
Lesson

Central Dogma, Dictionaries, and Functions: Using
Programming Concepts to Simulate Biological Processes
Jyothi Kumar1*, Fabio Gomez-Cano2†, Seth W. Hunt1†, Serena G. Lotreck1,3,†, Davis T. Mathieu4†,
McKena L. Wilson5†, and Tammy M. Long1*

1Department of Plant Biology, Michigan State University

2Department of Biochemistry and Molecular Biology, Michigan State University

³Department of Computational Mathematics, Science, and Engineering, Michigan State University

4Genetics & Genome Sciences Program, Michigan State University

5Department of Horticulture, Michigan State University

†Contributed equally

Abstract
Technologies like next-generation sequencing, proteomics, and high-throughput phenotyping have transformed the way we do
biology. There is a continued need for scientists with computational skills to analyze biological data while understanding the
underlying biological concepts. The Integrated training Model in Plant And ComputaTional Sciences (IMPACTS) is an
interdisciplinary training program that trains doctoral students to employ computational and data science approaches to
address grand challenges in plant biology. The first course in the curriculum, Foundations in Computational Plant Science,
focuses on fundamental knowledge in computational and plant science through group learning and peer instruction while
using real-world data. The lesson plan described here was developed by the 2019 cohort of IMPACTS trainees (authoring
cohort) as part of a subsequent course on STEM teaching and learning. The authoring cohort collaborated to identify a gap in the
Foundations curriculum and applied their learning about evidence-based instructional design to develop and subsequently teach
the lesson in the next iteration of the course (2020). The lesson plan’s goal was to develop students’ abilities to apply
dictionaries and functions as core tools in computational science to answer biological questions. The 2020 cohort that
completed the lesson reported confidence in being able to effectively apply dictionaries and functions and provided feedback
about modifications to improve lesson eficacy. This feedback was incorporated in the iterative version of this lesson. This
lesson is designed to help bridge the gap between computer scientists and biologists by teaching them interdisciplinary
concepts using real-world data.

Citation: Kumar J, Gomez-Cano F, Hunt SW, Lotreck SG, Mathieu DT, Wilson ML, Long TM. 2023. Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate
Biological Processes. CourseSource 10. https://doi.org/10.24918/cs.2023.24

Editor: Abby Hare-Harris, Bloomsburg University

Received: 9/1/2022; Accepted: 4/12/2023; Published: 6/21/2023

Copyright: © 2023 Kumar, Gomez-Cano, Hunt, Lotreck, Mathieu, Wilson and Long. This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial-
ShareAlike 4.0 International License, which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

Conflict of Interest and Funding Statement: This work was funded, in part, by NSF Research Traineeship Program, DGE- 8128149. None of the authors have a financial, personal, or professional
conflict of interest related to this work.

*Correspondence to: kumarjy1@msu.edu, longta@msu.edu

Learning Goals

Students will:

◊ apply in practice dictionaries and functions as core tools in
computational science.

◊ explain affordances of computational methods in life sciences
research.

◊ use computational approaches to answer molecular biological
questions.

◊ From the Bioinformatics Learning Framework:

» What computational concepts are important in bioinformatics?
» Where are data about the genome found (e.g., nucleotide

sequence, epigenomics) and how are they stored and accessed?

» How do biologists employ software development as part of the
scientific discovery process?

» What higher-level computational skills can be used in
bioinformatics research?

Learning Objectives

Students will be able to:

◊ use variable and data structures (e.g., lists, arrays, scalars, and
functions).

◊ write a script to translate a DNA sequence to an amino acid
sequence.

◊ utilize a dictionary to assess data.

◊ utilize a function for tasks like translation.

◊ explain the proper use of dictionaries and functions.

◊ explain when a dictionary is applicable compared to a list.

◊ describe the process of transcription and translation within
biological systems and its role in the cellular flow of information
from DNA to protein.

CourseSource | www.coursesource.org 1 2023 | Volume 10

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

INTRODUCTION

The recent development of technologies such as next-
generation sequencing and high-throughput phenotyping
has changed the way biologists approach their scientific
pursuits and introduced new challenges in data analysis (1–
6). The amount of sequence data that is presently available is
incomprehensibly large, with over 1.75 quadrillion base pairs
in the NCBI database as of August 2022. The ubiquity of big
data approaches such as genomics, phenomics, proteomics,
lipidomics, etc. has provided biological disciplines with an
overwhelming amount of publicly available data (7).
Although the generation of this information is an incredible
accomplishment, it has also driven the demand for both
biological and computational experts that can analyze these
data and make meaningful use of it (8, 9). This demand
will require biologists and computational scientists to
have a working knowledge of each other’s disciplines to
communicate and collaborate effectively (10). For biologists
to use computational tools, they must possess the vocabulary
and a fundamental understanding of computational systems in
order to discuss biological data problems with computational
experts when needed. Similarly, computational scientists
should have a fundamental understanding of biology so they
can comprehend the nature of the biological questions being
asked, troubleshoot when problems arise, and be effectively
critical of the computational output. Bridging these disciplines
requires a change in curricula and training for graduate students
of both fields and opportunities for students to integrate their
disciplinary knowledge through authentic collaborations (11).

Here, we describe a lesson plan that builds on the
effectiveness of Jupyter Notebook to teach coding in Python,
specifically functions and dictionaries, while also introducing
core concepts related to the central dogma of biology. The
novelty in this lesson’s design is that it is the product of students
enrolled in a graduate-level seminar course focused on STEM
teaching and learning. The author cohort is afiliated with
the Integrated training Model in Plant and CompuTational
Sciences (IMPACTS; NSF DGE 1828149, PI: Shiu), a graduate
training program at Michigan State University funded through
the National Science Foundation Research Traineeship (NRT)
program. IMPACTS cross-trains graduate students in plant
biology and computational sciences to collaborate in research
that addresses grand challenge problems in plant biology that
require computational approaches. The first course in the
IMPACTS curriculum is Foundations in Computational Plant
Science (Foundations), which aims to provide foundational
knowledge in plant computational science and to foster
interdisciplinary, long-term, and collaborative partnerships
among trainees. Five of the authors (FG-C, SWH, SGL, DTM
and MLW) were students in the first iteration of Foundations
and subsequently enrolled in Forum on STEM Teaching and
Learning (Forum), a seminar course that is also part of the
IMPACTS curriculum but focused on professional development
and the scholarship of teaching and learning. In Forum,
students were assessed on their ability to apply the principles
of backward design and evidence-based instruction to the
design and implementation of a lesson of their choice. The
lesson described here is the product of that collaborative effort.

The author cohort focused their lesson design on a perceived
gap in the Foundations curriculum—that of dictionaries and
functions in Python. In addition, the authors chose the central
dogma as the biological concept to contextualize the lesson.
An overall goal of the IMPACTS program—and the Foundations
course specifically—is to provide training that intersects
principles of computational and plant sciences. In biology,
the central dogma explains how genetic code is ultimately
converted to functional proteins. In Python, dictionaries allow
storing information associated with a key (like a word) and its
information retrieval as the value (like its definition) when
needed. A function is a segment of code which when called
performs a specific task and returns data as a result. Thus, the
mechanisms by which dictionaries and functions work in Python
are uniquely analogous to the biological mechanisms underlying
the central dogma, making it an especially productive context
for this interdisciplinary lesson.

Intended Audience
This lesson was originally designed for first- and second-year

graduate students in an interdisciplinary graduate program
that focuses on plant and computational science. However,
the lesson can be used in its current form or adapted to suit
diverse student audiences at both graduate and undergraduate
levels in any discipline with the aim of developing students’
computational skills and biological knowledge. This lesson will
be most effective in a computational lab environment in which
students have had some prior exposure to basic computational
skills in Python (e.g., lists and loops) and terminology (e.g.,
data types and Boolean logic). However, specific background
knowledge on the topics covered in this lesson (dictionaries
and functions, central dogma) are not essential for students to
participate and achieve the lesson’s objectives for learning.
Given that students’ prior knowledge and strengths will vary,
the lesson is designed to be flexible in order to accommodate
diverse levels of expertise.

Required Learning Time
In preparation for the in-class portion of this module,

students are asked to watch the YouTube video: “DNA, Hot
Pockets, & The Longest Word Ever: Crash Course Biology
#11.” Additionally, students will familiarize themselves
with functions and dictionaries by reading the introductory
information in the Student Jupyter Notebook, from “Central
Dogma” to “Putting it together.” For students unfamiliar with
the central dogma, extra resources from Khan Academy
have been included to support basic understanding. Finally,
students will watch a 22-minute tutorial highlighting the
computational components of the module and the process of
translation: “Plants & Python, vol. 7: Functions, Dictionaries,
and L-Systems,” created by Dan Chitwood. Both videos are
embedded within the student and instructor Jupyter Notebook
lesson plans and are also available on YouTube. We recommend
students allocate 90 minutes for class preparation.

The lesson was designed for an 80-minute class period
(refer to Table 1, Class Session: Dictionaries and Functions),
but can be readily adapted for different class times. The three-
part lesson (also described in the In-Class Activities section)
begins with dictionaries in the Student Jupyter Notebook at
“Introduction to Dictionaries and Functions: Putting it into

CourseSource | www.coursesource.org 2 2023 | Volume 10

https://www-ncbi-nlm-nih-gov.proxy2.cl.msu.edu/genbank/statistics/
https://youtu.be/itsb2SqR-R0
https://github.com/serenalotreck/forum-lesson-plan/blob/master/CentralDogma_Dictionaries_and_Functions_Notebook_STUDENT.ipynb
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://youtu.be/HIxmLFrVBYQ
https://github.com/serenalotreck/forum-lesson-plan/blob/master/CentralDogma_Dictionaries_and_Functions_Notebook_STUDENT.ipynb

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

practice.” Students begin the class by working individually
through the first section (5–8 minutes), “Introduction to
Dictionaries” to create dictionaries highlighting their own
personal identifiers. Students then transition to the next
section, “Introduction to Functions” and work individually at
their own pace (20 minutes) to read through examples and
answer two questions. The final section, “Synthesis Question:
Dictionaries and Functions,” involves a synthesis question
answered during class and a challenge question that can be
finished in class or at home. The synthesis question will take
approximately 55 minutes overall. Time during this component
of the lesson is divided into two phases: first, students work in
groups to create a framework for their computational coding
and discuss the logic behind their solutions. This approach is
referred to as “paper coding” in the notebook (20 minutes).
Second, individuals or groups work to answer the synthesis
question (35 minutes). Since the course is self-paced, students
may continue to work on their solutions at home and turn in
the notebook the following class period.

Prerequisite Student Knowledge
An understanding of fundamental concepts in biology is

preferred but not required. The lesson uses central dogma as
a context for teaching dictionaries and functions. Videos and
resources introducing central dogma are provided in the
notebook in order to prepare students who do not have a
biology background and/or for those who would prefer to
review relevant concepts (DNA, Hot Pockets, & The Longest
Word Ever: Crash Course Biology #11, Intro to gene
expression, Central dogma of molecular biology). This lesson
is the seventh class period in the Foundations course and
occurs in the first quarter of the semester. Students will have
covered fundamental components of programming in Python
in the first six lessons, including a working knowledge of
Jupyter Notebook, data types (e.g., string, number integers and
floats, lists), for loops, boolean logic, if statements, and list
indexing. A computer will be necessary for this lesson;
therefore, it should be taught in a computer lab or students can
use their own laptop if they have one. Anaconda (Anaconda
Software Distribution; computer software; vers. 2-2.4.0;
Anaconda, Nov. 2016) must be installed in advance and step-
by-step instructions for installing these programs can be found
in “Getting Started with Jupyter”.

Prerequisite Instructor Knowledge
The instructor needs to have an understanding of the

biological concepts covered in the lesson, as well as a
working knowledge of Python and Jupyter Notebook (12, 13).
Instructors should be comfortable explaining the basics of the
central dogma at both the molecular and cellular levels, and at a
level conducive to students without a biology background. In
terms of Python, the instructor should be able to read,
interpret, and troubleshoot (debug) Python code in a Jupyter
Notebook environment, such that they do not have to refer
directly to the answer key if a student has taken a different
algorithmic approach. Instructors should be comfortable with
the basic programming concepts and syntax used in this lesson
and are encouraged to complete the lesson on their own prior
to coming to the classroom. This preparation will ensure the
material is fresh in the instructor’s mind and that they will be
able to effectively coach students during the lesson. The

instructor copy of the Jupyter Notebook can be used as a guide
to assess possible solutions and to identify what the expected
outputs should look like. Instructors should additionally be
comfortable implementing common active learning methods
(e.g., think-pair-share), guiding whole class discussions, and
facilitating students’ self-directed learning (14–17).

SCIENTIFIC TEACHING THEMES

To teach scientifically means applying the same principles
of evidence and reasoning regularly used in science to the
context of teaching and learning. This lesson was conceived
by students who participated in a common learning experience
and perceived a gap in the curriculum that they predicted could
impair students’ course performance and learning outcomes.
The lesson was created using a Backward Design (18) approach
and by applying evidence-based principles about how people
learn (19). Post-instructional data was collected to test
assumptions about student understanding and was used to revise
and iteratively improve lesson elements. In addition, this lesson
was designed to teach programming concepts by intentionally
identifying biological processes that they most closely simulate.
Such integration was a direct outcome of engaging a diverse
and multidisciplinary group of learners and reflects a more
authentic approach to “tapping the interdisciplinary nature of
science” (20) than merely using a biological context or dataset
to teach a computational principle.

Active Learning
This lesson is designed for students to evaluate their learning

through a self-paced Jupyter Notebook (13) that challenges
them to support their computational solutions with algorithmic
thinking and logic.

A flipped classroom approach (21) was chosen by
instructors because it provides opportunity for self-paced
learning and multiple modes of engaging with the material.
Specifically, preparatory videos, practice exercises, and
written explanations describing biological and computational
concepts were provided to students before class to introduce
the main ideas that would be discussed and applied during the
class. Students could work individually or with classmates at
their own pace to prepare for class.

Jupyter Notebooks are self-paced, accessible (13) and
especially conducive for actively engaging students with Python
as they learn. Students can annotate code, practice running
scripts, and add or delete segments of code as they move
through the lesson, thereby enabling practice and visualizing
the consequences of modifying functioning elements.

Collaborative teams are a critical element of the lesson
design. Ideally, teams would be composed of students that differ
in their disciplinary expertise and prior experience in coding.
Peer learners support one another as they troubleshoot errors
and work through problems. Diverse teams bring differing
perspectives about problem approaches and can promote
students’ development of more robust debugging skills critical
in programming. Seating students together in groups or, in
the virtual setting, separating students into breakout rooms, is
preferred to encourage collaboration (22, 23).

CourseSource | www.coursesource.org 3 2023 | Volume 10

https://youtu.be/itsb2SqR-R0
https://youtu.be/itsb2SqR-R0
https://youtu.be/itsb2SqR-R0
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://www.khanacademy.org/test-prep/mcat/biomolecules/amino-acids-and-proteins1/v/central-dogma-of-molecular-biology-2
https://github.com/DanChitwood/PlantsAndPython/blob/master/PlantsAndPython00_GettingStartedWithJupyter.ipynb
https://github.com/serenalotreck/forum-lesson-plan/blob/master/CentralDogma_Dictionaries_and_Functions_Notebook_INSTRUCTOR.ipynb
https://github.com/serenalotreck/forum-lesson-plan/blob/master/CentralDogma_Dictionaries_and_Functions_Notebook_INSTRUCTOR.ipynb

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

“Paper coding” is an instructional approach in which a
general algorithm is written down in preparation for writing
true code. Paper coding acts as an opportunity for students to
outline their Python scripts and brainstorm their methodology
for solving a computational problem. This activity challenges
students to apply concepts and transfer information learned in
preparation for class. Analogous to hypothesis generation in
science, paper coding requires students to propose an
explanation or approach that can be tested empirically through
enacted code. Paper coding is generally done as a think-pair-
share, where students first conceive solutions on their own,
then work with a partner (ideally, of a different disciplinary
background) to discuss and refine their strategy.

Oral presentations by collaborative teams enable whole-
class discussion about alternative approaches taken for solving
problems. Feedback from instructors and classmates can help
students identify affordances of different strategies and expand
their understanding of both computational and biological
concepts.

Inclusive Assessment
For a Jupyter Notebook-based tutorial with an active learning

focus such as this, the completion of the task is the direct
assessment (22, 24). The paper coding, think-pair-share activity
assesses students’ understanding of both the central dogma and
the computational techniques introduced in this lesson. This
assessment requires students to verbalize their understanding
and synthesize a step-by-step design before beginning to code.
The synthesis question and challenge question, available for
extra practice, are designed to motivate students to apply their
understanding of the lesson to complete the tasks eficiently
and effectively. To assess the synthesis question, think-pair-
share groups present their code to class, providing explanation
for each cell in their notebook. In terms of learning outcomes,
students should be able to develop a function that will take a
gene and return a sequence string of the longest possible
isoform, the length of the longest isoform, and the number of
possible isoforms based on the number of exons. Students
should also be able to respond to questions posed by the class
as well as the instructors, which fosters student engagement.

The student’s Jupyter Notebook also serves as an assessment
of their prior knowledge and understanding of the concepts
explained in the pre-class assignment. Instructors provide
feedback on students’ completed notebooks to clarify
any missteps and suggest alternative strategies where
appropriate. This feedback informs students of their personal
understanding of the lesson and informs instructors about
students’ comprehension such that common challenges can
be addressed and the pace or instruction can be altered in the
following lesson.

Inclusive Teaching
Students in this course have diverse backgrounds in biological

and computational sciences. As such, this lesson has been
designed for any student, regardless of academic background,
outside the first lessons in the course. The collaborative design
of this lesson and use of think-pair-share celebrates a diversity of
student knowledge and encourages cooperation between peers
to overcome challenges within the material (16, 24). Ideally,
students work in small peer teams with diverse disciplinary

expertise, such that they can collaborate to understand core
concepts related to central dogma, functions, and dictionaries.
However, the lesson is also conducive for individual learners,
thereby promoting inclusion of students who participate
remotely and/or asynchronously. The use of Jupyter Notebook
allows a personalized learning experience for each student.
Students can choose to process material before class, by coding
alone or rewatching lecture videos, share code during class,
add comments to their own notebook, and come to class ready
to work through problems with others. The interdisciplinarity of
the lesson encourages students to actively engage, include, and
challenge ideas during group interaction. Since the students
are from diverse disciplines the heterogeneity of the group
creates an expansive learning environment. Students’ start at
different levels of initial knowledge, but with committed effort
in working through the Jupyter Notebook, they are able to
master the basics of dictionaries, functions, and central dogma
by the end of the course.

In addition, the lesson plan was originally designed for in-
person delivery in the fall semester of 2020. However, due to
COVID-19, the course was taught online, and proved to be
adaptable in a virtual classroom. We believe this lesson plan is
conducive to in-person, virtual, and asynchronous teaching as
well as alternative self-paced individual or team learning
platforms.

There are elements of inclusive teaching inherent in the
design of the course beyond the low background knowledge
required and the in-class group work.

Paper coding serves as a way to help the peer groups learn
together and creates opportunities for the novice learners to
get their questions answered. The Plants and Python lesson
available via GitHub creates access to the learning material
to those unafiliated with Michigan State University (MSU).
Indeed, the Plants and Python courses are offered in a
Universidad Nacional Autónoma de México (UNAM) course
with Jupyter Notebooks and videos in Spanish language.
Bridging the learning gap and making these resources widely
accessible is a positive step towards inclusive teaching.

LESSON PLAN

The lesson is structured into three main introductory
sections in the Jupyter Notebook. The three sections introduce
the central dogma, dictionaries, and functions with examples
of each. These three sections may or may not be necessary
depending on a student’s background in each respective topic.
The fourth section has students follow along with a video
lecture and checks understanding as students fill in their own
custom dictionary with values about themselves, practice
passing values to a prewritten function, and write their own
function to perform simple statistical processes. The last part
within the fourth section provides two challenge problems.
Both problems have complex biological themes and require
students to apply dictionaries and functions with a greater depth
of understanding than the rest of the lesson. The first challenge
problem provides students with a dictionary containing real
genes in the Physcomitrium patens (moss) genome, and all
elements within that dictionary refer to exonic and intronic
space within those genes (25). Groups are expected to write a
function that passes these dictionaries and returns a sequence

CourseSource | www.coursesource.org 4 2023 | Volume 10

https://plantsandpython.github.io/PlantsAndPython/00_Opening_page.html

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

string for the longest possible version of each gene, the number
of base pairs within that gene isoform, and the number of
possible variations in which that gene could be spliced. The
second challenge problem asks groups to write a function
that identifies the start codons within a nucleotide sequence
generated through putative gene models and translates each
respective codon to their subsequent amino acid to produce a
full length polypeptide.

This activity is designed for an 80-minute class period in
which basic concepts of coding and terminology in Python
have previously been covered. The class progression is
outlined in the teaching timeline sections of Table 1 with
central objectives (Preparation for Class) and estimated timing
(Class Session: Dictionaries and Functions).

Classroom Context
This lesson is best taught in a room with grouped seating and

large or shared monitors so that students can work together,
ask each other questions, and easily share their code with one
another throughout the class period.

Pre-Class Instructor Preparation
Before class, the instructors should familiarize themselves

with the concepts of the lesson, prepare strategies to aid
students through known or anticipated challenges, and have a
plan for how groups will be determined (e.g., self-formed or
assigned based on expertise).

Pre-Class Student Preparation
Students are given the full notebook and asked to read the

introductory information prior to class. In the first section, the
central dogma is explained within a CrashCourse video, and
additional resources are provided for students who would like
more information. In the second section, dictionaries are then
explained through a three step framework: what is a dictionary,
why use a dictionary, and how to use a dictionary. The same
framework is utilized for functions in the third section. To bring
these concepts together in section 4, the students are asked to
watch Dr. Dan Chitwood’s video, “Plants & Python, vol. 7:
Functions, Dictionaries, and L-Systems.”We recommend that if
a student has no prior knowledge of functions and dictionaries
they read the introductory information and watch Dr. Dan
Chitwood’s video twice: first taking notes on computational
concepts, and then working through the tutorial on their own
Jupyter Notebook. If a student has no prior knowledge of the
central dogma, we recommend the student watch both videos
provided and utilize the resources listed at the beginning of
the Notebook.

In-Class Activities
1. Introduction to Dictionaries: Students utilize

dictionaries to create their own personal identifiers.
This section allows students to apply the knowledge
learned from the introductory information in the second
section, “An introduction to dictionaries in Python,” of
the notebook.

2. Introduction to Functions: Beginning with two
examples, students are able to analyze the provided
functions and then write their own to calculate the area
of a circle. Taking it one step further, students will then
write their own function to perform a set of statistical
operations. Again, this section is asking students to

utilize their pre-class preparation and build upon their
knowledge of how functions can be utilized by actively
implementing their own (refer to “An introduction to
functions” in the second section of the notebook).

3. Synthesis Question: Dictionaries and Functions: First,
students will form groups and then utilize think-pair-
share to paper code their solutions. By paper coding
the steps and solutions for the synthesis question first,
students focus on the process of computational coding
and discover the logic behind each step. After groups
discuss their frameworks with one another, groups
will move on, and work to define and apply functions
that identify the start codon of a DNA sequence and
translate it to a polypeptide chain. While it was not
included in the original implementation of the lesson,
a challenge question is now included at the end of
the notebook for students who finish the assignment
quickly or those who would like to further develop
their skills regarding functions after class (refer to
“Introduction to Dictionaries and Functions: Putting it
into practice” in the notebook). Students must develop
a function that identifies splice variants and construct
possible isoforms that could be generated from an
mRNA transcript. Further reflection for the inclusion of
this challenge question can be found in the Discussion.

TEACHING DISCUSSION

Effectiveness at Achieving the Stated Learning Goals
and Objectives

This lesson was inspired by the authors’ collective
experiences in the Foundations computational course,
which merged students from computational and biological
disciplines. The course content for Foundations is available
here. As with other lessons in the course and many other
preliminary Python courses, our lesson uses Jupyter Notebook
and a flipped class approach (21, 26–29). Jupyter notebook is
a ‘computational notebook’ that has broad support in the data
science community in both professional and education
contexts. Jupyter notebook is also effective in multimedia
integration (i.e., code, text, images, and other scaffolds) that
facilitate data exploration, allows students to clearly make
note and annotate their scripts, and has a growing acceptance
worldwide (21, 26–29). In our design, prior to class, students
watch video lectures to introduce concepts, practice simple
applications using working models and prewritten scripts, and
conclude with basic problem sets where newly introduced
concepts are used in applicable scenarios. This modality prior
to class was conducive for an interdisciplinary course with
learners that varied in their prior experience; novice learners
can aptly pace themselves and revisit information while
experts can skip already familiar information. In class, students
receive peer and instructor support as they collaborate to
solve problems that test their ability to apply multidimensional
concepts. An unforeseen advantage of our design was the
seamless transition to online instruction during the pandemic.
Although the course was designed for in-person instruction,
shifting to online required few changes to our original design.

An explicit aim of our lesson was to leverage the expertise of
both the biological and the computational science students in
order to teach foundational concepts of both disciplines. Our
lesson provides training on functions and dictionaries together

CourseSource | www.coursesource.org 5 2023 | Volume 10

https://github.com/serenalotreck/forum-lesson-plan/blob/master/CentralDogma_Dictionaries_and_Functions_Notebook_STUDENT.ipynb
https://youtu.be/itsb2SqR-R0
https://www.khanacademy.org/science/high-school-biology/hs-molecular-genetics/hs-rna-and-protein-synthesis/a/intro-to-gene-expression-central-dogma
https://www.youtube.com/watch?v=HIxmLFrVBYQ
https://www.youtube.com/watch?v=HIxmLFrVBYQ
https://github.com/DanChitwood/PlantsAndPython

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

in the context of the central dogma. Dictionaries in Python
organize data and variables that help the logical flow of
code and reduce computational demand of the system. They
accomplish these two tasks because (i) data can be paired,
where each entry has a key and a corresponding value, which
other data structures (e.g., lists) cannot, and (ii) dictionaries use
an under-the-hood approach to search specific terms instead
of loading every object in a list sequentially. While many new
coding students are content with lists to organize their data,
the limitation of exclusively doing so is quickly discovered as
datasets get larger and more complicated. In biological
contexts, where datasets are often large and include paired data
(e.g., gene name: gene sequence), dictionaries can optimize
computing power and provide a useful tool for organizing
their code more effectively. Like dictionaries, functions are a
fundamental way to organize and reuse code, which drastically
improves the readability of scripts. When students first learn to
code, they frequently engage in procedural programming, in
which code is written in a stream-of-consciousness style, with
segments of code copy and pasted multiple times to perform
similar tasks. However, this methodology often becomes
untenable when working with real-world data. Functional
programming involves compartmentalizing code that
performs the same task into functions, which allows for a
segment of code that performs a specific computational task
(e.g., a statistical analysis) to be appropriately named after its
action and referenced repeatedly in a script. Using functions
improves eficiency by (i) allowing algorithms to be reused,
(ii) reducing complexity and redundancy in executable
scripts, and (iii) improving fidelity where properly functioning
algorithms are not at risk of copy-and-paste errors. The central
dogma refers to the collective processes by which biological
information encoded in DNA (i.e., a gene) is transcribed to the
intermediate molecule (mRNA) and then translated/expressed
as a functional protein. The central dogma, sometimes referred
to as ‘information flow,’ is broadly regarded as a core concept
for basic biological literacy (23, 24).

Although functions and dictionaries could each be taught
independently and acontextually, to do so would miss an
opportunity to provide students an authentic interdisciplinary
learning experience. Our synthesis and challenge questions
ask students to use these computational tools to translate and
splice mRNA, similar to the basic principles observed within
the cell. We believe that this unique combination of tools and
the context for solving such a task are particularly conducive
for fostering learning about core principles across disciplines.
While dictionaries and functions are likely already familiar
concepts for computational students, using them together
for this application simulates the machinery and nuances of
gene expression, and thereby promotes a more mechanistic
understanding of how and why biological information is
expressed in nature. For biologists, the applications of
dictionaries and functions are immediately relevant due to
their combined ability to process paired data with high levels
of repetition and fidelity. However, biologists can gain a deeper
understanding of the mechanics underlying the computational
tools because they can mirror and apply these tools to familiar
biological processes.

As technology rapidly continues to advance and
computational power grows so will possible applications
for analyzing biological data. With this unavoidable future,
we identified the essentiality of bridging communication

and expertise between computational scientists and
biologists. Maximizing the benefits from this collaboration
requires fundamental understanding of and limitations of
the complementary discipline. We believe our lesson helps
bridge communication and expertise between computational
scientists and biologists by teaching and applying foundational,
interdisciplinary concepts with real world data.

The unique nature of previous students developing this
lesson intends to set the precedent that curriculum design
should continue to build upon itself where students and
educators incorporate feedback and play an active role in
designing the next iteration when possible.

Students and educators alike can identify the necessity for
effective collaboration between computational scientists and
biologists for the future of answering biological questions
(9, 10, 30). The necessity to successfully instill an effective
education for students who pursue these goals is what
motivated the cohort of student authors to actively design this
lesson plan. The steep learning curve for computational skills is
intimidating and discouraging to new students so ensuring that
peers, educators, and curriculum all work together for
providing the best education is critical to getting more students
involved and effective at using computational tools in biology.

Student Reaction
Student feedback was gathered through Google Forms

surveys and informed subsequent revisions to the lesson. A
survey (Supporting File S1) was administered after the
course asking for feedback on the activity from the sixteen
enrolled students. Overall, students reported positively when
surveyed about their experiences with the lesson during the
Fall 2020 semester. Of the eight students who responded, a
majority of six students self-reported that they were able to
grasp the biological concepts prior to the start of the lesson
but the responses varied in the self-reported understanding of
the computational concepts prior to the lesson. One student
stated that “The lesson was very easy to follow and I think
even beginners can understand.” Another claimed that they
were able to grasp the biological and computational concepts
“very well” and further said, “I think using the example of
the translation process to introduce dictionaries and writing
functions was a well taken opportunity.” Since the lesson
provides students with a challenging task that is scaffolded so
that they may become familiar with key concepts while
grappling with the coding complexities, some students
struggled with the level of dificulty of this task. This was evident
when one student said, “I grasped the biological concepts
well because I have experience in them, but I got lost during
the coding session. The majority of the notebook was easy to
understand, but I wish I had worked on the challenge at home
by myself first.” Four of the students specifically included in
their open-ended response that the challenge question was
helpful in understanding the concept of a dictionary. While
the majority of students reported having a positive experience
with the notebook, which helped to solidify computational
and biological concepts, they also provided constructive
feedback to drive future iterations of the course.

Suggestions for Improvement
In the original iteration of this lesson, only one challenge

question was provided. Nearly all groups were able to finish

CourseSource | www.coursesource.org 6 2023 | Volume 10

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

this challenge problem and present their code to the rest of
the class. Students were also able to respond appropriately to
questions posed by both the teaching team and other students
during the presentations of their scripts. However, based on
the survey responses, adding degrees of dificulty to challenge
problems could help the students to grasp computational
concepts. This would also create opportunities for more
student collaboration and reinforce transfer of knowledge.
Increased complexity (e.g., isolating exons, removing introns,
determining splice variants, etc.) with the challenge problem
will also further engage those with more coding skill while
also relying on the biological knowledge that students with
opposing expertise might possess. Suggestions from the survey
also included providing links to Stack Overflow and similar
resources in the lesson plan to aid in the self-learning activities
like troubleshooting the Python code.

An important factor would be to do an inventory of the
students’ disciplinary backgrounds and expertise levels in both
computational and biological concepts at the beginning of the
class in a survey. This would help to form collaborative groups
with heterogeneous expertise resulting in greater sharing of
knowledge between diverse learners (31). This is especially
important because of the range of expertise of the students
and disciplinary backgrounds.

This lesson was tested within a fully-online, synchronous
graduate-level course. The authors observed that the use of
Jupyter Notebook in conjunction with a video conferencing
platform that has breakout sessions and screen-sharing
capabilities worked well. While this lesson plan was originally
designed to be taught in-person, the technology used within
this lesson allowed for an easy transition to an online format.

SUPPORTING MATERIALS

• S1. Central Dogma, Dictionaries, and Functions –
Survey Questions

ACKNOWLEDGMENTS

This work is supported in part by Michigan State University
and National Science Foundation Research Traineeship
(NRT) Program (DGE-1828149; PI: Shiu). The NRT-IMPACTS
(Integrated Training Model in Plant and Computational
Science) program at Michigan State University provided a
context for this work and financial support to authors: JK,
DTM, SGL, MLW, SWH, and FG-C. We thank Blake Trygestad
for his early investment and contributions to the design of this
lesson plan. We thank Daniel Chitwood and Robert VanBuren
for their input during the writing of this manuscript and the
initial implementation of this lesson during their course. We
thank all the students for their participation in working through
this lesson plan during the Fall 2020 HRT-841: Foundations in
Computational Plant Science course.

Authors, FG-C, SWH, SGL, DTM, and MLW, contributed
equally to the writing and editing of this publication.

All student surveys were conducted with prior approval
from the MSU Institutional Review Board for Human Subjects
(IRB #STUDY00000978).

REFERENCES

1. Leonelli S. 2019. Philosophy of biology: The challenges of big data biology.
Elife 8:e47381. doi:10.7554/eLife.47381.

2. Fillinger S, de la Garza L, Peltzer A, Kohlbacher O, Nahnsen S. 2019.
Challenges of big data integration in the life sciences. Anal Bioanal Chem
411:6791–6800. doi:10.1007/s00216-019-02074-9.

3. Bayat A. 2002. Science, medicine, and the future: Bioinformatics. BMJ.
324:1018–1022. doi:10.1136/bmj.324.7344.1018.

4. Kahvejian A, Quackenbush J, Thompson JF. 2008. What would you do if you
could sequence everything? Nat Biotechnol 26:1125–1133. doi:10.1038/
nbt1494.

5. Ekblom R, Galindo J. 2011. Applications of next generation sequencing in
molecular ecology of non-mode organisms. Heredity 107:1–15. doi:10.1038/
hdy.2010.152.

6. Gupta AK, Gupta UD. 2014. Next generation sequencing and its applications, p
345–367. In Verma AS, Singh A (ed), Anima biotechnology. Academic
Press, Waltham, MA.

7. Boekel J, Chilton JM, Cooke IR, Horvatovich PL, Jagtap PD, Käll L, Lehtiö J,
Lukasse P, Moerland PD, Grif in TJ. 2015. Multi-omic data analysis using
Galaxy. Nat Biotechnol 33:137–139. doi:10.1038/nbt.3134.

8. Maloney M, Parker J, LeBlanc M, Woodward CT, Glackin M, Hanrahan M.
CBE Life Sci Educ 9:172–174. doi:10.1187/cbe.10-03-0038.

9. Robeva RS, Jungck JR, Gross LJ. 2020. Changing the name of quantitative
biology education: Data science as a driver. Bull Math Biol 82:127.
doi:10.1007/s11538-020-00793-0.

10. Cechova M. 2020. Ten simple rules for biologists initiating a collaboration
with computer scientists. PLoS Comput Biol 16:e1008281. doi:10.1371/
journal.pcbi.1008281.

11. Friesner J, Assmann SM, Bastow R, Bailey-Serres J, Beynon J, Brendel V,
Buell CR, Bucksch A, Busch W, Demura T, Dinneny JR, Doherty CJ, Eveland
AL, Falter-Braun P, Gehan MA, Gonzales M, Grotewold E, Gutierrez R,
Kramer U, Krouk G, Ma S, Markelz RJC, Megraw M, Meyers BC, Murray
JAH, Provart NJ, Rhee S, Smith R, Spalding EP, Taylor C, Teal TK, Torii KU,
Town C, Vaughn M, Vierstra R, Ware D, Wilkins O, Williams C, Brady
SM. 2017. The next generation of training for Arabidopsis researchers:
bioinformatics and quantitative biology. Plant Physiol 175:1499–1509.
doi:10.1104/pp.17.01490.

12. Kluyver T, Ragan-Kelley B, Pérez F, Granger B, Bussonnier M, Frederic J,
Kelley K, Hamrick J, Grout J, Corlay S, Ivanov P, Avila D, Abdalla S, Willing
C, Jupyter development team. 2016. Jupyter Notebooks – A publishing format
for reproducible computational workflows, p 87–90. In Loizides F, Scmidt
B (ed), Positioning and power in academic publishing: Players, agents and
agendas. IOS Press, Fairfax, VA.

13. Reades J. 2020. Teaching on Jupyter. REGION. 7:21–34. doi:10.18335/
region.v7i1.282.

14. Ebert-May D, Brewer C, Allred S. 1997. Innovation in large lectures: Teaching
for active learning. Bioscience 47:601–607. doi:10.2307/1313166

15. Freeman S, Eddy SL, McDonough M, Smith MK, Okoroafor N, Jordt H,
Wenderoth MP. 2014. Active learning increases student performance in
science, engineering, and mathematics. PNAS 111:8410–8415.

16. Lyman F. 1981. The responsive classroom discussion: The inclusion of all
students, p 109–113. In Anderson A (ed), Mainstreaming digest. University
of Maryland, College Park, MD.

17. Wandersee JH, Mintzes JJ, Novak JD. 1994. Research on alternative
conceptions in science, p 177–201. In Gabel D (ed), Handbook of research
on science teaching and learning. MacMillan, New York, NY.

18. Wiggins G, McTighe J. 2005. Understanding by design, 2nd ed. Association
for Supervision and Curriculum Development, Alexandria, VA.

19. Bransford JD, Brown AL, Cocking RR. 2000. How people learn. National
Academy Press, Washington, DC.

20. Rebmann A, Beuther A, Fettkey P. 2020. Hands-on process discovery
with Python - Utilizing Jupyter Notebook for the digital assistance in
higher education, p 65–76. Joint Proceedings of Modellierung 2020 Short,
Workshop and Tools & Demo Papers, Vienna, Austria.

21. Awidi IT, Paynter M. 2019. The impact of a flipped classroom approach on
student learning experience. Comput Educ 128:269–283. doi:10.1016/j.
compedu.2018.09.013.

22. Black P, Wiliam D. 1998. Assessment and classroom learning. Assess Educ
5:7–74.

23. Barkley E, Cross K, Major C. 2014. Collaborative learning techniques:
A handbook for college faculty. John Wiley & Sons, San Francisco, CA.

24. Momsen J, Offerdahl E, Kryjevskaia M, Montplaisir L, Anderson E, Grosz
N. 2013. Using assessments to investigate and compare the nature of

CourseSource | www.coursesource.org 7 2023 | Volume 10

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

learning in undergraduate science courses. CBE Life Sci Educat 12:239–249.
doi:10.1187/cbe.12-08-0130.

25. Lang D, Ullrich KK, Murat F, Fuchs J, Jenkins J, Haas FB, Piednoel M,
Gundlach H, Van Bel M, Meyberg R, Vives C, Morata J, Syemeonidi A, Hiss
M, Muchero W, Kamisugi Y, Saleh O, Blanc G, Decker EL, van Gessel N,
Grimwood J, Hayes RD, Graham SW, Gunter LE, McDaniel SF, Hoernstein
SNW, Larsson A, Li F-W, Perroud P-F, Phillips J, Ranjan P, Rokshar DS,
Rothfeis CJ, Schneider L, Shu S, Stevenson DW, Thümmler F, Tillich M,
Villarreal Aguilar JC, Widiez T, Wong GK-S, Wymore A, Zhang Y, Zimmer
AD, Quatrano RS, Mayer KFX, Goodstein D, Casacuberta JM, Vandepoele K,
Reski R, Cuming AC, Tuskan GA, Maumus F, Salse J, Schmutz J, Rensing SA.
2017. The Physcomitrella patens chromosome-scale assembly reveals moss
genome structure and evolution. Plant J 93:515–533. doi:10.1111/tpj.13801.

26. Cardoso A, Leitão J, Teixeira C. 2019. Using the Jupyter Notebook as a tool to
support the teaching and learning processes in engineering courses, p 227–
236. In Auer M, Tsiatsos T (ed), The challenges of the digital transformation
in education. Proceedings of the 21st International Conference on Interactive
Collaborative Learning (ICL2018) - Volume 2. Springer, Cham, Switzerland.

27. Perkel JM. 2018. Why Jupyter is data scientists’ computational notebook of
choice. Nature 563:145–146. doi:10.1038/d41586-018-07196-1.

28. Nwulu N, Damisa U, Gbadamosi S. 2021. Students’ perception about
the use of Jupyter notebook in power system education. Int J Eng Pedagog
11:78–86. doi:10.3991/ijep.v11i1.14769.

29. Carrano D, Chugunov I, Ayazifar B. 2020. Self-contained Jupyter notebook
labs promote scalable signal processing education, p 1409–1416. Sixth
International Conference on Higher Education Advances. Editorial Universitat
Politècnica de València, València, Spain. doi:10.4995/HEAd20.2020.11308.

30. National Research Council. 2009. A new biology for the 21st century. The
National Academies Press, Washington, DC.

31. American Association for the Advancement of Science (AAAS). 2011. Vision
and change in undergraduate biology education: A call to action. AAAS,
Washington, DC.

32. Camara GS, Camboim S, Bravo JVM. 2021. Using Jupyter Notebooks for
viewing and analysing geospatial data: Two examples for emotional maps
and education data. Int Arch Photogramm Remote Sens Spatial Inf Sci
XLVI-4/W2:17–24. doi:10.5194/isprs-archives-XLVI-4-W2-2021-17-2021.

CourseSource | www.coursesource.org 8 2023 | Volume 10

Central Dogma, Dictionaries, and Functions: Using Programming Concepts to Simulate Biological Processes

Table 1. Teaching timeline.

Activity

Preparation for Class

1. Watch “DNA, Hot
Pockets, & The Longest
Word Ever: Crash Course
Biology #11”

2. Read Sections 2 and 3 in
the Jupyter Notebook,
Dictionaries and Functions

3. Watch the first 22
minutes of “Plants &
Python, vol. 7: Functions,
Dictionaries, and
L-Systems”

Description

Introduction to the central
dogma (Section 1 in Jupyter
Notebook).

Overview of functions and
dictionaries.

Apply dictionaries and
functions to the biological
process of translation
(mRNA to protein) as an
example.

Estimated Time

Self-paced. Actual time to complete
activities 1–3 depends on students’
prior training, but ranges from 30
minutes to 2 hours

Self-paced. Actual time to complete
activities 1–3 depends on students’
prior training, but ranges from 30
minutes to 2 hours

Self-paced. Actual time to complete
activities 1–3 depends on students’
prior training, but ranges from 30
minutes to 2 hours

Notes

Prepare students with relevant
background information about core
concepts related to the central dogma and
gene-to-protein phenomena.

Additional resources are included in
the notebook for students without a
biological background.

Provide basic information about
dictionaries and functions, including
vocabulary, definitions, and examples.

Reinforce and extend learning about
functions and dictionaries by connecting
to the biological example of translation.

Enable students to (a) contrast the
roles and purposes of dictionaries and
functions, and (b) identify applications of
each using translation as an example.

Class Session: Dictionaries and Functions

1. Introduction to
Dictionaries

(refer to In-Class Activities
in the article)

2. Introduction to Functions
(refer to In-Class Activities
in the article)

3. Synthesis Question:
Dictionaries and Functions
– Paper Code (refer to
In-Class Activities in the
article)

4. Synthesis Question:
Dictionaries and Functions
– Synthesis and Challenge
question (refer to In-Class
Activities in the article)

Assessment

Download and complete
notebook

Construct and utilize their
own dictionary.

Develop and apply their
own functions to answer
questions.

Write down the steps to
successfully answer the
challenge question. This
paper code will serve
as a framework for the
computational solution.

Utilizing their paper code
developed during the
previous step, students
will incorporate both
dictionaries and functions in
order to isolate isoforms and
find the longest CDS in the
DNA given.

After completion,
the notebook will be
downloaded and submitted
to the course management
system for the instructor’s
review.

Feedback on the challenge
question will be given.

10 min

20 min

20 min

35+ min

Self-paced homework

Intended to help students understand
dictionary syntax and when to use
it, and to elicit and correct common
misconceptions.

Activities 1–2 are intended to help
students understand syntax and when to
use it.

Additionally, these exercises are
designed to elicit and correct common
misconceptions.

The goal of section 3 is to push students
to think about the process of coding,
beyond syntax, and assess the quality of
students’ algorithmic thinking as well as
central dogma.

In section 4 students will utilize
algorithmic thinking, dictionaries,
functions, etc. to answer the synthesis and
challenge questions.

As an assessment, students’ completed
notebooks will provide evidence of their
grasp of concepts that were a focus of the
lesson, their ability to apply algorithmic
thinking, and their progress in developing
their coding skills generally.

CourseSource | www.coursesource.org 9 2023 | Volume 10

https://youtu.be/itsb2SqR-R0
https://youtu.be/itsb2SqR-R0
https://youtu.be/itsb2SqR-R0
https://youtu.be/itsb2SqR-R0
https://www.youtube.com/watch?v=HIxmLFrVBYQ
https://www.youtube.com/watch?v=HIxmLFrVBYQ
https://www.youtube.com/watch?v=HIxmLFrVBYQ
https://www.youtube.com/watch?v=HIxmLFrVBYQ

