
Towards Modeling Human A!ention from Eye Movements
for Neural Source Code Summarization

AAKASH BANSAL, University of Notre Dame, USA

BONITA SHARIF, University of Nebraska - Lincoln, USA

COLLIN MCMILLAN, University of Notre Dame, USA

Neural source code summarization is the task of generating natural language descriptions of source code

behavior using neural networks. A fundamental component of most neural models is an attention mechanism.

The attention mechanism learns to connect features in source code to specific words to use when generating

natural language descriptions. Humans also pay attention to some features in code more than others. This

human attention reflects experience and high-level cognition well beyond the capability of any current neural

model. In this paper, we use data from published eye-tracking experiments to create a model of this human

attention. The model predicts which words in source code are the most important for code summarization.

Next, we augment a baseline neural code summarization approach using our model of human attention. We

observe an improvement in prediction performance of the augmented approach in line with other bio-inspired

neural models.

CCS Concepts: • Software and its engineering→ Documentation;Maintaining software; • Computing

methodologies→ Natural language generation; Neural networks.

Additional Key Words and Phrases: automatic documentation generation, source code summarization, bio-

inspired models, eye tracking

ACM Reference Format:

Aakash Bansal, Bonita Sharif, and Collin McMillan. 2023. Towards Modeling Human Attention from Eye

Movements for Neural Source Code Summarization. 1, 1 (May 2023), 19 pages. https://doi.org/10.1145/3591136

1 INTRODUCTION

Source code summarization is the task of writing natural language descriptions of source code.
These descriptions are called “summaries” and are a key component of software documentation
for programmers. A programmer may read a short summary like “takes a screenshot” to quickly
understand what a section of code does, without resorting to reading the source code. Despite the
usefulness of these summaries, programmers often neglect to write or update them. The result is that
automatic source code summarization has long been an appetizing target in software engineering
research. The scientific community has long sought to enable machines to understand code in the
way people do, so that those machines can describe code like a person would.

A confluence of recent advances in both software engineering and machine learning research is
bearing fruit, such that automated code summarization seems almost within reach. In particular,
neural source code summarization has held the vanguard of the state of the art since around 2017.
Neural code summarization refers to approaches based on neural networks, namely the encoder-
decoder architecture [61]. The encoder-decoder architecture is borrowed from problem domains

Authors’ addresses: Aakash Bansal, abansal1@nd.edu, University of Notre Dame, Department of Computer Science and

Engineering, Notre Dame, Indiana, USA, 46656; Bonita Sharif, bsharif@unl.edu, University of Nebraska - Lincoln, School

of Computing, Lincoln, Nebraska, USA, 68588; Collin McMillan, cmc@nd.edu, University of Notre Dame, Department of

Computer Science and Engineering, Notre Dame, Indiana, USA, 46656.

This is a pre-print for paper to appear at PACM HCI 2023 Vol 7, in proceedings of ETRA ’23: ACM Symposium on Eye

Tracking Research Applications, May 30 – June 2, 2023, Tübingen, Germany

© 2023 All copyrights held by the authors.

XXXX-XXXX/2023/5-ART $15.00

https://doi.org/10.1145/3591136

2 Aakash Bansal, Bonita Sharif, & Collin McMillan

such as image captioning, in which an encoder creates a vectorized representation of an image,
and a decoder creates a representation of a natural language caption of that image. After training
with sufficiently large datasets, an encoder-decoder architecture learns to identify features in the
encoder that are associated with words in the decoder. Models for code summarization typically
treat the code as the encoder input and the summary as the decoder. The idea is that the encoder
learns features in the source code associated with words in the summaries.

The linchpin of almost all neural code summarization models is the “attention mechanism”. An
attention mechanism is the part of the model that emphasizes features in the encoder that are
associated with features in the decoder. Metaphors in other problem domains are abundant: In an
image captioning system, the attention mechanism will learn to connect the word “dog” to shapes
in the image similar to a dog. In a machine translation system, the attention mechanism will learn
to connect the English word “dog” to an e.g. German word “hund.” In source code summarization,
the attention mechanism connects words like “add” or “remove” to features in the code related to
adding or removing data. The point is that the machine learns to pay attention to some features
more than others in the encoder’s representation.

Humans also pay attention to some features more than others. When human programmers read
code, they tend to skim the code for select information they need to understand it, such as the return
type and parameter list of a subroutine, or the variables that regulate access to a conditional block.
One way to measure the attention that humans pay to source code is by tracking the movement
of a person’s eyes when reading that code. A plethora of eye tracking studies has demonstrated
consistent processes that programmers follow when reading code [1, 2, 13, 47, 53], and it has even
been demonstrated that programmers who are blind seek the same information from code, just
using a different mechanical process [5]. In general, people are very efficient at extracting key
features they need to understand code.

Models of human attention are a growing area in AI research due to the high-level intuition and
experience that human attention reflects [42]. These models are occasionally called “biologically
inspired” in that they attempt to mimic the processes observed in biological systems, namely the
human eyes or brain. For example, [20] use fMRI scans to build a model of part of the human visual
system to improve image classification. [27] model human attention to augment feature detection
in images. These approaches attempt to model visual saliency to extract features most important to
humans, when accomplishing the same tasks. The gains from these approaches tend to be modest
(1-2% improvement is a typical expectation [20]), but are of high scientific value due to the new
knowledge of human cognition and future potential of more human-like machines. This paper
makes the following contributions.

• We create amodel of human attention from eyemovements during source code summarization.
The model predicts where a person will look when reading source code.

• We use the model to generate predicted human attention for a different dataset of 190K Java
methods.

• We use the predictions to augment the attention mechanism of a baseline neural code
summarization approach.

• We evaluate the augmented model and show an improvement in line with other bio-inspired
neural models.

In this paper, we attempt to model visual saliency, as observed by programmers when trying to
summarize source code. We do this in way that is helpful for improving automatic source code
summarization. We create a model of human attention during source code summarization, and
we use that model to augment the attention mechanism of a baseline neural code summarization
approach. We trained our model of human attention using eye tracking data published at ICSE [49].

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 3

To reduce experimental variables and maximize reproducibility, we augmented a “vanilla” neural
encoder-decoder code summarization approach that is used as a baseline in many papers. We
evaluate our model of human attention and the augmented code summarization technique. We
observe a small but significant improvement by using human attention. We view this improvement
as an important milestone in the design of neural models of code that behave more like people.

2 BACKGROUND & RELATEDWORK

This section discusses key areas of background and relatedwork, namely source code summarization,
bio-inspired learning, and studies in software engineering (SE) literature using eye tracking.

2.1 Source Code Summarization

“Source code summarization” is a term coined by Haiduc et al. [23] around 2010 to refer to the
task of writing short, natural language descriptions of source code [35, 61]. Code summarization is
broadly related to the area of automatic documentation generation, in that the final destination
of the summary descriptions is usually in documentation for programmers e.g., JavaDocs. The
dream of writing code summaries automatically has floated among SE researchers for decades [21],
driving strong advancements especially within the last ten years.
Around 2017, advancements in neural network research presaged a second generation of code

summarization approaches. This second generation uses neural models to learn and extract relevant
features from source code, and then connect those features to words to use in an output summary.
Almost all involve an encoder-decoder model, derived from related work in machine translation and
image captioning [39]. Essentially, the decoder is a language model which learns to predict words
used in the output summary, while the encoder learns relevant features in source code. Typically
an attention mechanism connects features from the encoder to words from the decoder. A majority
of current research focuses on creating better encoder representations, such as using graph-based
representations of code structure [30, 33, 62] or encoding contextual information provided by other
code artifacts [9, 25].

2.2 Biologically-Inspired Learning

This paper differs from current code summarization literature in that we take a biologically-inspired
approach. An AI model is “biologically inspired” if its design, training, or configuration is based on
observations of the living world [11, 19]. Bio-inspired models form the cutting edge in several areas
of AI research, for example by modifying the training process for object recognition to be more
consistent with data from fMRI scans of humans performing the same recognition [10, 20, 41, 57].
Promising evidence exists comparing human programmer and machine attention [42], albeit using
a survey methodology instead of eye-tracking data as in this paper.

Research into bio-inspired AI models tends to follow a similar pattern. Given an activity that the
research wishes to automate (for e.g., image classification, text filtering, code summarization), the
pattern is: 1) make observations of human or animal behavior when performing the activity the
researcher desires to automate, 2) build a model of that behavior that predicts “typical” behavior
for that activity, and 3) use the predictions of that model to augment or optimize an existing model
of the desired activity. For example, [20] show humans images of objects in an fMRI device, and
collect maps of brain activity when viewing different objects. Then, they create a function that
predicts what brain areas are highlighted for the different objects. The feature weights used in
classification are then balanced using predictions from this function.

4 Aakash Bansal, Bonita Sharif, & Collin McMillan

2.3 Visual Saliency and Human A!ention

This paper attempts to extract salient features from source code, similar to several visual saliency
approaches in computer vision. There are several potential use cases for these salient features, such
as locating objects in images [34, 36], biometric authentication [28], and image classification [20].
There have been several studies that try to model the human behavior of picking out these salient
features using eye gaze data. For example, [44] present a classic top down approach aided by
captions to predict salient objects in images. The study by [59] found that goal relevance, the most
important information to complete the task, correlates with the eye scan-path. In this study we use
gaze-time data to extract salient words in the source code that we then use to augment and improve
a classic code summarization model. A point articulated by [29] and expanded on by others [12, 16]
is that many of the failures of current neural models occur because those models do not accurately
mimic human attention and learning. The hope of current research is to set the groundwork for
further improvements.

2.4 Eye Tracking in So"ware Engineering (SE) Research

Eye tracking has a long history in software engineering research, starting in 1990 when [15]
published the first study of eye movements by programmers. A survey by [53] chronicles up
to 2015 and is expanded upon by [37]. An exemplar body of work is led by Sharif et al., with
advancements in both knowledge of how programmers read code [1, 2, 13, 17] and practical uses
for this knowledge [52, 54–56]. Eye tracking data is widely recognized as representing the attention
given to different parts of source code by programmers.
This paper makes use of an existing dataset of eye tracking behavior provided by [46, 49]

published in 2014 and described in Section 2.5. This paper uses that dataset to build a model of
human attention and then uses synthesized attention to improve a neural code summarization
model. To the best of our knowledge, this is the first work we are aware of that uses bio-inspired
neural models for code summarization based on eye gaze.

2.5 Overview of the Dataset

This section provides an overview of the dataset that was collected during the eye-tracking study
by Rodeghero et al., the data and other artifacts for which can be accessed online at [48]. They
disclosed that the eye tracker they used was a commercial Tobii TX300. The device had a resolution
of 1920x1080 and collected data at a sampling rate of 120Hz. The participants for their study were
10 professional programmers with an average programming experience of 13.3 years. Programmers
were tasked with reading source code of a Java method, and subsequently writing a short summary
for each method. The participants were allotted 1 hour for the study. However, the time allotment
per task was not limited. In total, we have access to 130 data points from 9 programmers, where
each data point is a list of eye-tracking fixations over a Java method by one of the programmers.
Fixations are defined as locations viewed by the participant for more than 100 milliseconds. The
words (areas of interest) at each fixation point as seen by the participants were also recorded. The
authors then used these fixations to compute total eye gaze time, i.e. the time each participant
spent looking at a particular word token in the Java method.

3 MODELING HUMAN ATTENTION

We model “human attention” based on the total eye gaze time as described in Section 2.5. Our
intent is to be consistent with decades of studies of eye tracking in SE literature (see Section 2.4),
in that amount of time a person spends reading a token indicates the importance of that token to
the person’s comprehension of the code. Each token is a word in the sequence that represents the
source code. People skim tokens that are not important, and carefully read tokens that are [6, 58].

6 Aakash Bansal, Bonita Sharif, & Collin McMillan

• Meanwhile, also obtain the embedding vector of the focal point. We use the same embedding
space as the AST nodes, because the focal point is itself a node in the AST. Finally, we
concatenate the GNN output with the focal point embedding vector (results in an (&+1)x'
matrix), and feed them to a fully-connected output layer.

• Next, we use a graph neural network (GNN) to create a representation of the AST tokens.
The initial states of the nodes for the GNN are the vectors from the embedding space. We
then perform two iterations of the GNN, as recommended by [30] for GNN representations
of source code. The output of the GNN is an&x' matrix where& is the number of nodes
in the AST and ' is the embedding vector length (in this paper,& is capped at 400 and ' is
always 100, in line with recommendations of LeClair et al.).

• Finally, the output layer consists of just a single element, the ptgt of the focal point, which is
a value between 0. We use Mean Squared Error (mse) as the loss function for our model. We
derive the actual ptgt from the dataset of observed eye tracking values, which we explain in
the next section.

We call the GNN model above eye-gnn throughout this paper. We also create an alternative we
call eye-rnn. The eye-rnn model is identical to eye-gnn except that we replace the GNN with a
recurrent neural network. We use a Gated Recurrent Unit (GRU) to model the AST nodes as a
sequence. The inputs to the RNN model are AST tokens and the focal point, as it does not use the
edges. Besides that, the model structure and output is the same as GNN. We present this alternative
to provide a point of comparison to the GNN model.
Finally, we create a “pretrain” configuration for each model. In the standard configurations,

the embedding space starts with random values (as is typical in neural models). In the pretrain
configurations, we import the embedding space from a code summarization model published
by [25]. We use the suffix -pretrain to indicate this configuration, e.g., eye-gnn-pretrain and
eye-rnn-pretrain.

3.3 Data Preparation and Training

We trained our prediction model on data from the experiment detailed in Section 2.5. For each
Java method, we used srcML [14] to extract the AST. Then, we created a sequence from the AST
with the procedure mentioned in Section 3. We generated a vocabulary for this sequence using the
vocabulary files published by [30] for AST sequences. We used this vocabulary so that it would
be consistent with the vocabulary used in the baseline source code summarization technique we
augment in Section 5. Next, we calculated the ptgt for each token that each programmer saw in
the experiment. There is one ptgt value per token, per method, per programmer. Each of these
values serves as one training example. Each token is the focal point, each method is the AST. Some
methods are entered to the model more than once because some methods were viewed by multiple
programmers.

We formed data examples from the focal point tokens only. We did not generate data examples
for the structural AST nodes which the programmers could not have seen. Therefore, the prediction
model does not learn to make predictions of the attention paid to structural AST nodes, since
technically the programmers never saw those nodes. However, our model is still capable of learning
to infer attention paid to those nodes, because those nodes are nearby the tokens that the people
did see, as we point out in Section 3.2. Note that during the evaluation of our model of human
attention, we held out some methods for a test set with a procedure detailed in Section 4. Also,
when we evaluate our augmentation of the baseline code summarization approach (Section 6), we
removed the six projects in this eye tracking dataset from the dataset used to train and test the
baseline code summarization technique.

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 7

4 EVALUATING HUMAN ATTENTION

The objective of this experiment is to evaluate our prediction model for human attention. Recall
that the input to our model is the AST of a subroutine and a focal point in that subroutine, and the
output is the predicted ptgt for that focal point. We ask the following Research Questions (RQs) to
evaluate our model:

RQ1 What is the best-performing configuration of our approach in terms of correlation of
predicted attention to attention by human programmers?

The rationale behind RQ1 is that we have four configurations of our model (based on RNNs
versus GNNs, and random start versus pretrained start), and these different configurations may
have different performance. Performance differences may be attributed to the neural architecture
(RNN versus GNN) because these architectures consider slightly different information. The RNN
considers order of the AST nodes as a sequence only, while the GNN also considers AST edges.
GNNs and RNNs have been shown to produce different representations of code [4, 30, 31], and
it is possible that these representations will have a different impact on the prediction of human
attention. Likewise, pretraining the word embedding and RNN layers may have an impact on
predicted human attention.

4.1 Methodology

Our methodology for answering RQ1 is to calculate the Pearson correlation between the predictions
from each configuration of our approach and each programmer in the eye tracking dataset, for each
of the Java methods for which all programmers participated. We calculate correlation only over the
visible tokens, not all nodes in the AST. Recall that the eye tracking dataset had nine programmers
and 67 Java methods. We have eye tracking data for all nine programmers for four of these methods
(we have less than nine programmers for the other methods). We trained each configuration of
our approach using a “hold out one method and programmer” technique: Consider the set of nine
programmers (, the set of four methods) , and remaining java methods* . We held out %" and " #
as a test set, so the model saw eye tracking data for any method for %" , and no eye tracking data
for any programmer for " # . Then, we trained on (− %" and * + () − " #). That is, the model saw
all methods except for " # and all programmers except for %" . The result was 36 (4x9) folds: one for
each) , for each (.
Next, we computed the predicted human attention for the method held out in each fold. We

calculated the Pearson correlation between these predictions and the ptgt for each visible token
in each held out method and programmer. The purpose of using correlation is that we aim to
determine if the predicted attention paid to each focal point rises when the human attention rises.
Note again that we do not aim to predict the actual gaze time in milliseconds – we aim to predict
ptgt, which is a measure of the relative importance of each focal point. Positive correlation implies
that the focal points that the model predicts are important, are actually viewed more by a person.

4.2 Results and Discussion

We found that eye-gnn produces the highest average Pearson correlation of predicted eye attention
to actual eye attention. Figure 2 (a) shows this result over 100 training epochs. While all models
achieve positive correlation that rises with the first few training epochs, eye-gnn consistently
reaches the highest correlation, and also reaches the highest peak correlation of around 0.35. This
result is as expected for this proof-of-concept study in predicting human attention to different
areas of source code, even if 0.35 is generally considered only moderate Pearson correlation.

We also found that these results are generally consistent across different programmers and Java
methods. Figure 2 shows the correlation of each of the nine programmers (labeled 1-10, skipping

10 Aakash Bansal, Bonita Sharif, & Collin McMillan

4.3 Threats to Validity

The key threats to validity of this experiment include: 1) the Java methods in the test group) ,
2) the programmers in the test group (, and 3) the hardware and software inaccuracy inherent
in all eye tracking datasets. We are bound by the available eye tracking data to limit the size of
the test group. These methods and programmers were selected in the original experiment for a
range of subject domain, experience level, and other factors to increase diversity, though a risk
remains that the results of this experiment may change with different methods or programmers.
Likewise, the hardware and software for eye tracking is not considered 100% accurate as the eye
signal can get noisy at times. This is minimized by making sure calibration is done carefully and all
best practices followed as indicated in the original experiment. While the original experiment [48]
involved high-end research grade hardware and software, it is possible that our results could change
due to these inaccuracies.

5 CODE SUMMARIZATION APPLICATION

This section shows how we augment an existing source code summarization approach with predic-
tions of human attention. Our research objective is to determine the degree to which the human
attention predictions impact the results of the baseline summarization model. We ask the following
Research Question:

RQ2 What is the performance of the code summarization approach, in terms of commonly-used
evaluation metrics, when provided attention predictions from our human attention model
configurations?

The rationale for RQ2 is that we created four different configurations of our human attention
prediction model, and each may have a different impact on the baseline. We compare the best
performing configuration eye-gnn to the baseline. Recall that the original eye tracking dataset from
which we build our predictor of human attention was intended as a study of human programmers
during code summarization. We showed in the previous section that our model’s predictions
correlate with actual human attention. That is an interesting finding academically, but it does
not demonstrate how the predictions may be useful in practice. In this section, we show how
predictions of human attention can be used to improve neural models of code summarization.

5.1 Augmenting an Existing Model

Our key augmentation to the baseline starts with predicting the human attention for each subroutine.
Recall that we tested four configurations of our attention prediction model in the previous section
(rnn, rnn-pretrain, gnn, gnn-pretrain). The output from each of these configurations is the predicted
ptgt of a given focal point in a given subroutine. A key difference in the way we tested these
configurations in the previous section and the way we use the models in this section is in the focal
point. In the previous section, the focal points were the code tokens, since only the tokens are
visible to the programmer. We could only compute correlation to these tokens. However, now we
compute predicted attention for all elements in the sequence of AST nodes, including the tokens
and the “invisible” AST structure nodes.

We compute attention to all AST nodes essentially because that is how machine attention works.
The attention calculated in the machine’s attention mechanism is computed over every element in
the input sequence. Recall that the way the machine model represents meaning of a code token is
largely via the neighboring structural nodes in the AST to the token ; i.e., a human knows what the
token means by its position, but the machine learns this via the AST.

Note that there is a risk involved in predicting attention for all elements in the AST node sequence.
The risk is that the attention prediction model will not have seen examples of these elements during

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 11

training. The model will have to infer attention to these nodes without explicit training about them.
This introduces a risk that the model will struggle to produce good predictions. However, in our
view this risk is mitigated by the prediction model design. Recall that the attention model connects
items in the sequence of AST nodes based on their connections in the AST (via a GNN). The result
is that information from nodes representing code tokens (which are visible to programmers) will
propagate to nearby AST nodes (which are not visible). The human attention prediction models
have an opportunity to learn to predict attention to AST structural nodes due to their proximity to
code tokens in the AST.

5.2 Model Design

Fig. 4. Overview of how we augment an existing code summarization baseline. Gray components are the

baseline. White components are our augmentations to the encoder.

Figure 4 shows an overview of how we augment the existing model. We start with a straightfor-
ward and popular baseline that is essentially just a vanilla encoder-decoder model. This baseline is
marked as the gray components in the figure (areas 1 and 2). We provide the encoder the sequence of
AST nodes from a subroutine (linearized from the AST as in Section 3.2). We provide the decoder the
summary of the subroutine. We use the teacher forcing training procedure, like the vast majority of
related work [31]. We use this vanilla encoder-decoder model because it is a baseline in many code
summarization papers and because the model’s relative simplicity reduces experimental variables.
The predictions from the human attention model from the last section serve as an additional

input to the code summarization model (Figure 4, area 3). We use only one configuration at a time,
so these predictions come from e.g. the gnn-pretrain configuration but not others. We normalize
the predicted ptgt values such that, for each subroutine, the mean ptgt value is 1.0. Other ptgt
values will be above or below 1.0, indicating more or less “importance” of that word. Above average
predicted attention for a word is indicated by a value greater than 1.0. The result is a “human
attention vector” that contains a single value representing the predicted human attention for each
node in the AST sequence.

We use this human attention vector to scale the embedding vectors in the sequence of AST nodes
(Figure 4, area 4). The effect mimics how a machine attention mechanism typically functions: the
embedding vectors of more important elements in the input sequence are emphasized, while the
embedding vectors of less important elements are attenuated. The typical next step in a machine
attention mechanism is to combine these vectors into a single vector representation. Finally, we
concatenate the final state of this RNN to the input of the output layer of the baseline model. Our
model augments representation using both a human attention and a machine attention mechanism.

12 Aakash Bansal, Bonita Sharif, & Collin McMillan

5.3 Fair Baseline

We made one modification to the baseline to make it more “fair” for comparison. The modification
is that, in the baseline only, we concatenated the output of the encoder GRU directly to the input of
the output layer. The reason we made this modification is that otherwise the number of connections
to the output layer would be much higher for the augmented model than for the baseline. It is
possible that the augmented model would have improved prediction capacity simply because the
network is larger: there are more “neurons” between the output dense layer and the previous parts
of the model. This increased network size could be an unfair advantage to the augmented model.
Therefore, to create as fair a comparison as possible, we increased the baseline model by an equal
amount by concatenating the encoder’s GRU final state to the output layer’s inputs, as shown in
Figure 4 area 6. The dashed line only exists in the baseline model.

6 EVALUATING CODE SUMMARIZATION

This section evaluates the code summarization approach from the previous section using the best
performing configuration eye-gnn as input.

6.1 Methodology

We use a data-driven experimental methodology to answer RQ2. This methodology is identical to
the procedure used in a vast majority of papers on neural source code summarization: we train
different configurations of the neural model using a training set derived from a large repository of
source code. We use the trained model to predict code summaries for subroutines in the test set
derived from the repository. We compare the predictions to reference code summaries from the
repository. We use three metrics for this comparison: METEOR [7], USE [51], and BLEU [43]. While
BLEU has traditionally been the most popular metric, it has fallen under controversy in SE literature
on code summarization: [50] show evidence strongly favoring METEOR over BLEU for metrics
based on word overlap, while [51] show similar evidence favoring USE as a semantic similarity
metric over BLEU. Therefore, we use METEOR and USE as primary metrics for evaluation, but still
report BLEU to conform with past practice.

There is always a concern in neural models that performance differences could be due to random
factors. We take two steps to help mitigate this concern. First, as recommended by [50], we use a
paired t-test to test statistical significance of the difference of METEOR and USE, since these metrics
have values suitable for measuring each output summary (unlike BLEU, which is only considered
meaningful at corpus level). Second, we create a baseline of human attention vectors using random
values. We create five random human attention vectors and use them as input in place of the output
of our eye-gnn results. We report the minimum, maximum, and mean performance of these random
vectors, and test the significance of our results against the best of the random vectors.

Note that we elected to conduct a data-driven experiment instead of a human study. Human
studies rely on coarse-grained records of human perception (e.g., a 4-point Likert scale), which are
noisy due to human factors such as bias and fatigue. These records have difficulty discerning small
changes in performance such as the 1-2% range we might expect in a study of biologically-inspired
neural models. The study by [50] found that improvements of up to 2 points (around 5-8% for our
baselines) are not detectable by human evaluation. This does not mean that they are not important
improvements, just that it would take a large human study to verify them. Such a study, with
professional programmers that our research targets, would be cost-prohibitive. Instead, as they
recommend, we conduct statistical significance tests to verify these improvements.

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 13

6.2 Dataset Augmented for Code Summarization

We create a dataset of 190k Java methods. We derived this dataset from a dataset of 2.1m Java
methods published in [32], though we apply several filters recommended by [3] to improve quality
and remove duplicates. Then we selected the top 10% of methods in terms of number of tokens
per method. We selected this top 10% for two reasons. First, as [9] point out, a large portion of
methods are very short (just 2-3 lines long) that often have trivial summaries (e.g., “plays music”
for playMusic()). Second, the computational cost of inferring ptgt on every token in millions of
methods is prohibitively high with current hardware. Focusing on the largest 10% of methods
means we experiment with a challenging and interesting subset of methods in affordable time. We
split the training, validation, and test sets from this dataset by project, in order to reduce the risk
of information leakage from the training set into the test set [32]. We use a Java dataset because
the original eye tracking data was performed using Java, and it is not clear that eye tracking data
generalizes to another language.

6.3 Threats to Validity

The key threats to validity in this experiment include: 1) the dataset of Java methods, 2) the metrics
we use for comparison, 3) the preprocessing and training procedures, and 4) the underlying human
prediction models and training data for those models. The dataset is a threat to validity because
different training, validation, and test examples could lead to different results and even different
conclusions. We attempt to mitigate this threat by using a large dataset that has been vetted by
multiple recent papers on neural code summarization. The metrics we use could be a threat because
they guide our conclusions about performance of each model, and different metrics may rank
models differently. We use METEOR and USE, since they are recommended by empirical data to
help mitigate this threat, in preference to BLEU. We use srcML and teacher forcing as key parts of
our preprocessing and training, but it is possible that different preprocessing scripts or training
procedures would give different results. We use tools and procedures that are uncontroversial in
the literature, yet it is still possible that different tools and procedures would give different results.
Finally, the risks to the eye tracking study dataset still apply to this experiment.

6.4 Results and Discussion

Figure 5 summarizes our answer to RQ2. In short, the eye-gnn model of human attention leads to

higher performance than the baseline. However, the degree of improvement is below a threshold where
a human may immediately notice according to evidence [50].They point out that metric score
improvements of less than 2 points may not be detectable in a user study. The problem is that
a change not noticeable by humans could also be an artifact of measurement or due to random
factors. Three pieces of evidence mitigate that risk:
First, we report improvements in three metrics instead of only one (most papers only report

BLEU). As mentioned in Section 6.1, Roy et al. strongly favor METEOR to BLEU because METEOR
is much more correlated with actual human programmer judgments. To provide more evidence, we
also report improvements in USE, a metric found by [51] to also be favored over BLEU. All three
metrics demonstrate a similar improvement.
Second, we follow the recommendation from Roy et al. to perform a paired t-test of the scores

(where the predicted summary of each of two approaches are the pairs) for METEOR and USE
that are meaningful at the summary level. BLEU is considered a corpus-level metric due to the
brevity penalty, so a paired statistical test is not meaningful [18]. In any case, we found statistically-
significant difference between eye-gnn and the baseline (Figure 5c).

Third, we found improvements over five configurations of our model in which we generated
random values for the human attention vectors. In theory, it is possible that eye-gnn was merely

14 Aakash Bansal, Bonita Sharif, & Collin McMillan

(a) Score comparison with different attention models.

baseline our models random

human attn.: none eye-gnn mean max min

BLEU 18.87 19.11 18.41 18.48 18.34

METEOR 33.86 34.30 33.62 33.79 33.43

USE 50.21 50.69 50.12 50.41 50.01

(b) Comparison of peak scores for different attention.

METEOR USE

t stat p-value t stat p-value

vs. baseline
eye-gnn 2.52 <0.01 2.71 <0.01

vs. random

eye-gnn 3.08 <0.01 3.27 <0.01

baseline 0.43 0.33 0.35 0.36

(c) Paired t-test results for METEOR and USE.

Fig. 5. Key results of the code summarization experiment. First, (a) depicts model performance for different

a!ention models, including with five random a!ention vectors. Then, (b) shows peak METEOR, USE, and

BLEU scores for the code summarization baseline alone, the baseline when provided our human a!ention

models, and the mean/max/min performance of the baseline when provided five random a!ention vectors.

Last, (c) shows statistical significance tests.

a “lucky” input. Different studies have shown that randomly altering parameters in neural models
can actually improve performance by inducing a regularization effect [22, 26, 60]. To help rule out
this effect, we produced five random “human attention” vectors that have the same minimum and
maximum values as eye-gnn. This approach of using randomly generated attention also used as
a baseline against novel attention modelling approaches in other domains [44]. These five runs
are visible as blue diamonds in Figure 5a. All are below eye-gnn. Note that a 1-2% improvement is
closely in line with expectations from other code summarization research, so long as the improve-
ment is clearly attributable to a single factor under controlled conditions, such as benefits from a
particular representation of the code’s structure [31]. This improvement is also in line with other
bio-inspired [20, 38] and visual saliency prediction models [40, 44].
The examples in Figure 6 and 7 demonstrate how the benefits of predicted human attention

may be borne out. In Figure 6 the method is from a Chess game program and creates a board
configuration for test purposes. The name of the method indicates the use of the words “sets up the,”
but leaves open the question of what is set up. The baseline selects the word “pawn” from the text of
the method, likely because it is a rare word that occurs several times. However, the approach using

16 Aakash Bansal, Bonita Sharif, & Collin McMillan

eye-gnn correctly uses the word “board.” A possible reason emerges from the predicted human
attention. The word “pawn” is activated to a notably different degree than “board.” As we described
in Section 5.1, this activation is multiplied with the word embedding vectors to raise or lower the
level of attention to each word vector. In Figure 7 we present the reference and predicted summaries,
as well as the predicted attention over the first 2 lines for another method in the test set. We do not
show the raw code due to space limitations. We observe that our approach can predict the first
word "write" correctly, unlike the baseline. We observe that the word "write" gets a higher degree
of attention than some surrounding words. We know from the literature that the first predicted
action word is very important as encoder-decoder models depend on previous words to generate
the next in the sequence [24]. The result is a much better summary overall.

7 CONCLUSIONS AND FUTUREWORK

This paper advances the state-of-the-art in two key ways. First, we present a model that learns
to predict human attention to source code. We represent “human attention” as the percent total
gaze time (ptgt, Section 3) that a person reads each token in source code with their eyes. Then,
we represent the source code as an abstract syntax tree and design a graph neural network-based
model (eye-gnn) to learn to predict ptgt for arbitrary source code. In short, we found that eye-gnn is
able to learn to predict ptgt in a manner consistent with moderate positive correlation with actual,
human eye gaze measured by ptgt.

Second, we present an augmentation to a “vanilla” neural source code summarization technique
thatmakes use of predicted levels of human attention to code.We create a novel attentionmechanism
based on human attention in addition to the machine “vanilla” attention. Our mechanism uses
eye-gnn to predict ptgt for every node in the AST. Then, we combine those predicted ptgt values
with embedding vectors for the nodes in the AST, to emphasize or de-emphasize those nodes based
on the ptgt values. We then combine this human attention mechanism with the typical machine
attention mechanism. We observe a small but significant improvement over the baseline, which is
in line with expectations for biologically-inspired neural models from other domains.
We reiterate that we view this paper as a proof-of-concept in predicting human attention and

demonstrating that predicted attention has utility in improving machine attention. We demonstrate
this utility in a highly-controlled environment in which we use one typical encoder-decoder
model and one augmented version of that model. Although our attention model complements the
neural attention layer of this approach, considerable future work is needed to study the effects of
augmenting other more complex neural approaches. Demographic difference between participants
could also affect the model of mimicked human attention and serves as a possible future direction
for research. Note, we only use gaze time to predict human attention, future work is needed to
explore temporal coherence such as scanpaths.

To encourage reproducibility and verifiability, we release our dataset, code, models, and support-
ing artifacts at: https://osf.io/b9sjz [8]

8 ACKNOWLEDGEMENT

This work is supported in part by NSF CCF-2100035 and CCF-2211428. Any opinions, findings, and
conclusions expressed herein are the authors and do not necessarily reflect those of the sponsors.

REFERENCES

[1] Nahla J Abid, Jonathan I Maletic, and Bonita Sharif. 2019. Using developer eye movements to externalize the mental

model used in code summarization tasks. In Proceedings of the 11th ACM Symposium on Eye Tracking Research &

Applications. 1–9.

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 17

[2] Nahla J Abid, Bonita Sharif, Natalia Dragan, Hend Alrasheed, and Jonathan I Maletic. 2019. Developer reading behavior

while summarizing java methods: Size and context matters. In 2019 IEEE/ACM 41st International Conference on Software

Engineering (ICSE). IEEE, 384–395.

[3] Miltiadis Allamanis. 2019. The adverse effects of code duplication in machine learning models of code. In Proceedings

of the 2019 ACM SIGPLAN International Symposium on New Ideas, New Paradigms, and Reflections on Programming and

Software. 143–153.

[4] Miltiadis Allamanis, Marc Brockschmidt, and Mahmoud Khademi. 2018. Learning to represent programs with graphs.

International Conference on Learning Representations (2018).

[5] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2017. A comparison of program comprehension strategies by

blind and sighted programmers. IEEE Transactions on Software Engineering 44, 8 (2017), 712–724.

[6] Ameer Armaly, Paige Rodeghero, and Collin McMillan. 2018. AudioHighlight: Code skimming for blind programmers.

In 2018 IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, 206–216.

[7] Satanjeev Banerjee and Alon Lavie. 2005. METEOR: An automatic metric for MT evaluation with improved correlation

with human judgments. In Proceedings of the acl workshop on intrinsic and extrinsic evaluation measures for machine

translation and/or summarization. 65–72.

[8] Aakash Bansal. 2023. HumanAttn-Artifacts. https://doi.org/10.17605/OSF.IO/B9SJZ

[9] Aakash Bansal, Sakib Haque, and Collin McMillan. 2021. Project-Level Encoding for Neural Source Code Summarization

of Subroutines. International Conference on Program Comprehension (2021).

[10] Nathaniel Blanchard, Jeffery Kinnison, Brandon RichardWebster, Pouya Bashivan, and Walter J Scheirer. 2018. A

neurobiological cross-domain evaluation metric for predictive coding networks. arXiv preprint arXiv:1805.10726 (2018).

[11] Josh Bongard. 2009. Biologically Inspired Computing. IEEE computer 42, 4 (2009), 95–98.

[12] Matthew Botvinick, David GT Barrett, Peter Battaglia, Nando de Freitas, Darshan Kumaran, Joel Z Leibo, Timothy

Lillicrap, Joseph Modayil, Shakir Mohamed, and Neil C Rabinowitz. 2017. Building machines that learn and think for

themselves. Behavioral and Brain Sciences 40 (2017).

[13] Teresa Busjahn, Roman Bednarik, Andrew Begel, Martha Crosby, James H Paterson, Carsten Schulte, Bonita Sharif,

and Sascha Tamm. 2015. Eye movements in code reading: Relaxing the linear order. In 2015 IEEE 23rd International

Conference on Program Comprehension. IEEE, 255–265.

[14] Michael L Collard, Michael J Decker, and Jonathan I Maletic. 2011. Lightweight transformation and fact extraction with

the srcML toolkit. In Source Code Analysis and Manipulation (SCAM), 2011 11th IEEE International Working Conference

on. IEEE, 173–184.

[15] Martha E Crosby and Jan Stelovsky. 1990. How do we read algorithms? A case study. Computer 23, 1 (1990), 25–35.

[16] Ernest Davis and Gary Marcus. 2017. Causal generative models are just a start. Behavioral and Brain Sciences 40 (2017).

[17] Sarah Fakhoury, Devjeet Roy, Harry Pines, Tyler Cleveland, Cole S Peterson, Venera Arnaoudova, Bonita Sharif,

and Jonathan I Maletic. 2021. gazel: Supporting Source Code Edits in Eye-Tracking Studies. In 2021 IEEE/ACM 43rd

International Conference on Software Engineering: Companion Proceedings (ICSE-Companion). IEEE, 69–72.

[18] Andrew Finch, Young-Sook Hwang, and Eiichiro Sumita. 2005. Using machine translation evaluation techniques to

determine sentence-level semantic equivalence. In Proceedings of the third international workshop on paraphrasing

(IWP2005).

[19] Dario Floreano and Claudio Mattiussi. 2008. Bio-inspired artificial intelligence: theories, methods, and technologies. MIT

press.

[20] Ruth C Fong, Walter J Scheirer, and David D Cox. 2018. Using human brain activity to guide machine learning. Scientific

reports 8, 1 (2018), 1–10.

[21] Andrew Forward and Timothy C Lethbridge. 2002. The relevance of software documentation, tools and technologies:

a survey. In Proceedings of the 2002 ACM symposium on Document engineering. ACM, 26–33.

[22] Xavier Gastaldi. 2017. Shake-shake regularization. arXiv preprint arXiv:1705.07485 (2017).

[23] Sonia Haiduc, Jairo Aponte, Laura Moreno, and Andrian Marcus. 2010. On the use of automated text summarization

techniques for summarizing source code. In 2010 17th Working Conference on Reverse Engineering. IEEE, 35–44.

[24] Sakib Haque, Aakash Bansal, Lingfei Wu, and Collin McMillan. 2021. Action Word Prediction for Neural Source Code

Summarization. 28th IEEE International Conference on Software Analysis, Evolution and Reengineering (2021).

[25] Sakib Haque, Alexander LeClair, Lingfei Wu, and Collin McMillan. 2020. Improved Automatic Summarization of

Subroutines via Attention to File Context. International Conference on Mining Software Repositories (2020).

[26] Saihui Hou and Zilei Wang. 2019. Weighted channel dropout for regularization of deep convolutional neural network.

In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33. 8425–8432.

[27] Zhengping Ji and Juyang Weng. 2010. WWN-2: A biologically inspired neural network for concurrent visual attention

and recognition. In The 2010 International Joint Conference on Neural Networks (IJCNN). IEEE, 1–8.

[28] Shaohua Jia, Amanda Seccia, Pasha Antonenko, Richard Lamb, Andreas Keil, Matthew Schneps, Marc Pomplun, et al.

2018. Biometric recognition through eye movements using a recurrent neural network. In 2018 IEEE International

18 Aakash Bansal, Bonita Sharif, & Collin McMillan

Conference on Big Knowledge (ICBK). IEEE, 57–64.

[29] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gershman. 2017. Building machines that learn

and think like people. Behavioral and brain sciences 40 (2017).

[30] Alexander LeClair, Sakib Haque, Lingfei Wu, and Collin McMillan. 2020. Improved Code Summarization via a Graph

Neural Network. In 28th ACM/IEEE International Conference on Program Comprehension (ICPC’20).

[31] Alexander LeClair, Siyuan Jiang, and Collin McMillan. 2019. A neural model for generating natural language summaries

of program subroutines. In Proceedings of the 41st International Conference on Software Engineering. IEEE Press, 795–806.

[32] Alexander LeClair and Collin McMillan. 2019. Recommendations for Datasets for Source Code Summarization. In

Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:

Human Language Technologies, Volume 1 (Long and Short Papers). 3931–3937.

[33] Shangqing Liu, Yu Chen, Xiaofei Xie, Jing Kai Siow, and Yang Liu. 2021. Retrieval-Augmented Generation for Code

Summarization via Hybrid {GNN}. In International Conference on Learning Representations. https://openreview.net/

forum?id=zv-typ1gPxA

[34] Cristina Melício, Rui Figueiredo, Ana Filipa Almeida, Alexandre Bernardino, and José Santos-Victor. 2018. Object

detection and localization with Artificial Foveal Visual Attention. In 2018 Joint IEEE 8th International Conference on

Development and Learning and Epigenetic Robotics (ICDL-EpiRob). IEEE, 101–106.

[35] Graham Neubig. [n. d.]. Survey of Methods to Generate Natural Language from Source Code. ([n. d.]).

[36] Afonso Nunes, Rui Figueiredo, and Plinio Moreno. 2020. Learning to Search for Objects in Images from Human Gaze

Sequences. In International Conference on Image Analysis and Recognition. Springer, 280–292.

[37] Unaizah Obaidellah, Mohammed Al Haek, and Peter C.-H. Cheng. 2018. A Survey on the Usage of Eye-Tracking in

Computer Programming. ACM Comput. Surv. 51, 1 (2018), 5:1–5:58. https://doi.org/10.1145/3145904

[38] André Ofner and Sebastian Stober. 2018. Towards bridging human and artificial cognition: Hybrid variational predictive

coding of the physical world, the body and the brain. Advances in Neural Information Processing Systems (2018).

[39] Ariyo Oluwasammi, Muhammad Umar Aftab, Zhiguang Qin, Son Tung Ngo, Thang Van Doan, Son Ba Nguyen,

Son Hoang Nguyen, and Giang Hoang Nguyen. 2021. Features to Text: A Comprehensive Survey of Deep Learning on

Semantic Segmentation and Image Captioning. Complexity 2021 (2021).

[40] Simone Palazzo, Francesco Rundo, Sebastiano Battiato, Daniela Giordano, and Concetto Spampinato. 2020. Visual

saliency detection guided by neural signals. In 2020 15th IEEE International Conference on Automatic Face and Gesture

Recognition (FG 2020). IEEE, 525–531.

[41] Simone Palazzo, Concetto Spampinato, Isaak Kavasidis, Daniela Giordano, and Mubarak Shah. 2018. Decoding Brain

Representations by Multimodal Learning of Neural Activity and Visual Features. arXiv preprint arXiv:1810.10974

(2018).

[42] Matteo Paltenghi and Michael Pradel. 2021. Thinking like a developer? comparing the attention of humans with

neural models of code. In 2021 36th IEEE/ACM International Conference on Automated Software Engineering (ASE). IEEE,

867–879.

[43] Kishore Papineni, Salim Roukos, Todd Ward, and Wei-Jing Zhu. 2002. BLEU: A Method for Automatic Evaluation

of Machine Translation. In Proceedings of the 40th Annual Meeting on Association for Computational Linguistics

(Philadelphia, Pennsylvania) (ACL ’02). Association for Computational Linguistics, Stroudsburg, PA, USA, 311–318.

https://doi.org/10.3115/1073083.1073135

[44] Vasili Ramanishka, Abir Das, Jianming Zhang, and Kate Saenko. 2017. Top-down visual saliency guided by captions.

In Proceedings of the IEEE conference on computer vision and pattern recognition. 7206–7215.

[45] Keith Rayner. 2009. Eye movements and attention in reading, scene perception, and visual search. The quarterly journal

of experimental psychology 62, 8 (2009), 1457–1506.

[46] Paige Rodeghero, Cheng Liu, Paul WMcBurney, and Collin McMillan. 2015. An eye-tracking study of java programmers

and application to source code summarization. IEEE Transactions on Software Engineering 41, 11 (2015), 1038–1054.

[47] Paige Rodeghero and Collin McMillan. 2015. An empirical study on the patterns of eye movement during summarization

tasks. In 2015 ACM/IEEE International Symposium on Empirical Software Engineering and Measurement (ESEM). 1–10.

[48] Paige Rodeghero, Collin McMillan, Paul W. McBurney, Nigel Bosch, and Sidney D’Mello. 2014. Artifacts for Improving

Automated Source Code Summarization via an Eye-Tracking Study of Programmers. https://notredame.box.com/s/

bhyoqle1i90vuz75pu4ufch3rpz1lpij

[49] Paige Rodeghero, Collin McMillan, Paul W McBurney, Nigel Bosch, and Sidney D’Mello. 2014. Improving automated

source code summarization via an eye-tracking study of programmers. In Proceedings of the 36th international conference

on Software engineering. ACM, 390–401.

[50] Devjeet Roy, Sarah Fakhoury, and Venera Arnaoudova. 2021. Reassessing Automatic Evaluation Metrics for Code

Summarization Tasks. In Proceedings of the ACM Joint European Software Engineering Conference and Symposium on

the Foundations of Software Engineering (ESEC/FSE).

Towards Modeling Human A!ention from Eye Movements

for Neural Source Code Summarization 19

[51] Aakash Bansal Sakib Haque, Zachary Eberhart and Collin McMillan. 2022. Semantic Similarity Metrics for Evaluating

Source Code Summarization. In 30th International Conference on Program Comprehension (ICPC’22).

[52] Zohreh Sharafi, Bonita Sharif, Yann-Gaël Guéhéneuc, Andrew Begel, Roman Bednarik, and Martha E. Crosby. 2020. A

practical guide on conducting eye tracking studies in software engineering. Empir. Softw. Eng. 25, 5 (2020), 3128–3174.

https://doi.org/10.1007/s10664-020-09829-4

[53] Zohreh Sharafi, Zéphyrin Soh, and Yann-Gaël Guéhéneuc. 2015. A systematic literature review on the usage of

eye-tracking in software engineering. Information and Software Technology 67 (2015), 79–107.

[54] Bonita Sharif, Michael Falcone, and Jonathan I Maletic. 2012. An eye-tracking study on the role of scan time in finding

source code defects. In Proceedings of the Symposium on Eye Tracking Research and Applications. 381–384.

[55] Bonita Sharif and Huzefa Kagdi. 2011. On the use of eye tracking in software traceability. In Proceedings of the 6th

International Workshop on Traceability in Emerging Forms of Software Engineering. 67–70.

[56] Bonita Sharif, John Meinken, Timothy Shaffer, and Huzefa H. Kagdi. 2017. Eye movements in software traceability

link recovery. Empir. Softw. Eng. 22, 3 (2017), 1063–1102. https://doi.org/10.1007/s10664-016-9486-9

[57] Fabian H Sinz, Xaq Pitkow, Jacob Reimer, Matthias Bethge, and Andreas S Tolias. 2019. Engineering a Less Artificial

Intelligence. Neuron 103, 6 (2019), 967–979.

[58] Jamie Starke, Chris Luce, and Jonathan Sillito. 2009. Searching and skimming: An exploratory study. In 2009 IEEE

International Conference on Software Maintenance. IEEE, 157–166.

[59] James Tanner and Laurent Itti. 2019. A top-down saliency model with goal relevance. Journal of vision 19, 1 (2019),

11–11.

[60] Li Wan, Matthew Zeiler, Sixin Zhang, Yann Le Cun, and Rob Fergus. 2013. Regularization of neural networks using

dropconnect. In International conference on machine learning. PMLR, 1058–1066.

[61] Fengrong Zhao, Junqi Zhao, and Yang Bai. 2020. A Survey of Automatic Generation of Code Comments. In Proceedings

of the 2020 4th International Conference on Management Engineering, Software Engineering and Service Sciences. 21–25.

[62] Daniel Zügner, Tobias Kirschstein, Michele Catasta, Jure Leskovec, and Stephan Günnemann. 2021. Language-

Agnostic Representation Learning of Source Code from Structure and Context. In International Conference on Learning

Representations.

VERSION HISTORY

Received November 2022; revised February 2023; accepted March 2023

