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Vehicle Trajectories From Stationary
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Abstract— Image processing based vehicle tracking is a pow-
erful tool for monitoring traffic, but it is error prone. Rela-
tively small errors that impede measuring time-series speed and
acceleration can be hard to detect, e.g., 1 m positioning error
in a 100 m long trajectory. This paper presents an efficient
approach to separate the positioning errors from vehicle travel
for evaluating image processing based vehicle trajectories. The
approach starts with a spatiotemporal slice, STS, which is
effectively a visual time-space diagram sampled from the video.
This work skews the STS to flatten a given trajectory, eliminating
the vehicle travel recorded in the trajectory. Positioning errors
that were imperceptible relative to the distance traveled become
readily apparent in the flattened track. Thus, providing a
means to quickly assess reported trajectories from almost any
image processing system against the true vehicle positions in
the original video data. Recognizing that the flattening process
works both ways, if errors are evident in a given trajectory,
the STS method can also be used to quickly fix them. Thereby
providing a path to accurate instantaneous speed and acceleration
throughout the given trajectory. Alternatively, one can use this
process to generate vehicle trajectories directly from the STS.
While the main focus is longitudinal tracking, the process can
also be used to assess (extract) the lateral position of a given
vehicle. The method is evaluated using the NGSIM, Cityflow
and UA-DETRAC datasets, in each case it is shown how this
work can increase the fidelity of the given dataset.

Index Terms— Freeway traffic, image processing, microscopic
traffic, road transportation, traffic flow theory, vehicle trajectory.

I. INTRODUCTION

THIS paper presents a simple and efficient approach for
evaluating image processing based vehicle trajectories.

The first objective of this work is to provide a method to
verify the performance of almost any image processing based
vehicle tracking system from a stationary camera (potentially
after image stabilization). The second objective is to show
how the methodology can be used to correct errors in the tra-
jectories and yield precise localization with sufficient fidelity
to measure instantaneous speed and acceleration. The tertiary
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objective of this work is to demonstrate that this method could
be used to generate trajectories outright.

Image processing is an important tool for tracking
roadway vehicles over long distances, be it 50 m through
the view of one camera or 500 m across the views from
multiple successive cameras. The resulting trajectories have
become a cornerstone for the empirical study of traffic
dynamics and driver behavior. Car following models, fuel
consumption models and vehicle emissions models all require
positioning accurate enough to measure instantaneous speed
and acceleration. Unfortunately, it is very difficult to assess
the accuracy of empirically collected vehicle trajectories since
image processing is typically the only sensor used in these
studies. Even when multiple sensors are employed, image
processing is usually the most accurate sensor over the large
spatial range. Although automated image processing is a
powerful tool, it is also imperfect, suffering from localization,
grouping and segmentation errors that are exasperated by
shadows, lighting conditions, and projection errors. The
large distance traveled in the trajectories only serves to hide
many tracking errors, e.g., a positioning error of 1 m could
easily become imperceptible at the scale of a 100 m long
trajectory. Only large errors are evident at the typical scale
used to present a given vehicle trajectory, while smaller errors
can persist undetected. To date the only viable evaluation
tools are “reasonableness” tests of the resulting trajectories,
e.g., assessing whether the vehicle spacing or instantaneous
acceleration is feasible [1]–[4] but these tests will not detect
errors that fall within the region of “reasonable” behavior.
Alternatively, one could turn to a labor intensive process of
manually following each tracked vehicle [5], [6].

This paper develops a technique for evaluating image
processing based vehicle trajectories by separating the spatial
positioning errors from the actual travel of a given vehicle. The
approach starts with the spatiotemporal slice, STS, method,
which effectively constructs a visual time-space diagram, TXp,
by sampling a specific line of pixels along the roadway
in every frame. The sampled scan-line from a given frame
becomes a column of pixels in the STS image, i.e., a “slice”
in the spatial dimension, and slices from successive frames are
“stacked” in temporal order to give rise to the visual TXp that
includes a visual track for each vehicle that passes through
the video. Throughout this paper we use the term, trajectory,
to denote the extracted coordinates of a given vehicle over
time, and the term, track, to denote the colored stripe in the
STS that corresponds to a given vehicle.
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Fig. 1. Sample frames of the original video.

To illustrate the construction of an STS, consider the “cam-
era 6 projected” image in Fig. 1. This image is one frame
of a 10 Hz video of freeway traffic collected from a fixed-
mount camera [7]. Fig. 2 focuses strictly on the third lane
from the left, with three sample frames shown in Fig. 2A.
Taking just one column of pixels from the center of the lane
shows the instantaneous location of all vehicles in the given
frame. Repeating this process by exacting the exact same
column of pixels from each frame in the video and presenting
them in sequential order gives rise to the STS in Fig. 2B.
Now vehicle 1456 sweeps out a vehicle track that captures its
progression along the road in pixels. This process can then be
repeated independently for each lane. In this case the video
was projected into the ground-plane from the raw camera view
shown on the left of Fig. 1, thus the ordinate of the STS
is proportional to distance in the world; however, as will be
shown later, the method can also be applied in the image plane.

The STS methodology was originally developed to study
natural phenomena and has gone by many names, includ-
ing: “spatiotemporal slice,” [8], [9]; “picture lines,” [10];
and “time stack,” [11]. In the context of vehicle tracking
it has been called: “Spatio-Temporal Images,” [12]; “spatio-
temporal slices”, [13]; “intensity flow,” [14]; “spatiotemporal
map,” [15], [16]; or “cross-section imagery,” [17]. Most of
these papers focus on tracking the movement of features in
one dimension along a straight line or pre-specified curve
in a fixed view, but some consider tracking in two spatial
dimensions [12], [13], [17]. The STS method is not limited to
fixed cameras, many others have applied the same concept to
moving cameras [18], [19]. While the STS method produces a
visual TXp along the length of the scan-line, the STS method
retains the spatial extent of a given trajectory, and as previously
noted in the context of general image processing approaches,
many positioning errors are not evident at this resolution.

The present research recognized that the STS can be trans-
formed to eliminate the actual travel of the vehicle recorded in
the trajectory, and only retain the positioning errors. Thereby
providing a means to assess and validate the trajectories
from almost any image processing system against the true
vehicle positions seen in the original video data. Specifically,
as presented in Section III.A, for a given vehicle of interest we
use its reported trajectory as a reference to spatially skew the
STS in such a way that in the coordinate system of the skewed
STS image the reported trajectory becomes a flat line parallel
with the time axis, e.g., the dashed line in Fig. 2C. In other
words, we effectively skew the STS image to view it from
the perspective of a “moving observer” that travels along the
reported trajectory. If the reported trajectory is correct, then

Fig. 2. Single camera STS, (A) sample frames, (B) STS, (C) skewed STS,
(D) detail of C showing trajectory performance.

the corresponding track in the skewed STS image should also
be perfectly flat. Otherwise, the remaining undulations in the
track reflect errors in the reported trajectory. This approach
has the beneficial feature that in the transformed coordinate
system of the skewed STS, one only needs to consider a spatial
range on the order of the vehicle’s length, e.g., Fig. 2D, rather
than the entire distance that the vehicle traveled. Now small
positioning errors that were imperceptible relative to the extent
of the actual travel become readily apparent in the form of
wobbles and ripples in the flattened track of the subject vehicle
in the skewed STS image. Since the track and trajectory are
flattened, there is no limit to the spatial extent along the road
over which this validation could be applied.

Recognizing that the flattening process works both ways,
if any errors are evident in a given reported trajectory, the
STS method can also be used to quickly fix them. Specifically,
the flattened track in the skewed STS image can be used to
improve the trajectory by shifting select frames up or down to
eliminate any wobbles in the track and improve the flushness
of the flattened track. Of course the exact same spatial shifts
in each frame need to also be applied to the corresponding
time points in the reported trajectory that was used to skew
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the STS in the first place, thereby improving the accuracy of
the given trajectory.

Alternatively, one can use this process to generate the
vehicle trajectories directly from the STS, without any prior
vehicle tracking. For each vehicle, simply manipulate the STS
to flatten the given track. The resulting shifts made to the STS
to flatten the track yield the trajectory of the vehicle over the
corresponding time window.

Once the longitudinal positions have been cleaned (or
extracted if starting from the STS) the process can be repeated
to assess (extract) the lateral position of a given vehicle using a
moving row of pixels perpendicular to that used in the original
STS. Obviously, this moving row of pixels should follow the
given longitudinal trajectory, but it can be offset by a fixed
number of pixels, e.g., to follow the center of a vehicle rather
than an arbitrary feature on the front or rear of the vehicle.

The remainder of this paper presents the detailed process.
Section II presents the necessary background. Section III
develops the methodology in the context of validating reported
trajectories across single and multiple camera views and then
extends the methodology to clean the reported trajectories or
generate new trajectories outright. It is shown how the work
can be extended to evaluate the lateral component of trajec-
tories, as illustrated for a lane change maneuver. The paper
closes in Section IV with a brief discussion and conclusions.

II. BACKGROUND-SETTING THE CONTEXT

This section sets the context for the analysis. Section II.A
presents the data used in this study. Then Section II.B dis-
cusses which features should be tracked.

A. Data for This Study

This paper uses a portion of the Next Generation SIMu-
lation, NGSIM, data set [7] and the associated video files
to illustrate the methodology, but the principles could be
used on almost any video image processing based vehicle
tracking where the original video is available. The choice
of using NGSIM for illustration is based on the fact that
the NGSIM data is the largest set of empirical microscopic
traffic data available to the research community. The NGSIM
project released four data sets and this paper uses one of
them: the I-80 data set, which was collected in the Berkeley
Highway Laboratory (BHL) [20]. The I-80 study used seven
fixed mount cameras on top of a 30-story building to col-
lect vehicle trajectories at 10 Hz along 500 m of freeway.
The cameras were numbered in order from upstream to down.
Cameras 1-3 viewed eastbound vehicles as they approached
the building. Near the start of the view from camera 4 these
vehicles passed the building and transitioned to a departing
view that continued through the remaining cameras, 5-7. With
the release of the data the NGSIM researchers shared the raw
video, e.g., as shown for camera 6 on the left side of Fig. 1
and the video projected into the ground-plane, as shown for
cameras 4-7 on the right side of Fig. 1. All five of the images in
Fig. 1 are from the same instant. The projected video includes
pink boxes superimposed on top of the video for all tracked
vehicles for validation purposes. Note that Fig. 1 shows the
first frame of the respective video, so it does not include
any of the pink boxes since they are assigned to vehicles

while they are in cameras 1 and 2. These pink boxes are
evident in the sample frames of Fig. 2A. The pink boxes have
been verified to correspond to the trajectories in the NGSIM
database, and the pixels in all of the projected I-80 videos were
sized to be roughly 0.15 m in the longitudinal direction [5].
The NGSIM researchers believed that they cropped the camera
views precisely such that there was no gap and no overlap
between successive projected camera views, i.e., they thought
that the first row of pixels in one camera picks up exactly
0.15 m after the last row pixels in the previous camera. For the
NGSIM examples we use the video shared from the original
study. It is not known if any camera calibration was done by
those researchers beyond calculating the homography from the
image plane to the ground-plane.

B. Gaining Perspective

One of the first steps in collecting high quality trajectory
data is to know where to measure the trajectories. In the
empirical study of traffic dynamics and driver behavior, typi-
cally image processing based vehicle trajectory measurement
collects the video from a high vantage point and then projects
the recorded video-stream to the “ground-plane” using a
homographic projection. Implicit in this ground-plane projec-
tion is the unrealistic assumption that the entire view is of
features that are strictly in the ground-plane. Consider the
“camera 6 raw” frame on the left of Fig. 1 to the corresponding
projection to the ground-plane in “camera 6 projected” frame,
second from right in the figure. The vertical number of pixels
spanned by a given vehicle in the raw image is a function of
both the height and length of the vehicle. The projection to the
ground-plane ignores the vehicle height, resulting in projection
errors. Thus, features that are actually above the ground-plane
get projected like shadows on the ground-plane further away
from their actual location above the road. The projection error
increases with the height of the feature, i.e., the closer the
feature is to the ground the smaller the projection error will
be. So for this work we use the edge of the projected vehicle
that is closest to the camera since this feature will generally
be the closest feature to the ground, i.e., the bottom of the
front of an approaching vehicle or the bottom of the rear of
a departing vehicle. In this way the front and rear are best
tracked separately. If one were tracking over the transition
from approaching to departing vehicles the front and rear are
both visible with a short duration of overlap as a vehicle passes
the camera location. During this overlap period the trajectories
of a given vehicle’s front and rear can be associated with
one another, separated by the vehicle’s length. Since the front
and rear provide separate trajectories, for the NGSIM data we
arbitrarily chose to strictly track the rear of departing vehicles
(NGSIM cameras 4-7, as per Fig. 1). One can easily reverse the
process to track approaching vehicles (NGSIM cameras 1-4).

For this study we also break from conventional image
processing techniques. Rather than try to eliminate shadows
we leverage them. If the shadow is always visible it is a
good candidate for our tracking since it is explicitly in the
ground-plane and thus, cannot exhibit a projection error from
the viewing angle and any casting error from the sun will not
change over the typical period a vehicle is in view. So for the
NGSIM video this work exploits the shadows that form the
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upstream end of the tracks in the NGSIM STS to minimize
most of the projection errors.

III. METHODOLOGY
When capturing traffic dynamics, relatively small position-

ing errors in a vehicle trajectory can be severely detrimental to
measuring instantaneous speed and acceleration. Because they
can be small, the displacement from these errors can persist in
reported vehicle trajectories without being detected. We will
illustrate these ideas using the NGSIM data set. However,
the analysis developed herein is transferrable to any similar
trajectory data collected using video image processing tools,
as will be illustrated in Section III.B.

Section III.A explains the method for skewing the STS and
evaluating the reported trajectory. Section III.B demonstrates
how to reduce the positioning errors by flattening the given
track and improving the fidelity of the positioning data. This
flattening can be done starting from the skewed STS in III.A
or directly from the STS without any reference trajectory.
Finally, Section III.C shows how the method can be extended
to measure lateral trajectories too.

A. Back on Track- Validating Tracking Performance
We now return to the task of separating the real spatial travel

from the spatial positioning errors. We start by considering just
a single camera and arbitrarily pick camera 6 for this purpose.
Since we are interested in validating reported trajectories
that came from any image processing technique, we use the
existing NGSIM database for this purpose. In tandem, we use
the existing projected videos from NGSIM for our validation
(example frames shown on the right side of Fig. 1). Each
lane is processed separately, as shown for lane 3 in Fig. 2A.
As noted previously, the projected video includes pink boxes
denoting the location of the tracked vehicles in that frame as
recorded in the trajectories.

The pink boxes are evident in Fig. 2A but might be hard
to discern given the quality of the image. For illustration
purposes throughout Fig. 2 the rear of the pink boxes for
vehicle 1456 are shown with a dashed line. In any event, the
pink boxes are not critical to our analysis, what matters is
the reported trajectory that the pink boxes represent. If one
were to watch the projected video the positioning error in
frame 4900 of nearly 5 m would be readily apparent; but
watching validation video is subjective and labor intensive.
Despite the fact that the NGSIM data have been used in
hundreds of traffic dynamics studies, these positioning errors
have largely gone undetected.

The first step in our analysis is to sample the same column
of pixels in each frame and stack these columns sequentially to
form an STS, Fig. 2B, which as noted previously is effectively
a visual TXp. The NGSIM trajectory for vehicle 1456 is super-
imposed on the STS with a dashed line. This figure starts to
replace the need for manually watching the projected video to
catch longitudinal tracking errors, since the reported trajectory
pulls away from the upstream end of the STS track. Plotting
the trajectory on top of the STS like this will reveal large
deviations, but at the scale of 80 m shown in Fig. 2B smaller
deviations are not apparent. As the span of road shown in the
STS increases, the harder it becomes to discern the deviations
between the reported trajectory and associated track.

In this case there is one position measurement in the
trajectory per frame in the video, and by extension, per column
of pixels in the STS. Flattening the reported trajectory for
vehicle 1456 in Fig. 2B and for each point in the trajectory the
associated column of pixels is shifted with it, yielding Fig. 2C.
The resulting skewed STS is twice as tall as the original STS,
but all of the information about vehicle 1456 falls within
a range of about 20m. Zooming in to focus strictly on the
vertical range of this vehicle, the deviations between the
reported trajectory and the corresponding track in the STS
become readily apparent in Fig. 2D. By projecting the STS
to the perspective of a moving observer that travels with the
reported trajectory like this, we have effectively removed the
actual travel of the vehicle recorded in the trajectory, and only
retain the positioning errors. If there were no errors in the
reported trajectory the upstream end of the track (correspond-
ing to the shadow directly below the rear of the truck) should
perfectly follow the reported trajectory. Instead, the flattened
trajectory ranges from -1.2 m to +7.3 m deviant from the
associated undulating track. This simple plot allows for a rapid
assessment of the accuracy of the reported trajectory in a single
glance. Although this example only captures 80 m of travel,
since the vertical range in the skewed STS excludes the actual
travel distance by the vehicle, there is no limit to the length
of roadway that can be validated. Even in the presence of
lane change maneuvers, one could use a weighted average of
the STS in adjacent lanes to follow the target vehicle as it
maneuvers across lanes.

Now consider the case of tracking vehicles across successive
cameras to demonstrate the fidelity over longer distances.
Combining the concurrent STS from the four cameras in Fig. 1
yields Fig. 3A, where the horizontal dashed lines show the
boundary between a given pair of successive camera views.
The reported trajectory from vehicle 1456 is shown once more,
along with the trajectory of vehicle 1539. First consider vehicle
1456, the combined STS spans roughly 230 m and at this scale
the deviations between the reported trajectory and correspond-
ing track evident in Fig. 2B are harder to see. So once more
we skew the STS by flattening trajectory 1456 and take the
respective columns of pixels with it, yielding Fig. 3B. Now
the trajectory is flat and the boundaries between cameras have
become monotonically decreasing curves. Fig. 3C zooms in
to the vertical range of this vehicle to study the longitudinal
deviations between the reported trajectory and the observed
track. The undulating behavior seen in Fig. 2D persists through
all four cameras in Fig. 3C. The trajectory rarely travels with
the upstream end of the track, indicating a positioning error in
almost all time steps, and the trajectory almost never moves
parallel to the upstream end of the track, indicating that it is
not a simple fixed offset.

A new problem reveals itself in Fig. 3C where the upstream
end of the track crosses a camera boundary, as highlighted with
the three rectangles. At each camera boundary the track jumps
downstream by as much as 2 m. But the track simply captures
what is in the video, the trajectory used to skew the track must
be wrong. In other words, these discontinuities indicate that the
reported trajectory jumps upstream as it goes from one camera
to the next. Assuming the clocks are synchronized between the
cameras, this upstream jump indicates that the vehicle covers
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Fig. 3. Multi-camera STS (A) STS, (B) skewed STS, (C) detail of B showing
trajectory performance and camera overlap, (D) after fixing overlap problem.

the same short stretch of roadway twice because the camera
views actually overlap. Indeed, zooming in to the combined
STS from Fig. 3A, Fig. 4A shows that one can visually see
that either cameras 6 and 7 overlap or that camera 7’s clock
is ahead of camera 6 by a few time steps.

Borrowing ideas from [21], [22], we extracted the time
series of headways at the very end of one camera and
compared these sequences against each of the first 20 pixels
in the next camera to find the best match by shifting in time
and space. It turns out that the cameras are synchronized at
the 10 Hz resolution (i.e., no time offset) and the left-pointing
yellow bars along the camera boundary show the resulting
match point between the end of camera 6 and the location
within camera 7. In this case the two cameras overlap by
14 pixels, corresponding to 2.1 m. The two right pointing bars
show features seen in both cameras that are 2.1 m apart. These
features were not used for the alignment, and thus, provide
verification for the analysis. Note that this simple longitudinal
offset arises because all of the cameras are projected into
the same ground-plane. Our ongoing research is developing a
formal process to automatically identify the amount of overlap
between successive cameras.

Fig. 4. Multi-camera STS. (A) Camera overlap in the STS, (B) skewed STS,
(D) detail of B showing trajectory performance and camera overlap, (D) after
fixing overlap problem.

Since the NGSIM tracking assumed perfect alignment
between cameras (no overlap and no gap), the reported trajec-
tories should appear to travel twice as fast across the overlap
region than the vehicles actually traveled. For this paper, upon
diagnosing the overlap problem, we deleted the overlapping
rows from the upstream camera STS and regenerated the
combined STS for the four cameras. We deliberately chose
to remove the rows from the upstream camera because the
distance per pixel in the raw video increases as you move
downstream in a given camera (e.g., as evident in the left-most
image of Fig. 1), thus, the raw video at the end of one camera
should be lower resolution than at the start of the next camera
(e.g., you can see these impacts in the camera 6 projected
frame in Fig. 1, the vehicles at the start of the frame show far
more detail than those at the end of the frame).

After removing the duplicate rows from the STS we once
more skew the combined STS using the reported trajectory,
resulting in Fig. 3D. First notice that now the flattened track
is continuous at the camera boundaries, as highlighted by
the three boxes. Although the track is continuous, we should
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still expect a vertical shift as the vehicle crosses the camera
boundary since the trajectory still includes the overlap even
though the STS does not. But the shift should be gradual since
it represents the speed being off by a factor of 2 across the
retained portion of the overlap region rather than an abrupt
jump in space. Away from the camera boundaries the overlap
should represent a constant vertical offset. In other words,
if the only problem was the camera overlap, away from the
camera boundaries the track should be perfectly flat and at the
camera boundaries it should show a brief transition upstream
to a different vertical offset from the flattened trajectory.

Fig. 4B-D repeat the analysis from Fig. 3 for vehicle
1539 that was shown in Fig. 3A. The results are similar-
the flattened track undulates in Fig. 4C-D, indicating that the
reported trajectory exhibits a continually varying positioning
error. Meanwhile, using the exact same combined STS with
the duplicate rows removed yields a continuous track across
the camera boundaries in Fig. 4D.

This section has shown that by flattening the trajectory
and skewing the STS it is possible to quickly see sub-
meter errors in the reported trajectory even though the vehicle
traveled 230 m. Since the vertical range in the skewed STS
excludes the actual travel distance by the vehicle there is no
limit to the length of roadway that can be validated this way.

B. Cleaning Trajectories or Tracking Vehicles Outright

Up to this point the paper has only demonstrated the skewed
STS method to evaluate reported trajectories generated through
other image processing techniques. This section demonstrates
how the skewed STS can be used to clean those reported
trajectories or generate new trajectories outright. In either
case the process is the same, start with an incorrectly skewed
STS (including no skew) and shift the columns of pixels to
flatten the target vehicle track in the STS. For this example we
will generate the trajectories from the original STS since the
flattening only requires shifting all columns in a single direc-
tion (whereas cleaning a reported trajectory will likely require
shifting some columns up and others down). The process can
be done by hand, as per our work, or automated using some
form of machine vision or edge detection, e.g., one way to
automate this process would be to use a Hough transform to
find the optimal alignment in each successive column.

Recall that the projected video used up to this point has pink
boxes superimposed on the video. These boxes move roughly
with the vehicles and thus, interfere with tracking the actual
vehicles. So the raw video for each camera (e.g., the left frame
in Fig. 1) is re-projected to the ground-plane without the pink
boxes. For cameras 4-6 the rows of pixels that overlap the sub-
sequent camera are removed (as per the discussion of Fig. 3C),
next the STS is generated for each of the four of the cameras,
and then stacked to form the combined STS, e.g., Fig. 5A
(compare to the original combined STS in Fig. 3A).

For this work we manually flatten the track for each vehicle
as follows. First, the STS is cropped to only span the duration
that the given vehicle is within the STS. Then starting with
the first column of pixels, all subsequent columns are shifted
downward to bring the bottom of the track in one column in
line with that of the previous columns. This process is repeated
until the track in all columns has been brought in line with

Fig. 5. (A) Combined re-projected STS, (B) flattening in progress.

the first column. Fig. 5B shows a detail of this process for
vehicle 1456, with all frames up to 4700 flattened while those
after 4700 are still being brought in line.

This method emerged from a need to extract precise
localization with sufficient fidelity to measure instantaneous
speed and acceleration for the study of traffic dynamics
and driver behavior. In this context, if the trajectories were
extracted using automated techniques it would still require
manual validation anyway. Since the human would be in
the loop regardless, we chose to do the alignment manually
from the start. The process was aided by a graphical user
interface (GUI) to let the human operator quickly process the
trajectories. The GUI actually semi-automates the process,
employing a simple edge detector in each column to find the
vehicle-road transition point that is subsequently shifted to
align with the previous columns at 0 distance (e.g., frame
4,700 in Fig. 5B). The greatest time demands arise during stop
waves where the gaps between tracks shrink or sometimes
disappear altogether in the most distant camera, when a
vehicle passes into a shadow (most commonly due to a tall
truck in the adjacent lane) or is otherwise partially occluded.
When these events occur, the operator would shift to flattening
a different feature on the vehicle’s track until the rear was
once more visible.

Fig. 6A shows the final skewed STS for vehicle 1456.
As before, all the critical information for the flattened track
falls in a small vertical range, as shown in Fig. 6B. For
reference the three camera boundaries are shown with dashed
lines in Fig. 6B Note how the track elongates as the vehicle
travels downstream due to the increasing projection error on
the far end. Fig. 6C shows vehicle 1456 in one frame from
each camera, while the lines connected to Fig. 6B show where
each frame falls in the skewed STS. The progression in Fig. 6C
shows how the multi-unit truck goes from a nearly top-down
view in camera 4 to a rear view where the cab is completely
occluded by the trailer in camera 7, reaffirming the importance
of following the closest point on the track to minimize the
projection errors.

While the track in Fig. 6B is truly flattened and com-
pares favorably to the evaluation of the reported trajectory in
Fig. 3D, a flat track is not itself of much value. What we really
want is the trajectory. The trajectory itself is recorded in the
translations made to the combined STS in order to flatten the
track, and it is in fact hiding in plain sight in Fig. 6A as
the upper or lower boundary of the skewed STS. This skewed
boundary is repeated in Fig. 6D to show the trajectory from the
skewed STS in isolation, albeit with a negative magnitude due
to the flattening process. After correcting for the sign, Fig. 6E
shows a portion the new trajectory superimposed on the STS
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Fig. 6. Generating trajectories from the STS. (A) Skewed STS, (B) detail
of A showing flattened track, (C) sample frames, (D) resulting trajectory,
(E) a portion of the trajectory from E superimposed on the original STS.

Fig. 7. Generating trajectories from the STS. (A) Skewed STS, (B) detail
of A showing flattened track, (C) sample frames, (D) resulting trajectory,
(E) a portion of the trajectory from E superimposed on the original STS.

from just one of the cameras to see the details (compare to
the reported trajectory in Fig. 2B). The full trajectory spans all
four cameras, i.e., the spatial range of Fig. 5A. Fig. 7 repeats
the analysis from Fig. 6 for vehicle 1539 shown previously
in Fig. 4. This process was used to regenerate all of the
longitudinal trajectories in camera 6 in the first period of the
NGSIM I-80 data set [5].

To illustrate the benefits of this cleaning process,
Fig. 8 compares the original NGSIM speed and acceleration
against the newly extracted trajectories from Fig. 6 and 7.

Fig. 8. Original raw and newly extracted v(t) and a(t) for: Veh. 1456,
Veh. 1539, and for reference a probe veh.

Fig. 8A-B show the time series speed for vehicles 1456 and
1539, respectively. Note how the original reported trajectories
(yellow curves) exhibit piecewise constant speed. While this
feature may seem innocuous, from our work with probe
vehicles we know that very few drivers ever maintain a
constant speed below 10 m/s except when stopped. For exam-
ple, Fig. 8C shows typical time series speed from a probe
vehicle in similar traffic conditions [23] the smoothly varying
curves from the probe vehicle show little resemblance to the
stair-stepped curves from the original NGSIM trajectories.
Meanwhile after smoothing the sub-pixel noise [5] the newly
extracted trajectories (green curves) in Fig. 8A-B exhibit
smoothly varying speeds consistent with the probe vehicle data
in Fig. 8C. Fig. 8D-E show the original NGSIM data have time
series acceleration that is zero most of the time, punctuated
by large peaks when the speed transitions between the discrete
steps. This behavior is unrealistic, the newly extracted trajec-
tories rarely have zero acceleration except when stopped and
exhibit a slowly varying behavior that is consistent with the
probe vehicle data shown for reference in Fig. 8F. The greatly
improved time series acceleration is particularly important
for the study of driver behavior, where car following models
typically seek to model the driver’s acceleration.

Repeating this analysis on benchmark vehicle tracking data
sets, Fig. 9A shows a frame from a Cityflow sequence [24].
We do not have the homography to project into the ground-
plane so using the unmodified video from the data set this
example tracks the vehicles in the original image plane, along
the nonlinear path of pixels shown in the frame. Comparing
the geometry to Google Maps the total visible distance spans
more than 650 m along the road. The resulting STS for
the entire sequence is shown in Fig. 9B with a vertical line
highlighting the frame used in Fig. 9A. Fig. 9C shows five of
the Cityflow raw trajectories superimposed on a detail of the
STS along the scan line in Fig. 9A. Vehicles 7 & 8 come
to a stop with blue veh 7 occluding white veh 8 behind.
At this spatial resolution the raw trajectories appear to do
a good job following the tracks. After skewing the STS to
flatten veh 7’s raw trajectory in Fig. 9D one can see the noise
manifest as ripples in the flattened track before and after the
stop period, and smaller ripples during the stop period (frames
630-930). In this case the noise is also evident in the raw
trajectory’s speed, Fig. 9F shows v(t) in pixels/frame from the
raw trajectory. Flattening the track rather than the trajectory
can greatly reduce the noise, Fig. 9E shows the results after
skewing the STS to flatten the near edge of the track. The
flattened track is a lot smoother than the raw trajectory and
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Fig. 9. Cityflow example. (A) Sample frame and path, (B) STS, (C) detail of A also showing original raw trajectories, (D) skewed STS from raw veh 7 traj,
(E) D after cleaning the track, (F) v(t) from raw veh 7 traj., (G) adding newly extracted traj., (H) detail of G, (I)–(K) skewed STS for veh 8 raw and cleaned,
(L)–(P) repeating the analysis on a Cityflow example from a side view captured close to the ground.

Fig. 10. UA-DETRAC example (A) sample frame and path, (B) STS, (C) detail of A also showing original raw trajectories, (D) skewed STS from raw traj,
(E) D after cleaning the track, (F) v(t) from raw traj., (G) adding newly extracted traj.

extends much further upstream, persisting 77% further than
the reported trajectory and reaching the full 650 m visible in
the frame. Fig. 9G expands the time range and decreases the
vertical range from Fig. 9F to show the corresponding v(t)
from the newly extracted trajectory. The original v(t) peaks
at 47 pixels/frame while the newly extracted v(t) peaks at
only 27.5 pixels/frame. Fig. 9H zooms in further to show
the noise in the original data, including several samples of
with v(t) < 0. The strictly non-negative, smooth v(t) from the
newly extracted trajectory provides greater fidelity from the
raw trajectory in Fig. 9E. Fig. 9I flattens the raw trajectory for
veh 8. The near end of veh. 8 was occluded in frames 652-948
and no position is reported in the raw data for this vehicle.
Fig. 9J shows the results after skewing the STS to flatten the
near edge of the track and Fig. 9K shows the resulting speeds.
Fig. 9L-P repeats this exercise on another Cityflow sequence
for the black pickup truck in the far lane (veh. 3) and scanline
in Fig. 9L. This time from a camera with a side view captured
close to the ground. In this case Google Maps shows that the
raw and cleaned trajectory travel roughly 50 m and 180 m,
respectively.

Fig. 10 repeats the evaluation on one of the UA-DETRAC
sequences [25] with similar results from the trajectories in the
image plane. As illustrated in Fig. 9 and Fig. 10, the skewed
STS could be used to extend the range and improve the fidelity

of the ground truth data in benchmark data sets like Cityflow
and UA-DETRAC.

C. Lateral Tracking

The STS-based trajectory validation and generation method-
ology is not limited to longitudinal trajectories. To extend
to lateral tracking the method is modified to build a lateral
STS that moves longitudinally with a point on the vehicle,
e.g., the midpoint. Fig. 11A shows a single frame from the
camera 6 projected video. Vehicle 685 is explicitly labeled
and a vertical line is drawn across the frame at the midpoint
of this vehicle. This set of pixels is captured and is used as
one slice in the lateral STS for this vehicle. Following the
longitudinal trajectory for vehicle 685 generated using the
techniques in Section III.B, this midpoint sampling is repeated
in every frame associated with the longitudinal trajectory.
Fig. 11B shows the resulting lateral STS for vehicle 685 in
camera 6. The frame from Fig. 11A is highlighted with a
vertical line. Notice how vehicle 685 has become an extended
track that corresponds to the movement of its midpoint across
the camera’s field of view while the other vehicles (and pink
boxes) have become distorted based on their relative speed to
the subject vehicle when they were parallel with its midpoint.
The reported lateral trajectory for this vehicle is superimposed
on top of the lateral STS. Both the trajectory and the STS show
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Fig. 11. Sample frames of the original video.

that vehicle 685 undertook a lane change maneuver to the left
while traversing camera 6.

Repeating the process from Section III.A, in Fig. 11C
the lateral STS is skewed in such a manner to flatten the
reported trajectory. Fig. 11D zooms in to see the details
of the skewed STS. In this case the pink box from the
projected camera 6 video is evident throughout, giving rise
to the two horizontal lines in the figure, with the bottom
of these lines corresponding to the near side of the vehicle.
As with the longitudinal trajectories, Fig. 11D shows that the
STS undulates, with the flattened track leaving the reported
trajectory by as much as 1 m near frame 2580. Repeating
the process from Section III.B, Fig. 11E shows the resulting
lateral STS from the re-projected camera 6 video. The lateral
STS is skewed in the process of flattening the track in Fig. 11F,
as shown in detail in Fig. 11G. The large deviation of Fig. 11D
has been eliminated. The resulting lateral trajectory is then
superimposed on the STS in Fig. 11E. Like the longitudinal
tracking, the lateral tracking should use the near edge (or
possibly shadows) to minimize the impact of lateral projection
errors. Also like the longitudinal tracking, in the event of
a partial occlusion of the primary feature of interest, use
secondary features to bridge the gap.

IV. DISCUSSION AND CONCLUSION

Image processing is an important tool for tracking roadway
vehicles over long distances, but it is imperfect, suffering
from various errors. These errors can be hard to detect since
the large distance traveled in the reported trajectories only
serves to hide many tracking errors, e.g., a positioning error
of 1 m could easily become imperceptible at the scale of
a 100 m long trajectory. So this paper develops a simple

and efficient approach for evaluating image processing based
vehicle trajectories that separates the spatial positioning errors
from the actual travel of a given vehicle.

The approach starts by constructing a spatiotemporal slice,
STS, from the same video that was also used to generate
the reported trajectory. Since the STS is essentially a visual
time-space diagram composed of vehicle tracks it is used to
evaluate the reported trajectory. This research recognized that
the STS can be transformed to eliminate the actual travel
of the vehicle recorded in the trajectory. Specifically, the
STS is skewed in such a way that the reported trajectory
is flattened. By projecting the STS to the perspective of a
moving observer that travels with the reported trajectory in
the skewed STS we have effectively removed the actual travel
of the vehicle recorded in the trajectory, and only retain the
positioning errors. At which point sub-meter positioning errors
that were imperceptible over the extent of the actual travel
become readily apparent in the form of small wobbles in
the associated flattened track. Thereby providing a means to
quickly assess and validate the trajectories from almost any
image processing system against the true vehicle positions
seen in the original video data. Since the vertical range in the
skewed STS excludes the actual travel distance by the vehicle
there is no limit to the length of roadway that can be validated.
This paper showed examples of up to 650 m of travel. On the
other hand, many applications do not require the fidelity
needed to measure acceleration, and validation might only
need to go as far as the STS without skewing, e.g., Fig. 2B,
3A, 9C and 10C all allow for quickly verifying that all of the
trajectories roughly follow their respective tracks.

Recognizing that the flattening process works both ways,
if any errors are evident in a given trajectory, the STS method
can also be used to quickly fix them. Alternatively, one can use
this process to generate the vehicle trajectories directly from
the STS in the first place by shifting the columns of pixels to
flatten the target vehicle track in the STS. The process can also
be used to assess (or extract) the lateral position of a given
vehicle, e.g., Fig. 11.

In Section III.B this work uses manual flattening to generate
vehicle trajectories in a semi-automated process, whereby an
edge detector is used in each frame to find the location
of the vehicle-road transition point that is then shifted to
align with the previous columns at 0 distance. It should be
clear that it would be a simple extension to develop a more
robust automated process to generate the trajectories in this
fashion, e.g., automatically tracking multiple features on a
track and devise a metric for optimal “flatness” across these
features. Ultimately the present work is a proof of concept.
The exact nature of automating this process depends on the
needs of the application and the quality of the original video,
e.g., resolution, view angle, light vs. dark pavement, different
approaches for handling occlusions, illumination, etc.. Alter-
natively, one could start with the output of a conventional
tracker, e.g., Fig. 3C, and use a road detector to simply shift
the columns to align the vehicle-road boundary into a single
row of the skewed STS. Since the road does not rapidly change
appearance, this approach could use conventional background
subtraction and shadow handling algorithms to identify when
a given pixel corresponds to the road.
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There are a few key points in the method to keep in mind,
these include taking care to track the lowest point on the
near side of the target vehicle to minimize the impacts of
projection errors. If there are partial occlusions one can use
other features in the track to bridge the periods where the
preferred feature is unobservable. The features on a given
target may change, evolve, appear, or disappear over the span
of the reported trajectory, but the methodology is robust to the
evolving appearance of the target vehicle (e.g., see Fig. 6-7).
Most of this paper considered the case when the imagery is
projected into the ground-plane, but the work can easily be
extended to any other viewing plane (e.g., see Fig. 9-10).
The method presented herein was limited to a single lane,
for lane change maneuvers one could use a weighted average
of the STS in adjacent lanes to follow the target vehicle as it
maneuvers across lanes.

This paper illustrated the methodology on a portion of
the NGSIM data set. Although the NGSIM data have been
exhaustively studied over the past 15 years, this paper iden-
tified a newfound problem in the NGSIM data. While the
NGSIM researchers believed that they cropped the camera
views precisely such that there was no gap and no overlap
between successive projected camera views, it turns out that
the successive cameras overlapped by up to 2 m. This process
was also used to regenerate all of the longitudinal trajectories
in camera 6 in the first period of the NGSIM I-80 data
set [5], in the process the methodology turned up several
more previously unknown problems in the NGSIM data.
As such, this work has demonstrated the value of using the
skewed STS to evaluate reported trajectories and then using
the methodology to clean the errors. Our ongoing research is
applying this process to all of the vehicles across all seven of
the cameras in the first period of the NGSIM I-80 data set.

While much of the paper used the NGSIM video, the tools
transcend the NGSIM study. Accurate speed and accelera-
tion measurement is important for many traffic applications,
no matter what the tracking system might be. For example,
Fig. 9 and Fig. 10 show that the skewed STS could be used to
extend the range and improve the fidelity of benchmark data
sets like Cityflow and UA-DETRAC.
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