arXiv:2305.15314v1 [cs.SE] 24 May 2023

TOWARDS FINE-GRAINED LOCALIZATION OF PRIVACY

BEHAVIORS
Vijayanta Jain, Sepideh Ghanavati Sai Teja Peddinti
University of Maine University of Maine Google Inc.
Orono, ME Orono, ME Mountain View, CA
vijayanta.jain@maine.edu sepideh.ghanavati@maine.edu psaiteja@google.com
Collin McMillan

University of Notre Dame
Notre Dame, IN
cmc@nd.edu

ABSTRACT

Mobile applications are required to give privacy notices to the users when they collect or share personal
information. Creating consistent and concise privacy notices can be a challenging task for developers.
Previous work has attempted to help developers create privacy notices through a questionnaire or
predefined templates. In this paper, we propose a novel approach and a framework, called PriGen,
that extends these prior work. PriGen uses static analysis to identify Android applications’ code
segments which process sensitive information (i.e. permission-requiring code segments) and then
leverages a Neural Machine Translation model to translate them into privacy captions. We present
the initial evaluation of our translation task for ~300,000 code segments.

Keywords privacy labels, privacy-behavior, Android applications, machine learning

1 Introduction

Privacy notices describe how an application uses personal information and why (i.e., its privacy behaviors), and help
users make informed privacy decisions. Application developers are required by privacy regulations [1, 2] and application
store policies [3] to provide users with accurate privacy notices. Recently, both application stores (i.e., App Store [4]
and Google Play [5]) introduced their versions of privacy “nutrition” labels (or simply privacy labels) [6] to simplify this
process. These labels are standardized notice formats that help developers easily describe zow and why their application
uses personal information and build trust with the users [7].

Existing challenges in creating privacy notices hinder providing accurate labels, as well. These challenges range from,
difficulty in comprehending privacy behaviors of their applications [8, 7], to gaps in developers’ knowledge about
privacy concepts [9]. Failure to provide accurate labels violates privacy regulations, which can result in hefty fines
for developers [10]. These inaccuracies can also impact users’ well-being since it inhibits their ability in making
privacy-preserving decisions. Lastly, discrepancies between labels and applications’ privacy behaviors also diminish
trust between developers and users.

Recent works aim to address the challenges of generating privacy notices, including privacy labels [11, 12, 13, 14, 15].
Some of these efforts leverage static analysis approaches to identify APIs called and use templates [11], questionnaires
[12], or developers’ annotations [13] to generate notices; while others use machine learning (ML) approaches [16, 15].
For example, Gardner et al. [14] develop Privacy Label Wiz which uses static analysis to analyze iOS applications’
source code, provides the summary of the results to developers, and prompts them with questions to help create privacy
labels for the App Store. Jain et al. [15] create platform-neutral Privacy Action labels that describe how and why an
application’s code uses personal information. They use deep learning to predict these labels from the source code.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

While these approaches aid developers in creating privacy labels or notices, they have several drawbacks. For example,
Privacy Label Wiz [14] helps understand the privacy behaviors of applications with analysis summary and prompts, but
it does not automate the process of creating labels or identifying the purposes. Label creation and purpose identification
are still the developers’ responsibilities. Moreover, as the application evolves, the tool will rely on developers to keep
track of changes in privacy behaviors, including purpose, which may increase the developers’ effort. This practice can
be especially challenging in settings where developers are part of large teams [7] and the rationale for using personal
information is distributed among members. Jain et al. [15] address some of these limitations by automating the process
of creating Privacy Action labels. However, their approach lacks the necessary source code context which makes it
challenging for developers to understand the privacy behaviors of their source code and create privacy notices solely
based on labels. Consider the code snippet in Figure 1. If developers are only provided with the Privacy Action labels
Processing and Functionality, they must read the method to comprehend its behavior and understand how the
personal information is Processed and for which Functionality it is used. The complexity of this task increases
when the length of code snippets increases and it spans to include multiple methods/classes.

Finely Localized Privacy Behaviors

private void fineNearbyRestaurants() {
if (ActivityCom.checkSelfPermission(this, Permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_GRANTED
|| ActivityCom.checkSelfPermission(this, Permission.ACCESS_FINE_LOCATION) != PackageManager.PERMISSION_GRANTED) {
return null;
Mobile Privacy
Application

i Developers Labels
List <String> providers = locationManager.getProviders(true);

mostAccuratelocation = null; "‘

for (String provider : providers) {
— [Eocation 1= locationManager. getLastKnownLocation(provider) ; —-—
17 (L == nutu{ Privacy

continue; Notices
: -

if (mostAccuratelocation == null || l.getAccuracy() < mostAccuratelocation.getAccuracy()){

mostAccuratelocation = 1;

}

Privacy Action Labels

[this.displayClosesRestaurants (mostAccurateLocation) ;
return;

Processing Functionality‘

}

Figure 1: Example of how fine-grained localization can help developers create accurate privacy labels and notices.

In this paper, we propose fine-grained localization of privacy behaviors. In fine-grained localization, we locate individual
statements in source code that encode privacy behaviors and use them to predict their privacy labels. These localized
statements together with predicted privacy labels can then help developers create short sentences to be used in privacy
notices. The key novelty of our approach lies in the granularity of locating where privacy behaviors are implemented in
source code. While previous localization approaches limit localization to only classes or methods [17, 18, 19] (i.e.,
coarse-grained localization), our approach moves one step further by also identifying which statements within a method
implement privacy behaviors (i.e., fine-grained localization). Similarly, static analysis approaches [12, 14] only rely on
specific types of statements in a single method, such as API calls, to create privacy notices. Our approach identifies not
only API calls but also other statements across multiple methods that use personal information to create privacy labels.
Apart from the novelty, our approach provides the benefits of previous efforts such as helping developers understand
high-level privacy behaviors (similar to Privacy Label Wiz [14]) as well as fine-grained ones and generating privacy
labels (similar to Jain et al.[15]) but with higher accuracy (at least ~11% higher). Our approach is also complementary
to existing static and dynamic analysis approaches and provides an alternative technique to generate privacy labels.
By identifying multiple methods and employing machine learning, our fine-grained localization approach identifies
individual statements in those methods providing a much more granular view of privacy behaviors implemented in the
application’s source code.

We explain how our approach can help create accurate labels and privacy notices with the following example. Consider
the same code snippet in Figure 1: If developers are provided with the localized statements (i.e., segments highlighted
with red boxes), along with the predicted labels of Processing and Functionality, they can better understand how
location is processed (i.e., calculating distance) and for what functionality (i.e., suggest nearby restaurants) in source
code. To provide labels to users, developers can use these predicted labels (i.e., Processing and Functionality)
and map them to their platform-specific labels (App Store or Google Play). They can also use the labels and localized
statements to create privacy statements such as “We use your location to calculate the distance and suggest nearby
restaurants.” and use them in their permission rationales or privacy policies.

To implement our approach, we develop a multi-head encoder model that creates individual representations of multiple
methods and uses ‘attention’ [20] to identify relevant statements in those methods.! We demonstrate the efficacy of our

'A recent NLP work has raised questions about an attention module’s capability to identify relevant parts of input sequences [21].
However, several studies indicate that attention is important [22, 23] and can be used for interpreting the results of a classification
task. Hence, we use attention to select relevant statements and localize privacy behaviors.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

approach by training the model on the publicly released ADPAc? dataset [15], which contains source code samples and
their Privacy Action labels. We choose the components of our model by conducting six sets of experiments. In each set,
we train a classifier with 24 datasets in the ADPAc, evaluate the optimal model and dataset configurations, and use them
for our model. We also analyze the results and provide key insights into how to choose the best combination of model
and dataset configurations for identifying privacy behaviors in code.

We evaluate our work both qualitatively and quantitatively. For qualitative evaluation, we recruit six software profes-
sionals, with experience in software development and privacy-related research. We ask them to write simple sentences
that describe privacy behaviors for code samples with and without fine-grained localization. Our evaluation shows that
while there are negligible differences in the statements that the professionals write with/out localization (since they
all have privacy expertise), the time and mental effort required are significantly less when the code samples are finely
localized. Furthermore, professionals with less experience benefit the most from localization, since they save up to
~T74% of time to write statements of comparable quality and details to those written by the most experienced ones.
Quantitatively, we use accuracy and F-1 scores to gauge the model’s performance in predicting Privacy Action labels.
Our evaluation shows our model increases the baseline accuracy [15] by at least 11% with up to 30% for some labels.
Our lowest accuracy is 91.41% and the highest is 98.45% across labels. We also measure the accuracy of fine-grained
localization by asking three of the six software professionals who are more experienced in software development and
privacy to manually inspect the statements in code samples that are highlighted by the attention module. The results
show that at least one annotator agrees that 85% of statements implement privacy behaviors. Our analysis strongly
demonstrates that our approach can identify privacy labels and help in writing high-quality privacy statements.

In summary, our main contributions are as follows:

1. We address the issue of creating accurate privacy labels by developing automated fine-grained localization
to identify statements in methods that implement privacy behaviors and that explain how and why personal
information is used. This approach extends the granularity of localization in previous works to individual
statements.

2. We implement our approach by developing a novel attention-based deep learning model, for which we
conducted six sets of experiments with 24 datasets to meticulously choose the best model and dataset
configurations. We share insights from these experiments to help researchers use them as a blueprint for
classifying privacy behaviors in source code.

3. Our evaluation demonstrates that our approach establishes a new state-of-the-art for predicting Privacy Action
labels, its efficacy in finely localizing privacy behaviors, and helping create privacy statements by reducing
time and effort.

2 Related Work

Figure 2 summarizes the prior work by showcasing trends in finding discrepancies between privacy notices and
application source code, creating privacy notices, identifying malicious applications, and classifying and summarizing
code segments.

2.1 Finding Discrepancies

A significant effort has been made to identify discrepancies between an application’s privacy behaviors and its privacy
notices [24, 25, 26, 27, 28, 29, 30]. Most works focus on matching the application’s privacy behaviors with its
privacy policy [24, 29], application description [25, 31, 32], permission rationales [26], or privacy labels [30], using
static analysis, and counting the instances of discrepancies. These works have identified significant inconsistencies
between applications’ privacy behaviors and their notices and highlighted the issue. Our work aims at resolving these
discrepancies by generating accurate privacy labels and localizing privacy behaviors in source code to help create
consistent and detailed notices.

2.2 Creating Privacy Notices

A number of studies focus on creating privacy notices [33, 14, 34, 11, 12, 13, 16, 15]. These approaches either create
privacy policies using questionnaires [33, 34, 12] (similar to privacy policy generators), or provide notices in different
formats, such as permission rationales [35], privacy describing statements [11], or in-application notices [13]. AutoPPG
[11], PrivacyFlash Pro [12], Privacy Label Wiz [14], Honeysuckle [13], and PAcT [15] are closely related to our work

https://github.com/PERC-Lab/PAcT

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

lAlon et al. 2018 v
|Alreshedy et al. 2018 v
|Arshad et al. 2018 v
IChen and Wan 2019 v | v
Gardner et al. 2022 v v
Gilda 2017 v
Gorla et al. 2014 v
Haque et al. 2020
Hu et al. 2018 v
Idrees et al. 2017 v
Uain et al. 2021 v v v v
Uain et al. 2022 v v v v
liang et al. 2017 v
Li et al. 2017 v
Li et al. 2021 v v
Liu et al. 2018 v v
Liu et al. 2018 v
Loyola et al. 2017 v
Ma et al. 2020 v
Maitra et al. 2018 v
Naryanan et al. 2018 v
lOkoyomon et al. 2019 v
Pandita et al. 2013 v
Qu et al. 2014 v
Rosen et al. 2013 v v v
Rowan et al. 2014 v v v
Slavin et al. 2016 v |v
Tiwari et al. 2018 v
IVan Dam and Zyztsev 2016 v
\Wu et al. 2021 v
Xiao et al. 2022 v
Yu et al. 2016 v
Zimmeck et al. 2019 v
Zimmeck et al. 2021 v v
[This Work v

AN ANIE N AN

Figure 2: Selection of closely-related, peer-reviewed publications. Column ‘ML’ = ML based; ‘GN’ = Generate Notices;
‘Q/A’ Question-Answering based; ‘In’ = Inconsistency Analysis; ‘SA’ = Static/Dynamic Analysis; ‘MA’ = Malicious
Applications; ‘CC’ = Code Classification and ‘CS’ = Code Summarization.

since they also aim to aid developers to create privacy notices using source code. AutoPPG [11] analyzes the APIs called
to identify the personal information used and then uses a static subject form object [condition] template to
create privacy statements, but it lacks the rationale for using personal information. PrivacyFlash Pro [12], Honeysuckle
[13], and Privacy Label Wiz [14] provide rationales in their notices, however, they rely on developers’ efforts to do
so. Jain et al. [15] automatically provide Privacy Action labels that describe how and why personal information is
used. However, as discussed in Section 1, these labels lack source code context; adding more work for developers to
understand their privacy behaviors. In this paper, we extend these efforts, by automating the process of creating accurate
privacy labels and providing developers with source code context. These labels and context will help developers
understand the privacy behaviors of their applications.

2.3 Identifying Malicious Applications

Studies that identify malicious mobile applications are tangential to our work; however, there are some similarities in
our approaches that are worth mentioning. Several works have provided approaches to identify malicious applications
[36, 37, 38] which pose security risks. Recently, some studies extended these efforts to localize malicious code in
applications [17, 18, 19, 39]. These approaches use program graphs, such as call or dependency graphs, to represent
an application, extract features, and classify them using an attention-based deep learning model [17, 18, 19]. Using
attention weights, these approaches identify relevant features used for classification, which they use to localize malicious
source code. Our approach to localizing privacy behaviors in source code follows a similar logic. However, a significant
difference between our approaches is the granularity of localization. These approaches limit localization to malicious
packages [39] or methods [17, 18, 19] (i.e., coarse-grained localization), whereas, in our approach, we localize
statements within a method which provides a more fine-grained localization of privacy behaviors.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

2.4 Classifying and Summarizing Code

Our work also draws inspiration from efforts in software engineering to classify and summarize code. Classification
tasks in this field primarily focus on detecting the programming language of code snippets [40, 41, 42], whereas
summarization tasks focus on transforming code snippets into natural language text for various tasks. The format of the
generated text differs based on the purpose, such as transforming code differences into commit messages for version
control [43, 44], or into comments for documentation [45, 46, 47, 48]. Our work extends these efforts to comprehend
code and modifies it to finely localize privacy behaviors and predict their privacy labels.

3 Background

3.1 Permissions and Static Analysis

Mobile operating systems, such as Android, employ a permissions system to allow developers to access users’
personal information while giving control to users to protect their personal information. In this system, if devel-
opers want to access personal information, they call a system API * and declare necessary permissions, such as in
AndroidManifest.xml file for Android applications. When the application requires access to sensitive information,
users are asked if they would permit the application to access this information. In case they agree, users give control of
their personal information.

Previous work uses static analysis to identify system API calls and extract methods that call them [15]. They refer
to these extracted code snippets as Permission-Requiring Code Segments (PRCS) since they call APIs that require
permission (i.e., permission-requiring APIs). Since a method calling permission-requiring APIs can share the accessed
information with other methods for further use, a PRCS includes multiple methods linked via a call graph. Each
PRCS segment contains at most three methods because they found that in ~80% of cases, personal information is
used within these three methods [16, 15]. Since personal information can “hop” between methods in a PRCS, each
method is referred to as a “hop”. The first hop in a PRCS is the method that calls the permission-requiring API and
each PRCS contains at least this first hop. The subsequent methods are called the second and third hops, respectively
(we interchangeably use “hop” and “method”). In our approach, we predict labels and localize privacy behaviors for
PRCS that consist of up to three hops. Applications can also access and use personal information via user interfaces
[49, 50, 51]. However, in this work, we limit the scope of code segments to the ones that call system APIs, since our
goal is to demonstrate the feasibility of fine-grained localization and not to show the coverage of extracting source code.

3.2 Privacy Action Taxonomy and Dataset

Privacy Action Taxonomy (PAcT) is a taxonomy that defines privacy behaviors implemented in source code [15]. The
goal of this taxonomy is to help consistently detect privacy behaviors in the application’s source code and create privacy
labels for them. In this taxonomy, there are two categories of labels: Practice and Purpose. The labels in the Practice
category describe how a code segment uses personal information whereas the labels in the Purpose category answer
why. Both categories contain 4 labels each. The Practice category contains Processing, Collecting, Sharing, and
Other labels. Whereas the Purpose category contains Functionality, Advertisement, Analytics, and Other
labels. The definition of each label is described in Jain et al.[15].

Jain et al. [15] used PACT to create an annotated dataset (called ADPAc) of code segments and their Privacy Action
labels. This dataset contains ~5,200 PRCS and ~14,000 labels, which is publicly available (see Section 1). Since each
code segment can implement multiple behaviors, some samples are annotated with multiple labels; hence, ADPAc is a
multi-class multi-label dataset. ADPAc also provides binary datasets for these labels. These binary datasets include both
positive and negative samples; each positive sample corresponds to the presence of a specific privacy behavior whereas
a negative sample corresponds to its absence. For example, in the binary dataset of Collecting label, a positive code
sample implements collecting behavior whereas a negative code sample does not. Each code sample is represented as
an Abstract Syntax Tree (AST) containing paths within, where a path is a traversal of nodes in an AST. AST and its
paths are explained in more detail in Appendix 9.

Additionally, as mentioned earlier, each code sample can include up to three hops. Therefore, for each label, there are
three versions of the binary dataset, which include the same samples containing different numbers of hops. For example,
Collecting_1_Hop, Collecting_2_Hop, and Collecting_3_Hop have the same samples but contain one (the first
hop), two (the first two hops), and three (all the three) hops, respectively. Since there are eight Privacy Action labels in
PACT and each has three versions, there are 24 datasets in total. In this work, we use these 24 binary datasets for our
experiments and for training our multi-head encoder model.

*https://developer.android.com/reference/

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

AST Paths Multi-Head Encoder Models Privacy Action Label Highlighted Developers
and Source Code

[II i J Weighted AST Paths

15t Hop

2" Hop

Sigmoid

- ‘— ‘I

: Fully-Connected
‘II -l ~ @) =S
L)
- ©

Encoder Heads ~ L3Yer
m Embedding Layer RNN Layers " ‘ i ‘
3 Hop -
crxxxx) U

— 2 - - - = an 1|
X X X | e 1 [
- ® T i - -
: : H [Hy
o L—— -b
o Extract AST Paths e Embed the AST Paths e Encode Embedded Paths o Use Attention to Identify Relevant Paths . M N H

e Predict Privacy Action Label e Extract Relevant Paths o Map Paths to Source Code to Localize Privacy Behaviors

Encoder Head Model

(a) An overview of our approach to classify and localize privacy behaviors. (b) Detailed architecture.

Figure 3: Overview of our approach and detailed architecture of multi-head encoder model

3.3 Attention

The concept of attention was introduced by Bahdanau et al. [52] as a method to jointly align and translate sequences
which significantly improves the translation tasks. Subsequently, attention-based networks were used in several other
NLP tasks and achieved state-of-the-art performance [53, 54, 55]. The idea behind attention is to quantitatively identify
tokens in the input sequence that are more relevant to the task than other tokens. There are different variations of
attention [20]. In this work, we use self-attention (or intra-attention); a mechanism in which the weights of the input
tokens are determined based on the importance of other tokens in the same sequence.

4 Approach

We now explain our approach to localizing privacy behaviors in application source code and describe the implementation
details of our model. In summary, our approach works as follows: (i) extract AST paths for each hop in a code sample,
(i) embed the AST paths, (iii) encode embedded AST paths, (iv) use attention to identify relevant paths, (v) use fully
connected layers to predict Privacy Action label, (vi) extract relevant paths identified by the attention module, and (vii)
map these paths to source code to finely localize privacy behaviors. Figure 3 (a) shows an overview of our approach.

4.1 Towards Fine-Grained Localization

We provide fine-grained localization of privacy behaviors by using attention weights to quantify relevant paths in each
hop and then mapping these paths to source code. Towards this approach, the first step is to extract AST paths from
each hop of a code sample. As described in Section 3.2, each code segment (PRCS) extracted from an application
consists of three methods linked via a call graph. In line with other research studies that classify/summarize source
code [48, 45], we represent each code sample using AST paths. We extract these paths for each hop using a tool called
“astminer” [56].

The second and third steps are to embed and encode the extracted AST paths. Recall that each AST path consists of
terminal and non-terminal nodes (as described in Appendix 9). To embed each path, we first tokenize the paths into
individual (terminal and non-terminal) nodes. We choose to tokenize non-terminal nodes based on our experimental
results, as explained in Section 6.1.1. Next, we embed each node using a pre-trained embedding model that we created
using Gensim [57]. The combined embedding of each node in an AST path is then passed to recurrent layers for
encoding. To encode each hop, we use separate encoder heads to ensure that we preserve the semantic differences
between the three methods. Since there are three methods in each sample, there are three heads in the multi-head
encoder model. These multiple encoders are an upgrade from the baseline approach that used a single encoder head to
encode all three hops.

In the fourth step, we need to identify relevant paths that implement privacy behaviors. This is necessary to predict
Privacy Action labels and finely localize privacy behaviors in the subsequent steps. To identify these relevant paths, we
use attention. In each encoder head, an attention module uses a weighting mechanism that provides attention weights
for each path in each hop to quantify the relevance of each encoded path. This relevance indicates if a path implements
a privacy behavior or not, i.e., paths with higher attention weights most likely use personal information which may help
predict a label.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

In the fifth step, we predict Privacy Action labels. We combine the attention weights with their respective encoded paths
and then pass them to the fully-connected layers. This step creates a weighted representation of each hop and provides
the fully-connected layers to “comprehend” the privacy behaviors implemented across three hops. Using non-linearity,
the output of the layers is converted into a prediction for a label. In the second last step towards fine-grained localization,
we extract the output of the attention module (i.e., the attention weights) from each head and match them with their
corresponding paths in each hop. This gives us the quantified relevance of each AST path in each hop. We then sort
these paths based on their weights and select 20 paths with the highest weights from each hop. We select this number
based on experimental results that we explain in Section 6.3.

Lastly, we map these 20 paths from each hop to the source code using an automated script as follows: the script
inspects the terminal nodes of each path, which contain the name of the identifier, and maps it to the line in the
source code that contains the identifier. For example, in Appendix 9 - Figure 8 (c), the first AST path has a ter-
minal node “getLastKnownLocation”. Since the corresponding source code (Figure 8 (a)) has the method name
getLastKnownLocation, the first AST path is mapped to the highlighted statement in Figure 8 (a).

These mapped statements implement privacy behaviors and are highlighted in the code, thereby finely localizing privacy
behaviors. These seven steps together provide an automated fine-grained localization mechanism.

We design our localization approach to identify privacy-relevant snippets at statement-level granularity since it provides
maximum precision. A larger granularity, say a block of code comprised of several lines, may work in some cases
where privacy-relevant statements are written together. In cases where privacy-relevant statements are spread out,
this block-level granularity will highlight several non-relevant statements and result in a less precise localization. A
statement-level granularity, thus, is a better approach since it identifies privacy-relevant code that are either written
together or they are spread out.

4.2 Implementation Details

We now explain the implementation details of our steps: After we extract the AST paths for a code sample C, we
randomly select num_paths paths. We decide how many paths to select from each hop based on our experiments (see
Section 6.1.3). Next, we tokenize the nodes in AST paths. Each AST path p; can be represented as p; = [ts; tn;te],
where t; and ¢, are the start and terminal nodes, and ¢t = [t1;...; ts] is a list of non-terminal nodes. We found that in
the ADPACc dataset, each sequence of non-terminal nodes can be of max length 8. Therefore, after tokenizing, each
path p; can be represented as a list of 10 terminal and non-terminal nodes, p; = [ts; t1;...; t.]. In case the length of
non-terminal nodes is less than 8, we pad the AST path with zeros. We also pad each path with a zero to denote the
end of the path. Hence, each tokenized path p; is 11 tokens long (the last token is padding). Since, each hop h; is
represented by num_paths AST paths, h; = [p1, P2, ---Prum_paths)» Where i€[1, 2, 3]. Mathematically, each hop h;
is a num_paths x 11 matrix. Each code segment C contains three hops, i.e., C' = [hq; ha; h3], which makes it a
3 X num_paths x 11 tensor.

As shown in Figure 3 (b), each encoder head (H;, Hs, and H3) contains an embedding layer E, two recurrent layers,
and an attention module. After tokenizing each path, we encode them: each individual hop h; in C is passed to
an encoder head ;. Inside each head, each hop is embedded as Ey, = [E,,; Ep,...Ep, .. 1.l Where By, is a
num_paths x 11 x embed_size tensor containing embedded AST paths. Each embedded path E,,, is represented as
E,, = [E:.; Ey;...; Ey,], where E,, is a 11 X embed_size matrix and E} is the embedding of an individual node in
an AST path which is an embed_size dimensional vector.

After embedding, we pass E},; through the recurrent layers for encoding and use the output L; as the context and
hidden; as the hidden state i.e., L;, hidden, = RNN(E},). Here L, is num_paths x embed_size matrix and the
hidden state is a num_paths size vector. We pass the hidden states to the attention module which returns attention
weights of size num_paths. We stack the attention weights from the three heads which give us a 3 X num_paths
matrix. We pass this matrix through fully-connected layers and apply sigmoid non-linearity to get the classification
probability. Lastly, we match the attention weights from each hop to the AST paths and use a script to map them to
their source code.

5 Experiments

In this section, we describe the rationale for our experiments, their setup, and evaluation techniques.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

5.1 Research Questions

Our research objective is threefold: first, to find the optimal model configurations for classifying privacy behaviors in
code snippets. Second, evaluate our model’s performance in classifying privacy behaviors in comparison with other
models. Third, evaluate the feasibility of our approach to finely localize privacy behaviors and its efficacy in helping to
write privacy statements. For these objectives, we ask the following three research questions:

RQ 1: Which configurations provide the optimal performance for classification of Privacy Action labels?
Based on the specific configuration, we ask the following sub-research questions:

RQ 1.1: How does the tokenization of non-terminal nodes affect the classification performance of the model?
RQ 1.2: Which type of recurrent layers perform better? LSTM or Bi-LSTM?

RQ 1.3: What is the optimal number of AST paths to represent each code sample?

RQ 2: Does the multi-head encoder model provide any quantitative increase in the classification performance as
compared to other models?

RQ 3: Is our fine-grained localization efficacious?

We evaluate the efficacy of our approach to localize privacy behaviors and help write privacy statements qualitatively
and quantitatively based on the following sub-research questions:

RQ 3.1 How does fine-grained localization help developers write privacy statements?
RQ 3.2 What is the accuracy of fine-grained localization in identifying privacy behaviors?

The rationale for RQ 1 is based on the following two reasons: first, the baseline model [15] did not include many common
model configurations that could improve the model’s classification performance. Second, there is no systematic study
that compares how the combination of each of these components affects the model’s performance for code classification.
Therefore, we experiment with tokenization, Bi-LSTM layers, and the number of AST paths. We choose these
configuration options for the following reasons. Tokenization (RQ 1.1): In the baseline approach, AST paths are
tokenized into three tokens where the terminal nodes are considered as two tokens and the non-terminal nodes are
considered as a single token (see Appendix 9 for reference). By not tokenizing non-terminal nodes, the syntactic
structural details of each code sample are diminished which could potentially hinder the classification accuracy. Bi-
LSTM Layers (RQ 1.2): The primary difference between LSTM and Bi-LSTM layers is the additional backward
direction encoding of input sequences in Bi-LSTM layers which provides context surrounding each token in the
sequence. Since an AST path can be traversed in either direction, including a reversed encoding may improve the
classification accuracy. AST Paths (RQ 1.3): The number of paths used to represent a code sample is varied from 100 -
300 in code summarization studies [47, 58]. Therefore, to evaluate the optimal number of AST paths, especially for
classification, we compare the performance of 100, 200, and 300 AST paths. It is possible to experiment with several
other configuration choices, such as source code tokens versus AST paths, to learn their effects on a classification task;
however, these are tangential to the goal of this paper since we focus on the feasibility of fine-grained localization.

In RQ 2, we aim to quantitatively evaluate whether our novel multi-head encoder model improves the performance of
classifying Privacy Action labels in comparison to the baseline model and its derivatives with modified configurations
(i.e., models from RQ 1).

In RQ 3, we evaluate fine-grained localization using qualitative (RQ 3.1) and quantitative (RQ 3.2) approaches. Qualita-
tively, we first analyze automated localization and then evaluate its dis/advantages in helping software professionals
write privacy statements. Quantitatively, we evaluate the accuracy of our approach in identifying privacy behaviors.

5.2 Experimental Setup

We use the 24 binary datasets from ADPAc [15] to answer RQ 1 (Exp 1-6). Recall that each of the 8 Privacy Action labels
contains 3 versions of the dataset (for example, Collecting_1_Hop, Collecting_2_Hop, and Collecting_3_Hop),
with each version containing paths from one more hop than the previous version (see Section 3.2). To answer RQs
1.1-1.3, we begin with the baseline model [15] and add attention (i.e., Exp I: L_I100). Based on the experiments,
we make further configuration changes to this attention-based model. We intentionally add attention to the baseline
model, since it is key to our approach and several studies demonstrate the efficacy of attention in improving the models’
performance across different NLP tasks [52, 20].

To limit the number of explored configurations that help us answer our RQs, we make incremental changes to determine
the impact of each configuration and identify optimal selection rather than trying out all possible configuration

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

Table 1: RQ 1 and RQ 2 experiment configurations. “Tok™: tokenizing non-terminal nodes. “Attn”: using attention.

Tok | Attn | RNN Type | Paths
Baseline False | False | LSTM 100
Exp 1: L_100 True | True | LSTM 100
Exp 2: L_200 True | True | LSTM 200
Exp 3: L_300 True | True | LSTM 300
Exp 4: Bi_100 True | True | Bi-LSTM 100
Exp 5: Bi_200 True | True | Bi-LSTM 200
Exp 6: Bi_300 True | True | Bi-LSTM 300
Multi-Head Encoder | True | True | LSTM 100/hop

combinations. We modify one configuration in each experiment, and based on the results, we keep this configuration
fixed for subsequent experiments. For example, based on the results for RQ 1.1 (i.e., Exp 1: L_100), we make a decision
to include/not-include the tokenization of non-terminal nodes. Then, when we evaluate RQ 1.2 and RQ 1.3, we use that
configuration and only vary the choice of recurrent layer and the number of AST paths.

To set up the experiments for RQ 1.1, (Exp 1: L_100), we tokenize each node in an AST path, including non-terminal
nodes. For RQ 1.2, (Exp 4: Bi_100), we replace LSTM layers with Bi-LSTM in the model. For RQ 1.3 (Exp 1-6),
we randomly pool N AST paths from each code sample for each version of the dataset. For example, if N = 100, for
Collecting_1_Hop dataset, which contains AST paths from only the first hop, we randomly select 100 AST paths
from each sample. For Collecting_2_Hop dataset, we pool 100 AST paths from the combined paths of the first two
hops, and similarly, we pool 100 paths from the combined paths of all three hops in Collecting_3_Hop case. In these
experiments, IV varies between 100 - 300 at 100-step increments. In case a sample contains less than NV paths, we pad
the sample with zeros, which we call null paths. We summarize these various experiment configurations explored in RQ
1 (and its sub-questions) in Table 1.

To answer RQ 2 (Multi-Head Encoder), we train our multi-head encoder model and compare its performance with
the baseline model (i.e., Jain et al. [15]) as well as the best configurations derived from RQ 1 (Table 1). Note that the
RNN type for the multi-head encoder model in Table 1 applies to each encoder head. To prepare the dataset, we extract
the AST paths from 1_Hop, 2_Hop, and 3_Hop datasets for each Privacy Action label and separate the paths for each
hop. For example, from Collecting_1_Hop, Collecting_2_Hop, and Collecting_3_Hop datasets, we separate
the paths belonging only to the first hop, second hop, and third hop, respectively. Since this model is trained using paths
from all three hops, we only compare the results with the 3_Hop versions of the baseline and RQ 1 experiments (i.e.,
Exp 3 and Exp 6).

We trained the models for RQ 1 and 2 using the following hyperparameters: a batch size of 8 and the Adam optimizer
to modify the weights. The learning rate was fixed at le-5 and we used binary cross entropy to penalize the model. For
each dataset, training, validation, and test sets were split in an 80:10:10 ratio. We chose these hyperparameters since
these were also used in the baseline model [15]. For RQ 1, each model was trained for 50 epochs since we did not find
improvement in the results after 50. For RQ 2, we varied the number of epochs since the model convergence differed
for each label. For both RQs, after each epoch, the models were evaluated on the validation set. If they achieved better
accuracy than the previous best epoch then the parameters were saved. We also monitored the training and validation
accuracy to ensure the models did not overfit. After the training, the parameters from the best epoch were used on the
test set for evaluation. We answer RQ 1 and 2 based on quantitative metrics, accuracy and F-1 scores. These are standard
metrics used in classification tasks to compare the performance of different ML models. We balance our comparison by
discussing overall patterns in classification accuracy for each configuration change while also highlighting interesting
changes in the results of individual labels. To develop the model, we use PyTorch 1.8.1 with Python 3.7 and run all
experiments on a workstation with a Xeon CPU, 54 GB RAM, and a Tesla T4 GPU.

To answer RQ 3, we first conduct a manual inspection of mappings of some samples to analyze and draw insights into
our approach to finely localize privacy behaviors. Next, to answer the two sub-research questions, we select 20 random
samples from the test set of all labels, use our script to localize privacy behaviors in them, i.e., map the AST paths with
the highest attention weights to the source code, and highlight them.

To qualitatively evaluate fine-grained localization in RQ3.1, we asked six software professionals at our university to
write privacy statements for each sample, explaining how the personal information is being used and why. To investigate
any differences in the statements written when the samples are localized versus when they are not, we divided the
six annotators (i.e., software professionals), into two groups based on their experience. Annotators in Group #1 (i.e.,
Annotators #1, #2, and #3), have more than four years of software development experience and two years of experience
in privacy research. Whereas Group #2 annotators have about two years of software development experience and

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

approximately one year of experience in privacy research. Each group was given 20 samples, of which only 10 were
finely localized. Moreover, the samples that were localized for Group #1 were not localized for Group #2, resulting in
privacy statements for the same sample that were written with and without localization.

Apart from writing privacy statements, we also asked each annotator if and how the localization helped, and the
time it took them to write each statement. We compare privacy statements and the time taken between localized and
non-localized samples of similar length for each annotator as well as between the two groups for the same samples.
These comparisons help us understand how fine-grained localization affects annotators individually, as well as among
different populations (i.e., professionals with little privacy experience vs. those with more experience).

In RQ 3.2, we evaluated the accuracy of fine-grained localization by using the same 20 samples from RQ 3.1, all of
which were finely localized. We then asked annotators in Group #1 who are privacy experts to evaluate if the highlighted
statements implement privacy behaviors by providing a binary response (‘yes’/‘no’) for each highlighted statement.
Since each sample consists of three methods (see Section 3), we evaluated a total of 60 methods where 230 of their
statements were highlighted. To measure the inter-rater agreement among the annotators we used Krripendorff’s Alpha*
and Fleiss’s Kappa®.

6 Results

In this section, we report our results and answer our research questions. Table 2 shows the quantitative results for RQ 1
and RQ 2, which includes the baseline results [15] in the first column (Baseline). We show the confusion matrices
for RQ 2 in Appendix 10 - Figures 9 and 10. For RQ 3, we first discuss automated fine-grained localization with one
representative code sample shown in Figure 4, and its weighted AST paths in Figure 5. We, then, discuss dis/advantages
of our approach in helping software professionals write privacy statements with a representative sample in Fig. 6
(additional examples are in Figure 14-15 in Appendix 13). Lastly, we report the accuracy of our approach for RQ 3.2
(examples shown in Figures 16 and 17 in Appendix 14).

6.1 RQ 1: Optimal Configurations

As stated in Section 5, to answer sub-research questions, we make incremental changes to the configuration starting
with the baseline model. Overall, we find an attention-based model with tokenization of non-terminal nodes helps
significantly improve the performance. Between LSTM and Bi-LSTM layers, the difference is insignificant when we
use fewer paths (say 100), but as we increase this number (to say, 300), Bi-LSTM provides better results. 300 paths are
an optimal choice to represent each code sample, and 100 paths to represent each hop.

6.1.1 RQ 1.1: Tokenization of Non-Terminal Nodes

The results for RQ 1.1 (Exp 1:L_100 column in Table 2) indicate that by tokenizing non-terminal nodes (and using
attention), we noticeably increase the accuracy for most labels. We observe that accuracy increases by ~5% on average
for Practice and Purpose labels with the F-1 score also increasing for most labels. For some labels, the increase
in accuracy is more significant; for example with Processing_1_Hop and Advertisement_1_Hop, the accuracy
increases by 12% and 15%, respectively. These improvements in the scores can be attributed to the increase in the
syntactic structural information of a code sample, which is what non-terminal nodes represent.

For example, a code sample ‘Processing’ personal information, say location, executes several operations ranging
from comparing accuracy of location providers to calculating distance to the user’s address. The syntactic structural
information of these operations is captured by the tokenized non-terminal nodes, and when provided to the model,
it can help predict Processing with better accuracy. Additionally, attention helps the model learn which structures
contribute to Processing and which ones do not. To test the efficacy of attention, we ran an experiment in which we
tokenized non-terminal nodes and trained using the baseline model (i.e., without attention) [15]). In this experiment, we
noticed an average accuracy of 59.85% and 54.40% for Practice and Purpose labels, which are 7% and 20% lower
than the baseline models (i.e., Baseline column in Table 2). This noticeable decrease in the performance indicates the
significance of attention, especially, with tokenized non-terminal nodes.

Interestingly, we found a noticeable decrease in F-1 scores for Sharing in Exp 1:L_100. This decrease is most likely
due to an information overload of syntactic structures. Since ‘Sharing’ often occurs with calls to third-party libraries
or third-party libraries calling permission-requiring APIs [15], such information is embedded in the identifiers of source
code, i.e., the terminal nodes of AST paths.

*https://www.statisticshowto.com/krippendorffs-alpha/
*https://www.statisticshowto.com/fleiss-kappa/

10

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

%02 L6 N %ve Lo L9060 %97 S8 | %708 | %LL0S | %98°8L | %iTeL | %9008 | %1508 | %T8'8L | %6S6L | %806L | %tS 6L | %08'LL | %SESL | Say |

%SO 8L | WOS'LL | WIT'LL | %STIL | %SO8L | %OS'LL | %619L | %O0SL | BLOVL | WSLEL | DLI'EL | %0OSTL doH ¢
%00°SL | %O0°SL | WBS6'SL | %STIL | %TO6IL | %OS'LL | %OSLL | %OS'LL | %S6'SL | %BSTIL | %Y1'69 | %08 89 doH T
WBO6TCL | BSTIL | %6T 89 | %OS'LY | %61'9L | %O00°SL | BLUESL | %OSTL | %9SEL | WBSTIL | BISEL | %OSTL doy 1
MkNQNQ
%6€98 | %YO9L | WIT'OL | BICOL | %6L69 | %6L69 | BLOTL | BICOL | BTV VL | WSETIL | %ICIL | BICOL | BLOYL | %E]OL doH ¢
- 1 %6E98 | BYOOL | BISYL | %TOTL | BLSTL | BILLY | %9989 | %61°LY | %OT'0OL | %6L69 | %IE69 | BILLY | %SIOSL | %ESOL doH T
- - L %6€98 | %YO9L | %OT0L | BIL69 | Bl IL | %EROL | %9089 | %ETY | %9S°S9 | BILLY | %ITOL | BIEOL | %SY'OL | %8619 doH |
sonudpuy
WBOL LS | BY1TS | WIS SY | %BOI'88 | %SET8 | BILSS | %6T Y8 | %0698 | BLOGL | %BE6'EY | %60TY | BILSY | %IV08 | %IL 6L doy ¢
- - WYLT8 | %6 6L | BEOG'EY | WIV' 8L | %ECE] | %0908 | %TSY8 | BLULL | %YLT8 | %0908 %S8 %08 | BLS 8L doH T
- - BECE] | WITEY | %IE98 | %808 | %TSVY | %6TH8 | %0698 | %19°C8 | BIL'SY | %8]08 | %CSH8 | %96°CL | %¥TOL doy |
NENEN%.@&N«»%«\
eV 98 | %bY9°S8 doH ¢
- - %00°68 | %0E'88 BbYE68 | %EYSY %9€°68 | B6S'LY | WL698 doH T
- - %S6°'68 | %6868 | WL 6S | BEI6Y | %TY 68 | %EI68 | %3168 | %HEY'8Y %6868 | %6888 | %06°S8 doy 1
Lnpuonyoun,y
asodung
[%6ew6 %6 | %97c8 | %9¢csL [%sr'69 [wster [9Lrs9 [%ve1L [%8269 [wire [%1989 [%6e'1L [%0689 [%sL1L [%v8'19 [%0219 | Bay |
Y8 YL | BYEVL | WOYTL | %8I EL | %ELTL | %YEVL | %EREL | BYEVL | BO6TL | WBILTL | %00 SL | %00°SL | %66°CL | %0069 doy ¢
%T8'88 | %Y SL | BOO'SL | Wy’ OL | %8069 | %8I CL | %8I EL | %BITTL | WILTIL | WCIYIL | WLETL | %L889 | %1669 doH T
%91°88 | %SLOL | BILTL | %6€69 | %6E0L | BITTL | BEOEL | %LIOL | BSOTL | %TSTL | BILTL %0599 doH |
SYI0
%9S18 | %OOYL | %O8'SL | BOSEL | %S6'IL | %O0TL | %OSSL | BOSEL | BYIIL | %OSTL | BTOLL | %STTL %STY9 doH ¢
BLYOS | BOSEL | BEVIL | BSTTL | BSTIL | BOSTIL | BEOIL | BSTTL | BLULL | %OOTL | %689L | %0STL %SLY9 doH ¢
BOT6L | BOSTL | BELTL | BOSIL | BEG'SL | BOOIL | BOVEL | BSLIL | BEGTL | BSL69 | %68FL | %OSOL do 1
SU1SS2204
[%2E06 [\%In 16| %9¢LL | %TEYO %ET'8Y %6189 %6189 BIL'LY %ETYY | BSS'LL | %60TL doH ¢
- - | %68°SL | %8S 9 %L6'LY %£6'99 %SL'89 %BLT 69 BIT99 | BOEEL | %OI'LI doH ¢
- - L %OT'LL | %T0°€9 %L9°99 %L9°99 BIL LY L6 LY B1Y99 | %C869 | %0OI1°S9 doH |
Suriyg
DLV | DS EL | BEYLL | WEU'EL | BTEIL | B8EEL | %99SL | %ESEL | DTCEIL | WESEL | WCEIL | BIEVL | %60'IL doy ¢
- - WLV | BI8VL | WLOEOL | WL EL | WOV SL | %8V VL | %99SL | %SEEL | %99°SL | WESIL | WYeVvL | %EOEL | %V 89 doH T
- S L BCI69 | BLETL | %V6'IL | BYeEVL | BIOTL | %8I EL | %TI'69 | BLETL | BLOOL | %EO'EL | %IV TL | %0O0'SL | %8S VL | %6E 0L doH |
3u1102]]0)
2011004
1] ooV 4] ooV 4] ooV 4] ooV 4] oov 4] oov 4] ooy 4] ooy
1opoouq pesH-NINN | 00€ 1d 9 dxd 00z 1 :G dxq 001 1g v dxg 00€1 :€ dxg 0071 :zdxg 001—1:1dxg aurpaseq 1seeg
"A1039180 JRY] UI SJOse)ep [[e I0J 9100S 93eIoAe 9} Smoys K10391e0
O3 JO pUL oY} J8 MOI Y “9%+(6 U910 ‘906-08 : ‘908-0L : “9%0L-09 : 9509-0G P23 91008 9Y) JO FurI AY) SAIOUIP [[9 Y} JO I0[0D Y],

'S[Ie1op 10§ | S[qE], 99§ IudwLIadxa oy ur pasn syied LSV JO Jquinu dy) 18 00EI00TI001,, PUB ‘SIOKB] INLST-IE 10§ 1€, ‘SIOKB] NLST JO 98N 9J0udp 03 T, SN IM
"UOTIUSYIE SN PUE SOPOU [BUTULIS}-UOU SZIU0) ‘durfaseq ay) 3deoxa sjuawtiadxa [[y g pue | sOY 10§ PeIonpuod JuawiadXas Yoes 10§ $9I00S - pue AovInddy g d[qel,

11

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

By increasing syntactic structural information (via tokenizing non-terminal nodes), the identifier information present in
nodes decreases disproportionately, making it difficult for the model to predict this label. This is also evident by the
inverse classification performance between Processing and Sharing labels, i.e., when Processing is better predicted
(Exp 1:L_100) with tokenized non-terminal nodes, Sharing is not and vice versa (Baseline). As noted in the baseline,
Sharing is often implemented in the second and third hops [15]. Since we use 100 paths to represent 2 or 3 hops, it can
result in an incomplete representation which may not capture relevant paths to identify Sharing.

Overall, we found an increase in the performance for most cases; thus, for all subsequent experiments, we tokenize
non-terminal nodes (and include attention).

6.1.2 RQ 1.2: LSTM vs. Bi-LSTM Layers

In comparison to Exp 1:L_100, in Exp 4:Bi_100, we did not observe an increase in the scores when we used Bi-LSTM
layers (see Table 2). The average accuracy for Practice and Purpose labels are 71.34% and 79.21% which are similar to
those for LSTM layers (71.75% and 79.54%, Exp 1:L_100). In both experiments 1 and 4, we used 100 AST paths.
These results suggest that an additional backward encoding of AST paths is not very significant, especially when the
number of paths is small (i.e., 100).

However, with a larger number of AST paths, say 200 or 300, Bi-LTSM could potentially improve the scores. We
inspect this assumption in RQ 1.3 when we experiment with both LSTM and Bi-LSTM models.

6.1.3 RQ 1.3: Number of AST Paths

Overall, we find that with a smaller number of paths (100), LSTM predicts labels with higher accuracy while with a
larger number of paths (300), Bi-LSTM performs better. When we use the LSTM layer (i.e., Exp 1:L_100, Exp 2:L_200,
and Exp 3:L_300), we notice minimal changes in performance between 100, 200, and 300 AST paths as shown in Table
2. The average accuracy for Practice labels are 71.75%, 71.39%, and 72.27% and for Purpose are 79.54%, 79.59%, and
80.51% across these experiments. These scores differ within the range of ~1% which can be attributed to the number
of actual paths in a code sample.

We computed the average number of AST paths in each individual hop and found that the first hop consists of 80
paths, and the second and third hops consist of ~100 paths each. Thus, when we extract, say, 300 paths from a 1_Hop
code sample, more than half of the paths are null paths (i.e., only padding). However, when we extract the same
number of paths from a 3_Hop code sample, where most paths are not null, we observe a slight increase in the scores.
For example, in Exp 3:L_300, where we extract 300 paths, Collecting_3_Hop has an accuracy of 75.66% whereas
Collecting_1_Hop has an accuracy of 72.37% which matches with our assumption regarding the percentage of null
paths in each dataset.

On the other hand, for Bi-LSTM layers, we notice that with a higher number of paths, there is an overall increase in
scores. The average accuracy scores for Practice are 71.34%, 72.45%, and 75.36% and for Purpose are 79.21%, 80.77%,
and 85.26%, as shown in Table 2 (i.e., Exp 4:Bi_100, Exp 5:Bi_200, and Exp 6:Bi_300). As noted in Section 6.1.2,
with only 100 AST paths, the backward encoding of AST paths provides an insignificant increase to the classification
scores. However, as we increase the number of paths from 100 to 200 and 300, we observe that this additional encoding
noticeably improves the scores. This is also evident based on the increasing differences in accuracy between LSTM
and Bi-LSTM layers. For example, the difference between LSTM and Bi-LSTM layers when using 100 AST paths
(i.e., Exp 1:L_100 vs. Exp 4:Bi_100) for Practice labels is less than 1%. However, when we increase the number of
paths to 300, this difference is 3% with a much larger F-1 score increase of 12% (i.e., Exp 3:L_300 vs. Exp 6:Bi_300).
We observe a similar but more conspicuous trend with Purpose labels, where the accuracy and F-1 score differences
between LSTM and Bi-LSTM layers with 300 paths are ~5% and ~10%, respectively. Similar to the LSTM layer’s
case, using 300 paths for 3_Hop datasets provides better accuracy. These findings suggest that to represent each code
sample, 300 paths is the optimal choice, where each hop contributes to 100 paths. Since each hop on average consists of
100 paths, this number makes sense.

To summarize the results from RQ 1.1-1.3, we find that the optimal configurations are to: tokenize non-terminal nodes
in AST paths when using an attention-based model; use LSTM layers for fewer paths (100) and Bi-LSTM layers when
having a greater number of paths (300); and to represent a sample with 100 paths for each method in the sample. We
leverage these findings for our multi-head encoder model with attention, where we tokenize each non-terminal node in
an AST path. In each encoder head, we use LSTM layers, because each head inputs 100 paths for a single hop.

12

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

6.2 RQ 2: Classification Accuracy

The Multi-Head Encoder column of Table 2 shows that our model classifies labels with significantly better accuracy than
other models. The confusion matrices in Appendix 10 - Figures 9 and 10 also demonstrate the unbiased performance of
our model for each label.

We first compare the quantitative scores of our multi-head encoder model with the closest model configuration (Exp
3:L_300). Both models use LSTM layers and an attention module. In Experiment 3, we used 300 AST paths to represent
each code sample which is the same number of paths used for the multi-head encoder model (100 AST paths from each
hop). The key difference between the two models is their architecture. The average accuracy scores for Practice and
Purpose categories in Exp 3:L_300 are 72.27% and 80.51%, which are ~22% and ~17% lower than that of Multi-Head
Encoder. This improvement in accuracy is also evident when we compare scores with the Baseline, where the increase
in average scores for Practice and Purpose are ~27% and ~22%, respectively.

These significant improvements in the scores can be attributed to the architectural aspects of the model and the optimal
configurations. The three encoder heads encode each hop separately, creating better representations and semantically
separating them. This is evident from the results for Sharing, for which our model provides a ~20% increase in
accuracy than the closest comparison model (Exp 3:L_300). This is because we use 100 AST paths each to represent
second and third hops, which ensures that we capture paths that implement ‘Sharing’, such as calls to third-party
libraries. This was not possible in the baseline approach as noted in RQ 1.1. Furthermore, in each head, the attention
module needs to attend over only 100 AST paths which makes it easier for the module to focus on identifiers (which
embed the calls to third-party libraries). This is despite the tokenization of non-terminal nodes, which we noted was the
probable cause of a decrease in the accuracy for predicting Sharing label in RQ 1.1. Lastly, each head in the multi-head
encoder model uses LSTM layers which effectively encode 100 AST paths. Contrarily, in the closest comparison model,
the LSTM layers are required to encode 300 paths which is not an optimal configuration. Even if we switch layers in
the comparison model to Bi-LSTM, which encodes 300 paths (Exp 6:Bi_300), the results are not nearly as good as the
multi-head encoder model.

We also observe that our multi-head encoder model accurately predicts the negative label, as demonstrated by the near
diagonal matrices shown in Appendix 10, indicating that it predicts without bias towards the positive class. Similarly,
our model provides ~30% improvement with Analytics label which achieves low classification scores for every
other configuration from Exp 1:L_100 - Exp 6:Bi_300. Similar to Sharing, Analytics samples also have third-party
libraries calling permission-requiring APIs to access personal information, often in the second and third hops. To
identify this label, identifier information is necessary. We find that these code samples are often obfuscated, primarily to
preserve their methodology for analytics. This obfuscation makes it especially challenging for other models to predict
this label. However, with individual attention for each hop, attending over 100 paths, it becomes easier to identify
third-party library calls to permission-requiring APIs.

To summarize, representing each hop as an individual method, preserves semantic differences between three hops and
results in significant improvements in the accuracy of the multi-head encoder model. The classification scores of this
model are higher than any other model configuration (i.e. Exp 1:L_100 - Exp 6:Bi_300).

6.3 RQ 3: Localization Efficacy

Our results show that while there is room for improvement, fine-grained localization is efficacious; that is, it helps in
writing privacy statements and can accurately identify statements that implement privacy behaviors.

6.3.1 Initial Analysis

We first examine if our automated approach identifies statements that implement privacy behaviors. Our manual
evaluation indicates that our approach succeeds in identifying privacy statements. For instance, consider Figures 4
and 5 which show an enumerated and highlighted code sample and its AST paths with the highest attention. The code
sample gets the location of the user in the first hop (Figure 4 (a)), calculates its distance to another point (in the second
hop (Figure 4 (b)), and then shows this distance, which is to a real-estate property, in the third hop (Figure 4 (c)). When
we look at the localized statements in the first hop, we observe that most attention is given to statements that get the
user’s location (i.e., statements 1, 4, and 5 in Figure 4 (a)), which is the core logic of the first hop and it is implemented
in those highlighted statements. These statements are localized based on the terminal nodes of AST paths 1, 4, and 5
shown in Figure 5 (a). Our script does not map AST path 6 shown in the same Figure, since it is obfuscated. Based on
the non-terminal nodes ‘IfStatement’ and ‘ReturnStatement’, we can approximate the location to lines 8 or 15.
However, it cannot be localized with reasonable certainty; hence, we do not map this path.

13

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

For the second hop, focus is given to statements that get the location and calculate its distance to the user’s location
(i.e., statements 4 and 5 in Figure 4 (b)). Similar to the first hop, the terminal nodes in AST paths 4 and 5 (Figure 5
(b)) are used to map them. For path 4, the two ‘MethodInvocation’ non-terminal nodes are also used to verify the
mapping. This example shows the efficacy of tokenizing non-terminal nodes. Note that in statement 4, the first hop
‘getCurrentLocation’ is highlighted which links the first and second hops together.

Lastly, in the third hop, most statements focus on developing a view to show details of the property (i.e., statements 1, 2,
and 4). In statement 4, the second hop ‘getDistancetoPlace’ is also called, which links the second and third hops
together. Method names summarize a method’s behavior [45, 15] and can be helpful in the comprehension of privacy
behaviors. However, this may not always be the case. Consider the method names of the first, second, and third hop in
Figure 4. The method names in the first two hops are relevant and provide context about how location is being used,
i.e., getting the current location and the distance to the current location which are both highlighted in the source code.
But, the method name for the third hop does not provide any insight regarding its privacy behavior, which is, thus, not
localized in this sample. This suggests that our approach can detect when method names can be helpful and when they
cannot (i.e., not localize them). Statements 1, 2, and 4 are spread out, but our approach precisely identifies them without
selecting other statements in the same block that are irrelevant. This supports our design decision of statement-level
localization.

Overall, these results indicate that using attention, we can localize statements that implement privacy behaviors across
three hops as well as the calls to previous hops which is helpful for tracing the flow of information, especially in
larger code segments. These results suggest that by mapping highly weighted AST paths, we can provide fine-grained
localization of privacy behaviors. Figures 12 and 13 in Appendix 12 show another example of AST paths to source
code mappings.

6.3.2 RQ 3.1: Analyzing Privacy Statements

We qualitatively evaluate the dis/advantages of fine-grained localization in helping software professionals write privacy
statements. As stated in Section 5.2, we ask six software professionals (i.e., annotators) that are divided into two groups
to write simple privacy statements for 20 code samples. These two groups are given the same samples, however, the
samples that are localized for one group are not localized for the other group and vice-versa. The results of this study
indicate that fine-grained localization helps annotators easily identify relevant code statements that are necessary for
writing privacy statements and saves them the effort and time required to read every line of code to understand the
privacy behaviors of the code. The localized statements help annotators with comparatively less experience in software
development or privacy to create privacy statements and save up to 74% of time.

For each annotator, we discovered negligible differences between the quality of privacy statements for localized and
non-localized samples of similar lengths. For example, Annotator #1 wrote “We collect device information such
as MAC address, Model, OS version, and Serial number.” for a localized sample and “We check if your device is
connected to a network before loading events.” for a non-localized one. Both of these statements are written with
equal accuracy and detail about the privacy behavior of the code, regardless of fine-grained localization. This level
of similarity between statements can be attributed to the annotators’ knowledge of privacy, which helps them identify
privacy behaviors of the code samples even without localization highlights.

We also compared the time taken by annotators to write privacy statements and discovered that while localization
highlights saved time for both groups, Group #2 annotators benefited the most by saving up to 74% of their time.
Annotator # 4’s average time to write a privacy statement, for instance, dropped from 9.7 minutes to 5.5 minutes with
localized samples because the highlighted lines helped them by “drawing [their] attention to privacy-related lines.” For
Group #1 annotators, we found that localization highlights were more helpful in some scenarios than others. Consider
the localization highlights in Figure 6. Annotator #2 noted that localization highlights were most helpful since they
accurately highlighted “incidental variable assignments and logic syntax” in a larger code snippet. These highlights
reduced the time and effort required for reading and comprehending privacy behaviors. On the other hand, fine-grained
localization was less helpful when there were too many or too few highlights. For example, in Appendix 13 - Figure 14
almost all statements of a small method are highlighted, rendering localization ineffective. Similarly, a single highlight
of a larger method in Appendix 13 - Figure 15 did not reduce the number of lines required to read and understand
privacy behaviors.

We also compared the time taken by annotators to write privacy statements and discovered that while localization
highlights saved time for both groups, Group #2 annotators benefited the most by saving up to 74% of their time.
Annotator # 4’s average time to write a privacy statement, for instance, dropped from 9.7 minutes to 5.5 minutes with
localized samples because the highlighted lines helped them by “drawing [their] attention to privacy-related lines.” For
Group #1 annotators, we found that localization highlights were more helpful in some scenarios than others. Consider

14

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

Ipublic android.location.Location getcur‘rentLocation()Jo

{
android.location.Location v2;
if (this.currentBestLocation null)| {
android.location.Location v@ = this.locationManager.getLastknownLocation(gps);
o android.location.Location vl = this.locationManager.getLastKnownLocation(network);
if ((vl == null) || (!this.isBetterLocation(vi, v@))) {
V2 = ve;
} else {
v2 = vl;
}
} else {

v2 = this.currentBestLocation;

}

return v2;

(a) First hop

sublic static float getbistanceToplace(string ps, string p7)| ()@
float vl = ©;

if (Kcom.biznessapps.utils.StringUtils.isNotEmpty(p6)) &&
com.biznessapps.utils.StringUtils.isNotEmpty(p7))) {

o android.location.Location v@ = com.biznessapps.api.AppCore.getInstance().
getLocationFinder().

getCurrentLocation();

Path: (*public’, ['Modifier', 'MethodDeclaration’, 'SimpleName'], 'get|current|location’) |

~0—0

ath: ('v', ['SimpleName', 'Assignment', 'FieldAccess', 'SimpleName'], ‘:urrenc\basulocarian')|

ath: ('androidlocationlocation’, ['QualifiedName', 'SimpleType', 'MethodDeclaration', 'Block’,
‘IfStatement', 'InfixExpression', 'FieldAccess', 'SimpleName'],
‘current|best|location')

Path: ('get|last|known|location’, ['SimpleName', ‘MethodInvocation', 'SimpleName'], ‘network')

~O—0,

Path: ('androidlocationlocation’, ['QualifiedName', 'SimpleType', 'VariableDeclarationStatement',
*VariableDeclarati ', 'MethodInvocation', ‘FieldA ', si "1

*location|manager')

if (ve != null) {
android.location.Location v3_1 = new android.location.Llocation();
try {
v3_1.setlLatitude(Double.parseDouble(p6));

H

H

v3_1.setlongitude(Double.parseDouble(p7))
} catch (Exception v2) { v2.printStackTrace()

e vl = ve anceTo(v3_1);

}

return vi;

(b) Second hop

public android.view.View getView(int p9, android.view.View ple, android.view.ViewGroup pl1)

{

realEstateApp.realEstateUtil.RealEstatel istAdapterViewHolder vi_o;
if (p1@ != null) {

v1_@ = ((realEstateApp.realEstateUtil.RealEstateListAdapterViewHolder) pl@.
} else {
ple
v1_@ = new realEstateApp.realEstateUtil.RealEstatelistAdapterViewHolder(®);
v1_0.addressView = ((android.widget.TextView) |

0)s

this.inflater.inflate(this.layoutItenResourceld, ©);

p10. findViewById(realEstateApp.layout.Rid.address_view));

vi_o.priceview = ((android.widget.TextView)
pl16. findViewByTd(realEstateApp.layout.Rid.price_view));
v1_e.bedroonView = ((android.widget.TextView)
p10.findViewById(realEstateApp.layout.Rid.bedroom_view));

Vv1_6.showerView = ((android.widget.TextView)
p1@.findViewById(realEstateApp.layout.Rid.shower_view));

V1_6.distanceview = ((android.widget.TextView)
p10. findviewById(realEstateApp. layout.Rid.distance_view));

v1_0.imageView = ((android.widget.InageView)

p10. findviewById(realEstateApp. layout.Rid. inage_view));
p10.setTag(vl_6);

}

realEstateApp.realEstateUtil.RealEstatelten v2_1 = ((realEstateApp.realEstateutil.Realsscatertem)|

Item(p9));

this.

if (v2_1 1= null) {
v1_0.addressView. setText(v2_1.getAddressi());

v1_6.priceView. setText(new StringBuilder().append(

v2_1.

tPriceUnit()).append(v2_1.getPrice()).

v1_0.bedroomView. setText(v2_1.getBeds());

Vv1_0.showerView. setText(v2_1.getBaths());
o Vv1_e.distanceView.setText(

realEstateApp.utils.CommonUtils

realEstateApp.utils.CommonUtils.getDistanceToPlace(
de(),

v2_1.getlongitude()),

O));

realEstateApp. utils. CommonUtils.overrideInageColon(v2_1.g

v2_1.getlati;

D1

tItemTextColor(),

v1_0.showerView.getCon rawables()[0]);

realEstateApp.utils.google. caching. ImageFetcher v4_3 = v2_1.getItenTextColor();

String v5 7 = new android.widget.TextView[5];

vs_7[0] = vi_e.addressView;
vs_7[1] = vi_e.priceView;
vs_7[2]
v5_7[3] = vi_e.showerView;
v5_7[4] = vi_o.distanceView;
this

v1_e.bedroonView;

tTe

ColorToView(va_3, v5_7);
}

this. imageFetcher . loadRoundedBackground(v2_1.getInage(), v1_0.imageView);

return p1e; }

(c) Third hop

Figure 4: Code snippets and localized statements.

Path: ('v', [SimpleName', 'VariableDeclarationfragment', 'VariableDeclarationStatement',
'Block', 'IfStatement', 'Block', 'ReturnStatement', 'SimpleName'],

—er—®

v')

ath: ['\x@0, \x@0, \x8e, \x00, \x08, \x00, \x00, \x00, \x08, \x00, \xee']

=

(a) First hop

ath: ('get|distance|to|place', ['SimpleName', 'MethodDeclaration', 'Block', 'IfStatement',
'Block', 'IfStatement', 'InfixExpression', 'SimpleName'],

—0

)
Path: ('get|distance|to|place’, ['SimpleName’, 'MethodDeclaration', 'Block’,
‘VariableDeclarationStatement', 'VariableDeclarationFragment', 'Numberliteral'],
‘or)

-0

ath: ('is|not|empty', ['SimpleName', 'MethodInvocation', 'ParenthesizedExpression’,
‘InfixExpression’, 'ParenthesizedExpression', 'MethodInvocation', ‘SimpleName'],
‘is|not|empty")

Path: ('v', ['SimpleName', 'VariableDeclarationFragment', 'MethodInvocation',
‘MethodInvocation', 'SimpleName'],
'get|location|finder')

Path: ('v', ['SimpleName', 'Assignment', 'MethodInvocation', 'SimpleName'], 'distance|to') |

(b) Second hop

?Path: (‘v|address|view', ['QualifiedName’, 'MethodInvocation', 'SimpleName'], ‘set|text’)|

qpath: ('v|shower|view', ['QualifiedName', 'MethodInvocation', 'SimpleName'], 'set|text') |

Path: ('combiznessappsreal |estatereal |estate|item’, ['QualifiedName', 'SimpleType', 'CastExpression’,
‘MethodInvocation', ‘SimpleName'],
‘get|item')

Path: ('get|latitude', ['SimpleName', ‘MethodInvocation', 'MethodInvocation', 'MethodInvocation', 'SimpleName'], 'v')

Path: ('combiznessappsutilscommon|utils', ['QualifiedName', 'MethodInvocation', 'MethodInvocation',
‘MethodInvocation', 'SimpleName'],
Wy

Path: ('combiznessappsreal|estatereal|estate|item', ['QualifiedName', 'SimpleType', 'CastExpression’
‘MethodInvocation', 'SimpleName'],
or)

(c) Third hop

Figure 5: Most attended AST paths in each hop.

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

the localization highlights in Figure 6. Annotator #2 noted that localization highlights were most helpful since they
accurately highlighted “incidental variable assignments and logic syntax” in a larger code snippet. These highlights
reduced the time and effort required for reading and comprehending privacy behaviors. On the other hand, fine-grained
localization was less helpful when there were too many or too few highlights. For example, in Appendix 13 - Figure 14
almost all statements of a small method are highlighted, rendering localization ineffective. Similarly, a single highlight
of a larger method in Appendix 13 - Figure 15 did not reduce the number of lines required to read and understand
privacy behaviors.

Lastly, we compared the privacy statements between groups for the same samples and discovered Group #1’s statements
were either equally good or of better quality compared to those of Group #2, regardless of localization highlights. For
example, Annotator #3 wrote “Opens google maps to the devices current location and returns lat/lon when the user
clicks” without localization whereas Annotator #5 wrote “We use your location to show your position graphically on
Google Maps.” with localization for the same sample. While the two statements are comparable, the one written by
Annotator #3 has more detail which currently lacks in the statement written by Annotator #5. These differences in
quality and detail can be attributed to the differences in annotators’ experiences with privacy and software development.
These findings also suggest that developers with limited or no knowledge about privacy could write privacy statements
that are comparable to those written by privacy experts when they are provided with localized code samples. However,
a more rigorous evaluation will be required to confirm this conclusion, which we plan to do in the future.

(G TS STaTic String blandroid- content. Context 52 T @)
String vo_1;
String v@_13 = ((android.net.ConnectivityManager) p2.getSystemservice

(connectivity));
if (ve_13 == null) {
ve_1 = el100;
} else {
String v@_14 = v@_13.getActiveNetworkInfo();
if ((v@_14 == null) || (!v@_14.isConnected())) {
ve_1 = el82;
} else {
if (ve_14.getTypeName().compareTo(WIFI) != 0) {
ve_1 = e103;
} else {
if (p2.checkCalling0rSelfPermission(android.permission.
ACCESS_WIFI_STATE) != @) {

Vo_1 = elo5;
} else { o
VO_1 = Integer.tostring(android.net.wifi.wifiManager.
calculateSignallevel(((android.net.wifi.
WifiManager) p2.getSystemService(wifi)).

getConnectionInfo().getRssi(), 5));
by L ¥ 3

return vo_1;}

Figure 6: Appropriate highlights for larger code sample was most helpful for all annotators.

6.3.3 RQ 3.2: Localization Accuracy

For quantitative evaluation of localization, as mentioned in Section 5.2, we asked the annotators in Group #1 to label
230 fine-grained localized (highlighted) statements across 20 code samples. These annotators gave a binary label to
each localized statement based on whether it implements privacy behavior or not.

Annotator #1 found 121 highlights out of 230 (~52%}) as statements that implement privacy behaviors, while Annotator
#2 found 148 highlights (~65%) and Annotator #3 found 174 statements (~75%) as relevant. The inter-annotator
agreement scores, i.e., Fleiss’s Kappa and Krippendorft’s Alpha, among all three annotators were 0.362 for both scores,
which for Kappa is considered as “Fair Agreement”. Although our Kappa value is slightly low, other works [59, 7, 60]
have also achieved low agreement scores since even experts often disagree [61, 7]. We computed the percentages
of agreements among annotators for a more thorough analysis. We found that in the best case (where at least one
annotator responded ‘yes’), 85% of highlighted statements were relevant, and in the average case (where the majority of
annotators responded ‘yes’), 65% of highlighted statements were relevant. This distribution of agreements indicates
that all annotators found that the majority of highlighted statements implemented privacy behaviors, where these
statements are spread across multiple hops. Their annotations also indicate that our approach has some noise and there
are highlighted statements that do not implement privacy behaviors. Thus, there is some scope for improvement in the
process of localizing privacy code statements.

We further analyzed the annotation results by inspecting individual cases where annotators disagreed/agreed. We found
that, in many cases, annotators agreed when code snippets explicitly used personal information, such as location or email,
but disagreed on their subjective view of which statements actually constituted as ‘implementing privacy behaviors’.
Consider the code snippet in Figure 16, which initializes a SensorManager to access the devices’ accelerometer.
While Annotators #2 and #3 annotated with ‘yes’ for statements 2,3, and 4, Annotator #1 disagreed. For statement
1, Annotator #3 responded with a ‘yes’ but Annotators #1 and #2 disagreed since these statements provide implicit
access to a personal accelerometer (which may not be considered as personal information by some). These demonstrate

16

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

the subjectivity of privacy that exists even between experts which is reported in literature [61, 7]. Although the code
snippet in Figure 16 does not explicitly consume the sensor information, the method name and the parameters used can
help understand how and why the information is used.

[public boolean checkLocationAvailibility(boolean p6, boolean p7, Runnable p8){ Io
boolean vi = 0;
[android. location.Location v@ = this.mLocationManager.getlastKnownLocation(this.mActivity);]
(>33 (vo_I= null) {
if ((1p6) || (this.mLocationManager.isGpsEnabled(this.mActivity))) {]
if ((1p7) [| ((this.mLocationManager.isGpsEnabled(this.mActivity) '= 1)
|| (gps.equals(ve.getProvider())))) {

o

this. recommendGps () ;

}
} else {
if (!this.mLocationManager.isGpsEnabled(this.mActivity)) {
this.demandGPSActivation();
} else {
this.waitForLocation(p8, p7);
}
}
return vi; }

Figure 7: Statements explicitly using personal information (e.g., 2-5), implement privacy behaviors.

Consider another example in Appendix 14 - Figure 17, which shows a code snippet from an advertisement library using
personal information. Here, all three annotators found the use of ‘traditional® personal information as implementing
privacy behaviors and completely agreed on the highlights. Specifically, they agreed that highlights 4-6 and 8-11 localize
privacy behaviors. This example demonstrates that our approach identifies the use of sensitive personal information that
is not captured by API calls. For example, date of birth, gender, income, and ethnicity are highly sensitive personal
information that are not provided via API calls. It is to be noted that the code samples in the dataset are notr annotated
with any localization information and therefore, all predictions about privacy-relevant statements are learned by the
model on its own. Hence, our approach is able to identity such privacy behaviors and can help developers provide much
granular insight into their implementations.

7 Limitations

We plan to address the following limitations in future.

Automated mapping: One challenge of our automated approach is to provide an exact match of every path with a
statement in the source code. Since a path is the traversal of a sub-tree, it may contain terminal and non-terminal nodes
of different statements, making it difficult to provide a one-to-one mapping. In some cases, code samples and thus, the
terminal nodes are obfuscated which makes mapping challenging. Thus, our script sometimes maps one path to several
statements (i.e., one-to-many), since it only matches terminal nodes. To mitigate this challenge, we manually verify and
correct the automated mappings based on non-terminal nodes (such as using IfExpression tokens). If we cannot map
the paths with reasonable certainty, we do not map them at all. In the future, we will revise our model architecture
to provide source code tokens along with the Abstract Syntax Tree (not paths of AST) which will allow the model
to map terminal and non-terminal nodes to source code tokens thereby eliminating the need for separate scripts for
mapping. While our approach does not always map obfuscated nodes, developers who will use our work will have
access to unobfuscated code.

Detecting privacy statements: Our approach accurately identifies privacy-relevant statements in source code in a
majority of cases; however, there are instances, when less relevant paths were attended. For example, in the second hop
of Figure 4 (b), the model focuses on statements that check whether input parameters are empty (i.e., statements 3 in
the figure). The model also attends null paths (i.e., padding), such as statement 7 in Figure 5 (a)). As with any machine
learning approach, there are false positive predictions. In the future, we plan to minimize false positive localization by
using our revised model which will utilize the contextual information from source code tokens and syntactic information
from the AST for localization. We will also use attention masks to allow model to differentiate between padding and
true AST paths.

Evaluation: We evaluated our work with 20 samples which may seem trivial, but the ADPAc dataset is prepared
from 15,000 real Android applications [15]. Moreover, we extracted the 20 samples from the test sets of ADPAc
dataset which guaranteed that they were not seen during the training phase, thereby evaluating our work on real-world
application code. Furthermore, in our qualitative evaluation, we selected annotators with some experience in software
development and privacy. However, they are not the authors of the source code they evaluated, nor had access to the
entire app’s source code which may have impacted accuracy for some samples.

17

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

8 Conclusions and Future Work

In this paper, we described a novel approach to provide fine-grained localization of privacy behaviors in an application’s
source code for generating privacy labels and helping developers write privacy statements. We developed a novel
multi-head encoder model that creates individual representations of multiple methods and then uses attention to identify
relevant statements in those representations. To identify optimal model configurations, we first conducted six sets of
experiments and then trained our model using the optimal configurations. Next, we used our model to predict Privacy
Action labels. Our quantitative results indicate that our unique architecture significantly outperforms the baseline, and
achieves high classification accuracy scores of 91.41% - 98.45% in predicting Privacy Action labels. We also evaluated
our fine-grained localization approach manually as well as with six software professionals. Manual evaluation results
indicate that our automated approach correctly highlights privacy-relevant statements in most cases, but may need
manual curation to remove the false positives mappings. We plan to address this challenge in the future and we discuss
this in in Section 7.

Our qualitative evaluation demonstrates that our approach helps professionals easily identify relevant code statements
that are necessary for writing privacy statements and saves them the effort and time required to read every line of code
to understand their privacy behaviors. The time required is reduced up to 74% for professionals with lower expertise.
We also evaluated the accuracy of our approach with three of the six professionals with more expertise and found
that our model identifies relevant statements that implement privacy behaviors in the majority of the cases. Based on
these results, our approach provides a mechanism for fine-grained localization of privacy behaviors. In this work, we
only demonstrated the feasibility of fine-grained localization with six software professionals at our university. In the
future, we will conduct a user study with several Android application developers to evaluate our localization approach’s
efficacy, and also perform a comparative analysis on the quality and timing of the privacy statements creation.

Data Availability

Our datasets, models, and training scripts are available on the GitHub page of our project at https://github. com/
PERC-Lab/Fine_Grained_Localization

Acknowledgements

We would like to thank Sam Morse, Mac Creamer, Max Prybylo, Adam Green, Sean Radel, Zack Delile, and Theo
Brucker for their contributions to this work.

References

[1] European Union. The EU General Data Protection Regulation (GDPR). https://gdpr-info.eu/, 2021
(accessed Oct 1st, 2021).

[2] Government of California. California Consumer Privacy Act (CCPA). https://oag.ca.gov/privacy/ccpa,
2021 (accessed Oct 1st, 2021).

[3] Google Play. Developer content policy, 2022 (accessed June 6th, 2022).
[4] App privacy details - app store, 2022. Note accessed 30th September 2022.
[5] Suzanne Frey. Get more information about your apps in google play, Apr 2022 (access.

[6] Patrick Gage Kelley, Joanna Bresee, Lorrie Faith Cranor, and Robert W Reeder. A" nutrition label" for privacy. In
Proceedings of the 5th Symposium on Usable Privacy and Security, pages 1-12, 2009.
[7] Tianshi Li, Kayla Reiman, Yuvraj Agarwal, Lorrie Faith Cranor, and Jason I. Hong. Understanding challenges

for developers to create accurate privacy nutrition labels. In CHI Conference on Human Factors in Computing
Systems, page 1-24, New Orleans LA USA, Apr 2022. ACM.

[8] Sai Teja Peddinti, Igor Bilogrevic, Nina Taft, Martin Pelikan, Ulfar Erlingsson, Pauline Anthonysamy, and Giles
Hogben. Reducing permission requests in mobile apps. In Proceedings of the Internet Measurement Conference,
pages 259-266, 2019.

[9] Irit Hadar, Tomer Hasson, Oshrat Ayalon, Eran Toch, Michael Birnhack, Sofia Sherman, and Arod Balissa. Privacy
by designers: software developers’ privacy mindset. Empirical Software Engineering, 23(1):259-289, 2018.

[10] EU GDPR. General Data Protection Regulation. https://gdpr.eu/fines/.

18

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

[11] Le Yu, Tao Zhang, Xiapu Luo, Lei Xue, and Henry Chang. Toward automatically generating privacy policy for
android apps. IEEE Transactions on Information Forensics and Security, 12(4):865-880, 2016.

[12] Sebastian Zimmeck, Rafael Goldstein, and David Baraka. Privacyflash pro: Automating privacy policy generation
for mobile apps. In NDSS, 2021.

[13] Tianshi Li, Elijah B Neundorfer, Yuvraj Agarwal, and Jason I Hong. Honeysuckle: Annotation-guided code
generation of in-app privacy notices. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous
Technologies, 5(3):1-27, 2021.

[14] Jack Gardner, Yuanyuan Feng, Kayla Reiman, Zhi Lin, Akshath Jain, and Norman Sadeh. Helping Mobile
Application Developers Create Accurate Privacy Labels. In 2022 IEEE European Symposium on Security and
Privacy Workshops (EuroS&PW), pages 212-230. IEEE, June 2022.

[15] Vijayanta Jain, Sanonda Datta Gupta, Sepideh Ghanavati, Sai Teja Peddinti, and Collin McMillan. Pact: Detecting
and classifying privacy behavior of android applications. In Proceedings of the 15th ACM Conference on Security
and Privacy in Wireless and Mobile Networks, pages 104—118, 2022.

[16] Vijayanta Jain, Sanonda Datta Gupta, Sepideh Ghanavati, and Sai Teja Peddinti. Prigen: Towards automated
translation of android applications’ code to privacy captions. pages 142—151, 2021.

[17] Zhuo Ma, Haoran Ge, Zhuzhu Wang, Yang Liu, and Ximeng Liu. Droidetec: Android malware detection and
malicious code localization through deep learning. arXiv preprint arXiv:2002.03594, 2020.

[18] Annamalai Narayanan, Mahinthan Chandramohan, Lihui Chen, and Yang Liu. A multi-view context-aware
approach to android malware detection and malicious code localization. Empirical Software Engineering,
23(3):1222-1274, 2018.

[19] Qing Wu, Peng Sun, Xueshu Hong, Xueling Zhu, and Bo Liu. An android malware detection and malicious code
location method based on graph neural network. In 2021 The 4th International Conference on Machine Learning
and Machine Intelligence, pages 50-56, 2021.

[20] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, L.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. In Advances in neural information processing systems, pages
5998-6008, 2017.

[21] Sarthak Jain and Byron C Wallace. Attention is not explanation. arXiv preprint arXiv:1902.10186, 2019.
[22] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv preprint arXiv:1906.03731, 2019.

[23] Xiaobing Sun and Wei Lu. Understanding attention for text classification. In Proceedings of the 58th Annual
Meeting of the Association for Computational Linguistics, pages 3418-3428, 2020.

[24] Sebastian Zimmeck, Peter Story, Daniel Smullen, Abhilasha Ravichander, Ziqi Wang, Joel Reidenberg, N Cameron
Russell, and Norman Sadeh. Maps: Scaling privacy compliance analysis to a million apps. Proceedings on
Privacy Enhancing Technologies, 2019(3):66-86, 2019.

[25] Alessandra Gorla, Ilaria Tavecchia, Florian Gross, and Andreas Zeller. Checking app behavior against app
descriptions. In Proceedings of the 36th International Conference on Software Engineering, pages 1025-1035,
2014.

[26] Xueqing Liu, Yue Leng, Wei Yang, Wenyu Wang, Chengxiang Zhai, and Tao Xie. A large-scale empirical
study on android runtime-permission rationale messages. In 2018 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 137-146. IEEE, 2018.

[27] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan, Jaspreet Bhatia, Travis D
Breaux, and Jianwei Niu. Pvdetector: a detector of privacy-policy violations for android apps. In Mobile Software
Engineering and Systems (MOBILESoft), 2016 IEEE/ACM International Conference on, pages 299-300. IEEE,
2016.

[28] Ehimare Okoyomon, Nikita Samarin, Primal Wijesekera, Amit Elazari Bar On, Narseo Vallina-Rodriguez, Irwin
Reyes, Alvaro Feal, and Serge Egelman. On the ridiculousness of notice and consent: Contradictions in app
privacy policies. 2019.

[29] Sayan Maitra, Bohyun Suh, and Sepideh Ghanavati. Privacy consistency analyzer for android applications. In
2018 IEEE 5th International Workshop on Evolving Security & Privacy Requirements Engineering (ESPRE),
pages 28-33. IEEE, 2018.

[30] Yue Xiao, Zhengyi Li, Yue Qin, Jiale Guan, Xiaolong Bai, Xiaojing Liao, and Luyi Xing. Lalaine: Measuring and
characterizing non-compliance of apple privacy labels at scale. arXiv preprint arXiv:2206.06274, 2022.

19

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

[31] Zhengyang Qu, Vaibhav Rastogi, Xinyi Zhang, Yan Chen, Tiantian Zhu, and Zhong Chen. Autocog: Measuring the
description-to-permission fidelity in android applications. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 1354-1365, 2014.

[32] Rahul Pandita, Xusheng Xiao, Wei Yang, William Enck, and Tao Xie. {WHYPER}: Towards automating risk
assessment of mobile applications. In Presented as part of the 22nd {USENIX} Security Symposium ({USENIX }
Security 13), pages 527-542, 2013.

[33] Mark Rowan and Josh Dehlinger. Encouraging privacy by design concepts with privacy policy auto-generation in
eclipse (page). In Proceedings of the 2014 Workshop on Eclipse Technology eXchange, pages 9—14, 2014.

[34] Sanae Rosen, Zhiyun Qian, and Z Morely Mao. Appprofiler: a flexible method of exposing privacy-related
behavior in android applications to end users. In Proceedings of the third ACM conference on Data and application
security and privacy, pages 221-232, 2013.

[35] Xueqing Liu, Yue Leng, Wei Yang, Chengxiang Zhai, and Tao Xie. Mining android app descriptions for permission
requirements recommendation. In 2018 IEEE 26th International Requirements Engineering Conference (RE),
pages 147-158. IEEE, 2018.

[36] Saba Arshad, Munam A Shah, Abdul Wahid, Amjad Mehmood, Houbing Song, and Hongnian Yu. Samadroid: a
novel 3-level hybrid malware detection model for android operating system. IEEE Access, 6:4321-4339, 2018.

[37] Fauzia Idrees, Muttukrishnan Rajarajan, Mauro Conti, Thomas M Chen, and Yogachandran Rahulamathavan.
Pindroid: A novel android malware detection system using ensemble learning methods. Computers & Security,
68:36-46, 2017.

[38] Suman R Tiwari and Ravi U Shukla. An android malware detection technique using optimized permission and
api with pca. In 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS),
pages 2611-2616. IEEE, 2018.

[39] Li Li, Daoyuan Li, Tegawendé F Bissyandé, Jacques Klein, Haipeng Cai, David Lo, and Yves Le Traon. On
locating malicious code in piggybacked android apps. Journal of Computer Science and Technology, 32(6):1108—
1124, 2017.

[40] Kamel Alreshedy, Dhanush Dharmaretnam, Daniel M German, Venkatesh Srinivasan, and T Aaron Gulliver. Scc:
automatic classification of code snippets. arXiv preprint arXiv:1809.07945, 2018.

[41] Shlok Gilda. Source code classification using neural networks. In 2017 14th international joint conference on
computer science and software engineering (JCSSE), pages 1-6. IEEE, 2017.

[42] Juriaan Kennedy Van Dam and Vadim Zaytsev. Software language identification with natural language classifiers.
In 2016 IEEE 23rd international conference on software analysis, evolution, and reengineering (SANER), volume 1,
pages 624-628. IEEE, 2016.

[43] Siyuan Jiang, Ameer Armaly, and Collin McMillan. Automatically generating commit messages from diffs using
neural machine translation. In Proceedings of the 32nd IEEE/ACM International Conference on Automated
Software Engineering, pages 135-146. IEEE Press, 2017.

[44] Pablo Loyola, Edison Marrese-Taylor, and Yutaka Matsuo. A neural architecture for generating natural language
descriptions from source code changes. In Proceedings of the 55th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers), pages 287-292, 2017.

[45] Uri Alon, Shaked Brody, Omer Levy, and Eran Yahav. code2seq: Generating sequences from structured
representations of code. International Conference on Learning Representations, 2019.

[46] Xing Hu, Ge Li, Xin Xia, David Lo, and Zhi Jin. Deep code comment generation. In Proceedings of the 26th
Conference on Program Comprehension, pages 200-210. ACM, 2018.

[47] Haque Sakib, LeClair Alexander, Wu Lingfei, and McMillan Collin. Improved automatic summarization of
subroutines via attention to file context. International Conference on Mining Software Repositories, 2020.

[48] Minghao Chen and Xiaojun Wan. Neural comment generation for source code with auxiliary code classification
task. In 2019 26th Asia-Pacific Software Engineering Conference (APSEC), pages 522-529. IEEE, 2019.

[49] Yuhong Nan, Min Yang, Zhemin Yang, Shunfan Zhou, Guofei Gu, and XiaoFeng Wang. Uipicker: User-input
privacy identification in mobile applications. In 24th {USENIX} Security Symposium ({USENIX} Security 15),
pages 993-1008, 2015.

[50] Benjamin Andow, Akhil Acharya, Dengfeng Li, William Enck, Kapil Singh, and Tao Xie. Uiref: analysis of
sensitive user inputs in android applications. In Proceedings of the 10th ACM Conference on Security and Privacy
in Wireless and Mobile Networks, pages 23-34, 2017.

20

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

[51] Jianjun Huang, Zhichun Li, Xusheng Xiao, Zhenyu Wu, Kangjie Lu, Xiangyu Zhang, and Guofei Jiang. {SUPOR}:
Precise and scalable sensitive user input detection for android apps. In 24th {USENIX} Security Symposium
({USENIX} Security 15), pages 977-992, 2015.

[52] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align
and translate. arXiv preprint arXiv:1409.0473, 2014.

[53] Wei Yang, Yuqing Xie, Aileen Lin, Xingyu Li, Luchen Tan, Kun Xiong, Ming Li, and Jimmy Lin. End-to-end
open-domain question answering with bertserini. arXiv preprint arXiv:1902.01718, 2019.

[54] Yang Liu. Fine-tune bert for extractive summarization. arXiv preprint arXiv:1903.10318, 2019.

[55] Masaharu Yoshioka, Yasuhiro Aoki, and Youta Suzuki. Bert-based ensemble methods with data augmentation for
legal textual entailment in coliee statute law task. In Proceedings of the Eighteenth International Conference on
Artificial Intelligence and Law, pages 278-284, 2021.

[56] Vladimir Kovalenko, Egor Bogomolov, Timofey Bryksin, and Alberto Bacchelli. Pathminer: a library for mining
of path-based representations of code. In Proceedings of the 16th International Conference on Mining Software
Repositories, pages 13—17. IEEE Press, 2019.

[57] Radim Rehurek. Gensim. https://radimrehurek.com/gensim/index.html, 2021 (accessed May 1st, 2021.

[58] Xing Hu, Ge Li, Xin Xia, David Lo, Shuai Lu, and Zhi Jin. Summarizing source code with transferred api
knowledge. In Proceedings of the 27th International Joint Conference on Artificial Intelligence, pages 2269-2275.
AAAI Press, 2018.

[59] Hamza Harkous, Sai Teja Peddinti, Rishabh Khandelwal, Animesh Srivastava, and Nina Taft. Hark: A Deep
Learning System for Navigating Privacy Feedback at Scale. In 2022 IEEE Symposium on Security and Privacy
(SP), pages 2469-2486. IEEE, May 2022.

[60] Rebecca Balebako, Abigail Marsh, Jialiu Lin, Jason I Hong, and Lorrie Faith Cranor. The privacy and security
behaviors of smartphone app developers. 2014.

[61] Rebecca Balebako, Richard Shay, and Lorrie Faith Cranor. Is Your Inseam a Biometric? A Case Study on the Role
of Usability Studies in Developing Public Policy. In Proceedings 2014 Workshop on Usable Security. Internet
Society, 2014.

21

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

9 Abstract Syntax Tree and AST Paths

Source code can be represented as abstract syntax trees (AST) to show their syntactic structure. Figures 8§ (a) and (b)
show a code segment and its partial AST. The leaves of an AST, which are identifiers such as variables and names,
are called terminal nodes (rectangular nodes in Figure 8 (b)). The non-leaves, which represent the syntactic structures
such as if-statements and loops, are called non-terminal nodes [45] (oval nodes in Figure 8 (b)). Traversing from one
terminal node to another is referred to as an AST path. Figure 8 (c) shows a list of AST paths traversed from the partial
AST in Figure 8 (b). Since an AST contains useful syntactic information about a code snippet, recent work in code
summarization [47, 45, 46] use AST paths to represent code. ADPAc contains the AST paths of code samples and their
labels which we use in this work.

)) Assign Expr: assi
private android.location.Location foo(String p3){ o

android. location.Location v@ = 0;

if(!android.text.TextUtils.isEmpty(p3)){

|v0 = this.bar.getLastKnownLocation(p3); |
b \ 0o
return ve;

} getLastKnownLocation

(a) Code Sample (b) Abstract Syntax Tree (AST)

o e (3) o

|v0 AssignExpr|MethodCallExpr| getLastKnownLocation|
v@ AssignExpr|MethodCallExpr| p3
getlLastKnownLocation MethodCallExpr| p3

(c) AST Paths

Figure 8: (a) A Code Snippet, (b) Its Partial AST, and (c) Corresponding AST Paths. The Partial AST in (b) Represents
the Syntactic Information of the Code Segment Highlighted in Green in (a)

22

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

10 RQ 1.2: Confusion Matrices

o 63 8
1 1 80
] 1 [} 1 [} 1] 1
Predicted label Predicted label Predicted label Predicted label
(a) Collecting (b) Sharing (c) Processing (d) Others

Figure 9: Confusion Matrices for Purpose labels. 0 is positive label and 1 is negative label in each dataset. The x-axis
shows the predicted label and the y-axis shows the true label.

o 2 o 102 i 0 44 al
1 3 70 1 3 1 0
[} : [} 1

1 []
Predicted label Predicted label Predicted label Predicted label

(a) Functionality (b) Advertisement (c) Analytics (d) Others

bel

Figure 10: Confusion Matrices for Purpose labels. O is positive label and 1 is negative label in each dataset. The x-axis
shows the predicted label and the y-axis shows the true label.

11 RQ 1.3: Attention Maps

(a) First Hop (b) Second Hop (c) Third Hop

Figure 11: Attention Maps of Individual Hops for Selected Code Sample.

23

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

1 public boolean isGpsEnabled(android.content.Context p3)

o L= [ERTIO)

L PR T — e ———r— |

} else {

(a) First Hop
15 [postic vootemn crecrioeatiom by Gortean 7e, besten 7, momavie 7o) |

14 TooTean Vi = o
15 ndroid. location. Location ve = this.mL ounLocation(this.mactivity); |

16 T = ID T

1 i ((ps) || (this.nt iscpsenabled(this.mactivity))) {

1 [Fen T TTSGpsEnabled(this mACtIVIty) 1= 1) 1 (gps eauals(ve.getrrovider O]
1 [T

) el (s

} {
O

on();

bled(this.mActivity)) {]

This. demandepsact

25 } else {

scation(ps, p7);

2 return v1; }

(b) Second Hop

puslic void onsubmit(java.util.List pld, java.util.List pis, boolean pls) { 9 o
T 1 d

com. tripuolf. helpers.sscsearch vo_1;

com. tripuolf.database.or.Resultset v4 = this.thisse.getoatabaseManager().

s getResy tripuolf.models . serversidechapterFilter);

} catch (exception v8) {
android.util.Log.e(tripiolf, sorting failed, ve);
. return;
)
0 if (this.this$e.mParentChapter hildviewld() != 1000000103
helpers.SscSearch(this.this$e.getapplicationContext(),
this.this$e.mParentChapter, this.this$e.ge!

{

1 Vo_1 = new com. tripuol

anguage(), v, p1d, pis);
} else {

4 ve_1 = new con.tripwolf.helpers.SscSearchFavoritePlaces(this. thisso. g

icationContext(),
this. thisso.rParentChapter,

g this. this$o.getLangua vé, pla, p1s);

" if (this.thisso. g

a3 long v11 = ((long) (this.this$o.nGuide

com. tripuolf.databsse.or. SelectionArgurents v10_1 = new com.tripwolf.database.or

Boolean(2131165245)) {
tTripId() + 1300000020));

52 v10_1.2dd(1. Toc. 20f(v11), com.tripuolf.database.or.SelectionArgunents$operator. NOT_EQUALS);

3 ve_l.a

nTd, Long.va

onargurent(vie_1);

if ((Ive_1.re
(new com. tripuo]

O 1l

ocation. LocationRequireddialog (com. tripwol .DataController. gat Tnstance(
.0

tv(e, o,

com. tripwolf.activities

agnents

ServersideChapterFragnents28i(this,
2 ve_1)))

com.tripuolf.activities. fragnents. ServersidechapterfragnentssearchTask vi_23 =

eu com. tripuolf.activit: agnents. ServarsidechapterFragrentssearchTask(this. thisse, @);

on. tripuolf
14(8] = vo_1;
a8 vi_z3.

elpers.Sscsearch(] v2_14 = new com.tripwolf.helpers.sscsearch(1];

_14);

(¢) Third Hop

Figure 12: Code Snippets and Localized Statements of
Selected Code Sample.

12 RQ 3: Localization Feasibility —
Additional Examples

"VariableDeclarationFragment', 'VariableDeclarationStatement',
*MethodInvocation®, ‘SimpleName'],

@[t (v, ['simpleame’,
‘Block®, 'ExpressionStatement®,

‘get | location|manager")

O [Fatr: v, ["SimpleNiane’, "Assignment’, Methodinvocation', 'SimpleName’], 'gps')]

"VariableDeclarationStatement', 'Block ', 'IfStatement'
"Assignment’, 'NumberLiteral'],

Path: ('boolean', | Primitivelype ,
"Block’, 'ExpressionStatement’,
oty

'VariableDeclarationFragment', 'VariableDeclarationStatement',

*SimpleName'],

OFath: (v, ['simpleName’,
"Block’, 'ReturnStatement’,
ety

Path: ['\x@0, \x60, \x@0, \x60, \x60, \x08, \x00, \x80, \x60, \x@0, \xee'] I

(a) First Hop

olPath: ("boolean’, ['PrimitiveType', 'MethodDeclaration’, 'SimpleName'], ‘:mk\1o<ation\zvanimnty')|

Path: (@', ['NumberLiteral', 'VariableDeclarationFragment', 'VariableDeclarationStatement',
Block®, 'VariableDeclarationstatement’, 'VariableDeclarationFragment', ‘MethodInvocation®, 'SimpleName'],
‘get|last|known|location')

Path: (‘'gps’, ['SimpleName', ‘MethodInvocation', ‘MethodInvocation', ‘SimpleName'l], 'v')|

Path: ('is|gps|enabled', ['SimpleName', 'MethodInvocation', 'PrefixExpression', 'IfStatement’,
o ‘Block', 'ExpressionStatement', 'MethodInvocation', ‘SimpleName'],
‘wait|for|location')

Path: ('is|gps|enabled’, ['SimpleName', 'MethodDeclaration’, 'TypeDeclaration', 'MethodDeclaration’,
*SingleVariableDeclaration’, 'SimpleName'],
)

(b) Second Hop

'SingleVariableDeclaration', 'MethodDeclaration',
'MethodDeclaration®, 'Modifier'],

Path: ('boolean’, ['PrimitiveType',
'TypeDeclaration',

"public')

(> Jpm

(on|submit’, ['SimpleName', 'MethodDeclaration', 'SingleVariableDeclaration', 'PrimitiveType'], 'boolean')

9 Path: ('boolean’, ['PrimitiveType', 'SingleVariableDeclaration', 'MethodDeclaration', 'TypeDeclaration',
"MethodDeclaration’, 'PrimitiveType'],

'void')

(4] [Path: ['\x00, \x@@, \x00, \x80, \x@0, \x00, \x@0, \x00, \x00, \x00, \x0@'] |

(c) Third Hop

Figure 13: Most Attended AST Paths in Each Hop for
Selected Code Sample.

24

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

13 RQ 3.1: Analyzing Privacy Statements — Examples

63@

64 java.util.ArrayList v2_1 = new java.util.ArrayList();
65 Long v1 = this.getSyncConfig() .getUserld();

66 @ [java.util.Iterator vo = p9.iterator();|

67 while (v@.hasNext()) {

68 © [[con.zerista.api.dto.UserdT0 v3_1 = ((com.zerista.api.dto.UserDT0) v@.next())
69 O (3_1.3d = viTongvatue (D] ¥

70 | vZ_l.addAll(th15.par5r:(v3~1));I

71 o

72 }

73 return v2_1;

74}

Figure 14: Too many highlights for small code samples rendered localization ineffective.

rivate void checkInButtonTapped() {
if (this.menuCheckInIsEnabled) {
long v3 = this.getSharedPreferences(Coupon, @).getLong(new StringBuilder
().append(this.saveKeyId).append(date).toString(), 0);
java.util.Date v7_1 = new java.util.Date();
java.util.Date v5_1 = new java.util.Date();
if (v3 1= 0) {
v7_1 = new java.util.Date(v3);
}
int v2 = ((int) (((v5_1l.getTime() - v7_1l.getTime()) / 3600000) % 24))
String v8_1 = ((String) android.text.format.DateFormat.format(yyyy/MM/
dd hh:mm:ss, this.endDate));
if (v5_l.getTime() <= this.endDate.getTime()) {
L XN J
} else {
com.gbiki.util.DialogUtil.showAlert(
this, 2131165235, new StringBuilder().append(this.
getResources().getString(2131165389)).
append().append(((String) android.text.format.

DateFormat.
format(yyyy/MM/dd hh:mm:ss, this.startDate))).append
(=).append(v8_1).toString());
}
} else {

com.gbiki.util.DialogUtil.showAlert(this, 2131165235, new
StringBuilder().append(this.getResources().getString
(2131165388)) .
append().append(v8_1).toString
0);

}

return;

Figure 15: Too few highlights for large code samples do not help.

25

Jain et al. - Towards Fine-Grained Localization of Privacy Behaviors

14 RQ 3.2: Accuracy of Localization — Examples

2
3

w

~

1 g@[public FooApp2dxAccelerometer(android. content.Context p3J{

this.mContext = p3;

(2]

-]

this.mSensorManager = ((android.hardware.SensorManager) this.mContext.
getSystemService(sensor));
is.mAccelerometer = this.mSensorManager.getDefaultSensor(1];
this.mNaturalOrientation = ((android.view.WindowManager)
this.mContext.getSystemService(window)).
getDefaultDisplay().getOrientation();

return;

Figure 16: Disagreement analysis: code snippet 1

declared_synchronized void updateInfo(com.adLib.adLibAdDelegate p2){

try {
qthis.filwevicelnfo(); I
@)this.setsiteld(p2.siteld()); |
©|[this.setTestMode(p2. testMode()); |
this.setPostalCode(p2.postalCode());
olthis .setAreaCode(p2.areaCode());
this.setDateOfBirth(p2.date0fBir
@|this. setGender(p2.gender());
this.setKeywords (p2.keywords()); |
this.setSearchString(p2.searchString());
ethis.setlncome(gz. income()); I
elthis - setEducation(pZ. education() q |

g.thls.setEthnlclty(pZ.ethnlclty()); |
this.setAge(p2.age()); |
@this. setInterests(p2.interests()); |
this.setLocationInquiryAllowed(pZ.isLocationInquiryAllowed())]
} catch (boolean v@_18) {
throw vo_18;

h());

g
if (!this.islLocationInquiryAllowed()) {
this.setlLocationDeniedByUser(1);
} else {
if (!p2.isPublisherProvidingLocation()) {
this.verifyLocationPermission();
if (!this.isLocationDeniedByUser()) {
this.switchOnLocUpdate();

¥
} else {
this.fillLocationInfo(p2.currentLocation());
}
}
return;

Figure 17: Agreement analysis: code snippet 2

26

