on X, denoted by
fV(x) and £°°(x). At any single x € X, this data can be compactly represented by
the tuple F(x) = (f¥, £V, f°¥(x), f*°(x)). This motivates the following definition.
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Definition 2 Define the space of McCormick objects by

) )

MR"E{(XL xY XCV,XCC)ER"XR"anxR":ngxU}. (3)

Moreover, for D C R", define MD = {(XL7XU,XCV,XCC) e MR" : [x", xY] D}.

McCormick objects are denoted by script capital letters throughout. Moreover,
for any X € MR"™, the superscripts L, U, cv, and cc will be used to refer to the
components of X, as in X = (x,xY,x, x°).

The relaxation data for f described above can now be viewed as a function of
the form F : X — MR"™. More generally, operations on McCormick objects can
be viewed as functions of the form G : D C MR"™ — MR™. We refer to functions
mapping into the space MR™ as McCormick functions.

We now define empty McCormick objects, which are central to this paper.

Definition 3 Define the enclosure of a McCormick object X € MR"™ as the set
Encl(X) = {x e R" : x" < x <x"Y, x¥ <x <x°}.

A McCormick object X € MRR" is said to be empty if Encl(X) = ) and nonempty
otherwise. Finally, a function F : D C MR"™ — MR™ is said to preserve nonempti-
ness on D if F(X) is nonempty for every nonempty X € D.

In [9], the space MR™ was defined to include only nonempty objects. Therefore,
none of the methods or results therein apply to empty objects. The extension of
MR"™ to include empty objects in Definition 2 is therefore a major distinction be-
tween the present work and [9]. The next definition extends the notion of inclusion
(i.e., X1 C X2) used in [9] to a more general order relation that is well-defined for
empty objects.

Definition 4 Let X1, Xy € MR"™. We say that X1 < X» if:

L U L U
1. [Xlaxl] C [X27X2],
2. x77 > %357,
3. x7° < x5°.

Remark 1 Tt is straightforward to show that =< is a partial order on MIR"; i.e., it
is reflexive, antisymmetric, and transitive.

Definitions 5-9 introduce several properties of McCormick functions, culminat-
ing in the central notion of a relazation function. We then show in Theorem 1 that
the cv and cc components of a relaxation function provide convex and concave
relaxations with the desired properties outlined in §1.

Definition 5 For any X,) € MR", we say that X and ) are coherent, or X is
coherent to Y, if [x",xV] = [y",yV]. A set D € MR" is closed under coherence if,
for every coherent X, € MR", X € D implies that ) € D. If D is closed under
coherence, then @ € TR" is said to be represented in D if there exists X € D with
[x" xY] = Q. A function F : D C MR™ — MR™ is coherent if D is closed under
coherence and F(X) is coherent to F(Y) for every coherent X,y € D.
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Definition 6 A function F : D C MR™ — MR™ is (fully) inclusion monotonic
on D if F(X1) X F(Xz) for every X1, Xz € D satisfying X1 < Xo. F is coherently
inclusion monotonic on D if F is coherent and F(X1) <X F(X2) for every coherent
X1, X € D satisfying X1 < Ab.

Definition 7 For every A € [0, 1] and every coherent X7, X> € MR"™ with common
interval part X = [x",xV], define the convex combination Conv(\, X1, X2) =

(x", %Y, Ax$Y 4 (1 — N)xSY, Ax$C + (1 — A)x5°) € MR™.

Definition 8 F : D C MR" — MR™ is coherently concave on D if F is coherent
and, for every A € [0, 1] and every coherent X',y € D,

F(Conv(A, X,Y)) = Conv(A, F(X), F(Y)). (4)

Definition 9 Let f : D € R" — R™. A mapping F : D C MR" — MR™
is a relazation function for f on D if it is coherently concave on D, coherently
inclusion monotonic on D, and every X € D N MD satisfies f(x) € Encl(F (X)),
Vx € Encl(X).

As stated in §1, our aim is to develop a method for computing relaxations of
composite functions of the form g(p) = f(x(p)) that satisfy certain properties
even when the input objects X(p) are empty for some p. Theorem 1 shows that
this problem is solved by computing a relaxation function for f. In fact, Definition
9 has been designed to include precisely the conditions needed for this result.

Theorem 1 Let f : D C R®" — R™ and x : P C R™ — D and define the
composite function g : P — R™ by g(p) = f(x(p)), Vp € P. Let F : D C
MR™ — MR™ be a relazation function for £ on D. Let X = [x" xY] € ID be
represented in D, let x°¥,x°°: P — R" be convex and concave on P, respectively,
and define X : P — MR" by X(p) = (x",xV,x%(p),x*(p)), Vp € P. Finally,
define G : P — MR™ by

G(p) = (g",8", 87 (p),&*(p)) = F(X(p)), VpEP (5)
Then, g is convex on P, g is concave on P, and
g" <g(p) <g" and g (p) < g(p) <g“(p), Vpe P, (6)

where P* is the feasible set
P ={peP:x(p) e X and x*V(p) < x(p) < x*(p)}. (7)

Proof Choose any p € P*. Since F is a relaxation function, D is closed under
coherence. Since [x",xY] is represented in D, we have X(p) € D NMD. By (7),
x(p) € Encl(X(p)). Definition 9 then implies that

g(p) = f(x(p)) € Encl(F(X(p)) = Encl(G(p))- (8)

Therefore, (6) holds.
Next, choose any p1,p2 € P and A € [0,1] and define py = Ap1 + (1 — \)p2.
By the convexity and concavity of x¢V and x°¢,
X7 (pa) < Ax(p1) + (1 = A)x* (p2), (9)
x“(pa) 2 Ax*(p1) + (1 — A)x™(p2). (10)
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By Definitions 4 and 7, this implies that
Conv(X, X(p1), X (p2)) X X(Pa). (11)

The objects Conv(\, X(p1), X(p2)) and X(py) both have interval part [x~, xV],
so they are coherent and both are in D. Then, since F is coherently inclusion
monotonic on D,

F(Conv(A, X (p1), X(p2))) = F(X(pa))- (12)
Additionally, since F is coherently concave,
F(Conv(A, X(p1), X (p2))) = Conv(, F(X(p1)), F(X(p2)))- (13)
Combining, this gives

G(pr) = F(X(pPr)), (14)
= Conv(A, F(X(p1)), F(X(p2))),
= COHV()\,g(pl),g(pz)).

This implies that

g7 (Pa) < Ag™(p1) + (1 = N)g™ (p2), (15)
g(pa) > Ag“(p1) + (1 = N)g*(p2). (16)

Since p1 and p2 were chosen arbitrarily, it follows that g and g°® are, respec-
tively, convex and concave on P. 0O

The following corollary shows that relaxation functions also solve the simpler
problem of relaxing f over an interval X. In this case, there is no place for empty
objects to arise and the result is essentially equivalent to Lemma 2.4.11 in [9].

Corollary 1 Let f : D C R® — R™ and let F : D C MR" — MR™ be a
relaxation function for f on D. For any X = [XL, XU] € 1D that is represented in

D, define X(x) = (x,xY,x,x), Vx € X. Finally, define
(£ Y £ (x), F°(x)) = F(X(x)), Vxe X. (17)
Then, £ is convex on X, £°¢ is concave on X, and
1 < f(x) <Y and £ (x) < f(x) < £°(x), Vx e X. (18)

Proof The result follows from applying Theorem 1 with P = X and x“(p) =
x“(p)=x(p)=pflorallpe P. O

Remark 2 Coherent inclusion monotonicity was not required in the original defi-
nition of a relaxation function in [9]. This difference is not directly related to the
need to handle empty objects here. Rather, it is related to our focus on relaxing
composite functions g(p) = f(x(p)) as in Theorem 1, which is more general than
the relaxation considered in Corollary 1 and is the context in which empty ob-
jects arise. Coherent inclusion monotonicity is essential for Theorem 1, which has
no analogue in [9], but can be done without in Corollary 1, which is essentially
Lemma 2.4.11 in [9].
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In light of Theorem 1, the main goal is now to develop a method for computing
relaxation functions as per Definition 9. As with the existing McCormick relax-
ation method, we aim to do this by developing relaxation functions for a library
of elementary operations and then composing them recursively to construct relax-
ation functions for more complex functions. This task is taken up in §3. In the
remainder of this section, it remains to establish that the properties of relaxation
functions are actually preserved under composition. To facilitate this, we first in-
troduce the much simpler concept of a McCormick extension and show that, in the
presence of a few other properties, McCormick extensions are always relaxation
functions. This results in Theorem 2, which is analogous to the central result of in-
terval analysis linking interval extensions to inclusion functions [6]. Subsequently,
we show in Lemma 2 that all of properties required by Theorem 2 are preserved
under compositions.

Definition 10 Let D C R"™. A set D C MR" is a McCormick extension of D if
every x € D satisfies (x,x,x,x) € D. Let f : D — R™. A mapping F : D — MR™
is a McCormick extension of f if D is a McCormick extension of D and

F((x,x,x,x)) = (f(x),f(x), f(x),f(x)), VxeD. (19)

Lemma 1 Letf: D CR" — R™ and let F : D C MR"™ — MR"™ be a McCormick
extension of £. If F is inclusion monotonic on the set of nonempty inputs {X €
DNMD : Encl(X) # 0}, then every X € DNMD satisfies f(x) € Encl(F(X)),
Vx € Encl(X). In particular, F preserves nonemptiness on D N MD.

Proof Choose any X € DN MD. If Encl(X) = 0, then the result holds trivially.
Suppose Encl(X) # § and choose any x € Encl(X). Then, x € [x“,xV] ¢ D
and hence (x,x,x,x) € D and F((x,x,x%,x)) = (f(x),f(x),f(x),f(x)). There-
fore, f(x) € Encl(F((x,x,x,x))). Moreover, since both (x,x,x,x) and X have
nonempty enclosures and (x,x,X,x) = X, inclusion monotonicity implies that
F((x,x,%x,%x)) X F(X), and hence Encl(F((x,x,x,x))) C Encl(F(X)). Therefore,
f(x) € Encl(F(X)). O

Theorem 2 Let f : D C R" — R™ and let F : D C MR" — MR™ be a Mc-
Cormick extension of f. If F is coherently concave on DNOMD), coherently inclusion
monotonic on DNMD, and inclusion monotonic on {X € DNMD : Encl(X) # 0},
then F is a relazation function for £ on D NMD.

Proof The result follows immediately from Definition 9 and Lemma 1. O

The following lemma shows that all of the properties required by Theorem 2,
as well as some others, are preserved when McCormick functions carrying these
properties are composed.

Lemma 2 Let D1 C MR" and D2 C MR™ be closed under coherence and let
Fi: D1 — MR™ and Fo : Dy — MR*. Let D12 = {X € Dy : Fi(X) € D2} and
consider the composition Fa o Fi : D12 — MRF.

1. If F1 and F2 are coherent, then F2 o F1 is coherent;
2. If F1 and F2 preserve nonemptiness on D1 and D2, respectively, then Fa o F1
preserves nonemptiness on Diz;
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3.

If F1 and F2 are coherently concave on D1 and Da, respectively, and Fa2 is
coherently inclusion monotonic on D2, then Fa2 o F1 is coherently concave on
D12;

If F1 and F2 are coherently inclusion monotonic on D1 and D2, respectively,
then Fo o F1 s coherently inclusion monotonic on Di2;

If F1 and Fa are inclusion monotonic on {X € D1 : Encl(X) # 0} and {X €
D3 : Encl(X) # 0}, respectively, and F1 preserves nonemptiness on D1, then
F2 o F1 is inclusion monotonic on {X € D1z : Encl(X) # 0}.

Let fi : D1 C R™ — R™ and f2 : Do € R™ — R*, define D12 = {x € Dy :
f1(x) € D2}, and consider fa o f; : D12 — R¥. If F1 and Fa are McCormick
extensions of f1 and fa2, respectively, then Fo o F1 is a McCormick extension
Of f2 [e] f1.

Proof

1.

To show that Di2 is closed under coherence, choose any X € Di2 and let
Y € MR" be coherent to X. Since X is in Di2, it is also in Di, and since D;
is closed under coherence, Y € D;. Since Fi is coherent, it follows that F1(X)
and Fi () are coherent. But X’ € D13 implies that F1(X) € D2, and since D3
is closed under coherence, this implies that F1()) € D2. Therefore, Y € D12,
and since ) was chosen arbitrarily, D12 is closed under coherence.

To show that F2 o F; is coherent, choose any coherent X,) € Dj2. Since Fi
is coherent, it follows that F1(X) and F1(Y) are coherent. Then, since F2 is
coherent, it follows that F2 o F1(X) and F2 o F1()) are coherent. Since X and
Y were chosen arbitrarily, F2 o F; is coherent.

Choose any nonempty X € Di2. Since F1 preserves nonemptiness on D1, F1(X)
is a nonempty element of Da, and since F2 preserves nonemptiness on Da,

F2(F1(X)) is nonempty as well.

It follows from Part 1 of the proof that F2o0F7 is coherent. Choose any coherent
X,Y € Di2 and any A € [0, 1]. Since Fi is coherently concave on Dy,

F1(Conv(A, X,Y)) = Conv(\, F1(X), F1())) (20)

and F1(X) and F1(Y) are coherent. Since Fo is coherently concave on Do,
Fa(Comv(\, Fo(X), Fi(V) = Conv(A, Fa(Fi (X)), B(FAO)). (21
To combine these, additionally note that Fi(Conv(A,X,))) is coherent to
F1(X). Since F1(X) € D2 and Ds is closed under coherence, it follows that
F1(Conv(A, X,Y)) € Da. Then, since F2 is coherently inclusion monotonic on

D>, combining (20) and (21) yields

Fa(F1(Conv(A, X, 7)) = Com(\ BB (X)), B (), (22

which shows that F2 o F1 is coherently concave on Dis.
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4. Tt follows from Part 1 of the proof that F2 o F; is coherent. Choose any co-
herent X,) € Di2 such that X < ). Coherent inclusion monotonicity of
Fi1 on Dy gives Fi(X) = Fi(Y). Moreover, Fi1(X) and Fi(Y) are coher-
ent elements of D2, so coherent inclusion monotonicity of F2 on D2 gives
Fa(F1(X)) = Fo(F1(Y)). Therefore, F2 o Fi is coherently inclusion mono-
tonic on Dia.

5. Choose any X,Y € {Z € Di2 : Encl(Z) # 0} such that X < ). Inclu-
sion monotonicity of 71 on {Z € D; : Encl(Z) # 0} gives F1(X) = Fi (V).
Moreover, since F1 preserves nonemptiness on D1, F1(X) and Fi(Y) are el-
ements of Dy with nonempty enclosures. Thus, inclusion monotonicity of F2
on {Z € Dy : Encl(Z) # 0} gives Fao(F1(X)) = Fa(F1(Y)). Thus, Fz o Fi is
inclusion monotonic on {Z € D12 : Encl(Z) # 0}.

6. First it is shown that x € D12 implies (x,x,x,x) € Di2. For any x € D12, x €
D; implies that (x,x,x,x) € D1 because D1 is a McCormick extension of D;.
Because F1 is a McCormick extension of f; on D, we have F1((x,x,x,x)) =
(f1(x), f1(x), f1(x), f1(x)). Since x € D12, we have f1(x) € D2, which implies
that F1((x,x,%,x)) € D2 because D2 is a McCormick extension of D2. By
definition, this implies (x,x,x,x) € Di2.

To show that Fa o Fi is a McCormick extension of f2 o fi on D12, choose any
x € Dia. Since D2 is a McCormick extension of D12, (x,x,x,x) € Di2. Then,
since F2 is a McCormick extension of fo on Ds, we have

‘7:2(]:1((va7 X, X))) = ‘FQ((fl(x)vfl(x)vfl(X)vfl(x)))v
= (f2(f1(x)), f2(f1(x)), f2(f1(x)), f2(f1(x))). O

3 Extended McCormick Rules for Elementary Operations

This section presents extended McCormick rules for propagating potentially empty
McCormick objects through elementary functions. Specifically, we consider binary
addition, binary multiplication, and composition with common univariate func-
tions. In §4, these rules will be combined to construct relaxation functions for
arbitrary factorable functions using Lemma 2 and Theorem 2. In preparation,
several key properties are proven for each elementary function here, including co-
herent concavity, inclusion monotonicity, and the McCormick extension property.

3.1 The Cut Operation

We begin by establishing some properties of the Cut operation, which will be used
in the definition of the extended McCormick rules. In the following definition and
elsewhere, the min and max of vector arguments are taken elementwise.

Definition 11 Let Cut : MR™ — MR" be defined for every X € MR" by

Cut(X) = (x", xV, max(x"”,x%), min(x", x°)). (23)
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Lemma 3 For any coherent X1,X2 € MR™ with common interval part X =

[x", xY] and any X € [0,1],

max(x”, Ax7" + (1 — M)x5Y) < Amax(x”,x7") 4 (1 — \) max(x",x5"),  (24)
min(x7, Ax$¢ + (1 — A)x5%) > Amin(x", x5°) + (1 — M) min(x",x5).  (25)
Proof The proof follows directly from convexity of max(xL, -) and concavity of
min(xY,-)on R. O
Corollary 2 Cut : MR™ — MR" is coherently concave on MR".

Proof By Definition 11, Cut is clearly coherent. Choose any A € [0,1] and any
coherent X7, Xo € MR™. It suffices to show that

Cut(Conv(A, X1, X2)) = Conv(A, Cut(Xy), Cut(Xa)). (26)
This is an immediate consequence of (24) and (25). O
Theorem 3 Cut : MR" — MR" is inclusion monotonic on MR"™.

Proof Choose X1, X2 € MR"™ such that &1 < X2. We must prove that Cut(X1) <
Cut(X2). By Definition 11, it suffices to show that max(x}, x§") > max(x5,x5")
and min(x}, x§¢) < min(xy, x5%). Since X1 < X2, we have x§¥ > x5" and x¥ > x5.
Since max(a, b) < max(a’,b’) if a < a’ and b < ', this implies that max(x}, x§") >

max (x5, x5"). Analogous arguments show that min(x},x$¢) < min(xy,x5°). O

Corollary 3 Cut : MR™ — MR" is coherently inclusion monotonic on MR"™.

Proof Since Cut : MR™* — MR"™* is fully inclusion monotonic by Theorem 3, it
only remains to argue that it is coherent, which follows from (23). O

Theorem 4 Cut : MR"™ — MR" preserves nonemptiness on MIR™.

Proof The proof follows immediately from Definitions 3 and 11. O

3.2 Binary Addition

We now introduce the extended McCormick rule for binary addition. In the re-
mainder of the paper, we will refer to binary addition and a few other functions
using the triplet notation (4-,R?,R) that explicitly specifies the domain R? and
codomain R. This allows us to reuse the same symbol to denote the McCormick
version as well without ambiguity, as in (4+, MR? MR).

Definition 12 Define (+, MR? MR) by
HXY) =X+ Y =@ +ytat 4y 2 g T ), (20
where (z%, 2%, 2%, 7°) = Cut(X) and (y",yY, 7, 7°) = Cut(Y).

Aside from the use of Cut, which originates in [9], Definition 12 is the same
as McCormick’s original rule [4]. However, on account of Definition 2, the domain
MR? includes empty objects here, whereas it included only non-empty objects in
prior work. Therefore, it is still necessary to prove the desired properties of the
rule on this extended domain.
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Theorem 5 (+,MR? MR) is a McCormick extension of (+,R?,R) on MR2.

Proof For any (z,y) € R?, the object ((x,y), (z,%), (z,v), (x,y)) must be in MR?.
Thus, MR? is a McCormick extension of R?. Choose any (X,)) € MR? such that
X = (z,z,z,z) and Y = (y,v,y,y) and let Z = X + V. It suffices the show that
Z=(x+4+y,z+y,x+y,z+y), which follows immediately from (27). O

Theorem 6 (+, MR? MR) is coherently concave on MR?.

Proof Choose any coherent (X1,)1), (X2,)V2) € MR? and denote their common in-
terval part by X xY = [z, 2V] x [y", yV] without subscripts. Let 21 = X1 +)1 and
Z9 = Xo + V2. Furthermore, choose any A € [0,1] and let Xy = Conv(A, &1, X2),
Yy = Conv(\, V1,)2), and Z) = Xy + V. We must show that

Z)\ t COHV(/\, 217 ZQ). (28)

Since (X1,)V1) and (X2,)2) are coherent, Z1 and Z2 are coherent as well, with
common interval part X + Y. By Definition 7, this implies that the interval part
of Conv(A, Z1, 22) is also X + Y. Similarly, the convex combinations Xy and Y,
have interval parts X and Y, respectively, which implies that the interval part of
Zy =X\+ Y\ is X +Y as well. Therefore, the left-hand and right-hand sides of
(28) have the same interval parts. Then, to prove (28), it only remains to show
that 25 < Az 4+ (1 —A)25" and 25° > Az{° 4 (1 — A)25°. Using Lemma 3, we have
28" = max(2", 2f) + max(y",5%"),
= max (2", Az§" + (1 — N)a5") + max(y", \f” + (1 — N)ys"),
< Amax(z", z5¥) + (1 — \) max(z", 25")
+A ma’X(yLa yf\’) + (1 - >\) max(yL, yg\’)’
¥, a1Y) + max(y", yi))
+ (1 — A)(max (2", 25") + max(y", y5")),

=21 + (1 —N)23".

= A(max(x

This proves that 25" < A2V + (1 —X)2z57, and 25 > A27°+ (1 —A)25° can be proven
analogously. 0O

Theorem 7 (+, MR? MR) is inclusion monotonic on MRZ.

Proof Choose any (Xi1,)1), (X2,)2) € MR? with (X1,)1) < (X2,)2). By Defini-
tion 4, it follows that X1 < X2 and )1 = Va. Let Z1 = X1 + V1 and 23 = Ao + )k.
We must prove that Z1 < Z». Since the interval parts of Z; and Z» are computed
using standard interval arithmetic, [21', 2] C [2%, 23] by Theorem 2.3.7 in [9]. It
remains to prove that z{¥ > 25¥ and 2§° < 25°. Since max(a,b) < max(a’,b’) if
a <a' and b < b, the relations X1 < X and Y1 < )» imply that

25 = max(e}, o) + max(h, o),

> max(z%, z5") + max(yz,y5"),

cv
= Z9 .

This proves that 2{¥ > 25Y, and 2{° < 25° can be proven analogously. 0O
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Corollary 4 (—l—,MRQ,MR) is coherently inclusion monotonic on MR2.

Proof Since (+, MR?, MR) is fully inclusion monotonic by Theorem 7, it only re-
mains to argue that it is coherent, which follows immediately from (27). O

Theorem 8 (+, MR? MR) preserves nonemptiness on MRZ.
Proof The result follows from Lemma 1 with Theorems 5 and 7. O
Theorem 9 (+, MR? MR) is a relazation function for (+,R% R).

Proof The result follows from Theorem 2 with Corollary 4 and Theorems 5-7. O

3.3 Binary Multiplication

The conventional McCormick multiplication rule is often written in two different
ways. These two forms are equivalent for nonempty objects. However, we show be-
low that they are not equivalent for empty objects, and only one of them retains the
desired properties. Therefore, our extended McCormick rule for binary multiplica-
tion is a particular form of the conventional rule. The two forms are defined below
as (x,MR? MR) and (x,MR? MR). Subsequently, we show that (x, MR? MR)
satisfies all of the required properties on the extended domain MR2.

Definition 13 Define 1", ¢, ¥, 9 : R x MR — R by

ov _faz®ifa>0 cc _ az®“ifa>0
v e, X) = {axcc otherwise ’ ¥ (e, X) = {amcv otherwise ’ (29)
% (a, X) = min(az®, az), (o, X) = max(az®, az ). (30)
Definition 14 Define (x, MR? MR) by
x(X,Y) = XY = (25, 2Y, 2, 2, (31)

where, 2%, 2V, 2%V, and 2°° are defined as follows with X = Cut(X) and Y =

Cut(Y):

2 = min(zlyt, 2Py, 20y, 2V Y), (32)

2V = rnax(acLyL7 :cLyU, DzUyL, DSUyU)7 (33)

2% = max (¥ (y", X) + ¥ (2", V) — 2y, (34)
(", X) + 9 (@, V) —2yY),

2% = min(y°(y", X) + (29, ) — y", (35)

Py, X) + (@t Y) — atyY).
Definition 15 Define (x, MR? MR) by
x(X,Y) = (2%, 29,57, 5%, (36)

where z" and zY are defined by (32)-(33) and 2 and 2°° are defined as in (34)-
(35) but with ¥ and 1°° replaced by ¥V and 1, respectively.
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For any nonempty X € MR, we have 7 < z°¢, and it follows that ¥V (a, X) =
% (a, X) and °°(a, X) = 9°°(a, X), Yoo € R. Thus, x(X,Y) = X(X,)) for all
nonempty X, € MR. Accordingly, prior literature uses Definitions 14 and 15
interchangeably, although Definition 15 is more common and is used in [9]. In con-
trast, if either X or ) is empty, then x (X, ))) may not equal x(X,)) (specifically,
when 2% > 2 or y*¥ > y°°). The results below show that x(X,Y) still satisfies
the appropriate properties in this case, while §3.3.1 shows by counterexample that
x(X,Y) does not.

Theorem 10 (x,MR? MR) is a McCormick extension of (x,R* R) on MR?.

Proof For any (z,y) € R?, the object ((x,y), (x,v), (z,y), (z,y)) must be in MR
Thus, MR? is a McCormick extension of R?. Choose any (X,)) € MR? such
that X = (z,z,z,2) and Y = (y,v,y,y), and let Z = XY. It will be shown that
Z = (zy, zy, zy, zy). Equations (32)—(33) clearly give 2" = 2Y = zy, so it remains
to prove that 2 = 2°° = xy. The definition of Cut gives X = Cut(X) = (x,z,,z)
and Y = Cut(Y) = (v, ¥, ,y). Substituting these into (34) gives

ch — max(d)cv(yL, X_') + ’(/)CV(:L.L7:)_)) _ zLyL,leV(yU’ .X_‘) + wCV(wU,;)_)) _ nyU)7
= max(yz + zy — zy, yz + TY — TY),

= xy.
This proves that 2V = zy, and 2°° = zy can be proven analogously. 0O
Lemma 4 will assist in proving the coherent concavity of (X, MR2, MR).

Lemma 4 Choose any coherent X1, X> € MR and let X = [z", 2] without sub-
seripts denote their common interval part. Choose any A € [0,1] and let X\ =
Conv(A, X1, Az). Let X1 = Cut(Xy), Xo = Cut(Az), and Xy = Cut(Xy). For any
o € R, we must have

wcv(av XX) < /\wcv(av /?1) + (1 - A)wcv(av /?2)’ (37)
P, Xn) > M (e, K1) + (1 = MY (a, Xa). (38)

Proof If a > 0, then
VY (o, Xy) = amax(z™, Az? + (1 — A)z$Y). (39)
Since o > 0, a max(z", -) is convex on R, and hence

<V (a, X)) < Mo max(xL, 1)+ (1 = N[« max(a:L, x5")], (40)
= AQZJCV(O‘? /?1) + (1 - )‘)wcv(av ‘)22)

Similarly, if o < 0, then
Y (o, Xy) = amin(zY, Az§¢ + (1 — A)z$°). (41)
Since a < 0, amin(zY,-) is convex on R, and hence

P (o, Xy) < Ajamin(z?, 259)] + (1 — \)[emin(zV, 25°)], (42)
=XV (a, X1) + (1 = N (a, A).

This proves (37), and (38) can be proven analogously. 0O
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Theorem 11 (X,MRQ,MR) is coherently concave on MRZ.

Proof Choose any coherent (Xi,)1), (X2,)2) € MR? and let X x Y = [z", 2] x
[yL,yU] without subscripts denote their common interval part. Let Z; = X1
and Z2 = X2)s. Furthermore, choose any A € [0, 1] and let X\ = Conv(A, X1, Xa),
Yy = Conv(A, Vi, d0), and Z5 = X,\Y,. We must show that

Z)\ t COHV()\,Zl,ZQ). (43)

Since (X1,Y1) and (X2,)2) are coherent, Z1 and Z» are coherent as well with
common interval part XY. By Definition 7, this implies that the interval part
of Conv(\, Z1,Z2) is also XY. Similarly, the convex combinations Xy and Y
have interval parts X and Y, respectively, which implies that the interval part of
Zy = XYy is XY as well. Therefore, the left-hand and right-hand sides of (43)
have the same interval parts. Then, to prove (43), it only remains to show that
< A2+ (1= N)25Y and 25° > Azf¢ + (1 — A)25°

Letting X = Cut(X) for all X € MR, by Definition 14, we have

250 = max(v (y", ) + v (%, D) — 2y, (44)
PV (yY, ) + ¢ (@, D) - 2yY).

Considering the first term in the max in (44) and applying Lemma 4 to 4" (y", X)
and ¥ (™, Py),

G (", )+ (@ D) - oy <A [u 0 ) + o @ ) - 2ty (45)
=) [ 05 ) + 0, ) — 2F].
Similarly for the second term in (44), applying Lemma 4 to ¢<¥(yY, X\) and
(29,5 gives
DV (y”, ) + 9 (2, ) — 2y
<A [quV(yU’/fl) +wCV($U7371) _ mUyU]
+ (1= N [0 @7 ) + (@Y, Vo) — 2V (46)

Since max(a, b) < max(a’,b’) if a < a’ and b <V, it follows that

25 < max() [ (5, B1) + 4 (2, ) — 2y ]
+ (1= ) [ " &) + v (", D) 2ty
A Y ) + 0™ @ ) oy
(1= ) [ (6, ) + v (@Y, ) — 2Ty ).
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Since max is convex on R2, it follows that

257 <Amax(P (y", X)) + ¢ (@, ) — by,
vy, B) + 07 (@, ) — 2y
+ (1= N) max(v™ (y", X2) + 7 («", I2) — 2"y,
U (Y, o) + 9 (@Y, 02) — 2TyY).

By Definition 14, the previous inequality is exactly 257 < Azf¥ + (1 — N\)z5".
An analogous proof can be given for 25 > Az{° + (1 — A\)25°. O

Theorem 12 (x,MR? MR) is inclusion monotonic on the set {(X,Y) € MR? :
Encl(X) # 0, Encl(Y) # 0}.

Proof Choose any nonempty (X1, 1), (X2,)2) € MR? with (X1,)1) < (X2,)2).
It follows that X1 < X5 and Y1 < Ys. Let 21 = X131 and 22 = X2)e. We must
prove that Z; < Zs.

Let X1 = Cut (&), Xo = Cut(A2), V1= Cut()1) and Y2 = Cut()2). Theo-
rems 3—4 imply X1 < X2 and Y1 < Vs and that X, X2, V1 and Vs are nonempty.

We now prove Z1 < Z2 by applying Theorem 2.4.23 from [9], which establishes
inclusion monotonicity of the alternate multiplication rule (%,MRQ, MR) on the
set of nonempty McCormick objects. A little care is required because [9] uses a
slightly different definition of inclusion monotonicity.

Let 21 = %(X1,)1) and Zo = X(X2,)b). By Definition 3, the fact that
Encl(X1) # 0 implies that =t < 2V, 29 < 2§ and [z}, 2] N [25Y, 25°] # 0.
Moreover, the interval [z}, 2] x [£5Y, 2] is a nonempty subset of R?. The same
is clearly true of Y1, X2, and V.. Using this subset notation, Theorem 2.4.23 in [9]
establishes that x is inclusion monotonic in the sense that

[x%,xtlj] x [z§¥,21°] C [gc]f,xg} x [z5",z5°] and (47)
[yt ur'] < [wi", u5°] C [yz, w5 ] x [ys", 5]
— [Zl ) Zl ] ['2(1:\/3 Zl ] [Z%a 2;] X [égvv égc] (48)

To apply this result to (x, MR?, MR), we observe that
X(X, V) = x(X,)), VX, YEMR st. Encl(X) # 0, Encl()) # 0. (49)
Thus, 21 = Z1 and 22 = 2o, so (48) gives
o1, 21] x [21", 2§°] C [25, 25 ] x [25", 25°]. (50)
It follows immediately that Z1 < Z2, as desired. O

Theorem 13 (X,MRQ,MR) is coherently inclusion monotonic on MR2.
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Proof Choose any coherent (X1, 1), (X2, Y2) € MR? with (X1,)1) < (X2, Y2) and
let X xY = [z%, 2Y] x [y", yY] without subscripts denote their common interval
part. It follows that X1 < X5 and Y1 < Ya. Let 21 = A1Y1 and 22 = A2)a. We
must prove that Z; < Z3. Since the interval parts of Z1 and Z2 depend only on
[z, 2Y] and [y, yY], we must have [2], 2] = [z, 25]. It remains to prove that
21V > 25V and 27 < 25°.

Let X1 = Cut(&1), Y1 = Cut()1), X2 = Cut(Az) and Y2 = Cut(D%:). It will be
shown that
25" = max(¥ (y", Xz) + 97 (2", ) — 2ly", (51)
U (yY, o) + 4 (@Y, 2) — 2VyY),
< max(wcv(yLv )21) + wcv (mL’ 3_}1) - xLyLa
(Y, ) + 9 (2, ) —ayY) = 2
Since max(a, b) < max(a’,b’) if a < a’ and b < ¥, (51) holds provided that
(YT, X)) + 4 (2, D) — 2yt <yt X)) + o (@ ) — 2y, (52)
(Y, Xo) + 9 (@Y, 00) — 2y <u(yY, ) + 9 (@, ) — 2Ty (53)
If y“ > 0, then ¥ (y", X)) = y“max(z", r3") and P (y-, )?}) = yFmax(z, z{).
Therefore, X1 =< X implies that wcv(yL,_Xg) < Y(y", &), If y& < 0, then
P (Y, X)) = yLmin(mU_, x5°) and wcv(_yL, X1) = y"min(zY, 2§°). Therefore, X1 <
Ao still implies ¢ (y", o) < (", X1). By similar reasoning, it can be verified
that = (2", 12) < ¢ (2", ), (¥, X2) < ¢ (y”, &), and Y= (2, In) <

(29, 1). Thus, (52) and (53) hold. This proves that 2" > 25¥, and 2§¢ < 25¢
can be proven analogously. O

Theorem 14 (X,MRQ,MR) preserves nonemptiness on MR2.
Proof The result follows from Lemma 1 with Theorems 10 and 12. O
Theorem 15 (x,MR? MR) is a relazation function for (x,R? R).

Proof The result follows from Theorem 2 with Theorems 10-13. O

3.3.1 A Multiplication Example

Let z : P — R be an arbitrary function on P = [—2,2]. We consider computing
relaxations of the composite function
f(p) = —2x(p) (54)

on P given relaxation information for  on P in the form of a McCormick function
X : P — MR. When computing McCormick relaxations, a scalar multiplication
like this is typically handled as a composition with a univariate function, not as
a binary multiplication. However, it can be viewed as a special case of the binary
multiplication f(p) = y(p)x(p) with y(p) = —2, and this provides a simple example
to illustrate the distinction between x and x. Accordingly, we consider the binary
multiplications F(p) = Y(p) x X(p) and F(p) = V(p)xX(p), respectively, with
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V(p) = (=2,-2,-2,-2) and X(p) = (", 29,2 (p), z°°(p)) defined as in the left
panel of Figure 1. Note that X (p) is nonempty for all p € P* = [—0.87,0.87] and
empty otherwise. Even so, ¢V and x°“ are convex and concave, respectively, on all
of P. As shown in the middle and right panels of Figure 1, the two multiplication
rules agree for all p such that X(p) is nonempty. However, they clearly differ
at infeasible p values. While F (p) remains nonempty for all p, f and f°° are
clearly not convex and concave. In contrast, F(p) takes empty values for some
p ¢ P* to ensure that f¥ and f°¢ are convex and concave on all of P, which is the
desired behavior. This difference can be traced back to the fact that ¥V (o, X (p)) #
Y (a, X(p)) and ¥°°(a, X(p)) # z/A)CC(oz, X(p)) when a = —2 and X is empty.

To reiterate the significance of this difference, suppose that X can be inter-
preted as a relaxation of z in the sense that it satisfies z(p) € Encl(X(p)) for
all p in some feasible set of interest, P c P. For example, P®* may be de-
fined as the subset of P for which some constraint g(z(p),p) < 0 holds, and X
may be the result of a domain reduction procedure that begins with a nonempty
initial relaxation Xp(p) and yields a tighter relaxation X(p) =< Xo(p) such that
z(p) € Encl(X(p)) for all p € P* (a simple example of such a procedure is given
in §5). In such a situation, it follows that P2 ¢ P*  and the fact that f< is a
valid underestimator for f on P* implies that it is also a valid underestimator on
P (ie., where it “matters”). At the same time, f¢ is well-defined and convex
on all of P, meaning that it can be easily minimized to obtain a lower bound for
f on P2 In contrast, the standard McCormick rule (as stated in [9]) yields an
underestimator f° that is valid on all of P, but nonconvex, which is much less
useful. More generally, we will eventually show that F(p) has the right properties
to be propagated through subsequent McCormick operations if needed, while F (p)
does not.
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Fig. 1 Left: McCormick object X(p) corresponding to z(p) in (54) defined by its bounds
2 and 2V (solid), convex component z°V(p) (filled triangles), and concave component x°°(p)

(open triangles). Middle: McCormick object .7:'(p) corresponding to f(p) in (54) defined by its
bounds f& and fU (solid), convex component f°V(p) (filled squares), and concave component

fe¢(p) (open squares). Right: McCormick object F(p) corresponding to f(p) in (54) defined by
its bounds f and fVY (solid), convex component fV(p) (filled circles), and concave component

f<¢(p) (open circles). For all p € [—0.87,0.87], fev (p)/fcc(p) are identical to fV(p)/f°(p).

3.4 Composition with Univariate Functions

This section presents an extension of McCormick’s rule for relaxing compositions
with univariate functions such as In(z), exp(z), sin(z), 2™, —z, etc. Compared to
binary addition and multiplication, the composition rule requires a much more
significant modification to handle empty inputs. We first state the new rule and
subsequently discuss its relation to the original rule from [4] as presented in [9].

Let £ be a library of univariate functions (u, B, R), where B C R. To propogate
McCormick relaxations through a function from this library, several pieces of infor-
mation about the function must be available. These requirements are very similar
to those of the original rule (see Remark 3) and are formalized in Assumption 1.
Recall that 1B denotes the set of all intervals contained in B and M B denotes the
set of all McCormick objects with interval part contained in B.

Assumption 1 For every (u, B,R) € £, functions u : [B — IR, u,u : IB x
R — R, and ™", 2™ : IB — R U {—00, +00} are known such that:

1. (u,1B,IR) is an inclusion monotonic interval extension of (u, B,R) on IB.

2. For every X € IB, v (X,-) and u““(X,-) are convex and concave on R, re-
spectively, and satisfy u®V(X,z) < u(z) < u®(X,z) for all x € X.

3. For every X € IB, ™"(X) is a minimizer of u*(X,-) on R and z™**(X) is a
maximizer of u®(X,-) on R; i.e., limg_, gmin( x)[u™ (X, 2)] = infrer[u™ (X, 2)]
and limg_, gmax (x) [u“ (X, x)] = sup,cp[u“ (X, x)].

4. For any X1,X2 € IB with X1 C Xa, we have vV (X2,z) < u®(X1,z) and
u®(Xo, ) > u®(X1,x) for all z € X;.



20 Jason Ye, Joseph K. Scott

5. u®([z, z], x) = u([z, x], z) = u(x) for every x € B.

Remark 3 Assumption 1 is analogous to Assumptions 2.3.8 and 2.4.25 in [9] but
includes two generalizations. First, u®Y (X, -) and u®“(X, ) are defined on all of R,
and are convex and concave there, instead of only on X as in [9]. Second, z™™
WA minimize vV (X, ) and maximize u®°(X,-), respectively, on R, rather
than on X. These changes are necessary for handling empty McCormick objects
without causing domain violations.

and =

Remark 4 The Supplementary Information for this paper provides all of the in-

formation required by Assumption 1 for a variety of common univariate functions.

For some, the provided definitions of u®¥, u®¢, ™", and ™% differ from those in

standard libraries due to the differences highlighted in Remark 3.
The extended composition rule is defined as follows.
Definition 16 Let (u, B,R) € L. Define (u, MB, MR) by
u(X) = (25,29, 2%, 2%, (55)
L

where [z, 2Y] = u(X) is the interval extension specified by Assumption 1.1 and

2% = 4 (X, min(z°°, 2™ (X))) + v (X, max(z°¥, 2™ (X))) (56)
—u™ (X, 2™ (X)),

2% = u® (X, min(z°, 2™ (X))) + u°°(X, max(Z, 2™**(X))) (57)
—u™ (X, 2™ (X)),

where X = Cut(X). If 2™®(X) = o0, then (56) is replaced with

ov _ [u(X,z%) if wm?n(X) = 400 (58)
u(X,z%) if 2™ (X) = —o0
Similarly, if ™%(X) = too, then (57) is replaced with
ce  Jul(X,z%°) if 2™*(X) = 400
== {uCC(X, V) if 2™ (X) = —o0 (59)

Remark 5 All of the cases (56)—(59) can be represented by the single definitions

2= lim [u®(X,min(z°, z)) + v (X, max(z%", z)) — u (X, z)], (60)
—xmin (X))

2= lim [u*(X,min(z, z)) + u*°(X, max(z, z)) — v (X,z)]. (61)
r—rmax (X))

Since uV (X, -) is convex on R, it must be continuous, and therefore (60) is equiv-
alent to (56) whenever z™(X) is finite. Similarly, (61) is equivalent to (57)
whenever z™#*(X) is finite. If 2™ (X) = +o0, then as = approaches z™*(X),
the terms uV (X, max(z®,z)) and ¢« (X, min(z°,z)) in (60) eventually sim-
plify to u*V(X,z) and u(X,z°), respectively. Thus, we have from (60) that
2%V = u®(X,Z°), as in (58). Similarly, if z™"(X) = —oo, then analogous ar-
guments show that (60) simplifies to 2V = (X, z), as in (58). Analogous
arguments also show that (61) simplifies to (59) if #™**(X) = to0.
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To explain the relationship between the definition of (u, MB,MR) above and
the standard rule in [9], a few preliminary results and definitions are needed.

The next proposition will also be used extensively in proving several properties of
(u, M B, MR).

Proposition 1 Let ¢°,¢°° : R — R and 2™, 2™ € R U {—oc0, +o0}. Assume
that g¢v is convex and g (x) approaches the infimum of g on R as x approaches
™, Then, g is non-increasing for all x € (—oo,z™™) and is non-decreasing for
all z € (z™™ +00). Likewise, assume that g° is concave and ¢°(x) approaches
the supremum of g°° on R as x approaches x™**. Then, g°° is non-decreasing for
all x € (—o0, ™) and is non-increasing for all x € (x™**, 400).

Proof We first prove that ¢ is non-decreasing for all z € (z™", 4-00). If z™" =
+00, then there is nothing to prove. Suppose 2™ < +o00 and choose any 1, z2 €
(2™ +00) such that 21 < x2. Choose any e > 0. Since g°¥(z) approaches the
infimum of g on R as x approaches ™ there must exist z € (2™, x1] such that
9V (2) < g% (x2) + €. Since z < x1 < 2, there must exist A € [0, 1] such that
1 = Az + (1 — A)z2. By the convexity of ¢°¥, this implies that

9" (z1) < Ag™(2) + (1 = N)g™" (22), (62)
<AgT (z2) +€) + (1 = N)g™ (22),
< g%V (z2) +e.

Since (62) holds for any € > 0, we have ¢*'(z1) < ¢g“¥(z2). Finally, since this
is true for any z1,22 € (™", +00), we have shown that gV is non-decreasing
on (™" 00). The facts that ¢ is non-increasing on (—oo,z™"), ¢°°

g“© is non-
decreasing on (—oo, ™), and ¢°¢ is non-increasing on (™%, 0o) can all be proven
analogously. 0O

max'

We now define modified versions of x and ™%, denoted 2™ and x ,
that bear the same meaning as ™™ and z™* in [9]. This provides a critical link
between the extended and standard composition rules. The necessary interpreta-
tion of ™™ and ™ is then established in Lemma 5 using Proposition 1.

min

Definition 17 For all (u, B,R) € L, define a:minl, 2™ 1B 5 R by
2™ (X) = mid(2", 2Y, 2™ (X)), (63)
2™ (X) = mid(z", 2¥, 2™ (X)), (64)
where mid returns the middle value of its three arguments.

Lemma 5 For any (u, B,R) € L and any X € 1B,

1. u®(X, ") reaches its minimum on X at the point i’ (X), and
2. u®“(X,-) reaches its mazimum on X at the point ™% (X).

Proof Choose any (u, B,R) € £ and any X € IB. To prove the first claim, first
assume that z™*(X) < 2% < 2Y. Since u®¥(X, x) approaches its infimum on R as
x approaches ™" (X), Proposition 1 shows that u" (X, -) is non-decreasing on X.
Thus, u¥(X,-) must reach its minimum on X at z* = mid(z", 2%, 2™ (X)) =
™ (X). Next, assume that 2" < 2V < 2™ (X). In this case, Proposition 1 shows
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that (X, -) is non-increasing on X. Therefore, vV (X, -) must reach its minimum
on X at YV = mid(z¥, 2", 2™*(X)) = mmi“/(X). Finally, assume that % <
2™ (X) < 2U. In this case, 2™ (X) = 2™ (X) by definition, and since u“" (X, z)
approaches its infimum on R as x approaches ™™ (X), it must also approach its

infimum on X as x approaches z™"(X). This again shows that u® (X, -) reaches
min’
(

its minimum on X at z X), and completes the proof of the first claim. The
second claim can be proven analogously. O
Definition 18 now gives the standard composition rule [4] as presented in [9].
Definition 18 Let (u, B,R) € L. Define (a, MB, MR) by
W(Xx) = (25,29, 2%, 5%, (65)
where [z, 2Y] = u(X) is the interval extension specified by Assumption 1.1 and
2% = u® (X, mid (2%, 2, 2™ (X)), (66)
£°¢ = (X, mid (2%, 2°°, 2™ (X)), (67)
where X' = Cut(X).

Remark 6 Definition 18 uses u(X), v, v, ™" (X), and 2™ (X) from this
paper. For this to be consistent with [9], these quantities need to satisfy Assump-
tions 2.3.8 and 2.4.25 in [9]. The required properties of u(X), u’, and u®° all
follow from Conditions 1, 2, 4, and 5 of Assumption 1 in this paper, while the
required properties of i (X) and X (X) were proven in Lemma 5.

Remark 7 Actually, in both [9] and McCormick’s original paper [4], 2V and 2°°
are given as
2% = u™ (X, mid(2%, 2%, 2™ (X)), (68)
£°° = 4 (X, mid (2%, 2, 2™ (X))). (69)

However, it is straightforward to show that (68)—(69) are equivalent to (66)—(67)
for all nonempty X € MB. We prefer (66)—(67) because they are easier to relate
to Definition 16.

Lemma 6 establishes the connection between the extended and standard com-
position rules by showing that they agree for all nonempty inputs. The proof also
sheds some light on the relationship between (56)—(57) and (66)—(67).

Lemma 6 Let (u, B,R) € L and choose any X € MB. If Encl(X) # 0, then
u(X) = a(X). (70)

Proof Choose any X € MB such that Encl(X) # () and let X = Cut(X) and
Z = u(X). By Definition 16 and Remark 5,

2= lim  [u(X, min(z°, z)) + v (X, max(z?, z)) — (X, )], (71)
z—™in(X)
2= lim [u*(X,min(z, z)) + u*(X, max(z, z)) — v (X,z)]. (72)

T—zmax(X)

First, assume that ™" (X) € X. Since Encl(X) # 0, we have 2 < z°°. Thus,
one of the following sub-cases must occur:
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xmin(X) < jcv S CECC,
zov S jCC' < xmin(X)7
.’Z’CV S {Emln(X) S a—jcc‘

W=

In the first sub-case, (71) gives
2V = lim [u”(X,min(z°, z)) + v (X, max(z%", z)) — v (X, z)], (73)
c—xmin (X))
= lim  [u™(X,2) + u™ (X, 2) - u™ (X, 7)), (74)
r—x™in(X)
=u”(X,zY). (75)

Since #™(X) € X, Definition 17 implies that xmin/(X) = 2™"(X). Therefore,
z% = mid(zV, z°°, i (X)). Plugging this into (75) gives (66) as claimed.
In the second sub-case, (71) gives

2Y = lim [(X, min(z°, z)) + v (X, max(z?, z)) — (X, z)], (76)
r—xmin(X)

= lim [u"(X,z2°) +u"(X,z) —u" (X, )], (77)
Z—)ZH“H(X)

=u(X,z°). (78)

Since z™"(X) € X, we have 2°° = mid(z°, 7, i (X)). Plugging this into (78)
gives (66) as claimed.

In the third sub-case, (71) gives

2V = lim [u¥(X,min(z°, z)) + vV (X, max(z%7, z)) — v (X, z)], (79)

z—rzmin(X)

= im0+ (X 2) - u (X ), (80)
= ™ (X, 2™ (X)). (81)

Since z™"*(X) € X, we have z™*(X) = mid(a’cc",i‘cc,xmin/ (X)). Plugging this
into (81) gives (66) as claimed.

Next, assume that z™(X) ¢ X. One of the following sub-cases must occur:
Loz™(X) <zt <2Y,

2. 2t <29 < 2™n(X).

Since Encl(X) # 0, the definition of Cut (Definition 11) implies z™ < 7V < #°° <
zV. Thus, in the first sub-case, we have z™"(X) < z° < z°. We have already
shown in (73)—(75) that (71) gives 2% = u (X, z) if 2™ (X) < °¥ < 7. Since
2 <3V < 7% < 2Y) we have 2% = v (X, mid(z, 7%, z)). Moreover, Defi-
nition 17 implies that z™™ (X) = mid(z", 2V, 2™" (X)) = z". Hence, it follows
that 2% = (X, mid(z", 2, ™ (X)), which gives (66) as claimed.

In the second sub-case, it follows from Encl(X) # (0 and from the definition
of Cut (Definition 11) that we must have ¥ < 7° < z™(X). We have already
shown in (76)—(78) that (71) gives 2 = u® (X, z°) if z° < 7°° < ™" (X). Since
¥ < 7% < 7°° < 2V, we have 2% = uY(X, mid(z®,z°, zV)). Moreover, Defi-
nition 17 implies that 2™ (X) = mid(z", 29, 2™(X)) = 2V. Hence, it follows
that z¢ = vV (X, mid(z", z°°, ™ (X))), which again gives (66) as claimed.

Since X was chosen arbitrarily, we have shown that (71) and (66) are equivalent
for all X € MB satisfying Encl(X') # 0. The equivalence of (72) and (67) under
this condition can be proven analogously. This proves that u(X) = 4(X). O
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Remark 8 The equivalence (70) is only guaranteed when both the standard and
extended rules use the same u®’ and u°°. The properties of © and u°® required
by Assumption 1 here are stronger than in [9] (see Remark 3). Thus, any v’ and
u®® used in the extended rule can always be used in the standard rule and will
satisfy (70). However, some choices of ©“” and 4 commonly used in the standard
rule cannot be used in the extended rule, and modifying these as needed may lead

to violations of (70) in practice.

The last result shows that u(X) = @(X) whenever X is nonempty. In contrast,
if X is empty, then u(X) # 4(X). The results below show that u(X) still satisfies
the appropriate properties in this case. §3.4.1 shows by counterexample that @(X)
does not.

Theorem 16 For every (u, B,R) € L, (u,MB,MR) is a McCormick extension of
(u, B,R) on MB.

Proof Choose any (u, B,R) € L. By the definition of MB, for any x € B, we
must have (z,z,z,z) € MB. Hence, MB is a McCormick extension of B. Now,
choose any X € MB with X = (z,z,z,x). Moreover, let Z2 = u(X). It will be
shown that Z = (u(z), u(x), u(x),u(x)). By Condition 1 of Assumption 1, we have
2% = 2Y = u(z). Thus, it remains to prove that 2z = 2°¢ = u(x).

By the definition of Cut (Definition 11), X = Cut(X) = (z, z, x, ). Therefore,
(60) yields

2V = lim [u™(X,min(z,t)) + u® (X, max(z,t)) — v (X, 1)]. (82)
t—ramin (X)

If 2™ (X) < z, then
2= lim WYX, t) +uV (X, z) — (X, 1), (83)

t—xmin(X)
=u"(X,2).

Alternatively, if 2™ (X) > z, then

2V = lim [u(X, )+ u” (X, 1) — u(X, 1)), (84)

s gmin (X)
=u"(X,2).
Therefore, in either case, we have 2% = vV (X, z). But since X = [z, 2], Condition

5 of Assumption 1 ensures that 2 = vV (X, z) = u(z). It can be shown in a similar
way that z°¢ = u(x). Therefore, 2V = 2°° = u(x) as desired. O

Theorem 17 For all (u, B,R) € L, (u,MB,MR) is coherently concave on MB.

Proof Choose any (u, B,R) € L. By definition, MB is closed under coherence.
Choose any coherent X1, X> € MB and let X = [z", 2] without subscripts denote
their common interval part. Let Z1 = u(X1) and Z2 = u(X>2). Furthermore, choose
any A € [0,1] and let X\ = Conv(A, X1, X2) and 2 = u(X,). We must show that

Zy = Conv (A, Z1, Z2). (85)

Since X1 and X are coherent, Z; and Z3 are coherent as well with common interval
part u(X). By Definition 7, this implies that the interval part of Conv(\, Z1, Z2)
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is also u(X). Similarly, the convex combination X has interval part X, which
implies that the interval part of Zx = u(X)) is u(X) as well. Therefore, the left-
hand and right-hand sides of (85) have the same interval parts. Then, to prove
(85), it suffices to show that 2§ < Az{¥ + (1 — A)25Y and 25° > Az{° + (1 — A)25°
Only the first inequality will be shown. The second is proven analogously

Suppose first that 2™ (X) is finite. By Definition 16, in this case 2§, 25", and
25" are all given by (56). In particular,

25 = u® (X, max (257, 2™ (X)) 4+ v (X, min(z5, 2™ (X)) (86)
ucv (X xmin (X)),

where Xy = Cut(X)). Using the definition of 5’ and the convexity of max(-,)
with respect to both arguments,

™In(X)) = max(max(z”, Az§Y + (1 — A)z$”), 2™ (X)), (87)
< max(Amax(z"”, #7") + (1 — \) max(z", 25"), ™" (X)),
= max(A\z{" + (1 — \)z5", 2™ (X)),
< Amax(z5Y, 2™ (X)) 4+ (1 — A) max(z5¥, 2™ (X)).

—CV
max (T,

Since max(z§, xm_in(X)) is to the right of ™" (X) and u¥ (X, -) is non-decreasing
to the right of ™™ (X) by Proposition 1, Eq. (87) implies that

u® (X, max(z5), ™" (X))) (88)
<u™ (X, Amax(z5¥, 2™ (X)) + (1 — A) max(z5", 2™ (X))).
By the convexity of «“(X,-) on R, (88) further implies that
(X, max (a5, 2™ (X)) < A [u™ (X, max(af", 2™ (X)) | (89)
+ (1= 2) [ (X, max(as”, 2™ (X)))]

By an analogous sequence of arguments using the facts that min(-,-) is concave
with respect to both arguments, min(z$¢,z™"(X)) is to the left of z™*(X),
u®¥ (X, ) is non-increasing to the left of ™ (X), and u® (X, -) is convex on R, we
can establish that

(X, min (35, 2™ (X)) < A [u (X, min (a5, 2™ (X))] (90)
T (1-)) [uCV(X, min(zS, xmin(X)))] .
Combining (86), (89), and (90), we have
25 = u (X, max(z5, 2™ (X)) (91)
+ u (X, min(z5E, 2™ (X)) — u (X, 2™ (X)),
< A (X, max(z5", ™" (X))
+ (X, min(z5, 2™ (X)) — v (X, 2™ (X))]
+ (1= N[ (X, max(z5", 2™ (X)))
+u™ (X, min(z5°, 2™ (X)) — v (X, 2™ (X)),
<A+ (1= Nz,
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as desired. ‘
Suppose now that ™" (X) = +o00. By Definition 16, in this case z{", 25", and
25" are all given by (58). Thus, beginning from (58) we have,

2 =u™(X, 7X), (92)
= u™(X, min(z", 25)),

= (X, min(zY, Az 4 (1 — A\)z5°)).

Since z™*(X) = 400, u'(X,-) is non-increasing on all of R. Using this along
with the facts that min(zV,-) is concave on R and u¥(X,-) is convex on R, (92)
implies that

25 < u(X, Amin(zY, 25%) + (1 — A) min(z", 25%)), (93)
< M (X, min(zY, 25)) + (1 — N)u® (X, min(zY, 25°%)),
= (X, 20 + (1 — Mu™ (X, 75°),
=21 + (1 —N)23".

This proves 25" < Az1" + (1 — A)z3" for the case where ™7 (X) = +o0. The case
where 2™ (X) = —oo can be proven analogously. O

Theorem 18 For all (u, B,R) € L, (u, MB,MR) is inclusion monotonic on {X €
MB : Encl(X) # 0}.

Proof Choose any (u, B,R) € £ and any nonempty X1, X2 € MB with X1 < X».
Let 21 = u(&X1) and 22 = u(X2). We must prove that Z; < 2.

We prove Z1 =< Z2 by applying Theorem 2.4.29 from [9], which establishes the
inclusion monotonicity of (4, MB, MR), but using slightly different definitions of
MB and inclusion monotonicity than are used here. Let Z; = (X;) and Z5 =
@(X2). By Definition 3, the fact that Encl(X1) # () implies that 2% < 2V, z§¥ <
25¢, and [z¥, 2] N [2§Y, 2] # 0. Moreover, the interval [z}, V] x [5¥, 5] is
a nonempty subset of B x R. The same is clearly true of X>2. Using this subset
interpretation, Theorem 2.4.29 in [9] establishes that 4 is inclusion monotonic in
the sense that

[m%,x?] x [217,21°] C [azlg“,scg] x [257, 25°7] (94)

= [21, 21] x [£5Y,21°) C [27, 23] x [£5", 55°]. (95)

Since (94) follows from the fact that X1 < X2, (95) holds. To apply this result to
(u, MB,MR), we use Lemma 6, which shows that

4(X) =u(X), VX e€MB st. Encl(X) # 0. (96)

Applying this relation to X7 and X2 shows that Z, = Z1 and Z5 = Zo. Substitut-
ing these relations into (95) gives

o, 21'] x [217, 28] C [27, 23] x [257, 25°]- (97)

From this, it follows immediately that Z; < Zs, as desired. O
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Theorem 19 For all (u, B,R) € L, (u,MB,MR) is coherently inclusion mono-
tonic on MB.

Proof Choose any (u, B,R) € £ and any coherent X;, X2 € MB with X1 < X»
and let X = [xL,xU} without subscripts denote their common interval part. Let
Z1 = u(X1) and Z2 = u(X2). We must prove that Z; < Za. Since the interval
parts of 21 and Z2 depend only on [z, 2Y], we must have [z}, 2] = [2%, 25]. Tt
remains to prove that 27V > 25V and 27° < 25°.

If both X} and X2 are nonempty, then the result follows immediately from
Theorem 18. Thus, we assume that at least one of A3 and A% is empty. Since
X1 <X Xs, we cannot have X; nonempty and X> empty. Therefore, there are only
two remaining cases: (i) both X7 and X are empty, and (ii) A1 is empty and
X2 is nonempty. For these remaining cases, we prove that z{¥ > 25. The proof
that 2{° < 25° is analogous. Let X1 = Cut(&1) and X2 = Cut(X2) and note that
X1 = X by Theorem 3. Recall from Remark 5 that

27V = lin_a(x)[ucv(X7 min(zZ5%, z)) + v (X, max(z1",z)) — v (X, z)], (98)
£y min
25" = lim  [u(X, min(z5°, z)) + v (X, max(z5", z)) — v (X, z)].

z—amin(X)
Case (i): Encl(X1) = 0, Encl(X2) = 0.

Since X» is empty, X2 must satisfy 5¢ < Z5¥. Since X1 < X», we can addition-
ally conclude that ¢ < z5° < 5" < Z{". Thus, we consider five subcases based

on where the value of ™" (X) falls within this chain of inequalities.

Case (i)(a): z™™(X) < z7° < #5° < 75 < 75¥. By (98), 25 simplifies to
u®(X,z5") and 27" simplifies to v (X, z7"). Since u'(X,-) is convex, it is non-
decreasing to the right of ™" (X) by Proposition 1. Since z™"(X) < 7§’ < z¢",
it follows that 2{¥ = vV (X, Z]") > v (X, z5") = 25", as desired.

Case (i)(b): T7° < z™"(X) < #5° < 75° < #5¥. By (98), 25¥ simplifies to
u (X, 2™ (X)) +u (X, 25Y)—uY (X, 2™ (X)) and 2§ simplifies to u® (X, #5¢)+
u® (X, 75Y) —uY (X, 2™ (X)). Comparing these term-wise, we will have 2§¥ > 25V
as desired if u® (X, z5%) > v (X, 2z™*(X)) and v (X,z5") > u (X, 7$"). The
former follows from the definition of z™™(X), while the latter follows from the
fact that u°'(X,-) is non-decreasing to the right of z™"(X) (Proposition 1) and
2™ (X) < 757 < 75"

Case (i)(c): T7° < 7§ < 2™™(X) < 75° < #5¥. By (98), 25¥ simplifies to
u (X, T5%) 4+ uv(X,75Y) — u (X, 2™ (X)) and 2§V simplifies to u¥(X,Z{) +
u® (X, 75Y) —uY (X, 2™ (X)). Comparing these term-wise, we will have 2§¥ > 25V
as desired if vV (X, Z°) > vV (X, z5°) and vV (X, z{") > v (X, 75"). The former
holds because u (X, -) is non-increasing to the left of 2™ (X) (Proposition 1) and
7$¢ < 75° < 2™(X), while the latter holds because u®' (X, -) is non-decreasing to
the right of xmin(X) and :l:min(X) <zs¥ <z{.

Case (i)(d): z1° < 75° < 757 < xmi_“(X) < z{”. By (98), 25" simplifies to
u (X, 25%)+u (X, 2™ X)) —u (X, 2™ (X)) and 27" simplifies to u®¥ (X, Z{°)+
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u® (X, 75Y) —uY (X, 2™ (X)). Comparing these term-wise, we will have 2§¥ > 25V

as desired if uCV(X,xl ) > u (X, 25°) and u® (X, z5Y) > u(X,2™(X)). The

former holds because u®¥ (X, ) is non-increasing to the left of 2™ (X) (Proposition
1) and Z§° < #5° < 2™™(X), while the latter holds by the definition of z™"(X).

Case (i)(e): E‘j“ < 35 < 3y < 35 < a™P(X). By (98), 25V simplifies to

u® (X, z5%) and 27" simplifies to vV (X, Z{%). Since v (X, ) is non- increasing to

the left of z™"(X) and Z§¢ < Z§° < ™" (X), it follows that z§¥ = u®' (X, Z§°) >
u® (X, z5°) = 25, as desired.

From the previous five subcases, we conclude that z{¥ > 25" in Case (i).
Case (4i): Encl(X1) = 0, Encl(X2) # 0.
Since A7 is empty, X2 is nonempty, and X1 < Xa, the definition of Cut (Deﬁnl—

tion 11) and Theorems 34 imply that A is empty, X> is nonempty, and X; < Xs.
In turn, these conditions imply the four requirements below:

75 < 75, (99)
7Y < 7%, (100)
5 < 75°, (101)
s < 35, (102)

Assign the four values Z5', Z{°, 5", and Z5° to the notations 71, r2, r3, and r4 in
such a way that r1 < re < rz < rs. We now consider five subcases based on where
™" (X) lies within this chain of inequalities.

Case (ii)(a): z™™(X) < r1 < r2 < r3 < ra. By (98), 25¥ simplifies to
u®(X,z5") and 27" simplifies to uV (X, Z{"). Since u®’ (X, ) is non-decreasing to
the right of 2™ (X) and z™™(X) < 75" < 75", it follows that 2{" = u¥ (X, z7") >
u® (X, 75") = 257, as desired.

Case (ii)(b): r1 < 2™™(X) < ro < 73 < r4. Considering (99)-(102), either
r1 =5 or r; = T7°.

Case (ii)(b)(i): 11 = z5". By (98), 23" simplifies to u (X, ™ (X)) and 2§¥
simplifies to v (X,71"). By the definition of ™" (X), it follows that 2{" =
u™V (X, ZY) > u® (X, 2™(X)) = 257, as desired.

Case (i) (b)(ii): r1 = Z5°. By (98), 25" can be simplified to u¥ (X, 2™ (X)) +
uv(X,75Y) — u (X, 2™ (X)) and 2§V simplifies to u® (X, 7“) + uCV(X z{") —
u® (X, z™"(X)). Comparing these term-wise, we will have 2§’ > 25" as desired
provided that u® (X, Z5%) > u® (X, z™"(X)) and v’ (X, z5") > u® (X, z5"). The
former follows from the definition of z™"(X), while the latter holds because
u¥(X, ) is non-decreasing to the right of z™"(X) and z™*(X) < z5¥ < 7§

Case (ii)(c): 11 < ro < z™*(X) < r3 < r4. The inequalities (99)-(102) imply
that max(z5", 21°) < min(z5°, #{"). Therefore, we must have 75" < ™" (X) < 75°
and 7{¢ < ™*(X) < #5¥. Then, by (98), 25" simplifies to u¥ (X, z™"(X)) —|—
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u (X, 2™ (X)) —u® (X, 2™ (X)) and 2§ simplifies to u¥ (X, 27°)+u ¥ (X, ") —
u® (X, z™(X)). Comparing these term-wise, we will have 2{¥ > 25" as desired
provided that u¥ (X, Z{¢) > u¥ (X, 2™ (X)) and vV (X, Z7") > v’ (X, 2™ (X)).
Both the former and the latter follow from the definition of 2™ (X).

Case (ii)(d): 11 < r2 < r3 < 2™®(X) < r4. Considering (99)—(102), either
rqg = 7" or rq4 = TS,

Case (it)(d)(i): T4 = z". By (98), 25" can be simplified to u®V(X,z5%) +
u (X, 2™ (X)) —u (X, 2™7(X)) and 2§ simplifies to u¥ (X, 25¢)+u ¥ (X, z7")—
u® (X, z™"(X)). Comparing these term-wise, we will have 2§’ > 25" as desired
provided that u® (X, z5°) > u(X,z5) and u®(X,z{") > u(X,z™"(X)).
The former holds because u°'(X,-) is non-increasing to the left of z™*(X) and
7$¢ < 75° < 2™ (X), while the latter follows from the definition of ™™ (X).

Case (ii)(d)(ii): ra = TS°. By (98), 25" simplifies to u'(X,z™"(X)) and
25V simplifies to u¥ (X, z5°). By the definition of ™" (X), it follows that 2§ =
u (X, Z75°) > u (X, 2™ (X)) = 25, as desired.

Case (ii)(e): 1 < r2 < r3 < rqg < 2™P(X). By (98), 25" simplifies to
u® (X, z5°) and 2z{" simplifies to u' (X, Z{°). Since vV (X, ) is non-increasing to
the left of z™"(X) and Z{° < 7§° < 2™ (X), it follows that 2§¥ = u®' (X, Z§°) >
u (X, 75%) = 25", as desired.

From the previous five subcases, we conclude that z2{¥ > 25" also holds in Case
(i). O

Theorem 20 (u, MB,MR) preserves nonemptiness on MB.
Proof The result follows from Lemma 1 with Theorems 16 and 18. O
Theorem 21 (u, MB,MR) is a relazation function of (u, B,R).

Proof The result follows from Theorem 2 with Theorems 16-19. O

3.4.1 A Composition Example

Let z : P — R be an arbitrary function on P = [—2,2]. We consider computing
relaxations of the composite function
f(p) = exp(z(p)) (103)

on P given relaxation information for  on P in the form of a McCormick function
X : P — MR. Accordingly, let u = exp, let (u, MR, MR) and (4, MR, MR) denote
the extended and standard relaxation functions for v defined above, and let F(p) =
u(X(p)) and F(p) = a(X(p)) with X (p) defined as in the left panel of Figure 2.
Note that X (p) is nonempty for all p € P* = [—0.87,0.87] and empty otherwise.
Even so, ¥ and 2°¢ are convex and concave, respectively, on all of P. As shown
in the middle and right panels of Figure 2, the two composition rules agree for all
p such that X(p) is nonempty. However, they clearly differ at infeasible p values.
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While F (p) remains nonempty for all p, f°¢ is clearly not concave. In contrast, F (p)
takes empty values for some infeasible p to ensure that f¢V and f°° are convex
and concave on all of P, which is the desired behavior. Although the standard
rule failed by producing a nonconcave fCC in this case, in general its behavior is
unpredictable when X (p) is empty; f¢ may be nonconvex, F (p) may be empty,
or 4(X(p)) may be undefined due to a domain violation (this can occur when
u®(X,-) and u®“(X,-) are not defined on all of R).
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Fig. 2 Left: McCormick object X (p) corresponding to z(p) in (103) defined by its bounds
z& and 2V (solid), convex component x°V(p) (filled triangles), and concave component x°°(p)

(open triangles). Middle: McCormick object F(p) corresponding to f(p) in (103) defined by its
bounds f¥ and fU (solid), convex component f°V(p) (filled squares), and concave component

fee (p) (open squares). Right: McCormick object F(p) corresponding to f(p) in (103) defined by
its bounds f™ and fY (solid), convex component f°V(p) (filled circles), and concave component

£(p) (open circles). For all p € [~0.87, 0.87], f"(p) and f°<(p) are actually identical to £ (p)
and f°°(p), respectively.

4 Natural McCormick Extension

In this section, we define the natural McCormick extension of a factorable func-
tion, which is obtained by recursively applying the rules defined in the previous
section to a sequence of elementary operations that defines the function. Using the
composition results (Lemma 2) from §2, we then prove that this provides a valid
relaxation function for the original function, which can be used to obtain convex
and concave relaxations via Theorem 1 and Corollary 1.

To define factorable functions precisely, following [9] we first define the notion
of a computational sequence, which is essentially an ordered list of elementary op-
erations along with some indexing maps that connect the inputs of each operation
to the outputs of earlier operations. Next, we define the functions created by ap-
plying the operations in this list recursively up to a generic step k (termed factors),
which ultimately produces the complete function encoded by the list (termed the
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natural function). The notation below is heavier than is usually necessary to intro-
duce these concepts, but it offers the precision needed to clearly define the natural
McCormick extension and establish its properties.

Definition 19 Let n;,no,nf € N. An L-computational sequence with n; inputs,
n, outputs, and ny factors is a pair (S, m,) where:

1. S is a finite sequence of pairs {((ox, B, R), (kaRk_ldek))}Zini+1a where
(ok, By, R) is an elementary operation and (mj,, R*~!, R%) is an input selection
map. Specifically, every element of S is defined by one of the following options:
(a) (ox, By, R) is either (+,R? R) or (x,R% R) and 7 : R¥"1 — R? is defined

by 7 (v) = (vs,v;) for some integers ¢,5 € {1,...,k— 1}.
(b) (ok, Bk,R) € L where L is a library of univariate functions (see §3.4) and
7k : R®71 = R is defined by 7, (v) = v; for some integer i € {1,...,k—1}.

2. m : R™ — R™ is an output selection map defined by mo(v) = (vi1), .- -, Vi(n,))

for some integers i(1),...,i(no) € {1,...,n¢}.

Definition 20 Let (S,7,) be an L-computational sequence with n; inputs and
no outputs. Define the sequence of factors {(vk, Dy, R)},2, as follows:

1. For k=1,...,n;, D =R™ and v, (x) = x, Vx € Dy,
2. Fork=n;+1,...,n5, D = {x € D1 : mp(v1(x),...,v5—1(x)) € B} and
vE(x) = o o T 0 (v1(X), ..., vk—1(X)), Vx € Dx.

The set Ds = Dy, is called the natural domain of (S,7,), and the natural function
(fs, Ds,R™) is defined by fs(x) = mo 0 (v1(X),...,vn;(x)), Vx € Ds.

Definition 21 A function f: D C R™ — R"™ is called L-factorable if there exists
an L-computational sequence (S, m,) with n inputs and m outputs such that the
natural function (fs, Ds, R™) satisfies D C Ds and f = fs|p.

We are now prepared to define the natural McCormick extension of an L-
computational sequence (and hence one possible natural McCormick extension
of an L-factorable function) using the extended McCormick rules from §3. Since
each (or, Bk, R) in the sequence is one of the elementary operations considered in
§3, McCormick extensions (o, M B, MR) satisfying all of the required properties
have already been established. We also require McCormick versions of the input
selections maps, (7, MR*~!, MIR?*), which simply select the same element(s) from
the input vector as the corresponding real-valued version.

Definition 22 Let (S,7,) be an L-computational sequence with n; inputs and
no outputs. Define the sequence of relaxation factors {(Vk,Dk,MR)}Zil, with
Dy C MR"™, as follows:

1. For all k = 1,...,n;, D = MR™ and Vi (X) = Xk, VX € Dy,

2. Forallk=mn;+1,...,nf, Dy = {X € Di—1 : mp o (Vi(X),..., Ve_1(X)) €
MBy} and Vi (X) = o o i 0 (Vi(X), ..., Vie—1(X)), VX € Dx.

The natural McCormick extension of (S, 7o) is the function (Fs,Ds, MR"*) de-

fined by Ds = Dy, and Fs(X) =m0 (V1(X),...,Vn, (X)), VX € Ds.

Definition 23 Let f : D € R™ — R™ be an L-factorable function. Then, for
any L-computational sequence describing f, the natural McCormick extension
(Fs,Ds,MR™) is called a natural McCormick extension of f.



32 Jason Ye, Joseph K. Scott

The next two results establish the properties of the natural McCormick ex-
tension, ultimately concluding that it is a relaxation function, as desired. In the
proof by induction for establishing Theorem 22, the fact that (ox, MBg, MR) sat-
isfies the required conditions is evident if ox corresponds to either (4+, MR? MR),
(x,MR? MR), or (u, MB, MR), as defined in §3.

Theorem 22 Let (S,7,) be an L-computational sequence with natural function
(fs, Ds,R™). The natural McCormick extension (Fs,Ds, MR") is a McCormick
extension of (fs, Ds,R™*) on Ds. Moreover, it is coherently concave and coherently
inclusion monotonic on Dg, is fully inclusion monotonic on {X € Ds : Encl(X) #
(0}, and preserves nonemptiness on Ds.

Proof Consider the sequence of factors {(vk, Dk, R)},Z, and the sequence of re-
laxation factors {(Vi, Dk, MR)},;7 . To set up an inductive argument, choose any
K € {n;+1,...,ns} and assume that, for all k < K, (Vi, Di, MR) is a McCormick
extension of (vg, Dg,R) on Dy, is coherently concave and coherently inclusion
monotonic on Dy, is fully inclusion monotonic on {X € Dy : Encl(X) # 0}, and
preserves nonemptiness on Dg. This assumption is straightforward to verify for
K = n; + 1 because, for every k < n; + 1, we have vi(x) = zp and Vi (X) = X.
Assuming it holds for an arbitrary K, we now prove that Vi satisfies these con-
ditions as well. Recall that

vk (X) = ok ok o (V1,...,VK—1),
Vi (X)=o0okomgoWVi,...,Vk_1).

Since mx merely selects one or two of its arguments, the inductive hypothesis im-
plies that mx o (V1,...,Vk_1) is a McCormick extension of mx o (v1,...,vx—_1) on
Dk 1, is coherently concave and coherently inclusion monotonic on D _1, is fully
inclusion monotonic on {X € Dk _1 : Encl(X) # 0}, and preserves nonemptiness
on D _1. Moreover, regardless of the identity of the operation (ox, Bx,R), the re-
sults in §3 ensure that (ox, MBg,MR) is a McCormick extension of (o, Bx,R)
on MBg (Thm. 5, 10, 16), is coherently concave on MBg (Thm. 6, 11, 17), is
coherently inclusion monotonic on MBg (Cor. 4, Thm. 13, 19), is fully inclu-
sion monotonic on {X € MBg : Encl(X) # 0} (Thm. 7, 12, 18), and preserves
nonemptiness on MBg (Thm. 8, 14, 20). Given these facts, Parts 2-6 of Lemma
2 show that (Vk,Dk,MR) is a McCormick extension of (v, Dk,R) on Dk, is
coherently concave and coherently inclusion monotonic on Dk, is fully inclusion
monotonic on {X € Dk : Encl(X) # 0}, and preserves nonemptiness on Dg. By
induction, this holds for every K € {1,...,ns}, and the result then follows from
the definition of (Fs,Ds, MR"). O

Corollary 5 The natural McCormick extension (Fs,Ds,MR"™) is a relazation
function of the natural function (fs,Ds,R™*) on Ds.

Proof The result follows immediately from Theorems 2 and 22. O

5 A Relaxation Refinement Operation

This section describes a constraint-based relaxation refinement algorithm that
can be used to tighten the relaxations used in reduced space global optimization
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algorithms (see discussion in §1). This algorithm is very simple and only applies to
linear constraints. It is included here primarily as a concrete example of how empty
McCormick objects can be generated in the first place, and hence why we have
emphasized the ability to compute with such objects throughout this paper. We
begin by defining the notion of a relaxation refinement operator for a given set of
constraints, which is analogous to the definition of a relaxation function for a given
real function. Theorem 23 then shows that relaxation refinement operators have the
desired behavior for use in reduced space global optimization; i.e., they produce
convex and concave relaxations of the function of interest that are potentially
tighter but still valid over the feasible domain. This use case is explored further
by example in §5.1.

Definition 24 Let g : R® — R". A function (I,MR"™ MR") is a relazation
refinement operator for the constraints g(x) < 0 if it is coherently concave, coher-
ently inclusion monotonic, and satisfies

Encl(I(X)) D {x € Encl(X) : g(x) <0}, VX €MR".

Remark 9 For a relaxation refinement operator to be useful, Encl({(X)) should
be a strict subset of Encl(X) for at least some X, but this is not required by the
definition.

Theorem 23 Letx: P C R" — R™ and g : R"* — R". Let X : P — MR"*
be a McCormick function with components X (p) = (x",xY,x%(p),x*°(p)) such
that x¥ and x°¢ are conver and concave on P, respectively. If (I, MR™* MR"*)

is a relazation refinement operator for the constraints g(x) < 0, then the object
defined by

X*(p) =1(X(p)), VpeP
satisfies

1. X% and x*¢ are convex and concave on P, respectively, and
*,L *,U *, *, fe
2. x7" <x(p) <x7° and x*V(p) < x(p) < x°°(p) for all p € P°**, where

pfeas = {p epP:x"< x(p) < xY, x“(p) < x(p) < x*°(p), g(x(p)) < O} .

Proof Let x, g, X, and X* be defined as in the theorem statement and assume
I is a relaxation refinement operator for g(x) < 0. To prove the first conclusion,
choose any p1,p2 € P and any A € [0, 1] and define py = Ap1 + (1 — A)p2. Since

x% and x°¢ are convex and concave, it is straightforward to show that

X(pa) = Conv(A, X(p1), X(p2))- (104)
Since [ is coherently inclusion monotonic, it follows that
I[X(pa)] = I[Conv(X, X (p1), X (p2))]- (105)
Since I is coherently concave, this implies that

11X (pa)] = Conv(A, I[X (p1)], I[X (p2)])- (106)
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By definition, this is equivalent to
X (pa) = Conv(A, X7 (p1), X" (p2)). (107)
By Definition 4, this implies that

x"(pa) < AxP(p1) + (1= A)x"% (pa2), (108)
X*,Cc(p)\) Z )\X*,Cc(pl) + (1 _ )\):>(>"7CC(I)2)7 (109)

which establishes convexity and concavity of x**¥ and x*°® on P, respectively.

To prove the second conclusion, choose any p € P, By the definition of
P2 e must have x(p) € Encl(X(p)) and g(x(p)) < 0. By Definition 24, this
implies that x(p) € Encl(I(X(p))) = Encl(X*(p)). Therefore, x*" < x(p) < x*Y
and xV(p) < x(p) < x"°°(p), as desired. O

The goal in the remainder of this section is to define a specific relaxation refine-
ment operator for linear constraints. To do so, we require a notion of intersection
between two McCormick objects. This is defined next and several useful properties
are subsequently proven.

Definition 25 Define (N, MR? MR) by

XNY = (max(z", "), min(z?, "), max (2", y), min(z°, y°°)) (110)
if max(z"™, ") < min(z",y"), and otherwise by

XNy = (min(z’,yV), max(e", "), max(@",y"), min(z", V). (111)
Remark 10 When max(z", y") > min(zV, yY), the interval parts of X and ) do
not overlap. The value we assign to X MY in this case is arbitrary because there
is no reason to do any further computations with such an intersection in the
applications we have in mind (see Remark 11). However, it is useful to have X NY
produce an element of MR even in this case so that concepts such as coherent
concavity and inclusion monotonicity, which were defined for functions mapping
into MR, can be applied to N without caveat. Thus, we use (111) in this case,

which defines X N )Y as an empty element of MR, rather than (110), which does
not produce an element of MR.

Lemma 7 For any X,Y € MR,
Encl(X) NEncl(Y) = Encl(X¥ N Y). (112)

Proof Choose any X', Y € MR and any z € R. The point z is in Encl(X) NEncl())
if and only if

max(z", 2%) < z < min(z", ), (113)
max(y",y*") < z < min(y", y°°).
On the other hand, z is in Encl(X NY) if and only if

max(z", y") < z < min(z", y), (114)

max(z”,y"") < 2z < min(z°°, y°).

The result follows from the fact that (113) implies (114) and vice versa. O
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Theorem 24 (N, MR? MR) is coherently concave on MR?.

Proof Choose any coherent (X1, V1), (X2,)2) € MR? and let X x Y = [z, zY] x
[y¥,yV] without subscripts denote their common interval part. Let Z1 = X3 N )4
and Zy = A>N)s». Furthermore, choose any A € [0, 1] and let Xy = Conv(\, X1, X2),
Yy = Conv(\, V1,I0), and Zx = Xy N Yx. We must show that

Z)\ t COHV(/\, 217 ZQ). (115)

Since (X1,)1) and (X2,)-) are coherent, Z; and Zy are coherent as well. By
Definition 7, Conv(\, Z1, Z2) must also be coherent to Zi. Similarly, the convex
combinations X and Y, are coherent to X7 and )i, respectively, which implies
that Z, = X N Y, is coherent to Z; as well. Therefore, the left-hand and right-
hand sides of (115) have the same interval parts. Then, to prove (115), it only
remains to show that z§¥ < Azf¥ 4+ (1 — A)23" and 25° > Az{° + (1 — X)25°. We
prove the former and note that the latter follows from analogous arguments. If
max(z", y¥) < min(zY, yY), then the intersections defining 21, 22, and Zy are all
defined by (110). From (110), we have

23 = max(Az7" + (1 = AN)23", Ayi" + (1= Nyz") (116)
< Amax(z7",y7") + (1 — M)max(z5",y3"),
=217 4+ (1 = N)25",

where the inequality follows from convexity of max on R?. Alternatively, if max(z", y") >
min(mU,yU), then the intersections defining 21, Z2, and Z, are all defined by
(111). From (111), we have

25 = max(z", y"™) (117)
= Amax(z1, yr') + (1 — )max(z3, y3),

=21 + (1= N\)z5".
O
Theorem 25 (N, MR? MR) is coherently inclusion monotonic on MRZ.

Proof Choose any coherent (X1,)1),(X2,)2) € MR? with (&X1,)1) =< (X2,)2),
andlet X xY = [z, 2Y]x[y", yV] without subscripts denote their common interval
part. By Definition 4, it follows that X1 < X2 and Y1 < Ma. Let Z; = X1 N1
and Z2 = X> N Y2. We must prove that Z; = Z>. Since the interval parts of Z;
and Z2 depend only on [z%,2Y] and [y", y"], we must have [z}, 2] = [z, 2]. It
remains to prove that 2§V > 25Y and 2{° < 25°.

Suppose first that max(z",y") < min(zY,y"), so that the intersections defin-
ing Z1 and Z, are given by (110). In this case, z{¥ > 25" and 2{° < 25° hold
if

max(z7",y7") > max(z3’,y5"), (118)
min(z, 45°) < min(z, 55°). (119)
Since X1 =X X2 and Y1 < Yo, Definition 4 implies that =V > x5, 2{° < x5°,

yi¥ > y5', and yi¢ < y5°. Thus, the inequalities (118)—(119) follow from the fact
that max(a’,b’) > max(a,b) and min(a,b) < min(a’,b’) when a < a’ and b < V.
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Next, suppose that max(z"™, ") > min(z",3Y), so that the intersections defin-
ing Z1 and Z5 are given by (111). In this case, Z1 = Z2 because (111) only depends
on the input bounds. Thus, we trivially have 27" > 25" and 27° < 25°. O

We now apply the McCormick intersection to define a valid relaxation refine-
ment operator for constraints of the form Ax = b with A € R™*™ and b € R"~.
The basic idea is to consider all possible rearrangements of the individual con-
straints into the form

= . 12
TR A +Z A (120)
Ji#k

For each one, we then take the natural McCormick extension of the right-hand
side using the extended McCormick rules from §3 and intersect the result with the
original enclosure Xj. The complete refinement operator based on this approach
is defined in Algorithm 1.

Algorithm 1 A relaxation refinement operator for Ax = b
1: function RELAXREFINE(X, A, b, tol)
X + Cut(X)
for i + 1 to n. do
for k < 1 ton do
if |A;x| > tol then
dated b; —Aij )
A T Ay T 2k ( Am7 ) A
Xk - Xk n X}\:pdated
end if
end for
10: end for
11: return X
12: end function

The next several results prove that Algorithm 1 defines a valid relaxation
refinement operator.

Theorem 26 The function (I, MR"™ , MR"™) defined by Algorithm 1 satisfies
Encl(I(X)) D {x € Encl(X) : Ax =b}, VX e MR".

Proof Choose any X € MR" and any x € Encl(X) such that Ax = b. Suppose
X is given as input to Algorithm 1. Clearly, we have x € Encl(X) upon entry
to the algorithm, and it follows that x € Encl(X) when line 6 is reached for
the first time. To set up an inductive argument, assume that x € Encl(X) when
line 6 is reached for ¢*" time for some ¢ > 1. Whatever the values of k and
¢ may be upon this visit to line 6, the fact that Ax = b ensures that (120)
holds. Since line 6 defines X pdated 5 the natural McCormick extension of the
right-hand side of (120), it follows that zj, € Encl(X;****?) immediately after
line 6. Since we also have x) € Encl(X%) at this point, Lemma 7 ensures that
z), € Encl(Xy N xR Therefore, x € Encl(X) still holds after line 7. This
recovers the inductive hypothesis and ensures that x € Encl(X) at all times during
the execution of Algorithm 1. Thus, x € Encl(Z(X)). O
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Theorem 27 The function (I, MR"™,MR"™) defined by Algorithm 1 is coherently
concave and coherently inclusion monotonic on MRR"™.

Proof For every i € {1,...,n.} and k € {1,...,n}, let G;  : MR™ — MR" denote
the update of X that occurs on lines 67 of Algorithm 1; i.e.,

[Gzyk(X)] .= Xj, Vj 7é k, (121)

J

—Aij
™ )XJ . (122)

2

b;
[Gi(X))y = Xe 1 | - +;€ (

Algorithm 1 defines I as a finite composition of these functions. Specifically,
IX)=Gn,noGn,n—10...0G120G110Cut(X), VX e MR". (123)

Parts 3 and 4 of Lemma 2 state that, if two functions are both coherently concave
and coherently inclusion monotonic on MIR", then their composition is also co-
herently concave and coherently inclusion monotonic on MRR"™. The Cut operator
has these two properties by Corollaries 2 and 3. If each G i has these properties,
then it follows by induction that I does as well. Thus, it suffices to establish these
properties for an arbitrary Gj .

Each G; 1 is itself a composition of intersections, binary additions, and the
univariate operations of adding and multiplying by a constant. Thus, by another
application of Lemma 2, it suffices to show that these four basic operations are
coherently concave and coherently inclusion monotonic on MR and MR2. The
intersection has these properties by Theorems 24 and 25, binary addition has
them by Theorems 6 and 7, and both the addition of and multiplication by a
constant has them by Theorems 17 and 19 (noting in the last case that B = R for
the univariate functions u(z) = a + = and u(zx) = az). 0O

Theorem 28 The function (I, MR™, MR"™) defined by Algorithm 1 is a relazation
refinement operator for the constraints Ax = b.

Proof The result follows immediately from Theorems 26 and 27. O

Remark 11 Consider the set up of Theorem 23 with I defined by Algorithm 1.
Suppose that, during the evaluation of I(X(p)) for some p € P, the intersection
in line 7 of Algorithm 1 triggers the case defined by (111). Since I(X(p)) will be
empty, it follows from Theorem 26 that this p is not in P%*. Moreover, since
the condition leading to (111) only depends on the bound components of the two
operands of N, it is guaranteed that (111) will again be used when evaluating
I(X(p)) for any other p € P. Thus, if (111) is ever encountered within Algorithm
1, we can conclude immediately that P = . In the context of reduced-space
optimization, this is grounds to fathom P without further calculation. This is why
is was said in Remark 10 that, if (111) occurs in the applications we have in mind,
then there is no reason to do any further computations with the result of the
intersection, and hence the definition in (111) is somewhat arbitrary.
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5.1 A Relaxation Refinement Example

Let P =[-3,3] and let 1,22 : P — R be defined as x1(p) = p® and z2(p) = €,
Vp € P. Furthermore, let X1, X2 : P — R be the McCormick functions shown in
Figures 3 and 4 (red), which are defined componentwise by

3 673

e_i(p—ki%) +e*3> .

Xi(p) = (0,9.%,9), %(p):(e*iei”,e”, c

Consider a situation where X1 and X2 represent initial relaxations of x; and xa2,
providing valid enclosures on all of P, and it is desirable to refine them based on
the constraint

z1(p) + z2(p) = 5. (124)

Specifically, we are interested in tighter relaxations that remain convex and concave
on all of P, but need only provide a valid enclosure on the subset of P for which
(124) holds, P™_ In this case, P contains only two isolated points marked by
the black dots in Figures 3 and 4. To accomplish this, we apply Algorithm 1.

15 : : : 15

10+ q 10+

— A A

= =
3 oy
9 9
g 95 g
= &)
5 g

0

-5 ° : *~ : : :

-2 0 2 -2 0 2
p p

Fig. 3 Relaxations of 1 before (left) and after (right) refinement with (124). The left panel
shows the original function x1 (solid black) and the McCormick object Xi(p) defined by its
bounds z% and zg (solid red) and its relaxations z{¥ and x{°® (filled and open red triangles,
resp.) prior to refinement. The right panel shows the original function z1 (solid black) and the
McCormick object X7 (p) defined by its bounds zg‘* and :p}l* (solid green) and its relaxations
xiv’* and :L‘ic’* (filled and open green triangles, resp.) after refinement. Black dots represent
the values of p that are feasible in (124).
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Fig. 4 Relaxations of z2 before (left) and after (right) refinement with (124). The left panel
shows the original function z2 (solid black) and the McCormick object X2(p) defined by its
bounds z§' and zJ (solid red) and its relaxations 25" and z5¢ (filled and open red triangles,

resp.) prior to refinement. The right panel shows the original function z2 (solid black) and the
McCormick object X5 (p) defined by its bounds :cg"* and zg’* (solid green) and its relaxations

z5"" and z5"" (filled and open green triangles, resp.) after refinement. Black dots represent

the values of p that are feasible in (124).

Letting I denote the refinement operator defined by Algorithm 1, the refined
McCormick objects defined by X*(p) = I(X(p)) are shown in Figures 3 and 4
(green). Both the bound and relaxation components of the refined relaxations are
significantly tighter than before refinement. Even so, the refined relaxations remain
convex and concave. Moreover, although the objects X7 (p) and X5 (p) are empty
for many p, they are nonempty on Pfeas, as desired. In fact, they are nonempty
on the convex set P* = [—2.2,1.2], which contains P

To demonstrate the utility of these refined relaxations, next suppose that the
constraint (124) is part of the reduced-space optimization problem

ggg —z1(p)z2(p) (125)

s.t. z1(p) +z2(p) =5

Recall that, in the reduced-space formulations of interest, x1(p) and x2(p) would
be defined as the (explicit or implicit) solutions of some system of equations not
shown, and the initial relaxations X7 and X2 would be computed by specialized
methods [11,18,20]. In this context, we are interested in formulating a convex
lower bounding problem on P by constructing a relaxation of the objective f(p) =
—z1(p)z2(p). The standard approach is to relax both f and the constraint using
X1 and A». Specifically, the relaxation of f is obtained by natural McCormick
extension as F(p) = —[X1(p)X2(p)]. However, since our extended McCormick rules
enable computations with empty objects, we can instead consider the relaxation
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F*(p) = —[AT (p)X5 (p)], which implicitly carries information about the feasible
domain that can lead to less underestimation of f.

These two approaches are compared in Figure 5. Clearly, 7* provides a much
tighter convex relaxation while still underestimating f at all feasible points. No-
tably, f*'°V is not just tighter on the infeasible space, but dominates f¥ even on
the convex hull of the feasible set, P, It follows that minimizing f*°V on P will
produce a tighter lower bound than the usual approach of minimizing f over a
convex relaxation of Pfeas,

50 : : : 50
’ Okm
= =
T 50 i 50
° o
e g
2100 = -100 |
=~ =
-150 f -150 |
-200 -200 —e- ‘ P—
-2 0 2 -2 0 2
p P

Fig. 5 Relaxations of f before (left) and after (right) refinement with (124). The left panel
shows the original function f (solid black) and the McCormick object F(p) defined by its
bounds f“ and fU (solid red) and its relaxations f and f°¢ (filled and open red triangles,
resp.) prior to such refinement. The right panel shows the original function f (solid black)
and the McCormick object F*(p) defined by its bounds f* and fU* (solid green) and its
relaxations fV>* and f°* (filled and open green triangles, resp.) after such refinement. Black
dots represent the values of p that are feasible in (124).

*,CV

Figure 6 shows that the refined relaxation f cannot be achieved without
the extended McCormick rules developed in this paper. Specifically, the figure
compares F*(p) (green) with the result of the same procedure using the standard
McCormick rules (blue); namely, F*(p) = = [Xf (p) X X3 (p)], where the hat over the
minus sign indicates that the standard univariate composition rule is used for the
multiplication by —1. While the resulting relaxation f Y is effectively just as tight
as f*°, it is clearly nonconvex. Therefore, it does not produce a convex lower-
bounding problem for (125). Similarly, although the McCormick-based refinement
and relaxation methods in [20] could also be used to compute versions of X7, X5,
and ¢, that approach would yield f*V(p) = NaN for many values of p, which
again fails to produce a computationally useful lower-bounding problem.
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Fig. 6 Refined relaxations of f computed using the original McCormick’s rules [4] (left) and
using the extended McCormick’s rules in this paper (right). The left panel shows the refined

relaxations of f, fc"’* and fcc'* (filled and open blue squares, resp.), computed using the
original McCormick’s rules. The right panel shows the refined relaxations of f, fV:* and f°®*
(filled and open green circles, resp.), computed using the extended McCormick’s rules. Black
dots represent the values of p that are feasible in (124).

6 Conclusion

In this paper, we extended the notion of a McCormick object — the basic computa-
tional object in McCormick relaxation routines — to include empty objects where
either ¢V > z°¢ or [z, 2] N [z", 2] = . We then generalized McCormick’s
relaxation rules for binary addition, binary multiplication, and univariate compo-
sition to be well-defined and preserve their essential properties on this extended
domain of objects. Empty McCormick objects provide a natural way to represent
infeasibility in reduced-space global optimization formulations and can be read-
ily generated by domain reduction procedures in that context. We showed in §5
that allowing emptiness enables a very natural intersection operation between Mc-
Cormick objects that preserves desirable convexity and concavity properties, and
that this intersection can further be used to develop constraint-based refinement
procedures in a straightforward way. Our extended McCormick relaxation rules
then enable subsequent calculations to be done with the possibly-empty refined
objects. For example, they can be used to compute objective function relaxations
that are tighter on the feasible parts of the domain without compromising convex-
ity (and hence ease of minimization) anywhere on the domain. We hope that these
capabilities will significantly ease the development of improved McCormick-based
algorithms for reduced-space global optimization, global dynamic optimization,
and domain reduction for nonconvex NLPs.
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This document provides some suitable choices of the data required by Assumption 1
in the main paper for some common univariate functions. Specifically, it provides choices
for the data (u,1B,IR), u¢, v, ™" and ™ as defined in Assumption 1.

I Data Satisfying Assumption 1 for Common Univari-
ate Functions

Addition of a constant

Multiplication by a non-negative constant
u(x)=cr, c>0, B=R
u(X) = ca¥, w9 (X) =caY
u (X, x) =cx, =™(X)=—c0

u(X,x) =cx, a"(X)=+oc0

Multiplication by a negative constant
u(z) =cx, c<0, B=R
u(X) =czY, uY(X)=ca
uW (X, z) = cx, z™(X)=+oc0
u(X,x) =cx, 2™(X)=-00
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Global Optimization, July 2022
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Reciprocal
1
u@) ==, B=R-{0}

1
zU’

W) = g 0 =
The definitions of u®(X,x) and u®(X,x) are separated into cases where X > 0 or
X < 0. Since B does not include 0 for this operation, any X € IB is either all positive or
all negative.

When X > 0, % is convex on X. For standard McCormick relaxations, u®v (X, x) is
typically defined as % and u®(X,x) is defined as the secant of % on X. However, this
choice of u® (X, x) violates Assumption 1.2 because it is not defined on all of R. To correct
this, u®V(X, z) is defined here as % for = above a threshold §, and as a linearization of %
at ¢ for all z < 4. ) e s

cv T nIr-=
v (X,x){ g—}x—i—% ifex<d

1 1/2Y —1/2"
u(Xw) = g (r—ah).

xmin(X) = 400, xmax(X) = —00

Note that § may depend on X. A reasonable choice is § = min(1073, z%).
When X < 0, an analogous strategy is used with § < 0.

Y 1 1/2V —1/2"
u™(X,x) = ;+7xU—xL
cC _ —

Y (X’x)_{ Sr+2 ifr>4

2™ X) = 400, 2"(X) = —00

A reasonable choice for § in this case is § = max(—1073,zY).

Exponential
u(z) =exp(z), B=R
aE(X) = exp(a®), u¥(X) = exp(s¥)
u™ (X, z) = exp(x)

ex JZU —ex l‘L
() —esplat) 1

c _ L
u(X,x) = exp(z") + i

z™M(X) = —00, 2™™(X) =400



Natural log

u (X, z) = In(2") +

2™ X) = —o00

The usual definition u®¢(X,z) = In(z) needs to be extended onto all of R to satisfy As-
sumption 1.2. This is accomplished by following a linearization of In(z) below a threshold
0> 0.

e B ln(m) ifz Z 1)
u (X,x)—{ lr4+[(no)—1] ifr<d
xrnax(X) — +OO

Note that § may depend on X. A reasonable choice is § = min(1073, z).

xIn(x)
u(z) = zln(z), B = (0,+00)
This function is convex and takes a minimum value of —exp(—1) at = exp(—1).
WE(X) = { ' L—expL(—lU) 5 if . exp(—1) € [z, 2Y]
min(z“Inz”, 2" Inz”) otherwise
uY(X) = max(2 In2™ 2% In2Y)

2VIn(2Y) — 2% In(2b)

27U _ oL

u(X, z) = 2% In(z") + (z — %)

—00 if 2 Inat > 2V InaY
+o00 otherwise

2"(X) = {

The usual definition u®“(X,z) = zlnx needs to be extended onto all of R to satisfy As-
sumption 1.2. This is accomplished by following a linearization of x In x below a threshold
d > 0. The value of § is chosen to be less than exp(—1), which is where zIlnx takes its

minimum. ()
ov _ xn(x ife>0
u <X’$>—{ (1+Wn(0)z -5 ifz <6

27 (X) = exp(~1)
Note that § may depend on X. A reasonable choice is § = min(1073, z).



Square root
u(z) =z, B=[0,+)
u(X) = Vel uY(X)=Val
o Val — ok
xmin(X) - 00

The usual definition u*(X,z) = /x needs to be extended onto all of R to satisfy As-
sumption 1.2. This is accomplished by following a linearization of /z below a threshold
6 >0.
o NG ifz >4
u (X,x)—{ ﬁﬂdﬂ-@ ifr <o
xmax(X) — +OO

Note that § may depend on X. A reasonable choice is § = min(1073, z%).

Even integer powers
u(z) =2", n=2,4,6,..., B=R

L _ 0 if 0 € [z4, 2Y]
u(X) { otherwise

cc n (‘TU)n — ( L)n
u (X7 1‘) = (xL) + 27U _ L (‘T - IL)
xmin(X) _
max | —oo if (™)™ > (V)"
TPHX) = { 400 otherwise
Odd integer powers
u(zr) =2", n=3,5,7,..., B=R

ub(X) = (2)"

If 2V < 0:
Uyn Lyn
cv _ Ly\n (l‘) —(1’) L
U (X,Z‘)—($) + 72U _ 7L ($—.T)
, a2 ifz <0
u (X’x)_{ 0 ifr>0
If 2 > 0:



If 0 € [z%, 2Y):
Let 2’ and 2 be the solutions of

(n—1)(z")" — nal ()"t 4+ ()" =0,

(n _ 1>($//)n _ nxU(m//>n—1 4 (a?U)" —0.

If 2/ > xU,
Uyn L\n
-y R
Else )
WXy = 4 @ T @ et i <o
’ " if x> a2
If 2" < va
Uyn Lyn
cc _ Lyn (I ) - ($ ) L
u (X, 2) = (@) + (e - ah)
Else )
uCC(X’ x) _ (1’“)" + %(x _ 1,//) if £ > 2
" if ¢ < :I,‘”
For all cases, 2™"(X) = —oo and z™**(X) = +o0.
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