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ABSTRACT 

 

A defining feature of the cortex is its laminar organization, which is likely critical for cortical 

information processing. For example, visual stimuli of different size evoke distinct patterns of 

laminar activity. Visual information processing is also influenced by the response variability of 

individual neurons and the degree to which this variability is correlated among neurons. To 

elucidate laminar processing, we studied how neural response variability across the layers of 

macaque primary visual cortex is modulated by visual stimulus size. Our laminar recordings 

revealed that single neuron response variability and the shared variability among neurons are tuned 

for stimulus size, and this size-tuning is layer-dependent. In all layers, stimulation of the receptive 

field (RF) reduced single neuron variability, and the shared variability among neurons, relative to 

their pre-stimulus values. As the stimulus was enlarged beyond the RF, both single neuron and 

shared variability increased in supragranular layers, but either did not change or decreased in other 

layers. Surprisingly, we also found that small visual stimuli could increase variability relative to 

baseline values. Our results suggest multiple circuits and mechanisms as the source of variability 

in different layers and call for the development of new models of neural response variability. 
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INTRODUCTION 

 

The cortex consists of six layers, each having distinct input/output relations and forming distinct 

intra-laminar circuits (Levitt and Lund, 2002a; Douglas and Martin, 2004; Nassi and Callaway, 

2009). The distinct connectivity patterns of cortical layers suggests that they may serve different 

functions in cortical information processing and sensory perception (Constantinople and Bruno, 

2013; Nandy et al., 2013; Bijanzadeh et al., 2018; Takahashi et al., 2020).  

 By measuring trial-averaged neural responses to visual stimuli, previous studies have 

shown that the response properties of neurons differ across cortical layers. For example, in the 

macaque primary visual cortex (V1) granular (G) layer neurons show broader orientation tuning 

(Ringach et al., 1997) and faster responses (Bijanzadeh et al., 2018) than neurons in supra (SG) or 

infragranular (IG) layers. Moreover, compared to other layers, the response of SG layer neurons 

to stimulation of their receptive field (RF) is more strongly suppressed by stimulation of the RF 

surround (Shushruth et al., 2009; Henry et al., 2013), and small versus large stimuli evoke distinct 

patterns of laminar activity (Bijanzadeh et al., 2018). 

 While studies based on measurements of trial-averaged neural responses have been 

foundational to our understanding of cortical layers, they have provided a limited view of cortical 

processing. Deviations from trial-averaged cortical responses (Tolhurst et al., 1983) have 

traditionally been interpreted as noise that impairs the fidelity of neural representations (Shadlen 

and Newsome, 1998; Moreno-Bote et al., 2014). However, reports that neural response variability 

is modulated by visual stimuli (e.g. Churchland et al., 2010) have led some to suggest that 

variability may, instead, play a role in sensory information processing (Festa et al., 2021). For 

example, computational studies have assigned a role for variability in perceptual inference (Orban 

et al., 2016; Henaff et al., 2020), and suggested that cortical layers may play distinct roles in 

perceptual inference (Bastos et al., 2012).  

To understand how laminar processing is differentially affected by neural response 

variability, here we have used laminar recordings to investigate how variability is modulated by 

stimulus size across the layers of macaque V1. We have focused on size tuning of response 

variability, as this enables us to isolate the driving feedforward thalamic inputs to the RF, from the 

modulatory inputs arising from the RF-surround, thought to be mediated by intrinsic V1 and 

corticocortical circuits (Angelucci et al., 2002, 2017; Nurminen et al., 2018). 
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 We found that in all layers, a stimulus matched to the RF size of the recorded neurons 

reduced cortical response variability compared to pre-stimulus baseline. However, modulation of 

variability by stimulation of the RF-surround was layer dependent. In SG layers, stimulation of the 

surround increased both single and shared neural response variability, relative to the variability 

measured for stimuli the size of the RF. In contrast, in G and IG layers, stimulation of the surround 

either had little effect or reduced response variability relative to its value measured during 

presentation of a stimulus matched to the RF size.  Interestingly, we found that in  a subset of 

neurons, small stimuli could increase variability compared to pre-stimulus baseline. Our results 

point to multiple sources of variability affecting cortical processing in a laminar-specific way, and 

call for new models of neural response variability. 

 

 

RESULTS 

 

We recorded visually evoked local field potential (LFP) and multi-unit spiking activity (MUA), 

using 24-channel linear electrode arrays (100µm electrode spacing) inserted perpendicularly to the 

surface of area V1 in two sufentanil-anesthetized macaque monkeys (see Methods). For accurate 

assignment of recorded responses to cortical layers, verticality of the electrode array was verified 

by the spatial overlap and similarity of orientation preference of the neurons’ minimum response 

fields across the array, and confirmed by postmortem histology (as described in Bijanzadeh et al., 

2018). Laminar boundaries were identified by current source density (CSD) analysis of LFP 

signals (Mitzdorf, 1985) averaged over all stimulus diameters used in this study. This allowed us 

to locate the granular (G) layer 4C as the site of the earliest current sink followed by a reversal to 

current source, the site of the reversal marking the bottom of the G layer; layers above and below 

G were defined as supragranular (SG) and infragranular (IG), respectively. We used spiking 

activity in response to the same stimulus, to identify the top and bottom of the cortex (Bijanzadeh 

et al., 2018). 

 To understand how stimulus size modulates cortical response variability across V1 layers, 

we measured Fano-factor and the shared variability among simultaneously recorded neurons as a 

function of grating diameter for 82 visually responsive multi-units. At the beginning of each 

penetration, we mapped the minimum-response fields of the recorded units (see  Bijanzadeh et al., 
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2018 for details). We next presented grating stimuli, centered on the aggregate minimum response 

fields of the recorded units, to characterize the orientation, spatial frequency, and temporal 

frequency tuning of the recorded MUA. We then selected the stimulus parameters that maximized 

the response of as many simultaneously recorded units as possible. Using these optimized 

parameters, we ran size tuning experiments in which the diameter of a drifting grating stimulus 

was varied from 0.1° (0.2° in one penetration) to 26°. 

 

Layer dependent modulation of neural response variability by stimulus size 

 

Figure 1 shows size-tuning data for representative multi-units recorded in SG, G, and IG layers. 

For all three example units, Fano-factor decreased as the stimulus diameter was increased to fill 

the RF of the recorded neurons. However, for the SG layer unit (Figure 1A), increasing the 

stimulus diameter beyond the RF boundaries increased Fano-factor, relative to Fano-factor 

measured when the stimulus was matched to the size of the RF. In contrast, increasing the stimulus 

diameter beyond the RF boundaries did not affect Fano-factor for the G and IG layer units (Fig. 

1B-D).  
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Similar results were observed for the population of recorded MUA. Figure 2A shows Fano-factor 

and mean firing-rate averaged over the population of multi-units in our sample. In SG (n=31), G 

(n=15) and IG (n=36) layers, increasing the stimulus diameter from 0.1 to a size equal to the 

aggregate RF diameter of the recorded cells progressively decreased Fano-factor and increased 

firing-rate. Fano-factor reached a minimum at the stimulus diameter matching, or slightly larger 

than that of the RF, the latter defined as the peak of the firing rate size-tuning curve.  

Large gratings extending into the RF surround of V1 cells are known to suppress the mean 

spiking response evoked by a stimulus confined to the cells’ RF, a phenomenon known as surround 

suppression (Sceniak et al., 2001; Angelucci et al., 2002; Cavanaugh et al., 2002; Levitt and Lund, 

2002b; Shushruth et al., 2009; Angelucci and Shushruth, 2013). Consistent with these previous 

reports, as the stimulus size was increased beyond that of the RF diameter, firing rate decreased 

across all layers, and this suppression was strongest in the SG layers. However, increasing the 

stimulus diameter beyond the RF of the recorded units had different effects on Fano-factor in 

different layers.  In SG layers, as the stimulus diameter was increased beyond that of the RF, Fano-

factor significantly increased relative to its value when the stimulus matched the RF diameter (Fig. 

2A Left; t-test stim. diam equals RF vs. stim diam equals 26°, p=0.002). In G and IG layers, 

instead, increasing the stimulus diameter beyond the aggregate RF did not significantly affect 

Fano-factor (Fig. 2A Middle and Right; G: t-test, p=0.80; IG: t-test, p=0.35).  

Figure 2B shows Fano-factor estimated at 4 different stimulus diameters individually for 

each multi-unit (values were extracted from functions fit to the data; see Methods), and then 

averaged over the units. Consistent with the population size-tuning curves, this analysis also 

showed a laminar dependence of the impact of surround stimulation on Fano-factor. In SG layers, 

Fano-factor was significantly higher for the 26° diameter stimulus than for the stimulus matching  

Figure 1. Size tuning of Fano-factor and mean firing rate in macaque V1: representative units. A) Representative 
supragranular (SG) layer unit. Left: MUA spike-rasters measured at two stimulus diameters, either a diameter equal to 
the RF diameter of the recorded multi-unit (Top), or a diameter of 26° (Bottom). Middle: Peri-stimulus time histograms 
(PSTHs) of Fano-factor (red) and mean firing-rate (black) computed in a 100 ms rectangular sliding window for the same 
two stimulus diameters. The shaded area represents the standard deviation (s.d.) of the bootstrapped Fano-factor 
distribution (for the Fano-factor curve) or the standard-error-of-the-mean (s.e.m., for the firing rate curve). Inset: 
Zoomed-in Fano-factor curves for the smaller (darker red) and larger (lighter red) stimulus diameters between 50 and 
350 ms after stimulus onset. Right: Fano-factor (red) and firing-rate (black) averaged over 50-350 ms after stimulus onset 
and plotted against the stimulus diameter. Solid lines: fits to the data. Dashed lines: baseline Fano-factor (red) and firing 
rate (black), measured prior to stimulus onset. Error bars are: s.d. of the bootstrapped Fano-factor distribution (red) or 
s.e.m. (black). B) Representative granular (G) layer unit. C) Representative infragranular (IG) layer unit. Conventions in 
(B-C) are as in (A). 
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Figure 2.  Size tuning of Fano-factor and mean firing rate: population data.  A) Average Fano-factor (red) and mean firing-
rate (black) as a function of stimulus diameter for the population of SG (Left; n=31), G (Middle; n=15) and IG (Right; n=36) 
layer units. Dashed lines: average baseline Fano-factor (red) and firing rate (black); error bars: s.e.m. B) Top: Fano-factor 
values averaged over 82 units at four different stimulus diameters (0.1°, a diameter equal to the RF diameter, a diameter equal 
to the RF-surround diameter (see Methods for definition), and 26°). Error bars: s.e.m. Bottom: Fano-factor values for 
individual multi-units in SG, G and IG layers at two different stimulus diameters (as indicated). C) Top: Mean percent change 
in Fano-factor relative to baseline induced by a stimulus matched in size to the RF diameter, for the different layers. Dots: 
Individual data points. Error bars: s.e.m.  Bottom: Scatter plot of Fano-factor during pre-stimulus baseline vs during 
presentation of a stimulus matched to the RF diameter. Different colored dots indicate units in different layers. D) Top: Mean 
percent change in Fano-factor induced by a 26° diameter stimulus relative to the Fano-factor value evoked by a stimulus 
matched to the RF diameter. Bottom: Scatter plot of Fano-factor for presentation of stimuli of two different sizes (a diameter 
equal to that of the RF vs. a diameter of 26°). Other conventions as in panel C). E) Percent of multi-units in each layer for 
which stimulation of the RF significantly decreased variability (black), did not affect variability (white) or increased variability 
(gray). F) Median stimulus diameter at the largest decrease in Fano-factor (or max quenching), normalized to the RF diameter 
of the recorded units, for different layers. Error bars: s.d. of the bootstrapped distributions. Dots: individual cell data. G) Scatter 
plot of percent change in Fano-factor evoked by the largest surround stimulus (26° diameter)  relative to the Fano-factor evoked 
by a stimulus matched to the RF diameter vs. suppression index (see Methods). Color dots identify units in different layers, as 
indicated. Lines are regression lines fitted to the individual layer data.  
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the RF diameter (mean ± s.e.m.: 2.30±0.23 vs. 1.77±0.11, t-test, p=0.005). However, in G and IG 

layers, Fano-factor did not differ significantly for these two size stimuli (G: 1.30±0.09 vs. 

1.31±0.17, t-test, p=0.96; IG: 1.40±0.09 vs. 1.44±0.09, t-test, p=0.42). 

 The top panel in Figure 2C plots for each layer the percent change in Fano-factor, relative 

to baseline, evoked by a stimulus equal in size to the RF diameter of the recorded units. The bottom 

panel shows a scatter plot of Fano-factor at baseline vs during presentation of a stimulus matched 

to the RF size. In all layers, presentation of visual stimuli in the RF reduced Fano-factor relative 

to baseline; there was no statistically significant difference across layers in the percent change in 

Fano-factor (one-way ANOVA, main effect of layer on percent change in Fano-factor, p=0.20, 

n=81; mean ± s.e.m. SG: -30.50±5.63%, n=31; G: -20.38±8.54%, n=14; IG: -16.77±5.16%, n=36). 

The top panel in Figure 2D plots for each layer the percent change in Fano-factor evoked by a 26° 

stimulus relative to a stimulus matched to the RF diameter, and the bottom panel shows a scatter 

plot of Fano-factor values at these two stimulus diameters. As for the previous analysis, the impact 

of surround stimulation on Fano-factor was layer dependent (one-way ANOVA, main effect of 

layer on percent change in Fano-factor, p=0.02, n=81). In G and IG layers, there was no statistically 

significant change in Fano-factor (mean ± s.e.m. G: 10±10.8%, n=14, t-test µ≠0, p=0.35; IG: -

0.98±4.91%, n=36, t-test µ=0, p=0.84). In contrast, in SG layers there was a strong percent increase 

in Fano-factor as the stimulus involved the RF surround (SG: 27.82±9.15%, n=31, t-test µ=0, 

p=0.004).  One unit with extreme change in Fano-factor (564%), caused by dividing with a number 

close to zero, was removed from the analyses presented in Figure 2C,D,G.  

 A unit-by-unit analysis revealed that stimulation of the RF surround affected the variability 

of V1 neurons in three distinct ways. For the majority of the units (59.7%, n=49), surround 

stimulation did not significantly affect variability, as determined by bootstrapping (see Methods). 

Compared to Fano-factor measured when the stimulus was confined to the RF, a stimulus in the 

RF surround statistically significantly increased Fano-factor in 25.6% of the units (n=21) and 

decreased it in 14.6% of the units (n=12). These three distinct effects were found in all layers, but 

in different proportions (Figure 2E). In SG layers (n=31), surround stimulation increased 

variability in 38% of the units, decreased it in 13% of the units and did not have a statistically 

significant impact on variability in 49% of the units. In G layers (n=15), surround stimulation 

increased variability in 26% of the units, decreased it in 13% of the units and did not have a 

statistically significant impact on variability in 61% of the units. In IG layers (n=36), surround 
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stimulation increased variability in 14% of the units, decreased it in 17% of the units and did not 

have a statistically significant impact on variability in 69% of the units. Consistent with these 

results, the stimulus diameter at the lowest Fano-factor value (or max quenching) was equal or 

close the RF diameter in SG layers (median±s.d. of the bootstrapped median distribution 

1.14±0.35), but larger than the RF diameter in G (1.80±2.98) and IG layers (2.22±1.20; Fig. 2F). 

 We found that surround suppression was stronger in units in which Fano-factor was 

increased by surround stimulation (one-way ANOVA, strength of surround suppression 

conditioned on whether RF surround increased, decreased or had no effect on Fano-factor relative 

to RF stimulation, p=0.001, n=82; Fig. 2G). For the units in which surround stimulation increased 

Fano-factor relative to RF stimulation (n=21), the strength of surround suppression was 

74.1±2.91%, while it averaged 54.7±3.47% for the units in which surround stimulation did not 

affect variability (n=49), and 51.8±5.63% for the units in which surround stimulation reduced 

variability (n=12). Moreover, in SG and IG, but not in G, layers,  there was a statistically significant 

correlation between the strength of surround suppression and the percent change in Fano-factor 

caused by surround stimulation (SG: r=0.39, p=0.028; G: r=0.24, p=0.40; IG: r=0.50, p=0.002; 

Pearson correlation; Fig. 2G). In all layers, statistically significant increases in variability (as 

determined by bootstrapping; see Methods) induced by surround stimulation had larger magnitude 

than decreases in variability (increase vs. decrease SG: 103±18.9% vs -36.5%±6.10%; G: 

68.1±14.4% vs -40.1±20%; IG: 91.6±31.0% vs -36.5±6.09% independent samples t-test pooled 

over layers and computed over the absolute value of the Fano-factor change induced by RF-

surround, p = 0.002). 

 To rule out that the changes in Fano-factor with stimulus size are trivially related to changes 

in firing rate, we performed a “mean-matched” analysis (Mitchell et al., 2009; Churchland et al., 

2010) (see Supplementary Methods, Supplementary Results, and Supplementary Fig. 1). This 

analysis showed  that changes in firing rate were not the cause of stimulus-size dependent changes 

in Fano-factor. 

 

 

Amplification of cortical response variability by small stimuli 
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It has been previously reported that the onset of a visual stimulus reduces cortical response 

variability relative to pre-stimulus baseline (Churchland et al., 2010). However, previous studies 

used relatively large stimuli, and the impact of stimulus size on response variability has not been 

explored. Previous experimental studies (Ichida et al., 2007) have shown, and several models of 

cortical dynamics predicted, that when the cortex is weakly driven (for example by a small 

stimulus),  the cortical state is dominated by excitation, whereas it is dominated by inhibition when 

the cortex is strongly driven, e.g. by a large stimulus (Schwabe et al., 2006, 2010; Rubin et al., 

2015; Hennequin et al., 2018). In an excitation-dominated cortical state, stochastic supralinear 

stabilized networks predict amplification of response variability relative to pre-stimulus baseline 

(Hennequin et al., 2018). To test this model’s prediction, we examined the impact of small stimuli 

on response variability. 

 Figure 3A shows the response of one example IG layer multi-unit to gratings of 0.1° or 1° 

in diameter, respectively, centered on its RF. Both of these stimuli evoked firing-rates higher than 

the pre-stimulus baseline firing-rate (Fig. 3A, left and middle). In contrast, changes in Fano-factor 

after stimulus onset depended on stimulus size: Fano-factor decreased after presentation of a 1° 

stimulus, but increased after presentation of a 0.1° stimulus (Fig. 3A, right).  

 Amplification of variability for small stimuli was seen also at the population level. Figure 

3B compares Fano-factor evoked by a 0.1° diameter grating with that evoked by a grating of 

diameter equal to the RF diameter of the recorded multi-units, normalized to the pre-stimulus 

baseline, and averaged over the population of SG (n=31, left), G (n=15, middle) and IG (n=36, 

right) units. Presentation of the small stimulus significantly increased Fano-factor relative to pre-

stimulus baseline in G and IG (p<0.05, one-sample t-test, n=15 and 36, respectively), but not SG 

(p=0.14, n=31), layers. Consistent with previous studies (Churchland et al., 2010), in all layers, 

the larger stimulus decreased Fano-factor relative to baseline. There was no obvious difference in 

firing-rates across the layers that could have explained the increase in Fano-factor in G and IG 

layers for smaller stimuli, but not in SG layers (Fig. 3B). 

 To provide a better understanding of variability amplification across layers, we performed 

a unit-by-unit analysis. This revealed significant variability amplification for small stimuli in all 

layers. We included in this analysis only units showing statistically significant increases or 

decreases (see Methods) in Fano-factor relative to baseline for at least one data-point. While all 

units in our sample showed statistically significant stimulus-evoked decreases in Fano-factor, 67%  
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for a larger stimulus matching the RF diameter (1°; Bottom). Left: Spike rasters. Middle: PSTHs of firing-rate computed 
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computer over 100ms sliding window. Shaded red area here and in B) is the s.d. of the Fano-factor distribution 
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of these units (55/82) also showed statistically significant increases in Fano-factor for presentation 

of small stimuli. The proportion of units showing both increases and decreases in stimulus-evoked 

Fano-factors was fairly constant across layers (SG, 61%; G, 67%; IG, 72%).  

 On average, the largest stimulus-evoked increase in Fano-factor for the cells that showed 

variability amplification relative to baseline was observed when the stimulus diameter was smaller 

than the RF of the recorded units (Fig. 3C; median stimulus diameter normalized to the RF 

diameter at the largest increase in Fano-factor relative to baseline, ±s.d. of the bootstrapped 

distribution: SG, 0.33±1.20; G, 0.67±0.52; IG, 0.63±0.26). We found that stimulus-evoked 

increases in Fano-factor were smaller in magnitude than stimulus-evoked decreases in Fano-factor. 

The difference between the magnitude of maximum variability quenching and magnitude of 

maximum variability amplification was statistically significant in SG and IG layers (Fig. 3D; 

mean±s.e.m. quenching vs. amplification: SG, 1.85±0.37 vs. 0.89±0.14, t-test p=0.01; IG, 

0.93±0.12 vs. 0.67±0.06, p=0.03), but was not statistically significant in G layers (G, 1.14±0.21vs. 

0.93±0.19, p=0.23). For this analysis, we removed outlier data points that were at least 2.5 absolute 

median deviations above or below the median. 

 Across the entire population, the units showing variability amplification for small stimuli 

(here termed “amplifier”) had a significantly lower baseline Fano-factor than units in which a 

stimulus always reduced variability (termed “quencher”) (mean baseline Fano-factor ± s.e.m.: 

3.44±0.33 for quencher units vs. 1.90±0.13 for amplifier units, t-test p=0.000001). However, this 

varied by layer (Fig. 3E); in SG and IG layers, baseline Fano-factor was significantly higher in the 

quencher units than in the amplifier units (mean baseline Fano-factor±s.e.m.: SG, quencher 

4.70±0.39, n=12, vs. 2.30±0.29, n=19, t-test p=0.00023; IG, quencher 2.82±0.40, n=10, vs. 

amplifier 1.65±0.14, n=26, t-test p=0.0013). Instead, in the G layer, baseline Fano-factor did not 

differ significantly between these two groups (quencher 1.65±0.14, n=5, vs. amplifier 1.77±0.19, 

n=10, t-test p=0.68). Moreover, baseline firing rate was significantly lower in the amplifier units 

compared to the quencher units (mean±s.e.m. baseline firing-rate: 4.1±0.4Hz vs. 6.0±0.7Hz, t-test 

p=2-12). Importantly, however, all amplifier units also showed variability quenching at larger 

stimuli. This suggests that a floor effect, due to low baseline firing-rates, cannot explain the 

variability amplification in our data (see Discussion).  

 

Layer dependent size-tuning of network variability  
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The results presented above indicate that the response variability of individual cortical neurons is 

modulated by stimulus size. However, the impact of neural response variability on visual 

processing also depends on how strongly the variability is shared across neurons (Shadlen and 

Newsome, 1998; Bair et al., 2001). To determine the impact of stimulus size on shared variability, 

we exploited the covariance of simultaneous recordings obtained with electrode arrays.   

 The raster plots in Figure 4A-C show the spiking activity of simultaneously recorded 

neurons in a single example penetration spanning all layers (SG, n= 4 units, Fig. 4A; G, n=3, Fig. 

4B; IG, n=7, Fig. 4C), in response to presentation of gratings of three different diameters (0.1° 

Left, 0.5° Middle, 26° Right). Qualitative inspection of these raster plots reveals that, following 

presentation of the 0.1° stimulus, the responses of the entire neuronal population waxed and waned 

in unison. In some trials all neurons spiked vigorously, whereas in other trials the entire population 

Figure 4. Size tuning of shared variance across V1 layers: an example penetration. A) Left: raster plots showing the 
spike times of four simultaneously recorded SG neurons, across several trials, in response to 0.1° (Top), 0.5° (Middle), and 
26° (Bottom) diameter gratings. The responses of all 4 neurons in a single trial are shown between two consecutive horizontal 
lines. Horizontal lines separate different trials. Right: Network covariance matrices estimated with a single-factor factor 
analysis for each of the same 3 different stimulus diameters. The diagonal of the network covariance matrix holds the shared 
variance for each recorded unit. Bottom: Shared variance as a function of stimulus diameter. The red markers show 
mean±s.e.m. of the shared variance computed over the SG neuron population recorded in this example penetration (n=4). 
The gray curves show the data for the individual 4 units. B-C) same as in A), but for G (n=3) and IG (n=7) layer units. 
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was silent. However, the population responses appeared less coordinated following presentation 

of the 0.5° diameter grating. The covariation in population responses to presentation of the 26° 

diameter grating, instead, appeared to be layer dependent. In all layers, responses to a 26° stimulus 

were reduced compared to those to a 0.5° diameter grating. However, compared to the responses 

to the 0.5° stimulus, neural activity in response to the 26° stimulus appeared more strongly 

coordinated in SG layers, but remained relatively uncoordinated in G and IG layers.  

 To quantify these observations, we used factor analysis (see Methods). This allowed us to 

isolate the network variability (i.e. the variability that is shared across neurons) from the single 

neuron spiking variability (i.e. the variability that is private to each recorded unit) (Churchland et 

al., 2010). Factor analysis decomposes the measured covariance matrix into a low-rank network 

covariance matrix and a diagonal matrix that holds the private variances for each unit. We modeled 

the network covariance matrix with a single factor, and took the diagonal of the network covariance 

matrix as the shared variability (Churchland et al., 2010). A separate single-factor model was 

learned for each layer, stimulus condition and penetration. The right panels in Figures 4A-C show 

the network covariance matrices for the same units and three stimulus diameters used for the raster 

plots. In all layers, shared variability was highest when the smallest of the three stimuli was 

presented, and dropped to near zero in response to the 0.5° stimulus (0.1° vs. 0.5° mean±s.e.m.: 

SG, 1.53±0.18 vs. 0.48±0.08, n=4; G, 1.07±0.18 vs. 0.16±0.02, n=3; IG, 0.74±0.21 vs. 0.30±0.06, 

n=7). The impact of larger stimuli on shared variability, instead, depended on layer. Compared to 

shared variability in response to the 0.5° stimulus, shared variability in response to the 26° stimulus 

increased in SG layers (0.5° vs. 26° mean±s.e.m.: 0.48±0.08 vs. 0.74±0.20, n=4), did not change 

in G layers (0.16±0.02 vs. 0.14±0.05, n=3), and decreased in IG layers (0.30±0.06 vs. 0.14±0.04, 

n=7). The bottom panel of Figure 4A-C shows, for the same example units, shared variability as 

a function of stimulus diameter for all diameters used in our study (0.1-26°). 

 Figure 5A shows mean firing rate and mean shared variance as a function of stimulus size, 

computed separately over the entire population of multi-units across all penetrations, in SG, G and 

IG layers. Shared variance was tuned for stimulus size in a manner that resembled the size tuning 

of Fano-factor (compare with Fig. 2A). In all layers, increasing the stimulus diameter from 0.1 to 

a size equal to the aggregate RF diameter of the recorded cells progressively increased firing-rate 

but decreased shared variance (Fig. 5A-B). Shared variance also decreased relative to baseline for 

a stimulus matched to the RF diameter (mean percent change ±s.e.m, t-test % change < 0: SG, -
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37.72±7.07, p=0.000005; G, -28.83±12.43, p=0.02; IG, -6.83±13.30, p=0.31; Fig. 5C). In contrast, 

large gratings involving the RF surround reduced firing rates relative to a stimulus matched to the 

RF diameter, but their effect on shared variance depended on layer (Fig. 5B,D). In SG and G layers, 

shared variance increased for larger stimuli, relative to its value for a stimulus matched to the RF, 

but this increase was statistically significant only for the SG layers (mean percent change ±s.e.m., 

t-test % change > 0: SG, 27.08±15.83, p=0.048; G, 38.11±29.82, p=0.11). In contrast, in the IG 

layers, shared variance significantly decreased at larger stimulus sizes (mean percent change 

Figure 5. Size tuning of shared variance across V1 layers: population data. A) Mean firing rate (black) and mean 
shared variance (red) as a function of stimulus diameter, averaged over the population of recorded units separately  for 
the different layers (from left to right:  SG, n=31 units; G, n=15; IG, n=36). B) Top: shared variance averaged over the 
population at four different stimulus diameters (as indicated); shared variance values at specific stimulus sizes were 
extracted from functions fitted to the size-tuning data (see Methods). Bottom: single data points for the data in the top 
panel at the indicated two stimulus diameters. C) Top: Mean percent change in shared variance relative to baseline 
induced by a stimulus matched in size to the RF diameter for the different layers. Dots here and in (D): Individual data 
points. Error bars: s.e.m.  Bottom: Scatter plot of shared variance during pre-stimulus baseline vs. during presentation 
of a stimulus matched to the RF diameter. Different colored dots indicate units in different layers. D) Top: Mean percent 
change in shared variance induced by a 26° diameter stimulus relative to the shared variance evoked by a stimulus 
matched to the RF diameter, for different layers. Bottom: Scatter plot of shared variance for presentation of stimuli of 
two different sizes (a diameter equal to that of the RF vs. a diameter of 26°). Other conventions as in panel C). E) Median 
stimulus diameter at the largest decrease in shared variance, normalized to the RF diameter of the recorded units, for 
different layers. Error bars: s.d. of the bootstrapped distributions. Dots: individual cell data. 
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±s.e.m. t-test % change < 0: -18.52±10.68, p=0.046). Consistent with these results, on average the 

stimulus diameter at maximum variability quenching (i.e. the lowest shared variance value) was 

close to the RF diameter for SG layers, but larger than the RF diameter in IG layers (Fig. 5E; 

median stimulus diameter at the lowest shared variance normalized to the RF diameter, ±s.d. of 

the bootstrapped median distribution: SG, 1.56±1.22; G, 1.94±3.81; IG, 1.93±3.83). 

 To rule out changes in firing rate as the main cause of changes in shared variance with 

stimulus size, we computed the average shared variance following the same mean-matching 

procedure performed for Fano-factor. This analysis was consistent with the results shown in Fig. 

5 (see Supplementary Methods and Supplementary Results and Supplementary Fig. 2). 

 

 

DISCUSSION 

 

Using linear multi-electrode array recordings, we have studied how neural response variability is 

modulated by stimulus size across the layers of macaque V1. We found that both single neuron 

response variability and the shared variability among neurons are size-tuned, and this tuning is 

layer dependent. In all layers, variability declined as a stimulus was progressively increased in size 

from 0.1° to the diameter of the RF. However, as the stimulus was enlarged beyond the RF, 

variability changed in a layer dependent manner. In SG layers, surround stimuli increased both 

single neuron and shared variability (relative to their value for a stimulus matched to the RF 

diameter), but did not change them or reduced them in G and IG layers. Given the hypothesized 

influence of variability on visual information processing and the encoding of sensory inputs, these 

laminar differences suggest that the different layers employ different strategies for coding large 

stimuli. Moreover, given known laminar differences in connectivity, the laminar specific effects of 

stimulus size on variability observed in our study suggest different underlying circuit mechanisms.  

 Theoretical work has shown that correlated variability can be detrimental for sensory 

processing (Abbott and Dayan, 1999; Averbeck et al., 2006). Consistent with this idea, a number 

of top-down modulations thought to improve sensory processing and perception tend to reduce 

spike-count variability (Fano-factor) and correlated variability. For example, attention directed 

towards a visual stimulus reduces correlated variability as well as Fano-factor in primate areas V4 

(Cohen and Maunsell, 2009; Mitchell et al., 2009) and V1 (Herrero et al., 2013), and decorrelation 
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is induced by perceptual learning in area MSTd (Gu et al., 2011) or surround suppression in V1 

(Snyder et al., 2014). Our results on the effects of surround stimulation in IG layers are consistent 

with a previous study (Snyder et al., 2014) showing that surround suppression reduces correlated 

variability (although we used factor analysis as a measure of shared variability, unlike this previous 

study, which instead measured correlations). However, we have additionally shown that the effect 

of surround suppression on both Fano-factor and shared variability depends on cortical layer.  

Specifically,  stimulation of the surround increased Fano-factor and shared variability in SG layers, 

relative to stimuli matched to the RF size, but decreased them in IG layers. It is unlikely that the 

increased variability in SG layers induced by presentation of large stimuli is detrimental for visual 

processing. The impact of surround modulation on visual processing ultimately depends on the 

way neuronal responses are readout, which may vary with cortical layer. It is also possible, that 

variability-increase in SG layers and decrease in IG layers induced by surround stimulation both 

facilitate encoding and perception. Indeed, theoretical and experimental work has indicated that 

not all correlations impede encoding (Averbeck et al., 2006), that the strength of variability and 

correlations depend on stimulus, cognitive factors, cortical layers and area (Hansen et al., 2012; 

Smith et al., 2013; Ruff and Cohen, 2016b, a), and that some form of correlations can facilitate, 

rather than impede, perception (Ruff and Cohen, 2014; Haefner et al., 2016). Thus, additional 

studies are necessary to determine how these laminar-specific modulations of variability affect 

perception and behavioral performance. 

 It is often assumed that the trial-to-trial variability of neural responses follows Poisson 

statistics (Simoncelli et al., 2004). Under Poisson statistics, variability does not depend on firing-

rate; rather,  Fano-factor remains constant (=1) regardless of mean firing-rate. In contrast, we found 

that, across all layers, firing-rate increased, and Fano-factor decreased as the stimulus diameter 

was increased from 0.1° to a diameter equal to that of the RF.  These results are inconsistent with 

the Poisson model of neural response statistics. An extension of the Poisson model, the modulated 

Poisson model (Goris et al., 2014), augments the Poisson model by a stochastic gain variable. With 

this addition, the model captures overdispersion (Fano-factor > 1) of neural responses in a 

physiologically and statistically meaningful way. The modulated Poisson model predicts that 

Fano-factor increases as firing-rate increases (Goris et al., 2014). However, our data shows that 

for stimuli within the RF, Fano-factor decreases as mean firing-rate increases, which is inconsistent 

with the modulated Poisson model. Our results using small stimuli resemble those of Solomon and 
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Coen-Cagli (2019) who showed that, in macaque V1, Fano-factor decreased as stimulus contrast 

(and firing-rate) increased. These authors also concluded that their data is incompatible with the 

modulated Poisson model, and suggested that neural response statistics in macaque V1 are better 

captured by stochastic normalization models. 

 In G and IG layers, stimulation of the RF surround suppressed firing-rates, but did not 

significantly affect Fano-factors (but note that the mean-matched analysis revealed a significant 

decrease in Fano-factor in both layers for larger stimuli). Although we consistently observed Fano-

factors above 1, the decoupling of Fano-factor and firing-rate for larger stimuli is roughly 

consistent with the Poisson model of neural response variability. A previous study measured Fano-

factor in macaque V1 as a function of the diameter of a natural image patch and found that Fano-

factor was not affected by stimulation of the surround (Festa et al., 2021). Although these authors 

did not report the laminar origin of their recordings, the latter were likely from the G layer, as they 

were performed using 1-mm shank length Utah arrays. While our G and IG layer results are 

consistent with the study by Festa et al. (modulo the mean-matched data), here we have 

additionally shown that surround stimulation has a different effect on Fano-factor in the SG layers.  

 The study by Festa et al. (2021), mentioned above, was designed to test these authors’ own 

sampling-based model of probabilistic inference. These class of models are based on the idea of 

perception as probabilistic inference (Knill and Pouget, 2004); the type of probabilistic inference 

models favored by Festa et al. (2021) view spikes as representing samples from probability 

distributions, and neural response variability as the uncertainty of the inferences (Hoyer and 

Hyvärinen, 2003; Fiser et al., 2010; Orban et al., 2016; Echeveste et al., 2020; Festa et al., 2021). 

The model by Festa et al. (2021) predicted a decrease in Fano-factor induced by surround 

stimulation relative to its value for stimulation of the RF. These authors’ neural recording results 

did not confirm this model prediction, as surround stimulation was found not to affect Fano-Factor 

(see above). Consistent with the model of Festa et al. (2021), instead, here we found that about 

15% of cells across all layers (more numerous in IG layers) showed decreases in Fano-factor when 

their RF surround was stimulated. This points to the intriguing possibility that in all layers, a small, 

but significant, proportion of neurons serves to perform probabilistic inference. 

 The laminar differences in variability found in our study suggest different underlying 

circuit mechanisms. One plausible hypothesis is that laminar-specific inhibitory circuits underlie 

the different effects of surround stimulation on variability. This hypothesis is based on the 
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assumption that inhibition plays an important role in modulating cortical response variability, as 

postulated by several models (Stringer et al., 2016; Hennequin et al., 2018; Huang et al., 2019), 

and the well-established laminar differences in the distribution of inhibitory neuron types. In 

macaque sensory-motor cortex, somatostatin-positive inhibitory interneurons predominate in SG 

layers (Hendry et al., 1984). In mouse cortex, these interneuron types subtractively control the gain 

of their target neurons (Sturgill and Isaacson, 2015), by hyperpolarizing the dendrites of pyramidal 

cells (Markram et al., 2004; Pouille et al., 2013), and mediate surround suppression (Adesnik et 

al., 2012). This subtractive inhibition counteracts the excitatory feedforward drive (Pouille et al., 

2013), thus, ultimately affecting neural responses in a manner resembling reduced feedforward 

input. Because reduced feedforward input to the cortex increases neural response variability (e.g. 

Churchland et al., 2010; Festa et al., 2021; and this study), activation of somatostatin neurons 

ultimately would lead to increased neural response variability. This hypothesis predicts that 

neurons in which variability is increased by surround stimulation, which are present in all layers 

but dominate in the SG layers, are those in which surround suppression is mediated by somatostatin 

cells. Alternatively, reduced feedforward drive induced by surround stimulation, leading to 

increased variability, may result from withdrawal of feedforward excitation from surround-

suppressed excitatory neurons in the thalamus or cortex itself, a mechanism that is consistent with 

a recent model of neural response variability (Bressloff, 2019). This hypothesis predicts that 

neurons in which variability is increased by surround stimulation are those inheriting surround 

suppression from other suppressed excitatory neurons. In contrast, neurons for which surround 

stimulation does not affect or decreases variability (more numerous in G and IG layers) may be 

surround suppressed via different circuit mechanisms; for example, via inhibitory cells that track 

the activity of excitatory cells (such as parvalbumin interneurons). This mechanism quenches 

variability in a stochastic inhibition-stabilized network model (Hennequin et al., 2018). 

 Quenching of cortical response variability by stimulus onset is considered to be a universal 

property of the cortex (Churchland et al., 2010). In line with this idea, we showed that presenting 

a stimulus most commonly quenched variability compared to pre-stimulus baseline. However, in 

addition to variability quenching, we found that, for a substantial fraction of cells in all layers, 

small stimuli amplified variability relative to pre-stimulus baseline. The use of very small stimuli 

and a cell-by-cell analysis were the key differences between our study and previous studies that 

failed to observe amplification of variability by small stimuli.   
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 Amplification of cortical response variability by small visual stimuli relative to pre-

stimulus baseline was predicted by a supralinear stabilized network model of cortical response 

variability (Hennequin et al., 2018). This model predicts variability amplification when the 

stimulus-evoked response is of comparable magnitude to spontaneous activity. In contrast, in our 

data, variability amplification was observed also when neural responses were significantly above 

the spontaneous baseline. Thus, the prediction of supralinear stabilized network models of cortical 

response variability are not in quantitative agreement with the results of this study. Variability 

amplification can trivially arise in units with close to zero baseline firing-rates, as it is often the 

case for anesthetized primate V1, because the variance of a spike-train with zero mean is 

necessarily zero and can only increase as the firing-rate increases. In our dataset, units that showed 

variability amplification had lower baseline firing rates and Fano-factor values, but also showed 

variability quenching for larger stimuli. Thus, a floor effect due to low baseline firing-rates cannot 

explain the variability amplification in our data. 

 A number of different dynamical models have been proposed to explain various aspects of 

stimulus-dependent variability. In models with multi-stable dynamics, response variability arises 

from the stochastic wandering across the cortex of spontaneously-formed tuning curves or bumps 

(Ponce-Alvarez et al., 2013; Bressloff, 2019; Huang et al., 2019). In these models, increased 

stimulus drive reduces wandering of the activity patterns, locking the stimulus-driven bump in 

place, and as a consequence quenching variability. Recently, one such model explicitly predicted 

an increase in variability by surround stimulation (Bressloff, 2019). This prediction is consistent 

with our results in SG layers, but not in G and IG layers, although this model captures well the 

experimentally-observed differences in the magnitude of variability across cortical layers in the 

spontaneous state (Smith et al., 2013). In a different class of models, instead, variability results 

from fluctuations about a single, stimulus-driven attractor in a stochastic stabilized supralinear 

network (Hennequin et al., 2018). In these models, when stimulus drive increases, the balanced 

network causes an increase in inhibition which leads to reduced variability. Thus, in these models, 

variability quenching results from increased inhibition, as opposed to the multiple-attractor models 

described above in which variability quenching results from increased excitation. Although the 

effects of surround suppression on variability have not been explicitly studied in stabilized 

supralinear network models, they would seem consistent with our results in G and IG layers, i.e. a 

reduction or saturation of variability by surround stimulation, but not in SG layers. 
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 In summary, existing models of cortical response variability are either inconsistent, or only 

party consistent with our results, capturing the effects on variability of stimulus size we have 

observed for some but not all layers. We suspect that both kinds of mechanisms may occur, 

depending on particular cortical operating conditions, and the specific layer. Therefore, our results 

call for the extension of these existing models or the development of new models that can capture 

the laminar differences in the stimulus-dependent modulation of cortical response variability we 

have observed in our study. 

 

 

MATERIALS AND METHODS 

 

Experimental model 

Linear array recordings were made in the parafoveal representation (4-8° eccentricity) of V1 in 

two anesthetized adult macaque monkeys (Macaca Fascicularis, 1 male, 1 female, 3-4 kg). Here 

we report recordings from a total of 82 contacts from 5 array penetrations. All experimental 

procedures were in accordance with protocols approved by the University of Utah Institutional 

Animal Care and Use Committee and with NIH guidelines. 

 

Surgery 

The surgical procedures are described in detail in our previous study (Bijanzadeh et al., 2018). 

Briefly, anesthesia was induced with ketamine (10 mg/kg, i.m.). An intravenous catheter and 

endotracheal tube were inserted, the head fixed in a stereotaxic apparatus, and the animal was 

artificially ventilated with a 70:30 mixture of O2 and N20. End-tidal CO2, blood O2 saturation, 

electrocardiogram, blood pressure, lung pressure, and body temperature were monitored 

continuously. A small craniotomy and durotomy were performed over the opercular region of V1 

and a PVC chamber was glued to the skull surrounding the craniotomy and filled with agar and 

silicon oil to prevent cortical pulsation and dehydration, respectively. On completion of the 

surgery, and after a stable plane of anesthesia was reached, the animal was paralyzed with 

vecuronium bromide (0.3 mg/kg/h, i.v.), to prevent eye movements. Recordings were performed 

under continuous infusion of sufentanil citrate anesthesia (4-12 µg/kg/h). The pupils were dilated 

with topical atropine, and the corneas were protected with gas-permeable contact lenses. The eyes 
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were refracted using corrective lenses, and the foveae were plotted on a tangent screen using a 

reverse ophthalmoscope, and periodically remapped throughout the experiment.   

Electrophysiological recordings 

To record the activity of V1 neurons across cortical layers, 24-channel linear arrays (V-Probe, 

Plexon, Dallas, Texas, 100 µm contact spacing and 20 µm contact diameter) were inserted into 

area V1, perpendicular to the pial surface to a depth of 2.0-2.2 mm. A custom-made guide tube 

provided mechanical stability to the array. To facilitate post-mortem visualization of the lesion 

tracks, the probes were coated with DiI (Molecular Probes, Eugene, OR) prior to insertion. We 

recorded extracellularly multiunit spiking activity (MUA) and local field potentials (LFP). The 

signals were amplified, digitized, and sampled at 30 kHz using a 128- system (Cerebus,16-bit A-

D, Blackrock Microsystems, Salt Lake City, UT). 

 

Multi-unit selection 

All analysis was performed on MUA. MUA was detected by bandpass filtering continuous voltage 

traces and thresholding the filtered trace at 4 times the background noise standard deviation, 

estimated as the median of the continuous recording divided by 0.6745 (Quiroga et al., 2004). The 

analyses were done only on multi-units in which the most strongly driving stimulus evoked at least 

3 spikes above the spontaneous activity (count window 50-350ms after the stimulus onset). 

Moreover, only multi-units in which the response was tuned for stimulus size were analyzed. 

Whether a unit was statistically significantly tuned for stimulus size was determined by performing 

ANOVA on the stimulus evoked spike counts. The units in which the effect of stimulus size was 

statistically significant (one-way ANOVA p < 0.05) were consider size-tuned. In addition, only 

those units which showed at least 5% surround suppression, defined as percent reduction in spike 

count from peak evoked by a 26° diameter stimulus, were included in the final analysis. 

 

Visual stimuli  

Visual stimuli were generated using Matlab (Mathworks Inc., Natick, MA; RRID:SCR_001622) 

and presented on a calibrated CRT monitor (Sony, GDM-C520K, 600x800 pixels, 100Hz frame 

rate, mean luminance 45.7cd/m2, at 57cm viewing distance), and their timing was controlled using 
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the ViSaGe system (Cambridge Research Systems, Cambridge, UK; RRID:SCR_000749). All 

stimuli were displayed for 500 ms, followed by 750 ms interstimulus interval.  

 We quantitatively mapped the minimum response field (mRF) of units across contacts by 

flashing a 0.5° black square stimulus over a 3x3° visual field area. The aggregate mRF of the 

column was defined as the visual field region in which the square stimulus evoked a mean response 

(+2 s.d. of the stimulus evoked response) that was > 2 s.d. above mean spontaneous activity, and 

the geometric center of this region was taken as the multi-units aggregate RF center. All subsequent 

stimuli were centered on this field. We then determined orientation, eye dominance, spatial and 

temporal frequency preferences of cells across contacts using 1-1.5° diameter drifting sinusoidal 

grating patches of 100% contrast presented monocularly. Subsequent stimuli were presented at the 

optimal parameters for most units across the column. We measured size tuning across the column 

using 100% contrast drifting grating patches of increasing size (0.1-26°) centered over the 

aggregate mRF of the column. To monitor eye movements, the RFs were remapped by hand 

approximately every 10-20 minutes and stimuli re-centered on the RF if necessary. To ensure that 

the array was positioned orthogonal to the cortical surface, we used as criteria the vertical 

alignment of the mapped mRFs at each contact, and the similarity in the orientation tuning curves 

across contacts.  If RFs were misaligned across contacts, the array was retracted and repositioned.  

 

Quantification and Statistical Analysis 

Current Source Density (CSD) analysis 

We used CSD responses to small stimuli flashed inside the RFs to identify laminar borders (as 

detailed in the Results). CSD analysis was applied to the band-pass filtered (1-100Hz) and trial 

averaged LFP using the kernel CSD toolbox (kCSD_Matlab) (Potworowski et al., 2012). CSD was 

calculated as the second spatial derivative of the LFP signal. To estimate CSD across layers, we 

interpolated the CSD every 10𝜇m. The CSD was baseline corrected (Z-scored). In particular, we 

normalized the CSD of each profile to the s.d. of the baseline (defined as 200ms prior to stimulus 

onset) after subtraction of the baseline mean (see Bijanzadeh et al. 2018 for details). 

 

Fano-factor 

To quantify trial-to-trial variability, we computed Fano-factor by dividing the spike-count variance 

by the mean spike-count over trials. A small constant (0.0000001) was added to the mean spike-
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count to avoid dividing by zero. During the course of developing the analysis, we also used a 

method in which spike-count variance was plotted against mean spike-count computed over trials 

in 100 ms non-overlapping bins, and by fitting to the variance-to-mean curves a line so that the 

intersection of the line and the y-axis was constrained to be zero and the slope of the line was taken 

as the Fano-factor. All findings of the study were replicated using both methods, but we chose the 

direct division for convenience as it allows for more efficient bootstrapping of errors. All of our 

analyses were performed between 50 to 450 ms after stimulus onset, except for the pre-stimulus 

baseline that was computed from -400 to 0 ms before stimulus onset.  

 To determine the significance of the different effects of surround stimulation on Fano-factor 

(the data in Fig. 2E), we re-sampled Fano-factors 3000 times with replacement from the 

distributions measured at the RF size and at 26° stimulus diameter. The means of these two 

distributions were replaced with a common mean (mean of means), and a bootstrapped distribution 

of Fano-factor difference was generated by subtracting the values in each re-sampled distribution. 

If Fano-factor measured at 26° stimulus diameter was larger (smaller) than Fano-factor measured 

at the RF size, and this difference was above the 95th (below the 5th) percentile of the bootstrapped 

distribution of Fano-factor difference, we concluded that stimulation of the RF surround increased 

(decreased) Fano-factor relative to the RF-only. All other results were interpreted as surround 

stimulation having no effect on Fano-factor.  

 To determine whether a stimulus caused statistically significant increase or decrease in 

Fano-factor relative to baseline (the analyses presented in Fig. 3), the distribution of the difference 

between Fano-factor and baseline at each stimulus size was resampled with replacement 3000 

times. The mean of this distribution was set to zero. If the Fano-factor measured at a given stimulus 

diameter was higher (smaller) than the 95th (5th) percentile of this distribution, we concluded that 

the stimulus significantly increased (decreased) Fano-factor relative to baseline. 

For details on the mean-matched Fano-factor analysis see Supplementary Methods. 

 

Function fitting and receptive field size estimation 

To estimate the size of the RF center and surround for each unit, we measured size tuning as 

described above and plotted the mean firing rate of the unit against stimulus diameter; we, then, 

fitted these data with ratio-of-Gaussians functions (Cavanaugh et al., 2002). The Fano-factor data 

was fitted with two ratio-of-Gaussians functions that were summed. These two ratio-of-Gaussians 
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functions had independent parameters. The parameters were optimized by minimizing the squared 

difference between the function and the data. For firing-rate, the minimization was performed with 

the Levenberg-Marquardt algorithm as implemented in SciPy (Virtanen et al., 2020). The 

parameters of the function were constrained to be positive, including zero. For Fano-factor, the 

parameters of the function were fitted with the basinhopping algorithm as implemented in Scipy. 

As that the sum of two ratio-of-Gaussians function was overfitting the data, we constrained the 

parameters to be always positive with an upper bound between 1 and 100, depending on the 

parameter. With these constraints, the fitted functions were always smooth. Two ratio-of-Gaussians 

functions were also fitted to the shared variance data. 

  From the fitted functions, the size of the RF center was taken to be the stimulus diameter 

at which the function peaked. The size of the surround was taken to be the smallest stimulus 

diameter, larger than the RF size, at which the slope of the fitted size-tuning function was at least 

10% higher than the slope at the RF size. The slope was computed at all stimulus sizes between 

the RF size and 26°.  

 

Factor Analysis 

We used factor analysis to decompose the trial-to-trial spike-count covariance matrix into private 

(single neuron spiking variability) and shared (network) components. Factor-analysis was 

separately performed for each penetration, stimulus condition, and layer. A 300 ms-window was 

used. Given that neural response variability is low-dimensional in the visual cortex (Huang et al., 

2019), and that our columnar recordings recover a subspace of the full-dimensional response space, 

we used just one factor to model the covariances. The covariance matrices were modeled as the 

product of the factor loading matrix and its transpose, plus a diagonal matrix containing the 

variances that are private to each unit. The matrix of factor loadings and the diagonal private 

variance matrix were estimated with the Gaussian-process factor analysis toolbox of Yu et al. 

(2009). As an estimate of the shared variance for each unit, we used the diagonal components of 

the matrix that results from multiplying the factor loading matrix with its own transpose. 
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FIGURE LEGENDS 

 

Figure 1. Size tuning of Fano-factor and mean firing rate in macaque V1: representative 

units. A) Representative supragranular (SG) layer unit. Left: MUA spike-rasters measured at two 

stimulus diameters, either a diameter equal to the RF diameter of the recorded multi-unit (Top), or 

a diameter of 26° (Bottom). Middle: Peri-stimulus time histograms (PSTHs) of Fano-factor (red) 

and mean firing-rate (black) computed in a 100 ms rectangular sliding window for the same two 

stimulus diameters. The shaded area represents the standard deviation (s.d.) of the bootstrapped 

Fano-factor distribution (for the Fano-factor curve) or the standard-error-of-the-mean (s.e.m., for 

the firing rate curve). Inset: Zoomed-in Fano-factor curves for the smaller (darker red) and larger 

(lighter red) stimulus diameters between 50 and 350 ms after stimulus onset. Right: Fano-factor 

(red) and firing-rate (black) averaged over 50-350 ms after stimulus onset and plotted against the 

stimulus diameter. Solid lines: fits to the data. Dashed lines: baseline Fano-factor (red) and firing 

rate (black), measured prior to stimulus onset. Error bars are: s.d. of the bootstrapped Fano-factor 

distribution (red) or s.e.m. (black). B) Representative granular (G) layer unit. C) Representative 

infragranular (IG) layer unit. Conventions in (B-C) are as in (A). 

 

Figure 2.  Size tuning of Fano-factor and mean firing rate: population data.  A) Average Fano-

factor (red) and mean firing-rate (black) as a function of stimulus diameter for the population of 

SG (Left; n=31), G (Middle; n=15) and IG (Right; n=36) layer units. Dashed lines: average 

baseline Fano-factor (red) and firing rate (black); error bars: s.e.m. B) Top: Fano-factor values 

averaged over 82 units at four different stimulus diameters (0.1°, a diameter equal to the RF 

diameter, a diameter equal to the RF-surround diameter (see Methods for definition), and 26°). 

Error bars: s.e.m. Bottom: Fano-factor values for individual multi-units in SG, G and IG layers at 

two different stimulus diameters (as indicated). C) Top: Mean percent change in Fano-factor 

relative to baseline induced by a stimulus matched in size to the RF diameter, for the different 

layers. Dots: Individual data points. Error bars: s.e.m.  Bottom: Scatter plot of Fano-factor during 

pre-stimulus baseline vs during presentation of a stimulus matched to the RF diameter. Different 

colored dots indicate units in different layers. D) Top: Mean percent change in Fano-factor induced 

by a 26° diameter stimulus relative to the Fano-factor value evoked by a stimulus matched to the 

RF diameter. Bottom: Scatter plot of Fano-factor for presentation of stimuli of two different sizes 
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(a diameter equal to that of the RF vs. a diameter of 26°). Other conventions as in panel C). E) 

Percent of multi-units in each layer for which stimulation of the RF significantly decreased 

variability (black), did not affect variability (white) or increased variability (gray). F) Median 

stimulus diameter at the largest decrease in Fano-factor (or max quenching), normalized to the RF 

diameter of the recorded units, for different layers. Error bars: s.d. of the bootstrapped 

distributions. Dots: individual cell data. G) Scatter plot of percent change in Fano-factor evoked 

by the largest surround stimulus (26° diameter)  relative to the Fano-factor evoked by a stimulus 

matched to the RF diameter vs. suppression index (see Methods). Color dots identify units in 

different layers, as indicated. Lines are regression lines fitted to the individual layer data.  

 

Figure 3. Amplification of cortical response variability by small visual stimuli. A) An example 

unit showing stimulus-evoked increases in firing rate and Fano-factor for a small (0.1°) grating 

diameter (Top), but a decrease in Fano-factor for a larger stimulus matching the RF diameter (1°; 

Bottom). Left: Spike rasters. Middle: PSTHs of firing-rate computed in a 100ms sliding window. 

Shaded gray area here and in B) indicates the s.e.m. computed over trials. Right: Fano-factor 

computer over 100ms sliding window. Shaded red area here and in B) is the s.d. of the Fano-factor 

distribution bootstrapped over trials. B) Population-averaged time course of Fano-factor (red) and 

firing-rate (black) in SG (Left), G (Middle ), and IG (Right) layers computed at two stimulus 

diameters (Top: 0.1°, Bottom: 0.8°). Both the Fano-factor and firing rate were normalized to the 

pre-stimulus baseline of each unit before averaging. C) Median stimulus diameter evoking the 

largest magnitude increase in Fano-factor, normalized to the RF diameter of the recorded units, for 

different layers. Error bars: s.d. of the bootstrapped distributions. Dots here and in (D-E): 

individual cell data. D) Median difference in Fano-factor (Fano-factor at the stimulus diameter 

causing the largest change in Fano-factor minus the baseline Fano-factor) ± s.d. of the bootstrapped 

distributions at max quenching (gray) and max amplification (white) for different layers. E) Mean 

baseline Fano-factor for amplifier (green) and quencher (yellow) units. Error bars: s.e.m. 

 

Figure 4. Size tuning of shared variance across V1 layers: an example penetration. A) Left: 

raster plots showing the spike times of four simultaneously recorded SG neurons, across several 

trials, in response to 0.1° (Top), 0.5° (Middle), and 26° (Bottom) diameter gratings. The responses 

of all 4 neurons in a single trial are shown between two consecutive horizontal lines. Horizontal 
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lines separate different trials. Right: Network covariance matrices estimated with a single-factor 

factor analysis for each of the same 3 different stimulus diameters. The diagonal of the network 

covariance matrix holds the shared variance for each recorded unit. Bottom: Shared variance as a 

function of stimulus diameter. The red markers show mean±s.e.m. of the shared variance computed 

over the SG neuron population recorded in this example penetration (n=4). The gray curves show 

the data for the individual 4 units. B-C) same as in A), but for G (n=3) and IG (n=7) layer units. 

 

Figure 5. Size tuning of shared variance across V1 layers: population data. A) Mean firing 

rate (black) and mean shared variance (red) as a function of stimulus diameter, averaged over the 

population of recorded units separately  for the different layers (from left to right:  SG, n=31 units; 

G, n=15; IG, n=36). B) Top: shared variance averaged over the population at four different 

stimulus diameters (as indicated); shared variance values at specific stimulus sizes were extracted 

from functions fitted to the size-tuning data (see Methods). Bottom: single data points for the data 

in the top panel at the indicated two stimulus diameters. C) Top: Mean percent change in shared 

variance relative to baseline induced by a stimulus matched in size to the RF diameter for the 

different layers. Dots here and in (D): Individual data points. Error bars: s.e.m.  Bottom: Scatter 

plot of shared variance during pre-stimulus baseline vs. during presentation of a stimulus matched 

to the RF diameter. Different colored dots indicate units in different layers. D) Top: Mean percent 

change in shared variance induced by a 26° diameter stimulus relative to the shared variance 

evoked by a stimulus matched to the RF diameter, for different layers. Bottom: Scatter plot of 

shared variance for presentation of stimuli of two different sizes (a diameter equal to that of the 

RF vs. a diameter of 26°). Other conventions as in panel C). E) Median stimulus diameter at the 

largest decrease in shared variance, normalized to the RF diameter of the recorded units, for 

different layers. Error bars: s.d. of the bootstrapped distributions. Dots: individual cell data. 
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SUPPLEMENTARY MATERIAL 

 

SUPPLEMENTARY METHODS 

 

Mean-matched Fano-factor analysis 

To ensure that the stimulus size-dependent modulation of variability was not a simple consequence 

of firing-rate modulation, we performed a mean-matched analysis (Mitchell et al., 2009; 

Churchland et al., 2010). First, the firing-rates of the recorded neurons were binned separately for 

the conditions to be compared. Second, neurons were randomly removed from the bin, until the 

bin had an equal number of neurons for both stimulus conditions. This procedure was repeated for 

all bins until the number of neurons in each bin was equal across the mean-matched conditions. 

Finally, fano-factors for the remaining neurons were computed as described for the main analysis. 

 

Mean-matched Factor analysis 

To mean-match the shared variability data, we first estimated shared variability for all neurons in 

the same way as described in the Results and Methods of the manuscript. Next, mean-matching of 

firing-rates was performed in the same way as described above for the Fano-factor analysis. 

Finally, for the units that survived mean-matching, shared variability was averaged and plotted in 

Supplementary Fig. 2. 

 

SUPPLEMENTARY RESULTS 

 

Mean-matched Fano-factor analysis 

In all layers, the mean matched Fano-factor analysis showed a statistically significant decrease in 

Fano-factor for a stimulus diameter (0.4°) evoking a higher mean spike count, relative to a 0.2° 

diameter stimulus (mean±s.d of the mean matched Fano-factor PSTH at 0.2° vs 0.4° stimulus 

diameter: SG, 2.30±0.62 vs 1.78±0.33, p < 0.0001; G, 1.49±0.36 vs 1.31±0.23, p < 0.0001; IG, 

1.85±0.26 vs 1.711±0.29, p < 0.0001; first and third column in Supplementary Fig.1). Note that 

for this comparison we selected slightly different stimulus diameters (0.2° and 0.4°, respectively) 

than for the analyses in Figs. 2B-C (0.1° and the RF diameter, respectively), to ensure a greater 
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overlap in the mean-spike count distributions between the two stimulus diameters being compared, 

which is necessary for the mean-matched analysis. 

 For the SG layers, the mean-matched Fano-factor showed a significant increase for a 

stimulus diameter covering the RF-surround (26°) relative to a 0.4° stimulus inside the RF 

(mean±s.d. of the mean matched Fano-factor PSTH at 0.4° vs 26° stimulus diameter: 1.88±0.43 

vs. 3.24±0.53, p<0.0001; second and fourth columns in Supplementary Fig. 1A). In contrast, 

mean-matched Fano-factors for these two stimulus diameters showed a statistically significant 

decrease in G and IG layers (mean±s.d. of the mean matched Fano-factor PSTH at 0.4° vs 26° 

stimulus diameter: G, 1.43±0.29 vs. 1.14±0.37; IG, 1.76±0.27 vs 1.20±0.16, p<0.0001; second and 

fourth columns in Supplementary Fig. 1B-C, respectively). Again, the choice of stimulus 

diameters for this mean-matched comparison was slightly different from that used for the analyses 

in Fig. 2B,D, in order to ensure a greater overlap in the mean-spike count distributions. Note that 

due to mean-matching against a different stimulus size, the mean Fano-factor for the 0.4° diameter 

stimulus is slightly different depending on whether it was matched against a 0.2° or a 26° diameter 

stimulus. 

 

Mean-matched factor analysis 

Mean-matched shared variance data showed the same trends as the non-mean-matched data. 

However, the differences in the mean-matched data were not statistically significant, likely 

because the mean-matching procedure reduces sample size. Thus, we cannot fully rule out the 

possibility that changes in firing-rate caused the changes in shared variance. Regardless, in the 

mean-matched data, shared variance decreased in all layers as the stimulus diameter was increased 

from 0.2 to 0.4° (mean±s.e.m: SG, 0.42±0.17 vs 0.32±0.08; G, 0.54±0.08 vs. 0.31±0.16; IG, 

0.35±0.08 vs. 0.28±0.05). Instead, shared variance increased in SG and G layers as the stimulus 

diameter was increased from 0.4 to 26° (mean±s.e.m: SG, 0.32±0.12 vs 0.57±0.14; G, 0.17±0.06 

vs. 0.28±0.02;). In IG layers, the shared variance decreased as the stimulus diameter was increased 

from 0.4 to 26° (mean±s.e.m: IG: 0.17±0.06 vs. 0.16±0.05). 


