
Label Smoothing Improves Neural

Source Code Summarization

Sakib Haque, Aakash Bansal, and Collin McMillan

Department of Computer Science

University of Notre Dame, Notre Dame, IN, USA

Email: {shaque, abansal1, cmc}@nd.edu

Abstract—Label smoothing is a regularization technique for
neural networks. Normally neural models are trained to an
output distribution that is a vector with a single 1 for the correct
prediction, and 0 for all other elements. Label smoothing converts
the correct prediction location to something slightly less than 1,
then distributes the remainder to the other elements such that
they are slightly greater than 0. A conceptual explanation behind
label smoothing is that it helps prevent a neural model from
becoming “overconfident” by forcing it to consider alternatives,
even if only slightly. Label smoothing has been shown to help
several areas of language generation, yet typically requires con-
siderable tuning and testing to achieve the optimal results. This
tuning and testing has not been reported for neural source code
summarization – a growing research area in software engineering
that seeks to generate natural language descriptions of source
code behavior. In this paper, we demonstrate the effect of label
smoothing on several baselines in neural code summarization,
and conduct an experiment to find good parameters for label
smoothing and make recommendations for its use.

Index Terms—Source code summarization, automatic docu-
mentation generation, label smoothing, optimization

I. INTRODUCTION

The backbone of much software documentation is the

“source code summary” [1], [2], [3]. A summary is a short

description in natural language that provides high level infor-

mation about the purpose and behavior of the low level details

implemented in source code. The idea is that a programmer

can understand the functionality of a section of code by

reading the corresponding summary without reading the code

itself [4], [5]. The expense of writing these summaries by

hand has long made automated code summarization a “holy

grail” [6] of software engineering research [7]. The dream is

that programmers could read code documentation even if other

programmers did not write any.

The state-of-the-art in code summarization research depends

on the neural encoder-decoder architecture [6], [8], [9]. Basi-

cally the idea is that an encoder forms a representation of

source code in a vector space, while the decoder forms a

representation of the summary in a different vector space. With

sufficient training data (usually millions of samples [10], [11]),

another part of the model learns to connect features in one

space to the other and can be used to predict output summaries

for arbitrary input source code. Neural designs based on the

encoder-decoder model have almost completely supplanted

earlier template- and heuristic-based approaches [7].

These neural models generate summaries one word at a time

(usually using the teacher forcing procedure [12] in a seq2seq-

like design [13], [7]). In a nutshell, the model is shown the

source code and a start of sequence token for the desired

output summary. The model then predicts the first word of

the output summary. Then the model is shown the source

code and the start of sequence token plus the first predicted

word, then predicts the second word. This process continues

until the model predicts an end of sequence token. The point

is that the model is tasked with predicting a single word

several times – not the whole output summary at once. Each

individual word prediction is a weakpoint: if the model makes

an error, the subsequent predictions are also likely to be wrong

because they depend on the previous one [14]. If the model

is “overconfident” in predicting some words, it may develop

a tendency to miss rarer words and produce repetitive, dull

outputs [15].

A solution proffered in several areas of natural language

generation is label smoothing [16], [17], [18]. Label smoothing

seeks to make the model “less confident” in each prediction

by altering the target output. The neural model’s output is a

predicted probability distribution over the entire vocabulary

of words. If the vocabulary has 10,000 words, then the output

is technically a 10,000-length vector, in which the position of

the correct word will hopefully have the highest value. During

training, the target vector would have a 1 in the position

of the correct word, and a 0 in the other 9,999 positions.

What label smoothing does is reduce the value in the correct

position slightly, say to 0.95, then spread the remainder over

the rest of the distribution, so all other positions would be e.g.,

(0.05/9999). While the mechanism by which label smoothing

works is not fully understood [17], different empirical studies

have repeatedly shown it to be effective [16].

In this paper, we present an empirical study on label smooth-

ing for neural source code summarization. Label smoothing

requires considerable tuning to achieve optimal results in

different domains. While it is reasonable to hypothesize that

label smoothing would improve neural code summarization

given the similarities between neural code summarization and

other natural language generation technologies, the hypothesis

has not been tested, and effective parameters and procedures

have not been established. We conduct an experiment of

label smoothing for several baselines from the source code

summarization literature, to serve guide for future researchers.

a
rX

iv
:2

3
0
3
.1

6
1
7
8
v
1

[c

s.
S

E
]

 2
8
 M

a
r

2
0
2
3

II. BACKGROUND & RELATED WORK

In this section, we discuss the key background ideas and

supporting work related to this paper, namely source code

summarization, neural encoder-decoder architecture, and label

smoothing.

A. Source Code Summarization

Early work in source code summarization included

heuristic-based approaches [19], [20]. These models relied

on techniques of Information Retrieval (IR) to extract salient

words from source code [21], [22]. These words were then

put into manually-defined templates to produce meaningful

sentences [23], [24].

The landscape changed with the advent of deep learning.

The explosion of data-driven models in the mid-2010’s and

their state-of-the-art performance in various natural language

processing (NLP) tasks inspired researchers to use them to

automatically generate source code summaries. Iyer et al. [25]

was one of the earliest to use such models for code summa-

rization. Since then, the field has embraced this sequence-to-

sequence (seq2seq) architecture as the standard architecture to

generate comments. Figure I lists some of the most prominent

papers that use some modified version of an attentional neural

encoder-decoder model to generate code summaries. This list

is not exhaustive, but only includes peer-reviewed papers

where a new idea was first introduced.

The table shows that the first generation of these data-

driven approaches (marked only in column N) only looked

at the source code tokens to generate comments. Later, Hu et

al. [9] and LeClair et al. [6] noted the importance of including

structural information about the source code by using the

Abstract Syntax Tree (AST). They both flattened the AST into

N S C
*Iyer et al. (2016) [25] x
*Loyola et al. (2017) [26] x
*Jiang et al. (2017) [27] x
*Hu et al. (2018) [28] x
*Hu et al. (2018) [9] x x
*Allamanis et al. (2018) [29] x x
*Alon et al. (2019) [30] x x
*Gao et al. (2019) [31] x
*LeClair et al. (2019) [6] x x
*Fernandes et al. (2019) [32] x x
*Haque et al. (2020) [33] x x x
*Haldar et al. (2020) [34] x x
*LeClair et al. (2020) [35] x x
*Ahmad et al. (2020) [36] x x
*Zügner et al. (2021) [8] x x
*Liu et al. (2021) [37] x x
*LeClair et al. (2021) [38] x x
*Gao et al. (2021) [39] x x
*Wang et al. (2021) [40] x x
*Bansal et al. (2021) [41] x x x
*Gong et al. (2022) [42] x x

TABLE I: Selection of closely-related, peer-reviewed works that
use neural network based architecture. Column N indicates Neural
Network inspired solutions. S indicates that structural data (various
representations of AST) is used. C indicated publications that incor-
porate contextual information.

sequential tokens, but incorporated these tokens in different

ways in their model. Other research papers soon explored

various ways of capturing these structural information from the

AST [29], [30], [35], [32]. At the same time, a parallel research

track delved into incorporating contextual information. This

context encompasses API calls to learn the mapping between

API sequences and natural language description [28] as well

as other functions in the file to provide supporting information

for the code [33]. Bansal et al. further expanded the latter idea

by including project context information [41]. Recently, some

research has been dedicated into using transformer models [43]

for this task. Ahmad et al. [36] used pairwise relationship

between tokens to capture their mutual interaction beyond

positional encoding while Gong et al. [42] introduces another

layer in the encoder side of the transformer for the AST.

This paper aims to improve the performance of these data-

driven models by exploring how label smoothing can enhance

their performance. We show how the performance of different

established baselines improves using label smoothing. Note

that we do not seek to compete with any one code summa-

rization approach – our aim is to benefit all approaches.

B. Neural Encoder-Decoder Architecture

The neural encoder-decoder architecture is the backbone

of almost all current code summarization approaches [14].

These models are borrowed from the field of Neural Machine

Translation (NMT). Essentially, these models have 2 parallel

components: the encoder and the decoder. The encoder takes

words (tokens) from the input language (e.g. English for

NMT/Java for source code summarization) and represents

them into fixed length vectors. The decoder takes this vector

representation and translates them to the target language (e.g.

Spanish for NMT/English for source code summarization).

The standard setup for these encoder-decoder models use

recurrent layers on both sides [44]. These recurrent layers

are typically a sequence of LSTM [45] or GRU [46] cells.

Information propagates through these layers, one token per

cell. Each cell in the encoder layer not only receives the

corresponding token, but also the vector representation of all

the tokens that came before. The first cell in decoder layer

receives the final vector representation of the entire input

sequence [13]. Consecutive cells in the decoder layer receive

a vector that encapsulates not only the entire input sequence

but also the output so far.

While this architecture has existed for some time, Bah-

danau et al. [47] enhanced its performance by introducing

attention in 2014. The intuition behind attention is that some

tokens in the input sequence are more important than others

when trying to generate specific predictions. The goal of

attention is to map the relative importance of each input

token to every output prediction. It does this by computing

the similarity between the input sequence and the output

sequence so far to identify the important features to predict

the next word. The two most common attention functions

are additive and multiplicative (dot-product based). In all the

models evaluated in this paper, we use multiplicative attention.

The dot-product based attention inspired a new generation

of neural encoder-decoder architecture called Transformers,

that eschews the sequential nature of these models. First

introduced by Vaswani et al. [43], these models replace the

RNN cells with a self-attention layer (discussed in greater

detail in section III-C) followed by a fully connected feed-

forward layer. Without the recurrent layer to propagate sequen-

tial information, transformers introduce a positional encoding

before the encoder and decoder respectively to capture the

order of the sequence. This allows for parallel processing

of tokens, making them faster. These models have also been

shown to better capture long-range relationships [43].

C. Label Smoothing

Label smoothing is a regularization technique used in neural

networks to improve generalization. It was first introduced

by Szegedy et al. [48] for image classification, although

it has since been shown to improve performance for many

other deep learning tasks, including NMT [16]. Essentially,

label smoothing involves introducing some uncertainty in the

training data to prevent over-fitting [49], [17], [50].

Most Natural Language Generation (NLG) models use cate-

gorical cross-entropy loss to calculate the error between target

tokens and predicted tokens. Minimizing this loss function

means reducing the error between the target and predicted

tokens, thus improving model performance. The target dis-

tribution (t(k)) for a neural network is a Dirac delta function:

t(k) = δk,y

where k is the predicted output and y is the target output

and t(k) is 1 when k = y and 0 for all other k. In practice,

we use a one-hot vector to represent the Dirac delta function.

The size of the vector is the number of tokens in the output

vocabulary (Nt), with all elements set to 0 except for the index

of the target token, which is set to 1. We can therefore read it

as a probability distribution that is 1 for the correct target

word and 0 for all other words in the vocabulary. This is

undesirable because it makes the model overconfident about

certain predictions.

With label smoothing, we encourage the model to be

“less confident.” We achieve this, in essence, by taking some

probability, ǫ, off the top of the target token, y and uniformly

distributing over the rest of the vocabulary. This probability, ǫ

where ǫ ∈ (0, 1], is the key parameter that determines the ex-

tent to which label smoothing will affect model performance.

We represent this new distribution as:

t(k) = (1− ǫ)δk,y + (1− δk,y)
ǫ

Nt − 1

where t(k) is now (1− ǫ) for k = y and ǫ
Nt−1

for k 6= y.

The current research frontier in source code summarization

lies in enhancing the neural networks to generate better

comments. This paper lies at the heart of this frontier by not

only quantifying the regularization effect of these models with

label smoothing but also identifying the best configuration to

maximize model performance.

III. EXPERIMENTAL DESIGN

In this section, we discuss the design of our experiment.

This includes the research objectives of this paper, the datasets

we use to perform the experiments, the models we use to train

the data, the metrics we use to evaluate model performance,

and any threats to validity we might have.

A. Research Questions

Our research objective is to evaluate the extent to which

label smoothing improves source code summarization mod-

els, and the configurations that maximize this performance

improvement. To this end, we ask the following research

questions:

RQ1 What is the effect of label smoothing on the overall

performance of recently-published source code summa-

rization baselines in terms of BLEU, METEOR and

USE+c scores?

RQ2 What is the best label smoothing configuration that max-

imizes model performance and how is this configuration

affected by the output vocabulary size?

RQ3 What is the effect of label smoothing on the diversity of

target vocabulary and how does this affect performance?

The rationale behind RQ1 is that label smoothing is not a

commonly used regularization technique in automatic source

code summarization, despite evidence of success in other NLG

applications. Many models have been proposed for source

code summarization, but to the best of our knowledge, none

use label smoothing as a regularizer. While there is evidence

that label smoothing will improve the performance of these

models, there has been no extensive research to demonstrate

this. Our goal with this RQ is to quantify how including label

smoothing to train these models can change their performance.

We use three different metrics to verify our findings: BLEU,

METEOR and USE+c. These metrics are further discussed in

Section III-D

The rationale behind RQ2 is that our application of label

smoothing has underlying hyperparameters that require tuning.

As noted earlier, ǫ ∈ (0, 1]. But the research literature is

unclear about what the optimal values are for these hyperpa-

rameters, especially in the problem of code summarization.

Additionally, we also do not know how the size of the

output vocabulary (Nt) affects model performance with this

configuration. The larger the vocabulary size, the smaller the

smoothed probability per output token (ǫ
Nt

). Our goal with

this RQ is to identify a suitable value of ǫ. Furthermore, we

aim to understand the relationship of this probability ǫ with

the size of output vocabulary, Nt.

The rationale behind RQ3 is that there are competing

intuitions as to how label smoothing affects model perfor-

mance. As noted in Section II-C, label smoothing artificially

introduces uncertainty in the one-hot output vector. On one

hand, the introduction of uniform uncertainty across the output

vector could exacerbate the problem of label noise [51].

However, this uncertainty makes the model less confident

about its predictions and allows it to consider rare words, thus

reducing the problem of class imbalance in source code sum-

marization [14]. On the other hand, preventing overconfidence

could mitigate label noise by improving model generalization,

thus focusing on more commonly occurring words [17]. Our

goal with this RQ is to study which of these competing

intuitions is borne out in practice for the problem of source

code summarization.

B. Datasets

We use two datasets in this paper: one is Java and the other

is C/C++. The Java dataset, first published by LeClair et al.,

introduce some of the best practices for developing a dataset

for source code summarization that are now a standard among

the research community [11]. It consists of 2.1m methods from

more than 28k projects. The training, validation and test set

are split by projects to prevent data from train set to leak into

the test set by virtue of being in the same project. This dataset

has since been used in many peer-reviewed publications [33],

[35], [52], [41], [53] and new additions has since been made

to it, including context tokenization. We use a filtered version

of this dataset, with 1.9m functions, published by Bansal et al.

that remove code clones in accordance with recommendations

by Allamanis et al. [54].

The C/C++ dataset was first published by Haque et al. [14]

following an extraction model proposed by Eberhart et al. [55]

to adhere to the idiosyncrasies of C/C++, while maintaining

the same strict standards proposed by LeClair et al. [11]. It

consists of 1.1m methods from more than 33k projects.

Additionally, we extract individual statements on the top

10% largest methods from the Java dataset (Java-q90) and

the top-25% largest methods from the C/C++ dataset (C/C++-

q75). While this filtration reduces the size of the dataset,

it eliminates simple getters/setters and other small functions

whose comments are easy to predict. The remaining functions

have more statements, which is more challenging and repre-

sentative of real world use-case scenario. We chose top 10%

for Java and 25% for C/C++ to keep the average size and

number of subroutines similar for both datasets.

For RQ3, we use the method outlined by Haque et al. to

convert both the Java-q90 and C/C++-q75 dataset to action

word prediction dataset [14]. We extract action words from

comments and stem them to reduce vocabulary size (e.g.

to ensure that ‘delete’, ‘deletes’, ‘deleted’, ‘deleting’ are

classified as the same action word).

C. Baselines

We use six baselines in this paper. We chose each baseline

because it represents a family of similar approaches or is a

well-cited approach used as a baseline in many papers.

attendgru This baseline is a simple unidirectional RNN-

based attentional neural encoder-decoder architecture. It takes

only source code tokens as encoder input and English com-

ment as decoder input. It was first introduced by Iyer et

al. [25] as an off-the-shelf NMT/NLG approach to generate

source code summaries. For our implementation, we use

GRUs instead of LSTMs because they are much faster while

providing comparable performance [6].

transformer This baseline is another simple encoder-

decoder architecture, but it replaces the recurrent layers with

stacked muti-head attention layers [43]. As mentioned in

Section II-B, transformers introduce a position embedding

layer that captures the sequential order of tokens which allows

the multi-head attention layer to process the entire sequence at

the same time. On the encoder side, the multi-head attention

layer computes dot-product based self-attention on the source

code tokens. On the decoder side, there are two multi-head

attention layers: a masked multi-head attention layer that

computes self-attention on the comment tokens followed by

a regular multi-head attention layer that computes attention

between the encoder and the masked attention layer.

ast-attendgru This baseline is an enhancement over the

attendgru model by including AST information on the encoder

side along with source code tokens. This idea was first

proposed by Hu et al [9] who designed a Structure-Based

Traversal (SBT) algorithm to flatten the AST and include the

source code and AST input together in the encoder. LeClair et

al. improved this model by incorporating this flat AST on a

separate recurrent layer and concatenating this encoder output

with the original encoder output with just the code tokens [6].

For our evaluation, we use the implementation by LeClair et

al. because it’s more recent and performs better.

code2seq This baseline, proposed by Alon et al. [30] is

similar to ast-attendgru as it also takes both source code tokens

and AST as input. However, instead of flattening the AST,

they encode pairwise paths between nodes in the AST. Then,

they randomly select a subset of these paths as training input.

Randomly selecting paths prevents over-fitting while keeping

the model size reasonable. To reduce architectural variations

and manage resource constraints, we set the number of paths

explored to 100.

codegnngru This baseline provides another different tech-

nique for representing AST along the encoder. Proposed by

LeClair et al., it uses Convolutional Graph Neural Networks

(ConvGNN) to process the AST input [35]. They pass the AST

nodes through an embedding layer. The output of this layer

along with the AST edge data is then input to the ConvGNN.

For each node, ConvGNN adds the neighboring node to it’s

current node during a hop. The model shows best performance

for 2 hops; each AST node adds the neighboring node twice,

thus propagating information between nodes that are separated

by 2 hops. The output of the ConvGNN layer is then passed

to a recurrent layer before the result is concatenated with the

output of the encoder that processes the source code tokens.

ast-attendgru-fc This baseline improves upon the ast-

attendgru model by including file context information on the

encoder side along with source code tokens and AST. Haque et

al. applied the concept of using contextual information from

other functions in the same file to a few different base-

lines [33]. They introduced a new encoder to process other

functions in the file. All encoder outputs are combined before

passing it to the decoder for prediction. While their results

showed improvements in all baselines using file context, ast-

attendgru-fc was the highest performing model.

IV. RQ1 - OVERALL PERFORMANCE

This section discusses the methodology for answering RQ1

as well as our key findings. In general, we find that label

smoothing leads to improvements to several baselines.

Methodology: To answer RQ1, we follow the established

methodology that have become standard in source code sum-

marization and NMT tasks in NLP [6], [43]. We use two

standard datasets in two common programming languages. We

perform further filtration on the dataset by taking the top 10%

largest methods from the Java dataset (Java-q90) and the top-

25% largest methods from the C/C++ dataset (C/C++-q75).

We do this to find functions that have a large number of

statements, which is more representative of real world use-case

scenario. We also train the models on the full 1.9m Java dataset

to evaluate model performance on a full dataset to make

commensurable comparison with related work. For all three

dataset instances, we train each baseline twice: once with and

again without label smoothing. We keep the value of ǫ constant

(0.1) for all models. For each architecture, we train both

instances (with and without label smoothing) for 10 epochs

and choose the model with the highest validation accuracy

score for our comparison (standard practice in related work).

We then evaluate the performance of these models using

automated evaluation techniques discussed in Section III-D.

Roy et al. at FSE’21 recommended to perform a paired t-test

between baseline model predictions and new model predictions

for different sentence-level metrics. Therefore, we perform a

paired t-test to identify if the performance difference between

two comparing model predictions is statistically significant.

Note that we do not perform a t-test on BLEU score because

BLEU is a corpus level metric.

Key Findings: Our key finding in answering RQ1 is that

adding label smoothing as a regularizer improves model

performance in most cases. All models show performance

improvement in terms of USE for Java-q90, C/C++-q75 and

full Java dataset. All models using the Java-q90 and C/C++-

q75 datasets and most models using the full Java dataset also

report performance improvement in term of METEOR and

BLEU. Furthermore, most of the performance improvements

are statistically significant (we choose α = 0.05). This overall

trend of performance improvement is depicted in Figure 1. The

dark blue bar shows the METEOR scores for models without

label smoothing. The orange bar on top shows the increase

in the METEOR score after we add label smoothing. As the

figures show, there is an increase in METEOR score in almost

all cases.

Table II shows the effect of label smoothing on the overall

performance of each baseline for the Java-q90 dataset. We

find that all models report higher evaluation metric score

with the addition of label smoothing. However, Code2seq

improves the most with 4.8% improvement on METEOR,

5.4% improvement on USE and 8.3% improvement on BLEU.

Codegnngru also shows significant improvement with 2.7%

improvement on METEOR, 2.3% improvement on USE and

4.2% improvement on BLEU. Attendgru and ast-attendgru-

fc also show similar improvement with 1.7% improvement

for both on METEOR, 2.4% and 1.7% improvement on USE

and 3.1% and 3.3% improvement on BLEU respectively. Each

of these models vary with respect to encoder input. Each

model has different inputs as well as different data structure

for common inputs. The higher scores are encouraging as

we observe statistically significant performance improvement

across different model architectures. Transformers, however,

show the least overall improvement in performance with an

increment of less than 1% for all metrics, although the 0.85%

increase in USE score is statistically significant. One possible

explanation for this result is that Transformers have built-in

dropout layers after each multi-head attention layer. These

dropout layers likely already improve regularization.

Table III shows the effect of label smoothing on the overall

performance of each baseline for the C/C++-q75 dataset. For

this dataset, we notice a large improvement in performance

for ast-attendgru, code2seq, codegnngru and ast-attendgru-fc

baselines. These performance increase range from 7.2%-8.5%

for METEOR, 5.6%-10.3% for USE and 8.3%-10.2% for

BLEU. It is interesting to note that attendgru does not show

a large percentage increase in performance (<2% across all

metrics) for this dataset, compared to the aforementioned mod-

els. Furthermore, similar to the Java-q90 dataset, transformers

also show little improvement (about 1-2% across all metrics).

We expect this result for transformers due to the built-in

dropout regularizer in the transformer architecture. However,

the performance increase for both attendgru and transformers

is still statistically significant with p-values <0.01 for both

METEOR and USE.

Table IV shows the effect of label smoothing on the overall

performance of each baseline for the full Java dataset of 1.9m

methods. Again we see a trend of performance improvement

in most cases. However, while the increase in metric score is

significant in all but two configurations, we do notice that the

percentage increment is not as high as for the Java-q90 and

C/C++-q75 dataset (<2% across all metrics for all models).

We attribute this to the fact that higher training examples act

as a regularizer in and of itself. For attendgru, we notice

a statistically significant decrease in METEOR score but a

statistically significant increase in USE score. We also notice

a small decrease in BLEU score. Since all three metrics do not

point in one way or another, we do not draw any conclusion

for this setup. For codegnngru, we notice a 0.11% decrease

in BLEU score, a 0.22% increase in METEOR score which

is not statistically significant but a 0.47% increase in USE

score which is statistically significant. Since the two metric

scores that show performance improvement are also correlated

best with human evaluation, we conclude that label smoothing

positively affects codegnngru. Once again, code2seq shows

the highest performance increase for the Java full dataset.

One likely explanation for why code2seq achieves the highest

performance increase is that it is the largest model among

the baselines. However, its parameters do require more time

to train than others. Like for other models, label smoothing

appears to help code2seq generalize.

TABLE II: Effect of label smoothing on Java q90 dataset (ǫ = 0.1, Nt = 10908)
without label smoothing with label smoothing percentage difference p-value

Model Name METEOR USE BLEU METEOR USE BLEU METEOR USE BLEU METEOR USE
Attendgru 32.82 50.21 18.87 33.39 51.41 19.45 -1.74% 2.39% -3.07% <0.01 <0.01
Transformer 33.64 51.81 18.99 33.75 52.25 19.11 0.33% 0.85% 0.63% ¡0.49 <0.01
AstAttendgru 32.81 50.20 18.61 33.20 50.88 19.12 1.19% 1.35% 2.74% ¡0.02 <0.01
Code2Seq 28.86 43.99 14.95 30.25 46.37 16.19 4.82% 5.41% 8.29% <0.01 <0.01
CodeGNNGRU 32.30 49.37 18.00 33.17 50.49 18.76 2.69% 2.27% 4.22% <0.01 <0.01
AstAttendgru-fc 33.09 50.05 18.76 33.66 50.91 19.38 1.72% 1.72% 3.30% <0.01 <0.01

TABLE III: Effect of label smoothing on C/C++ q75 dataset (ǫ = 0.1, Nt = 10908)
without label smoothing with label smoothing percentage difference p-value

Model Name METEOR USE BLEU METEOR USE BLEU METEOR USE BLEU METEOR USE
Attendgru 52.38 62.25 46.50 53.26 62.75 47.41 -1.68% 0.80% 1.96% <0.01 <0.01
Transformer 55.90 65.23 49.30 56.47 65.71 50.15 1.02% 0.74% 1.72% <0.01 <0.01
AstAttendgru 48.09 57.62 42.14 52.12 61.27 46.43 8.38% 6.33% 10.18% <0.01 <0.01
Code2seq 16.54 25.67 10.20 17.93 28.31 11.20 8.40% 10.28% 9.80% <0.01 <0.01
CodeGNNGRU 47.79 57.17 42.13 51.25 60.35 45.63 7.24% 5.56% 8.31% <0.01 <0.01
AstAttendgru-fc 46.68 56.61 40.79 50.66 60.32 44.62 8.53% 6.55% 9.39% <0.01 <0.01

TABLE IV: Effect of label smoothing on full Java dataset (ǫ = 0.1, Nt = 10908)
without label smoothing with label smoothing percentage difference p-value

Model Name METEOR USE BLEU METEOR USE BLEU METEOR USE BLEU METEOR USE
Attendgru 35.40 52.84 18.44 35.21 53.08 18.35 -0.54% 0.45% -0.49% <0.01 <0.01
Transformer 36.44 53.95 19.12 36.87 54.58 19.36 1.18% 1.17% 1.26% <0.01 <0.01
AstAttendgru 35.72 53.03 18.53 35.90 53.44 18.77 0.50% 0.77% 1.30% <0.01 <0.01
Code2seq 35.38 52.96 18.32 35.87 53.45 18.62 1.38% 0.93% 1.64% <0.01 <0.01
CodeGNNGRU 36.01 53.57 18.91 36.09 53.82 18.89 0.22% 0.47% -0.11% ¡0.20 <0.01
AstAttendgru-fc 35.93 53.39 19.14 36.37 53.86 19.61 1.22% 0.88% 2.46% <0.01 <0.01

TABLE V: Scores of attendgru for different ǫ. Output vocabulary
size for the top table is 10k and for the bottom table is 44k.

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 32.82 50.21 18.87 - -
0.001 32.79 50.22 18.85 -0.26,<0.80 <0.13,<0.90
0.003 33.01 50.87 18.82 1.34,<0.18 4.60,<0.01
0.007 32.99 50.36 18.99 1.32,<0.19 1.13,<0.26
0.02 32.97 50.36 19.01 1.07,<0.28 0.99,<0.32
0.05 33.30 51.00 19.30 3.18,<0.01 5.19,<0.01
0.10 33.39 51.41 19.45 3.76,<0.01 7.84,<0.01
0.25 33.29 51.05 19.32 2.93,<0.01 5.12,<0.01
0.40 33.34 50.98 19.32 3.25,<0.01 4.63,<0.01

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 32.94 50.30 18.94 - -
0.001 32.94 50.23 18.89 -0.07,<0.94 -0.79,<0.43
0.003 32.79 50.10 18.95 -1.24,<0.21 -1.66,<0.10
0.007 32.71 50.11 18.86 -1.70,<0.09 -1.42,<0.16
0.02 32.85 50.60 18.90 -0.63,<0.53 2.06,<0.04
0.05 32.95 50.86 19.02 0.07,<0.95 3.66,<0.01
0.10 33.20 50.97 19.05 1.83,<0.07 4.37,<0.01
0.25 33.18 50.88 19.05 1.45,<0.15 3.55,<0.01
0.40 33.16 50.89 19.22 1.32,<0.19 3.64,<0.01

V. RQ2 - HYPERPARAMETER TUNING

Methodology: To answer RQ2, we choose four out of the six

models used in RQ1 to study in greater detail: attendgru,

transformer, codegnngru and ast-attendgru-fc.

We use these models because they each represent a different

family of source code summarizaton models: attendgru

from simple seq2seq family, transformer from self-

attention architecture family, codegnngru from code + AST

represented as GNN in a seq2seq architecture family and

ast-attendgru-fc from code + flat AST + contextual

information in a seq2seq model family. For each model we

vary the value of ǫ; we start with 0.001 and increase the value

by a factor of en for n=1 to 6. Along the way, we also include

0.25 (0.001×e5.5) for a more granular look as ǫ increases

exponentially for large values of n. We run each model for

these 8 different configurations on the Java-q90 dataset. We

only choose one dataset for RQ2 because we want to eliminate

any experimental variables that may be introduced by the

dataset, but also due to resource constraints. We choose the

Java-q90 dataset because it is part of a peer-vetted and widely

used source code summarization dataset. To understand how

output vocabulary size affects model performance with label

smoothing, we then change the size of output vocabulary more

than four-fold (from 10k to 44k) and run each model again.

We train each model configuration for eight epochs and choose

the model with highest validation accuracy. Similar to RQ1,

we evaluate the performance of these models using automated

evaluation techniques discussed in Section III-D. Additionally

we perform a paired t-test between each configuration with

label smoothing and the corresponding prediction without

label smoothing to identify the statistical significance for

METEOR and USE. Notice again that we do not perform a

t-test on BLEU score because BLEU is a corpus level metric.

Key Findings: Our key finding in answering RQ2 is that

higher values of ǫ generally lead to higher model performance,

although this increase in performance is less pronounced

TABLE VI: Scores of transformer for different ǫ. Output vocabulary
size for the top table is 10k and for the bottom table is 44k.

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 33.64 51.81 18.99 - -
0.001 33.53 51.46 19.18 -0.83, <0.41 -2.71, <0.01
0.003 33.27 51.36 19.06 -2.53, <0.01 -3.18, <0.01
0.007 33.77 51.49 19.13 0.81, <0.42 -2.05, <0.04
0.02 33.84 52.57 19.08 1.22, <0.22 4.76, <0.01
0.05 33.65 51.64 19.11 0.07, <0.95 -1.14, <0.26
0.10 33.75 52.25 19.11 0.69, <0.49 2.72, <0.01
0.25 33.72 52.27 18.97 0.50, <0.62 2.96, <0.01
0.40 33.84 52.10 19.19 1.21, <0.23 1.73, <0.08

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 33.28 51.55 18.73 - -
0.001 33.38 50.95 18.85 0.62, <0.54 -3.67, <0.01
0.003 33.09 51.23 18.77 -1.21, <0.23 -2.11, <0.04
0.007 33.30 51.55 18.75 -0.83, <0.41 0.01, <0.99
0.02 33.30 51.82 18.85 0.13, <0.90 1.71, <0.09
0.05 33.32 51.74 18.77 0.27, <0.79 1.21, <0.22
0.10 33.77 52.17 18.94 3.04, <0.01 3.89, <0.01
0.25 33.84 52.51 19.22 3.40, <0.01 5.95, <0.01
0.40 34.23 52.27 19.56 5.57, <0.01 4.33, <0.01

for ǫ > 0.1. Furthermore, this trend is unaffected as we

increase the vocabulary size from 10k to 44k. Therefore, the

value of the smoothed probability per token (ǫ
Nt−1

) does not

affect model performance. While one must decide the best

hyperparameters for oneself based on prevailing experimental

conditions, our recommendation is to set ǫ=0.1 for initial

evaluation. Caution is advised for high values of ǫ as it

forces models to predict more common words and eliminate

rare/unique words. We discuss this issue in greater detail in

RQ3.

Table V shows the effect of increasing the label smoothing

factor, ǫ for attendgru model. For this architecture, we notice

an increase in model performance on all metrics as we increase

the value of ǫ from 0.001 to 0.1. METEOR, USE and BLEU

scores all achieve the highest score for this configuration of

ǫ=0.1. As we increase the output vocabulary size from 10k to

44k, we notice that both METEOR and USE scores decrease

slightly for small values of ǫ but then they increase, reaching

highest METEOR and USE score for ǫ=0.1.

Table VI shows the effect of increasing ǫ for transformers.

We initially see a decrease in metric scores for small values

of ǫ. As we increase ǫ, the metric scores start to increase.

Interestingly, for the 44k output vocabulary, we see a substan-

tially significant increase in metric scores for all values of ǫ >

0.05. We attribute this to the fact that higher output vocabulary

size increases the amount of rare words in the prediction.

Label smoothing helps models generalize by focusing on more

commonly occuring words.

Table VII shows the effect of increasing ǫ for codegnngru.

For the 10k output vocabulary set, we notice a pattern similar

to attendgru and transformers. While USE shows a statistically

significant improvement for all cases of ǫ, METEOR only

starts demonstrating a statistically significant improvement for

all values of ǫ > 0.05. For the 44k output vocabulary set, we

TABLE VII: Scores of codegnngru for different ǫ. Output vocabu-
lary size for the top table is 10k and for the bottom table is 44k.

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 32.30 49.37 18.00 - -
0.001 32.53 49.94 18.22 1.55, <0.12 3.64, <0.01
0.003 32.46 49.76 18.24 0.98, <0.33 2.30, <0.02
0.007 32.18 49.69 17.96 -0.79, <0.43 2.06, <0.04
0.02 32.53 49.88 18.42 1.40, <0.16 3.02, <0.01
0.05 32.65 49.92 18.59 2.16, <0.03 3.22, <0.01
0.10 33.17 50.49 18.76 5.46, <0.01 6.82, <0.01
0.25 33.36 51.08 18.97 6.65, <0.01 10.19, <0.01
0.40 33.37 51.35 19.00 6.51, <0.01 11.79, <0.01

metric scores t-stat, p-value
ǫ METEOR USE BLEU METEOR USE
0 32.26 49.33 18.20 - -
0.001 32.56 49.85 18.22 1.87, <0.06 3.31, <0.01
0.003 32.25 49.62 18.19 -0.07, <0.94 1.77, <0.08
0.007 32.75 49.68 18.57 3.02, <0.01 2.10, <0.04
0.02 32.36 49.76 18.34 0.62, <0.53 2.68, <0.01
0.05 32.86 50.31 18.53 3.65, <0.01 5.98, <0.01
0.10 32.71 49.97 18.48 2.64, <0.01 3.77, <0.01
0.25 32.68 49.92 18.53 2.51, <0.01 3.53, <0.01
0.40 32.88 50.50 18.72 3.72, <0.01 7.11, <0.01

see an improvement across the board, that is explained by

the model eliminating noise, introduced by the large output

vocabulary, set using label smoothing.

Table VIII shows the effect of increasing ǫ for astattendgru-

fc. For the 10k output vocabulary set, we see a statistically

significant decrease in the model performance for ǫ=0.001. For

ǫ=0.003, we see a slight increase in metric scores, although it is

not statistically significant. For all but one other configuration,

we see a statistically significant increase in metric scores

for both METEOR and USE. We see a similar pattern for

the 44k output vocabulary set as the metric scores change

insignificantly for ǫ=0.001 and ǫ=0.003 but then achieve high

improvement for all other configurations. Note that we do not

recommend any particular model for the problem of source

code summarization. Rather we demonstrate how all existing

models benefit in performance from adding label smoothing.

VI. RQ3 - VOCABULARY DIVERSITY

Methodology: To answer RQ3, we look at the output

vocabulary distribution for all the models in RQ1 and RQ2.

We find the total number of words predicted per model as well

as the total number of unique words per prediction set. This

helps us identify the average word frequency in the prediction

set. We further try to identify how label smoothing affects

model performance on the action word prediction problem.

We re-implement each model discussed in Section III-C to

only predict the action word. Related work predict the top-

10 or top-40 most commonly occurring action words and

bucket the rest under “other.” We try to predict all the action

words instead to see how the diversity of output vocabulary

changes with label smoothing. We train each model for the

Java-q90 and C/C++-q75 dataset. We train each baseline three

times: once without label smoothing, once with ǫ=0.1 and once

with ǫ=0.4. We train each configuration for 10 epochs and

REFERENCES

[1] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the use of
automated text summarization techniques for summarizing source code,”
in 2010 17th Working Conference on Reverse Engineering. IEEE, 2010,
pp. 35–44.

[2] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay-Shanker,
“Towards automatically generating summary comments for java meth-
ods,” in Proceedings of the IEEE/ACM international conference on

Automated software engineering. ACM, 2010, pp. 43–52.

[3] D. Kramer, “Api documentation from source code comments: a case
study of javadoc,” in Proceedings of the 17th annual international

conference on Computer documentation. ACM, 1999, pp. 147–153.

[4] A. Forward and T. C. Lethbridge, “The relevance of software documen-
tation, tools and technologies: a survey,” in Proceedings of the 2002

ACM symposium on Document engineering. ACM, 2002, pp. 26–33.

[5] X. Xia, L. Bao, D. Lo, Z. Xing, A. E. Hassan, and S. Li, “Measuring
program comprehension: A large-scale field study with professionals,”
IEEE Transactions on Software Engineering, vol. 44, no. 10, pp. 951–
976, 2017.

[6] A. LeClair, S. Jiang, and C. McMillan, “A neural model for generating
natural language summaries of program subroutines,” in Proceedings

of the 41st International Conference on Software Engineering. IEEE
Press, 2019, pp. 795–806.

[7] F. Zhao, J. Zhao, and Y. Bai, “A survey of automatic generation of code
comments,” in Proceedings of the 2020 4th International Conference on

Management Engineering, Software Engineering and Service Sciences,
2020, pp. 21–25.

[8] D. Zügner, T. Kirschstein, M. Catasta, J. Leskovec, and S. Günnemann,
“Language-agnostic representation learning of source code from
structure and context,” in International Conference on Learning

Representations, 2021. [Online]. Available: https://openreview.net/
forum?id=Xh5eMZVONGF

[9] X. Hu, G. Li, X. Xia, D. Lo, and Z. Jin, “Deep code comment
generation,” in Proceedings of the 26th Conference on Program Com-

prehension. ACM, 2018, pp. 200–210.

[10] M. Allamanis, E. T. Barr, P. Devanbu, and C. Sutton, “A survey
of machine learning for big code and naturalness,” ACM Computing

Surveys (CSUR), vol. 51, no. 4, pp. 1–37, 2018.

[11] A. LeClair and C. McMillan, “Recommendations for datasets for source
code summarization,” in Proceedings of the 2019 Conference of the

North American Chapter of the Association for Computational Linguis-

tics: Human Language Technologies, Volume 1 (Long and Short Papers),
2019, pp. 3931–3937.

[12] N. B. Toomarian and J. Barhen, “Learning a trajectory using adjoint
functions and teacher forcing,” Neural Networks, vol. 5, pp. 473–484,
1992.

[13] I. Sutskever, O. Vinyals, and Q. V. Le, “Sequence to sequence learning
with neural networks,” Advances in neural information processing

systems, vol. 27, pp. 3104–3112, 2014.

[14] S. Haque, A. Bansal, L. Wu, and C. McMillan, “Action word predic-
tion for neural source code summarization,” 28th IEEE International

Conference on Software Analysis, Evolution and Reengineering, 2021.

[15] S. Jiang and M. de Rijke, “Why are sequence-to-sequence models so
dull? understanding the low-diversity problem of chatbots,” in Pro-

ceedings of the 2018 EMNLP Workshop SCAI: The 2nd International

Workshop on Search-Oriented Conversational AI, 2018, pp. 81–86.

[16] R. Müller, S. Kornblith, and G. Hinton, When Does Label Smoothing

Help? Red Hook, NY, USA: Curran Associates Inc., 2019.

[17] M. Lukasik, S. Bhojanapalli, A. K. Menon, and S. Kumar, “Does
label smoothing mitigate label noise?” arXiv preprint arXiv:2003.02819,
2020.

[18] L. Yuan, F. E. Tay, G. Li, T. Wang, and J. Feng, “Revisiting knowledge
distillation via label smoothing regularization,” in 2020 IEEE/CVF

Conference on Computer Vision and Pattern Recognition (CVPR), 2020,
pp. 3902–3910.

[19] G. Sridhara, L. Pollock, and K. Vijay-Shanker, “Automatically detecting
and describing high level actions within methods,” in Proceedings of the

33rd International Conference on Software Engineering. ACM, 2011,
pp. 101–110.

[20] P. W. McBurney and C. McMillan, “Automatic documentation genera-
tion via source code summarization of method context,” in Proceedings

of the 22nd International Conference on Program Comprehension.
ACM, 2014, pp. 279–290.

[21] A. De Lucia, M. Di Penta, R. Oliveto, A. Panichella, and S. Panichella,
“Using ir methods for labeling source code artifacts: Is it worthwhile?”
in 2012 20th IEEE International Conference on Program Comprehen-

sion (ICPC). IEEE, 2012, pp. 193–202.

[22] P. Rodeghero, C. McMillan, P. W. McBurney, N. Bosch, and S. D’Mello,
“Improving automated source code summarization via an eye-tracking
study of programmers,” in Proceedings of the 36th international con-

ference on Software engineering. ACM, 2014, pp. 390–401.

[23] L. Moreno, G. Bavota, M. Di Penta, R. Oliveto, A. Marcus, and
G. Canfora, “Automatic generation of release notes,” in Proceedings

of the 22nd ACM SIGSOFT International Symposium on Foundations of

Software Engineering. ACM, 2014, pp. 484–495.

[24] B. Zhang, E. Hill, and J. Clause, “Towards automatically generating
descriptive names for unit tests,” in Proceedings of the 31st IEEE/ACM

International Conference on Automated Software Engineering. ACM,
2016, pp. 625–636.

[25] S. Iyer, I. Konstas, A. Cheung, and L. Zettlemoyer, “Summarizing source
code using a neural attention model,” in Proceedings of the 54th Annual

Meeting of the Association for Computational Linguistics (Volume 1:

Long Papers), vol. 1, 2016, pp. 2073–2083.

[26] P. Loyola, E. Marrese-Taylor, and Y. Matsuo, “A neural architecture for
generating natural language descriptions from source code changes,”
in Proceedings of the 55th Annual Meeting of the Association for

Computational Linguistics (Volume 2: Short Papers), 2017, pp. 287–
292.

[27] S. Jiang, A. Armaly, and C. McMillan, “Automatically generating
commit messages from diffs using neural machine translation,” in Pro-

ceedings of the 32nd IEEE/ACM International Conference on Automated

Software Engineering. IEEE Press, 2017, pp. 135–146.

[28] X. Hu, G. Li, X. Xia, D. Lo, S. Lu, and Z. Jin, “Summarizing source
code with transferred api knowledge,” in Proceedings of the 27th

International Joint Conference on Artificial Intelligence. AAAI Press,
2018, pp. 2269–2275.

[29] M. Allamanis, M. Brockschmidt, and M. Khademi, “Learning to rep-
resent programs with graphs,” International Conference on Learning

Representations, 2018.

[30] U. Alon, S. Brody, O. Levy, and E. Yahav, “code2seq: Generating
sequences from structured representations of code,” International Con-

ference on Learning Representations, 2019.

[31] S. Gao, C. Chen, Z. Xing, Y. Ma, W. Song, and S.-W. Lin, “A neural
model for method name generation from functional description,” in 2019

IEEE 26th International Conference on Software Analysis, Evolution and

Reengineering (SANER). IEEE, 2019, pp. 414–421.

[32] P. Fernandes, M. Allamanis, and M. Brockschmidt, “Structured neural
summarization,” arXiv preprint arXiv:1811.01824, 2018.

[33] S. Haque, A. LeClair, L. Wu, and C. McMillan, “Improved automatic
summarization of subroutines via attention to file context,” International

Conference on Mining Software Repositories, 2020.

[34] R. Haldar, L. Wu, J. Xiong, and J. Hockenmaier, “A multi-perspective
architecture for semantic code search,” arXiv preprint arXiv:2005.06980,
2020.

[35] A. LeClair, S. Haque, L. Wu, and C. McMillan, “Improved code summa-
rization via a graph neural network,” in 28th ACM/IEEE International

Conference on Program Comprehension (ICPC’20), 2020.

[36] W. U. Ahmad, S. Chakraborty, B. Ray, and K.-W. Chang, “A
transformer-based approach for source code summarization,” arXiv

preprint arXiv:2005.00653, 2020.

[37] S. Liu, Y. Chen, X. Xie, J. K. Siow, and Y. Liu, “Retrieval-augmented
generation for code summarization via hybrid {gnn},” in International

Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=zv-typ1gPxA

[38] A. LeClair, A. Bansal, and C. McMillan, “Ensemble models for
neural source code summarization of subroutines,” arXiv preprint

arXiv:2107.11423, 2021.

[39] S. Gao, C. Gao, Y. He, J. Zeng, L. Y. Nie, and X. Xia, “Code structure
guided transformer for source code summarization,” arXiv preprint

arXiv:2104.09340, 2021.

[40] Y. Wang, E. Shi, L. Du, X. Yang, Y. Hu, S. Han, H. Zhang, and D. Zhang,
“Cocosum: Contextual code summarization with multi-relational graph
neural network,” arXiv preprint arXiv:2107.01933, 2021.

[41] A. Bansal, S. Haque, and C. McMillan, “Project-level encoding for
neural source code summarization of subroutines,” arXiv preprint

arXiv:2103.11599, 2021.

[42] Z. Gong, C. Gao, Y. Wang, W. Gu, Y. Peng, and Z. Xu, “Source
code summarization with structural relative position guided transformer,”
arXiv preprint arXiv:2202.06521, 2022.

[43] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances

in neural information processing systems, 2017, pp. 5998–6008.
[44] I. Sutskever, J. Martens, and G. E. Hinton, “Generating text with

recurrent neural networks,” in Proceedings of the 28th International

Conference on Machine Learning (ICML-11), 2011, pp. 1017–1024.
[45] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural

computation, vol. 9, no. 8, pp. 1735–1780, 1997.
[46] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares,

H. Schwenk, and Y. Bengio, “Learning phrase representations using rnn
encoder-decoder for statistical machine translation,” 2014.

[47] D. Bahdanau, K. Cho, and Y. Bengio, “Neural machine translation by
jointly learning to align and translate,” arXiv preprint arXiv:1409.0473,
2014.

[48] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking
the inception architecture for computer vision,” in 2016 IEEE Confer-

ence on Computer Vision and Pattern Recognition (CVPR), 2016, pp.
2818–2826.

[49] J. Lienen and E. Hüllermeier, “From label smoothing to label
relaxation,” Proceedings of the AAAI Conference on Artificial

Intelligence, vol. 35, no. 10, pp. 8583–8591, May 2021. [Online].
Available: https://ojs.aaai.org/index.php/AAAI/article/view/17041

[50] C.-B. Zhang, P.-T. Jiang, Q. Hou, Y. Wei, Q. Han, Z. Li, and M.-M.
Cheng, “Delving deep into label smoothing,” IEEE Transactions on

Image Processing, vol. 30, pp. 5984–5996, 2021. [Online]. Available:
https://doi.org/10.1109%2Ftip.2021.3089942

[51] L. Xie, J. Wang, Z. Wei, M. Wang, and Q. Tian, “Disturblabel:
Regularizing cnn on the loss layer,” 2016. [Online]. Available:
https://arxiv.org/abs/1605.00055

[52] S. Stapleton, Y. Gambhir, A. LeClair, Z. Eberhart, W. Weimer, K. Leach,
and Y. Huang, “A human study of comprehension and code summariza-
tion,” in Proceedings of the 28th International Conference on Program

Comprehension, 2020, pp. 2–13.
[53] R. Xie, W. Ye, J. Sun, and S. Zhang, “Exploiting method names to

improve code summarization: A deliberation multi-task learning ap-
proach,” in 2021 IEEE/ACM 29th International Conference on Program

Comprehension (ICPC), 2021, pp. 138–148.
[54] M. Allamanis, “The adverse effects of code duplication in machine

learning models of code,” in Proceedings of the 2019 ACM SIGPLAN

International Symposium on New Ideas, New Paradigms, and Reflections

on Programming and Software, 2019, pp. 143–153.
[55] Z. Eberhart, A. LeClair, and C. McMillan, “Automatically extracting

subroutine summary descriptions from unstructured comments,” arXiv

preprint arXiv:1912.10198, 2019.
[56] D. M. Powers, “Evaluation: from precision, recall and f-measure to roc,

informedness, markedness and correlation,” 2011.
[57] K. Papineni, S. Roukos, T. Ward, and W.-J. Zhu, “Bleu: a method

for automatic evaluation of machine translation,” in Proceedings of

the 40th annual meeting on association for computational linguistics.
Association for Computational Linguistics, 2002, pp. 311–318.

[58] D. Roy, S. Fakhoury, and V. Arnaoudova, “Reassessing automatic
evaluation metrics for code summarization tasks,” in Proceedings of the

ACM Joint European Software Engineering Conference and Symposium

on the Foundations of Software Engineering (ESEC/FSE), 2021.
[59] S. Haque, Z. Eberhart, A. Bansal, and C. McMillan, “Semantic

similarity metrics for evaluating source code summarization,” 2022.
[Online]. Available: https://arxiv.org/abs/2204.01632

[60] S. Banerjee and A. Lavie, “Meteor: An automatic metric for mt evalua-
tion with improved correlation with human judgments,” in Proceedings

of the acl workshop on intrinsic and extrinsic evaluation measures for

machine translation and/or summarization, 2005, pp. 65–72.
[61] C.-Y. Lin, “Rouge: A package for automatic evaluation of summaries,”

Text Summarization Branches Out, 2004.
[62] D. Cer, Y. Yang, S. yi Kong, N. Hua, N. Limtiaco, R. S. John,

N. Constant, M. Guajardo-Cespedes, S. Yuan, C. Tar, Y.-H. Sung,
B. Strope, and R. Kurzweil, “Universal sentence encoder,” 2018.

