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Summary 

Cancer has been described as a genetic disease that clonally evolves in the face of selective 
pressures imposed by cell-intrinsic and extrinsic factors. Although classical models based on 
genetic data predominantly propose Darwinian mechanisms of cancer evolution, recent single-
cell profiling of cancers has described unprecedented heterogeneity in tumors providing support 
for alternative models of branched and neutral evolution through both genetic and non-genetic 
mechanisms. Emerging evidence points to a complex interplay between genetic, non-genetic, 
and extrinsic environmental factors in shaping the evolution of tumors (Figure 1). In this 
perspective, we briefly discuss the role of cell-intrinsic and extrinsic factors that shape clonal 
behaviors during tumor progression, metastasis, and drug resistance. Taking examples of pre-
malignant states associated with hematological malignancies and esophageal cancer, we 
discuss recent paradigms of tumor evolution and prospective approaches to further enhance our 
understanding of this spatiotemporally regulated process. 

 

Clonality as a cancer cell-intrinsic property 

Cell-intrinsic differences between cancer cells can emerge from a range of genetic sources 
including point mutations, copy number changes, and large structural variations 1. Differences 
can also result from several non-genetic mechanisms, including transcriptional fluctuations 2, 
epigenetic reprogramming 3, metabolic plasticity 4, and altered protein conformations 5. Unlike 
the duality (presence or absence) of genetic alterations that could justify classical models of 
selection, non-genetic mechanisms can exist on multiple continua, further providing 
conceptually rich frameworks for newer models of tumor evolution, metastases, and responses 
to anti-cancer therapies6–24. 

Cell-intrinsic non-genetic differences can either be pre-existing within a population or can be 
induced by the selective pressures (e.g., anti-cancer therapies) 6–8,25–28. These modes are not 
necessarily mutually exclusive and are often attributed to phenotypic plasticity, such as the well-
established paradigm of epithelial-mesenchymal transition 29. Collectively, the genetic and non-
genetic variabilities can impart fitness advantage to a cell, enhancing its survival, proliferation, 
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and dominance over other cells in both premalignant lesions and cancerous tissues 30–36. Cell-
intrinsic differences driving the clonal expansion of cancer cells are shown to impact clinically 
relevant outcomes, including tumor progression, metastasis, and drug resistance 1,9,12–14,37–52. 
The wide breadth of cell-intrinsic factors driving diverse clonal architectures have been 
investigated in great depth in hematological cancers, which we discuss later. 

Cell-intrinsic differences have been particularly implicated in driving differential responses in 
single cancer cells within a tumor when exposed to anti-cancer therapies, leading to drug 
resistance. Although few during early stages of treatment, the treatment-resistant clones escape 
therapy, ultimately leading to clinical relapse in patients. Response to therapy is heterogeneous 
within and across cancers and treatments, and several models have been proposed as potential 
resistance mechanisms 47,51,53,54 (Figure 1). Indeed, several studies have highlighted the role of 
both genetic alterations and non-genetic heterogeneity in enabling a rare subset of tumor cell 
clones to bypass therapies and develop resistance 1,9,12–14,37–48,50,55,56.  

While classical experiments have largely relied on measuring the spectrum of changes after the 
tumors have progressed, recent advent of quantitative imaging, single-cell profiling, and 
barcode-based lineage tracing techniques are facilitating longitudinal tracking of clones at an 
unprecedented resolution. For example, quantitative studies of therapy resistance in cancers 
have identified a new class of cell-intrinsic properties, i.e. transient, yet heritable non-genetic 
fluctuations in a rare subset of cancer cells, that enable them to escape therapies and adopt 
diverse drug-resistant fates 2,9,11–13,42,52,54,57,58. Such rare and heritable cell-intrinsic states have 
been associated with the emergence of dominant clones underpinning resistance to a variety of 
treatment regimens (e.g., targeted therapy, cytotoxic chemotherapy, and immunotherapy) and 
across cancers including melanoma, acute myeloid leukemia, triple-negative breast cancer, and 
lung adenocarcinoma 9,12,13,43,57. In metastasis, recent studies have integrated lineage tracing 
and computational algorithms in mouse models to quantitatively track properties of metastatic 
clones 59–61. Similar to the findings reported in therapy resistance, pre-existing, heritable cell-
intrinsic states faithfully predicted the metastatic potential of individual clones 59,60. The clonal 
differences driving resistance and metastasis likely originate as a consequence of interplay 
between genetic alterations and non-genetic mechanisms, but the precise sequence of events 
remain to be elucidated. 

Mathematical models of clonal evolutionary dynamics across spatial and temporal scales have 
played a major role in rationalizing experimental and clinical observations and, importantly, 
providing in situ predictions of tumor dynamics 27,62–69. For instance, seminal data-inspired 
mathematical models of somatic evolution in colon cancer provided an important insight that 
selective advantage plays a more important role than either the cell population size or the 
mutation rate in driving malignancy 66. Other, more recent, computational frameworks are 
facilitating a finer and robust inference of cancer (sub)clone phylogenies from careful integration 
of spatial, bulk, and single-cell sequencing datasets. Similarly, dynamical systems models—
both at molecular (e.g gene regulation and signaling dynamics) and population scale—have 
revealed the origins and dynamics of relatively shorter timescale cell state transitions underlying 
phenotypic plasticity in cancer drug resistance and metastasis 2,7,24,70–73. Collectively, as our 
computational capabilities continue to increase, both theoretical and data-driven modeling of 
clonal dynamics will play a pivotal role in informing rational experimental design and making 
testable predictions.      
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Together, a plethora of experimental and computational studies have established roles of cell-
intrinsic factors in regulating clonal trajectories during therapy resistance, metastases, and more 
broadly tumor progression. However, several fundamental questions remain unanswered and 
stall progress toward durable cures. Yet to be answered are the origins of intrinsic determinants, 
their precise nature, interactions between determinants often separated by timescales, and how 
they bidirectionally communicate with their environment. These parameters remain critical for 
developing predictive computational models of cancer origin, progression, and responses to 
treatments.  
 
Clonality influenced by tumor cell-extrinsic factors 

Cancer cells evolve in intricate association with many non-cancer cell types that constitute the 
tumor microenvironment (Figure 1). In the past decade, while we have developed a greater 
appreciation of microenvironmental cues that could shape tumor cell evolutionary dynamics, 
studies have often relied on static snapshots which reveal little about how tumors genetically 
and non-genetically co-evolve with its micro-environment over space and time. Developing a 
comprehensive understanding of the co-evolution of tumors with their microenvironment 
necessitates performing longitudinal studies. Spatial transcriptomic and epigenomic 
measurements in clinical samples and animal models over time can identify the organization 
and relative contributions of non-cancer cells to altered tumor cell dynamics. Defining such 
dynamics over the course of tumor progression or during metastases or response to therapies 
can further highlight mechanisms that contribute to macro-evolutionary, saltatory events often 
thought to encompass the emergence of tumor heterogeneity 22 (Figure 1). 

Among various parameters that contribute to the tumor microenvironment, changes in immune 
system activity have been one of the best characterized, and linked to critical steps during 
oncogenesis, such as initiation, progression, metastasis and therapy resistance 74–77. The 
immune system by itself represents a diverse array of cell types, often with contrasting 
functions. For instance, while the infiltration of tumors by cytotoxic T cells and natural killer cells 
is associated with efficient anti-tumor responses and smaller tumor sizes, presence of 
regulatory T cells and myeloid-derived suppressor cells correlates with an immunosuppressive 
milieu and enhanced tumor burden 78. Besides, the role of other immune cell subsets such as B 
cells, macrophages, neutrophils, and T-helper cell subsets, is less well-characterized 78. Clinical 
and pre-clinical models have predominantly taken a “cell-centric” approach to describe the roles 
of distinct immune cell populations in cancers; however, a systems-level view to study the 
immune cell dynamics and their co-evolution with cancers is largely missing. Recent studies 
have begun to unravel systems level changes in the immune compartment in response to 
cancers 79–82. Application of contemporary lineage tracing approaches 9,13,42,59,60,83,84 to 
simultaneously label both immune and cancer cells in pre-clinical models will be critical in 
examining how peripheral and tumor-associated immune cell populations change over time and 
may influence clonal dynamics within tumors. 

Aging is another microenvironmental variable that naturally affects cancer initiation, progression, 
metastasis and therapy resistance. Indeed, most cancers are thought to originate from 
temporal, age-associated accumulation of cellular damage that may in turn promote intrinsic 
cellular variability to both tumor and neighboring non-cancer cells 74–77,85. In general, aging can 
be seen as a multifactorial driver of oncogenesis, which impacts many critical body functions, 
including changes in metabolism, regenerative capacity, and immune surveillance 86,87. Each of 
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these processes, in principle, could impose unique selective pressures. In addition, low-grade 
chronic inflammation, which is commonly associated with aging in many tissues, may lead to an 
altered cytokine and chemokine milieu that can itself function as growth stimuli to orchestrate 
clonal selection 75–77,88. More broadly, aging can be considered a complex trait that may 
aggravate underlying cellular diversity to shape the clonal architectures during cancer initiation 
and progression. Systems level computational synthesis of experimental data offers a great 
opportunity to curate high-resolution interaction networks 89–91. These networks may help 
uncover the precise mechanisms of multifaceted processes such as aging during tumor 
formation and progression. Measuring how the age-associated local and systemic changes 
contribute to cancer cell-intrinsic variability is important to delineate the etiologies of age-linked 
malignancies.  

 
Conceptualizing clonality through hematological cancers and other tumors 

In non-human primates and humans, steady state hematopoiesis is estimated to be sustained 
by 50,000- 200,000 hematopoietic stem cells (HSC) that give rise to many trillions of blood cells 
over the lifetime of an individual 92. These estimations mean that at any given time, thousands of 
peripheral blood cells can be traced back in their lineages to a few bonafide HSCs. Moreover, 
compared to other systems, the hematopoietic system is readily amenable to granular 
investigation of evolutionary trajectories in the context of hematological malignancies. In fact, 
the first evidence of clonality in cancers were described by coarse use of karyotyping 
methodologies in the hematopoietic compartment (Figure 2) 93. The recent advent of next-
generation sequencing technologies and computational approaches has further afforded 
interrogation of this system at an extraordinary resolution and scale. Notably, several studies in 
recent years have described that clonal attributes are commonly associated with aging in the 
hematopoietic compartment and are present in a large proportion of seemingly healthy 
individuals. This condition, commonly known as Clonal Hematopoiesis of Indeterminate 
Potential (CHIP), is characterized by over-representation of clones harboring certain somatic 
mutations in peripheral blood of individuals that otherwise have no overt hematological disorder, 
and is considered a genuine pre-malignant state 94,95 (Figure 2, Figure 3A). Furthermore, CHIP 
is highly prevalent in aging individuals; when defined with a variant allele fraction of 0.5%, it 
manifests in ~20% of all individuals at age 50, and further increases to ~50% by 70 years of age 
96,97. More recent studies using very high-depth sequencing have shown that the incidence of 
age-associated CHIP could be even higher than previously reported. Although there is no 
current consensus on what variant allele frequency defines CHIP of clinical significance, 
advanced genomics methodologies could further aid in tracking the origins and progression of 
mutant clones over extended timescales 98.  

CHIP is suspected to emerge when hematopoietic stem cells (HSCs) acquire somatic mutations 
that confer a fitness advantage, consequently producing clones which account for a 
disproportionately large fraction of mature peripheral blood cells 99,100. Mutations identified in 
CHIP are commonly thought of as drivers of cancer and predominantly include epigenetic 
modifiers (DNMT3A, TET2), and less frequently, splicing factors (U2AF1, SRSF2, SF3B1), DNA 
repair regulators (TP53, PPM1D), and signaling pathways (JAK2, CBL) 94,95,101–103 (Figure 3A). 
Moreover, recent studies have shown that the somatic mutations associated with CHIP arise at 
different ages and appear to be biased by gender in some instances 104. Though not as well-
studied, additional non-genetic programs associated with transcriptional control, RNA splicing, 
and chromatin and DNA states can further diversify the gamut of cell-intrinsic variabilities that 
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may in turn impart clonal fitness 13,105. Therefore, the genetic and non-genetic diversity reported 
in CHIP is a multiscale process, likely operating through a combination of changes on 
molecular, cellular, and chronological levels (Figure 3B). These changes may be a direct 
consequence of aging or could themselves be drivers of the “aging phenotype”; decoupling 
these cell-intrinsic and -extrinsic scenarios will be critical to pursue in future studies. 

While the causal relationship between CHIP and myeloid malignancies has been recognized, 
interestingly, it has been reported that at least 0.5-1% of all individuals with CHIP progress 
further to develop hematological malignancies each year despite its high prevalence 96,106. Thus, 
the progression of CHIP to malignancies appears to be a relatively slow, stepwise process likely 
punctuated by iterative rounds of positive selection utilizing several cooperating parameters 107–

111. These parameters include contributions from both cell-intrinsic determinants (genetic and 
non-genetic) and cell-extrinsic factors (e.g., persistent infections driving chronic inflammation 
and immune cell regulation of developmental niches) which simultaneously steer the clonal 
selection process 106,112–117. The exact identity of such parameters and the combinatorial effect 
of the selective forces that shape the ultimate clonal architecture underlying an overt 
malignancy remains to be fully understood. Moreover, CHIP is not the only bonafide pre-
malignant state associated with hematological malignancies; other well studied examples 
include pre-malignant conditions like monoclonal B cell lymphocytosis (MBL) 118 and monoclonal 
gammopathy of undetermined significance (MGUS) 119 with pre-dispositions to chronic 
lymphocytic leukemia (CLL) and multiple myeloma, respectively. It would be interesting to study 
how these pre-malignant hematological states are conceptually related in their origin and 
eventual progression to frank neoplasms. 

Advancement in single-cell multi-omic profiling approaches have introduced new paradigms 
wherein certain molecular states of cells are preferentially selected in pre-malignant conditions 
such as CHIP. Importantly, such cellular states likely arise from integration of multiple 
parameters and represent a more robust and stable readout than features influenced by 
individual parameters. Therefore, longitudinal identification and tracking of cellular states–similar 
to lineage tracing approaches recently used in the hematopoietic system 120–could offer 
complementary approaches in defining the evolutionary history of pre-malignant conditions and 
the associated malignancies. Moreover, such clonal states or architectures could be more 
generalizable in addition to characterizing clonality by mutational spectrums alone 121. In 
summary, the hematopoietic compartment offers an attractive and tractable system to perform 
longitudinal studies to monitor the progression of CHIP to hematological neoplasms for 
revealing quantitative and systems-level principles that underlie clonal evolution in cancers. 

Beyond hematological malignancies, another well-studied example of pre-malignant clonal 
evolution is the pre-cancerous state called Barrett's esophagus. In Barrett's esophagus, 
squamous cell lining in the esophagus acquires stochastic genomic alterations and clonal 
expansion which could transform into esophageal adenocarcinomas 30,33,122,123. Similar to CHIP, 
multiple clones in Barrett’s esophagus can coexist over long periods of time and could 
accumulate additional mutations and copy number variations, eventually leading to development 
of esophageal adenocarcinomas 124,125. However, in contrast to CHIP, the progression of 
Barrett’s esophagus to esophageal adenocarcinomas appear to be much less frequent and 
intriguingly associated with genetic architecture that is distinct between pre-malignant and 
malignant states 126. Therefore, unique modes of clonal evolution associated with distinct pre-
malignant states may be operational in different tissue types. Future studies could test the broad 
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relevance of the conceptual frameworks developed in particular systems to unrelated tissue and 
cancer types. 
 

Next frontiers 

The continued progress in developing links between clonality and clinical ramifications may 
pave the way for systematic and periodic monitoring of clonality in individuals with clinically-
defined pre-malignant states. In the near future, high-risk individuals such as those with chronic 
systemic inflammation, persistent infections, or familial history of cancers could be monitored for 
clonality changes, at least in the hematopoietic compartment, as routine care. In general, recent 
progress in cell-free DNA technologies could also allow identification of robust biomarkers that 
can faithfully track origins and progression of cancers across multiple tissue types 127. Among 
the various challenges that remain, simultaneous measurement of multiple modalities to identify 
traceable early biomarkers—beyond curated gene sets—will be important towards unbiased 
and robust monitoring. Furthermore, universal or perhaps system specific interventions must be 
defined that consider the functional relevance of clones regardless of their profusion 56.  

On the technological front, advances across disciplines provide promising new toolkits for 
addressing the open questions in tumor clonality (Table 1). For example, advanced 
spatiotemporal lineage tracing coupled with computational modeling may resolve whether clonal 
states eventually selected for during tumor evolution are pre-existing or newly acquired during 
adaptation. Moving forward, defining clonality through surrogate means which go beyond the 
introduction of synthetic lineage tracers would be ideal to infer evolutionary trajectories 
emerging via genetic and non-genetic mechanisms. For instance, natural barcodes arising from 
the mitochondrial genome enable lineage inference in both health and disease 128,129. Rapid 
advances in automated image analysis with machine learning also offer complementary tools to 
leverage phenotypic differences–such as cellular and subcellular morphology and localization–
to infer clonality 130–133. Similarly, computational methodologies relying on transcriptional 
memory between progenies may also enable barcode-free lineage tracing with single cell RNA-
sequencing datasets alone 134,135. However, while clonality in some cancers can be described 
well by single cell RNA-sequencing, others may require multi-parameter approaches 136. 
Furthermore, it will be critical to perform simultaneous evolutionary measurements of cell-
intrinsic factors and extrinsic environments, and identify the chronological order of molecular 
and cellular events to unravel unifying and cancer-specific systems-level control principles 
(Figure 1). This will entail development of not just experimental multimodal biochemical and 
imaging techniques, but also computational and analytical frameworks to complement such rich 
and composite datasets. 
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Table 1 
 

Publication Type Specifics System 
Rodriques et al. 2019 137 sequencing Spatial Brain 

Payne et al. 2021 138 Development 

Zhao et al. 2022 139 Various 

Young et al. 2015 140 Error-corrected Leukemia 

Martelotto et al. 2017 141 Single-cell genome Fixed 

Dong et al. 2017 142 N/A 

Chu et al. 2017 143 N/A 

Biezuner et al. 2016 144 Scalable Various 

Tao et al. 2021 145 Melanoma 

Nam et al. 2022, 2019146,147 Multiomics MPN, CHIP 

Wagner et al. 2018148 barcoding Transposase Development 

Pei et al. 2017 149 Cre Recombination Hematopoiesis 

Biddy et al. 2018 150 Retrovirus Stem Cell Reprogramming 

Goyal et al. 2021 9 Drug resistance 

Fennell et al. 2022 13 AML 

Weinreb et al. 2020 91 Hematopoiesis 

Gutierrez et al. 2021 151 CLL 

Oren et al. 202111 Drug resistance 

Umkehrer et al. 2021 42 Drug resistance 

Ludwig et al. 2019 128 Mitochondrial Various 

Miller et al. 2022 129 Hematopoiesis 

Klahor et al. 2018 152 CRISPR/Cas9 Development 

Spanjaard et al. 2018 153 Development 

Zhang et al. 2021 154 Metastasis 

Simeonov et al. 2021 155 Metastasis 

D. Yang et al. 2022 60 NSCLC 
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Chan et al. 2019 156 Development 

Alemany et al. 2018 157 Development 

McKenna et al 2016 158 Development 

Frieda et al. 2017 159 N/A 

Raj et al. 2018 160 Brain 

Clark et al. 2021161 Rabies virus Brain 

Loveless et al. 2021 162 CRISPR/Cas9 and TdT Various 

Quinn et al. 2021 59 Hybrid (Retrovirus and CRISPR) Metastasis 

Satas et al. 2020 163 computational Phylogeny Various 

Eisele et al. 2022 135 Various 

Gao et al. 2021 164 Various 

C. Yang et al. 2021 45 imaging Timelapse Drug resistance 

Tian, Yang, and Spencer 2020 133 Various 

Chakrabarti et al. 2018 165 Drug resistance 
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Figure Legends 
Figure 1: Tumor evolution is shaped by intrinsic and extrinsic factors. (left) Intrinsic 
genetic and non-genetic variations together with extrinsic tumor microenvironmental factors 
dynamically interact to shape fate responses and tumor evolution to selective pressures. 
Diversity within tumors can result from a number of factors, including but not limited to pre-
existing genetic/non-genetic diversity; may be acquired as a response to selective pressures; as 
a result of reprogramming or phenotypic switching from one state to another; or perhaps as a 
consequence of clonal competition. Tumor composition has a bidirectional interaction with the 
microenvironment and response to selection pressures. (right) These various modes of tumor 
evolution are responsible for the changing clonal trajectories and structure in tumors. Models 
depicted are representative of detectable clonal formation and collapse over time. In the top 
pane, several successive waves of dominant clones drive the growth of the tumor, as might be 
seen in response to different therapeutic interventions. In the middle pane, a single clone 
outcompetes the founding clone and holds dominance for the majority of the tumor’s 
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development, as might be seen in a tumor with low heterogeneity. In the bottom pane, several 
clones coexist and expand over time without completely outcompeting each other. 
 
Figure 2: Key discoveries and scientific advances in the area of tumor clonality. The 
timeline depicts three eras – Cytogenetics & Karyotyping, Pre-genomics, and Genomics – when 
research was guided by the prevailing philosophies and experimental tools. We postulate that in 
the near future, clonality analysis by deep sequencing and mathematical modeling may have 
broad implications in diagnosis and therapeutics. WES (whole exome sequencing); CHIP (Clonal 
Hematopoiesis of Indeterminate Potential). 15,23,94,95,99,151,166–177. 

Figure 3: Clonal hematopoiesis development shares similarities with tumor evolution. A) 
The most commonly mutated genes in clonal hematopoiesis, categorized by the major 
pathways that they are associated with as reported by Kar et al 104. Among the common genetic 
alterations associated with CHIP, epigenetic modifiers such as DNMT3A, TET2, and ASXL1 are 
the top most recurrently mutated genes. Other known cancer associated genes and pathways 
such as TP53, ATM, and JAK2 also feature prominently. B) A model for clonal selection and 
progression of CHIP. Changes in HSC clonal diversity in CHIP is influenced by cell-intrinsic and 
-extrinsic factors that wax or wane as an individual ages. Certain genetic mutations serve as 
initiating events and confer selective advantage to a clone that may skew HSC diversity and 
function. The initiating genetic events may cause further selection through genetic and non-
genetic mechanisms leading to enhanced clonal diversity. The genetic alterations and skewed 
clonal architectures would in turn promote immune dysfunction leading to increased risk of 
infections and chronic inflammatory states that could further drive the clonal selection and 
eventual transformation. 
 
Table 1: Recent advances in the study of clonality. We have provided recent studies of 
technological advances, including new hardware, computational frameworks, and experimental 
designs. The publications are primarily grouped by type of technology developed. Sequencing 
refers to technological advances in sample preparation and sequencing data acquisition that 
increase resolution for studying carcinogenesis and clonality. Barcoding refers to the use of 
synthetically introduced or endogenous inheritable DNA sequences for identification of cellular 
lineage. Computational refers to analytical methods and frameworks for interpreting clonal 
evolution over time. Imaging refers to microscopy-based tracking of tumor evolution using either 
reporter or label-free systems. The specifics of the technology are further described and similar 
technologies are presented together. Lastly, the model system in which the technology was 
applied in the cited publication is listed wherever relevant. Publications cited are not 
comprehensive, rather are representative examples; an omission from this list does not reflect 
the potential importance nor impact of that publication, but merely an oversight. 
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