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Summary

Cancer has been described as a genetic disease that clonally evolves in the face of selective
pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on
genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-
cell profiling of cancers has described unprecedented heterogeneity in tumors providing support
for alternative models of branched and neutral evolution through both genetic and non-genetic
mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic,
and extrinsic environmental factors in shaping the evolution of tumors (Figure 1). In this
perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal
behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-
malignant states associated with hematological malignancies and esophageal cancer, we
discuss recent paradigms of tumor evolution and prospective approaches to further enhance our
understanding of this spatiotemporally regulated process.

Clonality as a cancer cell-intrinsic property

Cell-intrinsic differences between cancer cells can emerge from a range of genetic sources
including point mutations, copy number changes, and large structural variations *. Differences
can also result from several non-genetic mechanisms, including transcriptional fluctuations 2,
epigenetic reprogramming 2, metabolic plasticity 4, and altered protein conformations 5. Unlike
the duality (presence or absence) of genetic alterations that could justify classical models of
selection, non-genetic mechanisms can exist on multiple continua, further providing
conceptually rich frameworks for newer models of tumor evolution, metastases, and responses
to anti-cancer therapies®2*.

Cell-intrinsic non-genetic differences can either be pre-existing within a population or can be
induced by the selective pressures (e.g., anti-cancer therapies) 58252 These modes are not
necessarily mutually exclusive and are often attributed to phenotypic plasticity, such as the well-
established paradigm of epithelial-mesenchymal transition 2°. Collectively, the genetic and non-
genetic variabilities can impart fithess advantage to a cell, enhancing its survival, proliferation,
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and dominance over other cells in both premalignant lesions and cancerous tissues 3°-3¢. Cell-
intrinsic differences driving the clonal expansion of cancer cells are shown to impact clinically
relevant outcomes, including tumor progression, metastasis, and drug resistance '912-14.37-52,
The wide breadth of cell-intrinsic factors driving diverse clonal architectures have been
investigated in great depth in hematological cancers, which we discuss later.

Cell-intrinsic differences have been particularly implicated in driving differential responses in
single cancer cells within a tumor when exposed to anti-cancer therapies, leading to drug
resistance. Although few during early stages of treatment, the treatment-resistant clones escape
therapy, ultimately leading to clinical relapse in patients. Response to therapy is heterogeneous
within and across cancers and treatments, and several models have been proposed as potential
resistance mechanisms 471535 (Figure 1). Indeed, several studies have highlighted the role of
both genetic alterations and non-genetic heterogeneity in enabling a rare subset of tumor cell
clones to bypass therapies and develop resistance '912-14.37-48,50.55.56

While classical experiments have largely relied on measuring the spectrum of changes after the
tumors have progressed, recent advent of quantitative imaging, single-cell profiling, and
barcode-based lineage tracing techniques are facilitating longitudinal tracking of clones at an
unprecedented resolution. For example, quantitative studies of therapy resistance in cancers
have identified a new class of cell-intrinsic properties, i.e. transient, yet heritable non-genetic
fluctuations in a rare subset of cancer cells, that enable them to escape therapies and adopt
diverse drug-resistant fates 29.11-134252.54.57.58 gy ch rare and heritable cell-intrinsic states have
been associated with the emergence of dominant clones underpinning resistance to a variety of
treatment regimens (e.g., targeted therapy, cytotoxic chemotherapy, and immunotherapy) and
across cancers including melanoma, acute myeloid leukemia, triple-negative breast cancer, and
lung adenocarcinoma 12134357 |n metastasis, recent studies have integrated lineage tracing
and computational algorithms in mouse models to quantitatively track properties of metastatic
clones %%, Similar to the findings reported in therapy resistance, pre-existing, heritable cell-
intrinsic states faithfully predicted the metastatic potential of individual clones %%%°. The clonal
differences driving resistance and metastasis likely originate as a consequence of interplay
between genetic alterations and non-genetic mechanisms, but the precise sequence of events
remain to be elucidated.

Mathematical models of clonal evolutionary dynamics across spatial and temporal scales have
played a major role in rationalizing experimental and clinical observations and, importantly,
providing in situ predictions of tumor dynamics 27%2-%°_ For instance, seminal data-inspired
mathematical models of somatic evolution in colon cancer provided an important insight that
selective advantage plays a more important role than either the cell population size or the
mutation rate in driving malignancy . Other, more recent, computational frameworks are
facilitating a finer and robust inference of cancer (sub)clone phylogenies from careful integration
of spatial, bulk, and single-cell sequencing datasets. Similarly, dynamical systems models—
both at molecular (e.g gene regulation and signaling dynamics) and population scale—have
revealed the origins and dynamics of relatively shorter timescale cell state transitions underlying
phenotypic plasticity in cancer drug resistance and metastasis 27-2470-73, Collectively, as our
computational capabilities continue to increase, both theoretical and data-driven modeling of
clonal dynamics will play a pivotal role in informing rational experimental design and making
testable predictions.
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Together, a plethora of experimental and computational studies have established roles of cell-
intrinsic factors in regulating clonal trajectories during therapy resistance, metastases, and more
broadly tumor progression. However, several fundamental questions remain unanswered and
stall progress toward durable cures. Yet to be answered are the origins of intrinsic determinants,
their precise nature, interactions between determinants often separated by timescales, and how
they bidirectionally communicate with their environment. These parameters remain critical for
developing predictive computational models of cancer origin, progression, and responses to
treatments.

Clonality influenced by tumor cell-extrinsic factors

Cancer cells evolve in intricate association with many non-cancer cell types that constitute the
tumor microenvironment (Figure 1). In the past decade, while we have developed a greater
appreciation of microenvironmental cues that could shape tumor cell evolutionary dynamics,
studies have often relied on static snapshots which reveal little about how tumors genetically
and non-genetically co-evolve with its micro-environment over space and time. Developing a
comprehensive understanding of the co-evolution of tumors with their microenvironment
necessitates performing longitudinal studies. Spatial transcriptomic and epigenomic
measurements in clinical samples and animal models over time can identify the organization
and relative contributions of non-cancer cells to altered tumor cell dynamics. Defining such
dynamics over the course of tumor progression or during metastases or response to therapies
can further highlight mechanisms that contribute to macro-evolutionary, saltatory events often
thought to encompass the emergence of tumor heterogeneity 22 (Figure 1).

Among various parameters that contribute to the tumor microenvironment, changes in immune
system activity have been one of the best characterized, and linked to critical steps during
oncogenesis, such as initiation, progression, metastasis and therapy resistance "4’7. The
immune system by itself represents a diverse array of cell types, often with contrasting
functions. For instance, while the infiltration of tumors by cytotoxic T cells and natural killer cells
is associated with efficient anti-tumor responses and smaller tumor sizes, presence of
regulatory T cells and myeloid-derived suppressor cells correlates with an immunosuppressive
milieu and enhanced tumor burden 8. Besides, the role of other immune cell subsets such as B
cells, macrophages, neutrophils, and T-helper cell subsets, is less well-characterized 8. Clinical
and pre-clinical models have predominantly taken a “cell-centric” approach to describe the roles
of distinct immune cell populations in cancers; however, a systems-level view to study the
immune cell dynamics and their co-evolution with cancers is largely missing. Recent studies
have begun to unravel systems level changes in the immune compartment in response to
cancers °-82_ Application of contemporary lineage tracing approaches 134259608384 tq
simultaneously label both immune and cancer cells in pre-clinical models will be critical in
examining how peripheral and tumor-associated immune cell populations change over time and
may influence clonal dynamics within tumors.

Aging is another microenvironmental variable that naturally affects cancer initiation, progression,
metastasis and therapy resistance. Indeed, most cancers are thought to originate from
temporal, age-associated accumulation of cellular damage that may in turn promote intrinsic
cellular variability to both tumor and neighboring non-cancer cells 747785 In general, aging can
be seen as a multifactorial driver of oncogenesis, which impacts many critical body functions,
including changes in metabolism, regenerative capacity, and immune surveillance 88, Each of
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these processes, in principle, could impose unique selective pressures. In addition, low-grade
chronic inflammation, which is commonly associated with aging in many tissues, may lead to an
altered cytokine and chemokine milieu that can itself function as growth stimuli to orchestrate
clonal selection 77788 More broadly, aging can be considered a complex trait that may
aggravate underlying cellular diversity to shape the clonal architectures during cancer initiation
and progression. Systems level computational synthesis of experimental data offers a great
opportunity to curate high-resolution interaction networks 8-°'. These networks may help
uncover the precise mechanisms of multifaceted processes such as aging during tumor
formation and progression. Measuring how the age-associated local and systemic changes
contribute to cancer cell-intrinsic variability is important to delineate the etiologies of age-linked
malignancies.

Conceptualizing clonality through hematological cancers and other tumors

In non-human primates and humans, steady state hematopoiesis is estimated to be sustained
by 50,000- 200,000 hematopoietic stem cells (HSC) that give rise to many trillions of blood cells
over the lifetime of an individual °2. These estimations mean that at any given time, thousands of
peripheral blood cells can be traced back in their lineages to a few bonafide HSCs. Moreover,
compared to other systems, the hematopoietic system is readily amenable to granular
investigation of evolutionary trajectories in the context of hematological malignancies. In fact,
the first evidence of clonality in cancers were described by coarse use of karyotyping
methodologies in the hematopoietic compartment (Figure 2) *3. The recent advent of next-
generation sequencing technologies and computational approaches has further afforded
interrogation of this system at an extraordinary resolution and scale. Notably, several studies in
recent years have described that clonal attributes are commonly associated with aging in the
hematopoietic compartment and are present in a large proportion of seemingly healthy
individuals. This condition, commonly known as Clonal Hematopoiesis of Indeterminate
Potential (CHIP), is characterized by over-representation of clones harboring certain somatic
mutations in peripheral blood of individuals that otherwise have no overt hematological disorder,
and is considered a genuine pre-malignant state °4% (Figure 2, Figure 3A). Furthermore, CHIP
is highly prevalent in aging individuals; when defined with a variant allele fraction of 0.5%, it
manifests in ~20% of all individuals at age 50, and further increases to ~50% by 70 years of age
997 More recent studies using very high-depth sequencing have shown that the incidence of
age-associated CHIP could be even higher than previously reported. Although there is no
current consensus on what variant allele frequency defines CHIP of clinical significance,
advanced genomics methodologies could further aid in tracking the origins and progression of
mutant clones over extended timescales *.

CHIP is suspected to emerge when hematopoietic stem cells (HSCs) acquire somatic mutations
that confer a fithess advantage, consequently producing clones which account for a
disproportionately large fraction of mature peripheral blood cells °*1%°. Mutations identified in
CHIP are commonly thought of as drivers of cancer and predominantly include epigenetic
modifiers (DNMT3A, TET?2), and less frequently, splicing factors (U2AF1, SRSF2, SF3B1), DNA
repair regulators (TP53, PPM1D), and signaling pathways (JAK2, CBL) °495191-103 (Figure 3A).
Moreover, recent studies have shown that the somatic mutations associated with CHIP arise at
different ages and appear to be biased by gender in some instances '%. Though not as well-
studied, additional non-genetic programs associated with transcriptional control, RNA splicing,
and chromatin and DNA states can further diversify the gamut of cell-intrinsic variabilities that
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may in turn impart clonal fitness 3%, Therefore, the genetic and non-genetic diversity reported
in CHIP is a multiscale process, likely operating through a combination of changes on
molecular, cellular, and chronological levels (Figure 3B). These changes may be a direct
consequence of aging or could themselves be drivers of the “aging phenotype”; decoupling
these cell-intrinsic and -extrinsic scenarios will be critical to pursue in future studies.

While the causal relationship between CHIP and myeloid malignancies has been recognized,
interestingly, it has been reported that at least 0.5-1% of all individuals with CHIP progress
further to develop hematological malignancies each year despite its high prevalence %% Thus,
the progression of CHIP to malignancies appears to be a relatively slow, stepwise process likely
punctuated by iterative rounds of positive selection utilizing several cooperating parameters '~
. These parameters include contributions from both cell-intrinsic determinants (genetic and
non-genetic) and cell-extrinsic factors (e.g., persistent infections driving chronic inflammation
and immune cell regulation of developmental niches) which simultaneously steer the clonal
selection process '°6112-17 The exact identity of such parameters and the combinatorial effect
of the selective forces that shape the ultimate clonal architecture underlying an overt
malignancy remains to be fully understood. Moreover, CHIP is not the only bonafide pre-
malignant state associated with hematological malignancies; other well studied examples
include pre-malignant conditions like monoclonal B cell lymphocytosis (MBL) ''® and monoclonal
gammopathy of undetermined significance (MGUS) "'° with pre-dispositions to chronic
lymphocytic leukemia (CLL) and multiple myeloma, respectively. It would be interesting to study
how these pre-malignant hematological states are conceptually related in their origin and
eventual progression to frank neoplasms.

Advancement in single-cell multi-omic profiling approaches have introduced new paradigms
wherein certain molecular states of cells are preferentially selected in pre-malignant conditions
such as CHIP. Importantly, such cellular states likely arise from integration of multiple
parameters and represent a more robust and stable readout than features influenced by
individual parameters. Therefore, longitudinal identification and tracking of cellular states—similar
to lineage tracing approaches recently used in the hematopoietic system '?°—could offer
complementary approaches in defining the evolutionary history of pre-malignant conditions and
the associated malignancies. Moreover, such clonal states or architectures could be more
generalizable in addition to characterizing clonality by mutational spectrums alone '?'. In
summary, the hematopoietic compartment offers an attractive and tractable system to perform
longitudinal studies to monitor the progression of CHIP to hematological neoplasms for
revealing quantitative and systems-level principles that underlie clonal evolution in cancers.

Beyond hematological malignancies, another well-studied example of pre-malignant clonal
evolution is the pre-cancerous state called Barrett's esophagus. In Barrett's esophagus,
squamous cell lining in the esophagus acquires stochastic genomic alterations and clonal
expansion which could transform into esophageal adenocarcinomas 333122123 Similar to CHIP,
multiple clones in Barrett’'s esophagus can coexist over long periods of time and could
accumulate additional mutations and copy number variations, eventually leading to development
of esophageal adenocarcinomas %412, However, in contrast to CHIP, the progression of
Barrett’'s esophagus to esophageal adenocarcinomas appear to be much less frequent and
intriguingly associated with genetic architecture that is distinct between pre-malignant and
malignant states '%. Therefore, unique modes of clonal evolution associated with distinct pre-
malignant states may be operational in different tissue types. Future studies could test the broad
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relevance of the conceptual frameworks developed in particular systems to unrelated tissue and
cancer types.

Next frontiers

The continued progress in developing links between clonality and clinical ramifications may
pave the way for systematic and periodic monitoring of clonality in individuals with clinically-
defined pre-malignant states. In the near future, high-risk individuals such as those with chronic
systemic inflammation, persistent infections, or familial history of cancers could be monitored for
clonality changes, at least in the hematopoietic compartment, as routine care. In general, recent
progress in cell-free DNA technologies could also allow identification of robust biomarkers that
can faithfully track origins and progression of cancers across multiple tissue types 2. Among
the various challenges that remain, simultaneous measurement of multiple modalities to identify
traceable early biomarkers—beyond curated gene sets—will be important towards unbiased
and robust monitoring. Furthermore, universal or perhaps system specific interventions must be
defined that consider the functional relevance of clones regardless of their profusion .

On the technological front, advances across disciplines provide promising new toolkits for
addressing the open questions in tumor clonality (Table 1). For example, advanced
spatiotemporal lineage tracing coupled with computational modeling may resolve whether clonal
states eventually selected for during tumor evolution are pre-existing or newly acquired during
adaptation. Moving forward, defining clonality through surrogate means which go beyond the
introduction of synthetic lineage tracers would be ideal to infer evolutionary trajectories
emerging via genetic and non-genetic mechanisms. For instance, natural barcodes arising from
the mitochondrial genome enable lineage inference in both health and disease '?%'?°, Rapid
advances in automated image analysis with machine learning also offer complementary tools to
leverage phenotypic differences—such as cellular and subcellular morphology and localization—
to infer clonality '3%-'33, Similarly, computational methodologies relying on transcriptional
memory between progenies may also enable barcode-free lineage tracing with single cell RNA-
sequencing datasets alone 3135 However, while clonality in some cancers can be described
well by single cell RNA-sequencing, others may require multi-parameter approaches 6.
Furthermore, it will be critical to perform simultaneous evolutionary measurements of cell-
intrinsic factors and extrinsic environments, and identify the chronological order of molecular
and cellular events to unravel unifying and cancer-specific systems-level control principles
(Figure 1). This will entail development of not just experimental multimodal biochemical and
imaging techniques, but also computational and analytical frameworks to complement such rich
and composite datasets.
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Table 1
Fublication lype Speciiics System
Rodriques et al. 2019 "' sequencing Spatal Brain
rFayne et al. 2UuZ1 " pevelopment
Zhao et al. 2022 '* various
Young et al. 2015 '™ Error-corrected Leukemia
Martelotto et al. 2017 '™ Single-cell genome Fixed
pong etal. 201r '™ N/A
Chu etal. 2017 " N/A
Biezuner et al. ZU16 "™ Scalable various
lao etal. 2021 '™ vielanoma
Nam et al. 2Uz2Z, 2019 '™ Viultilomics IVIPN, CHIF
vvagner et al. 2018 Darcodlng | ransposase Development

reretal 2017 "

Biady et al. 2018 "

Goyal et al. ZUZ21 *

Fennell etal. ZUuzz ™~

vveinreb et al. 2020 '

Gutlierrez et al. 2021 ™'

Oren etal. 2uz21"

umkenrer et al. ZUZ1 ™

Ludwig et al. 2019 "<

vViller et al. 2022 '<?

Klanor et al. 2ZU18 '

Spanjaard et al. 2018 "™~

Zhang et al. 2uz1 ™~

Simeonov et al. 2021 "~

D. Yang et al. 2u22 *¥

Cre Recombination

Hematopoiesis

Retrovirus

Stem Cell Reprogramming

prug resistance

AL

Hematopoiesis

CLL

prug resistance

prug resistance

Mitochondrial

various

Hematopoiesis

CRISPFR/Casy

Development

Development

IVietastasis

Vietastasis

NSCLC
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https://paperpile.com/c/5akQXs/bEEP
https://paperpile.com/c/5akQXs/drmp
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Chan etal. 2019 ™ Development
Alemany et al. 2018 ™' Development
McKenna etal 2016 ™ Development

Frieda et al. 201/ '~ N/A
Ka et al. 2018 ' Brain
Clark et al. 2021 Kables virus Brain
Loveless et al. 2U21 < CKISPR/CasyY and 1d 1 various
Quinn et al. 2U21 ~° Hybrid (Retrovirus and CRISPR) Metastasis
Satas et al. 2020 ' computational Fhylogeny various
Eisele et al. 2Uz2 ' various
Gao et al. 2uz1 various
C. yang et al. 2u21 ™ imaging I imelapse Lrug resistance
lian, Yang, and Spencer 2020 ' various
Chakrabarti et al. 2018 " Urug resistance
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Figure Legends

Figure 1: Tumor evolution is shaped by intrinsic and extrinsic factors. (left) Intrinsic
genetic and non-genetic variations together with extrinsic tumor microenvironmental factors
dynamically interact to shape fate responses and tumor evolution to selective pressures.
Diversity within tumors can result from a number of factors, including but not limited to pre-
existing genetic/non-genetic diversity; may be acquired as a response to selective pressures; as
a result of reprogramming or phenotypic switching from one state to another; or perhaps as a
consequence of clonal competition. Tumor composition has a bidirectional interaction with the
microenvironment and response to selection pressures. (right) These various modes of tumor
evolution are responsible for the changing clonal trajectories and structure in tumors. Models
depicted are representative of detectable clonal formation and collapse over time. In the top
pane, several successive waves of dominant clones drive the growth of the tumor, as might be
seen in response to different therapeutic interventions. In the middle pane, a single clone
outcompetes the founding clone and holds dominance for the majority of the tumor’s
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development, as might be seen in a tumor with low heterogeneity. In the bottom pane, several
clones coexist and expand over time without completely outcompeting each other.

Figure 2: Key discoveries and scientific advances in the area of tumor clonality. The
timeline depicts three eras — Cytogenetics & Karyotyping, Pre-genomics, and Genomics — when
research was guided by the prevailing philosophies and experimental tools. We postulate that in
the near future, clonality analysis by deep sequencing and mathematical modeling may have
broad implications in diagnosis and therapeutics. WES (whole exome sequencing); CHIP (Clonal
Hematopoiesis of Indeterminate Potential). 1523:94.9599,151,166-177

Figure 3: Clonal hematopoiesis development shares similarities with tumor evolution. A)
The most commonly mutated genes in clonal hematopoiesis, categorized by the major
pathways that they are associated with as reported by Kar et al '®. Among the common genetic
alterations associated with CHIP, epigenetic modifiers such as DNMT3A, TET2, and ASXL1 are
the top most recurrently mutated genes. Other known cancer associated genes and pathways
such as TP53, ATM, and JAKZ also feature prominently. B) A model for clonal selection and
progression of CHIP. Changes in HSC clonal diversity in CHIP is influenced by cell-intrinsic and
-extrinsic factors that wax or wane as an individual ages. Certain genetic mutations serve as
initiating events and confer selective advantage to a clone that may skew HSC diversity and
function. The initiating genetic events may cause further selection through genetic and non-
genetic mechanisms leading to enhanced clonal diversity. The genetic alterations and skewed
clonal architectures would in turn promote immune dysfunction leading to increased risk of
infections and chronic inflammatory states that could further drive the clonal selection and
eventual transformation.

Table 1: Recent advances in the study of clonality. We have provided recent studies of
technological advances, including new hardware, computational frameworks, and experimental
designs. The publications are primarily grouped by type of technology developed. Sequencing
refers to technological advances in sample preparation and sequencing data acquisition that
increase resolution for studying carcinogenesis and clonality. Barcoding refers to the use of
synthetically introduced or endogenous inheritable DNA sequences for identification of cellular
lineage. Computational refers to analytical methods and frameworks for interpreting clonal
evolution over time. Imaging refers to microscopy-based tracking of tumor evolution using either
reporter or label-free systems. The specifics of the technology are further described and similar
technologies are presented together. Lastly, the model system in which the technology was
applied in the cited publication is listed wherever relevant. Publications cited are not
comprehensive, rather are representative examples; an omission from this list does not reflect
the potential importance nor impact of that publication, but merely an oversight.
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