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A molecular assessment of the practical potential of 
DNA-based computation
Rachel E Polak1,2 and Albert J Keung1

The immense information density of DNA and its potential for 
massively parallelized computations, paired with rapidly 
expanding data production and storage needs, have fueled a 
renewed interest in DNA-based computation. Since the 
construction of the first DNA computing systems in the 1990s, 
the field has grown to encompass a diverse array of 
configurations. Simple enzymatic and hybridization reactions to 
solve small combinatorial problems transitioned to synthetic 
circuits mimicking gene regulatory networks and DNA-only 
logic circuits based on strand displacement cascades. These 
have formed the foundations of neural networks and diagnostic 
tools that aim to bring molecular computation to practical 
scales and applications. Considering these great leaps in 
system complexity as well as in the tools and technologies 
enabling them, a reassessment of the potential of such DNA 
computing systems is warranted.
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Background
The excitement motivating early DNA-based computa
tion derived from two related properties of DNA: 1) its 
immense information density and 2) the potential for 
extreme-scale parallelized computations. Yet, it also 
faced high costs, scaling challenges, and concerns over 
potential fundamental biophysical limits. In recent 
years, surging data storage and computational needs and 
concomitant energy usage have brought additional at
tention to alternative computing platforms. According to 

the International Energy Agency, data centers alone 
account for 1–1.5% of global energy use [1]. Such con
cerns, as well as advances in multiple aspects of nucleic 
acid technologies, have fueled a renewed interest in 
DNA-based technologies. Here, we succinctly review 
different classes of DNA-based computation that 
leverage nucleic acid hybridization, strand displacement, 
and enzymatic activities. We then reassess the chal
lenges of cost, scaling, and biophysical limits in the 
context of contemporary technologies and under
standings.

Computation leveraging nucleic acid 
hybridization
The first DNA computer, built in 1994 by Leonard 
Adelman, solves an instance of the Hamiltonian Path 
problem, or the ‘traveling salesman’ problem [2]. This 
well-known problem seeks a path through a directed 
graph that begins and ends at specified nodes and in
cludes each node only once (Figure 1a). DNA oligomers 
represent each node and edge within the graph, with 
edges being partially complementary to both their 
source and destination nodes. Specific assembly of these 
edges and nodes through ligation and subsequent size 
selection of product DNAs generates all paths through 
the graph that adhere to user-specified rules such as 
paths must pass through each node exactly once. This 
small-scale computation sparked a new field, including 
work that also leveraged nucleic acid assembly and hy
bridization events, including logical operations executed 
by RNA–DNA hybridization [3] or computing based on 
self-assembling DNA tiles and DNA origami [4,5].

Computation leveraging strand 
displacements
Nucleic acid hybridization extends to situations where 
multiple molecules compete for hybridization. A parti
cularly important form of this occurs in toehold-medi
ated strand displacement, where a single-stranded DNA 
molecule anneals to a complementary single-stranded 
region of an otherwise double-stranded molecule, using 
this ‘toehold’ to displace the originally hybridized strand 
and form a new double-stranded molecule (Figure 1b) 
[6]. Such reactions are relatively easily controlled 
through toehold length and sequence [7]. Seelig et al. 
first applied such strand displacement to DNA circuits 
[8], performing logic operations via ‘gates’ represented 
by double- or multistranded molecules containing ex
posed toehold regions. As an example, AND gates 

]]]] 
]]]]]]

www.sciencedirect.com Current Opinion in Biotechnology 2023, 81:102940 

http://www.sciencedirect.com/science/journal/09581669
mailto:ajkeung@ncsu.edu
https://doi.org/10.1016/j.copbio.2023.102940
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102940&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102940&domain=pdf


Figure 1  
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Molecular mechanisms underlying computation strategies (a) Nucleic acid hybridization: Combinatorial self-assembly and the Traveling Salesman 
Problem. Nodes were represented by a specified sequence with edge sequences complementary to both the 3′-end of its origin node sequence and 
the 5′-end of its destination node. Edges leading to or from 0 to 6 were complementary to the full sequence of those nodes. When combined in a one- 
pot ligation reaction, these complementary regions ligated to form strands encoding possible paths. The double-stranded sequences were then PCR- 
amplified with primers annealing to the sequences of nodes 0 and 6, satisfying the requirement that each path enters at node 0 and exits at node 6. 
These products were selected for the correct size by gel electrophoresis. To isolate paths containing every node, Adelman then used sequential 
affinity purification to pull down each node in turn and verified the correct final sequence through graduated PCR. (b) Strand displacement: 
Classification via neural network. Cascading strand displacement converts an input molecule into an intermediate strand through a weight molecule, in 
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require two input strands to be present for successful 
displacement of the output strand, while OR gates re
quire only one input. This system design became widely 
popular and formed the foundation of many modern 
systems [9–13]. Cascading strand displacement, where 
the displaced strand from one toehold reaction acts as 
the input for a subsequent toehold, also confers the 
possibility of reducing manual inputs required for com
putation [8]. 

Qian et al. implemented logic functions encoded by 
strand displacement cascades to create the first DNA- 
based neural network [10]. Nearly a decade later, Cherry 
and Qian scaled this to a ‘winner-take-all’ (WTA) clas
sifier of handwritten digits from the Modified National 
Institute of Standards and Technology database (Figure 
1b) [12]. The system takes a series of input strands re
presenting pixels of a digit, with each strand indicating 
the presence of ink in its assigned pixel. These input 
strands are compared with pixelated images of known 
digits encoded through ‘weight’ strands, and the simi
larity is computed as (i.e. physically results in) a high or 
low concentration of a weighted sum molecule. The 
WTA function is a pairwise annihilation reaction where 
competing weighted sum molecules are turned to 
‘waste’ in a 1:1 ratio by successively hybridizing to an 
‘annihilator’ molecule. This leaves only the most pre
valent weighted sum molecule having excess single- 
stranded DNA available to release a reporter molecule 
through yet another strand displacement, indicating the 
digit most similar to the input. This classifier explores 
the functionality of neural networks at an impressive 
scale, analyzing up to 100 pixels of input digits. This 
scale highlights a key challenge in constructing large 
DNA-only systems: strand complexity. Even using a 
WTA function, which involves fewer components than 
noncompetitive networks, the most intensive computa
tion in this example requires over 300 distinct DNA 
molecules. 

Computation leveraging enzymatic activities 
While deriving most of their computational capabilities 
through nucleic acid hybridization, some early DNA 
computation systems also leveraged enzymes, including 

ligases, RNAseH, and polymerase [3,14,15]. Though 
enzymatic systems were eclipsed by DNA-only systems 
for nearly two decades, especially by strand displace
ment systems, new enzymatic circuits and networks 
have been recently developed. The ‘PEN DNA toolbox’  
[16] has since become a critical tool in enzyme-driven 
computation, including an enzymatic neural network  
[17]. The PEN DNA toolbox relies on a polymerase, 
exonuclease, and nickase to build basic networks 
through which sequences are synthesized, released, and 
degraded. A single-stranded DNA molecule acts as a 
primer for a single-stranded template molecule. The 
polymerase generates the desired sequence from the 
template, and a nickase cuts the newly generated strand. 
The reaction occurs at a temperature greater than the 
melting temperature of the shorter sequences but lower 
than that of the longer template strands. Cleavage by the 
nickase thus releases the shorter primer and newly 
synthesized molecule [16]. Okumura et al. used this to 
construct neural networks that compute both simpler 
linear classification (Figure 1c) and more complex non
linear classification [17]. 

Algorithms and applications 
The highly parallelized nature of DNA computation, 
which stems from the ability to operate on all molecules 
in a solution at once, lends itself to problems requiring 
prohibitively high numbers of operations. Large combi
natorial or NP-complete problems involving exhaustive 
searches have been targeted for parallelization, as mas
sive problem spaces may be searched in parallel using 
DNA systems [18]. For example, in Adelman’s self-as
sembling computation, all oligomers hybridize to com
plementary sequences in a one-pot-style reaction [2]. An 
algorithm solving an instance of the Knight Problem 
(what are all chess board configurations of knights with 
no knight attacking another?) operates on a combina
torial library of possible solutions, eliminating all but the 
correct strands following given input parameters [3,19]. 
Perumal et al. compared a DNA-based computer with an 
electronic computer in the solving of the Subset Sum 
Problem (an established NP-complete problem), noting 
the DNA system’s linear run time compared with the 
exponential run time of the electronic system [20]. 

proportion to the initial concentration of the input. The intermediate interacts with a summation gate to produce a strand representing the weighted 
sum. This weighted sum strand participates in a pairwise annihilation reaction that performs the WTA function, in which weighted sums are compared 
with known digits, or ‘memories,’ and only the most similar remembered digit given as output. This occurs on the molecular level via 1:1 deactivation of 
distinct weighted sums through hybridization, leaving only the most prevalent weighted sum molecule active. This ‘winner’ may continue to signal 
restoration that produces an output strand and leads to fluorescence of a reporter molecule. Weight concentrations were assigned based on the color 
value (darkness of writing) of each of 100 pixels within the image. Values of input symbols were compared with the values of representative images of 
digits through the network, and the most similar digit reported as output. (c) Enzymatic activities: Classification via neural network. The PEN DNA 
toolbox mechanism is used to generate a short output strand upon addition of the input strands, implementing positive weight, while also producing a 
drain molecule that hybridizes and deactivates the output, acting as the negative weight. These weights were tuned using additional template strands 
that competed for the inputs but produced a nonfunctional molecule. Interaction of the output strand and drain strand performed the thresholding, as 
output molecules that overcome the drain mechanism remain available for an amplification step using an additional template strand. This generates 
more output strands to interact with the reporter molecule to generate fluorescent signal. Created with Biorender.com.   
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The advent of DNA-based neural networks has also 
enabled construction of increasingly complex DNA 
classifiers. Networks built of layered DNA-based circuits 
that can operate simultaneously may prove another ef
fective use of parallel molecular computing and increase 
the speed of pattern recognition. Diagnostic DNA clas
sifiers have already been trained to recognize mRNA 
expression patterns characteristic of cancer [21] or of 
bacterial and viral infection [22] with a reaction time as 
short as 20 min. Such classifiers have also been applied to 
image analysis, most notably in Cherry and Qian’s ana
lysis of handwritten digits [12]. 

Modern advances through hybrid systems, 
modularity, and materials 
The above are salient examples reflecting common 
themes within DNA computing; however, a much wider 
array of systems exists. Hybrid systems such as the logic 
circuits designed by Song et al. simplified strand dis
placement logic circuits by using single-stranded gates 
with a strand-displacing polymerase in place of addi
tional DNA molecules [23]. Other endeavors to
ward minimizing the number of unique strands required 
for each computation include the use of switching cir
cuits [24] and convolutional neural networks [25]. Phy
sical constraints can also alter computation speed and 
complexity, and implementations of modularity and in
terfaces with inorganic phases and materials are begin
ning to address them. Okumura et al. distributed their 
computational network among emulsion droplets that 
could be exposed to varied inputs, allowing distinct, 
highly parallelized reactions using identical base com
ponents [17]. Chatterjee et al. explored modularity by 
constructing strand displacement circuits tethered to an 
origami scaffold, using spatial proximity to control in
teracting species [26]. This allowed the reuse of mole
cules throughout the system, minimizing complexity 
while also speeding computation by minimizing dis
tances traveled by interacting elements. Engelen et al. 
demonstrated the use of a supramolecular polymer for a 
similar purpose, in place of DNA origami scaffolding  
[27]. Such innovations have continued to increase com
puting power and speed while minimizing components 
required. 

Perceived bottlenecks and feasibility 
Cost 
One of the most prominent concerns regarding DNA- 
based computation at scale is the cost of DNA synthesis. 
For example, Faulhammer et al.’s 1024-molecule com
binatorial library of ∼250 base pair strands [3] would cost 
over $4000 from leading DNA synthesis companies, 
while Cherry and Qian’s network remembering three 
100-bit patterns required 305 molecules of less than 40 
base pairs [12] and would cost ∼$1000 [28]. Though 
these prices remain prohibitively high, there is high 

demand for increasingly affordable DNA synthesis 
technologies from the biological sciences, biopharma, 
and bioengineering including DNA-based data storage  
[29–31]. This has spurred substantial innovation. Enzy
matic methods, including terminal deoxynucleotidyl 
transferase, show promise and have been predicted to 
lower cost by 1–2 orders of magnitude [32]. Yet, this 
alone would be unlikely to support economically feasible 
DNA-based computation. Fortunately, for DNA-based 
computation, synthesis of completely arbitrary and fully 
custom DNA sequences may not be necessary, and ra
ther the combinatorial assembly of a fixed set of DNA 
blocks into longer strands can achieve theoretical costs 
rivaling if not bettering the cost of equivalent amounts of 
contemporary electronic or tape-based storage media. 
This is an approach already recognized and actively 
being advanced by academic and industrial groups  
[33–36]. In addition, there are efforts to demonstrate the 
ability to reuse strands without needing to synthesize de 
novo for each distinct computation [5,37]. 

DNA sequencing is of perhaps lesser current concern 
given output readouts could be substantially smaller 
than the computational substrates, and the cost of DNA 
sequencing has been dropping faster than that of DNA 
synthesis [38]. Furthermore, many computing systems 
do not require sequencing for readout, and may use 
electromagnetic outputs [11,12,17,24]. Therefore, while 
cost presents a significant current obstacle for both DNA 
synthesis and sequencing, there is reason to be opti
mistic that these barriers will be overcome sufficiently to 
support practical applications of DNA-based computa
tion at scale. 

Computation speeds 
If costs are presumed solvable, a greater challenge may 
be latency. The high information density of DNA and its 
massively parallel architecture is countered by the in
herently slower biophysical and chemical processes and 
events, as well as of physical sample handling steps, 
compared with semiconductor-based computation. This 
trade-off will inform the practicality of such systems, and 
perhaps present targets for research and development. 
We can begin at the smallest spatial scale and consider 
the speed of enzymatic reactions, hybridization events, 
and strand displacements. 

The kinetics of enzymatic reactions can be used to as
sess their potential contribution to the latency of DNA 
computation. Enzymatic cleavage involves a broad range 
of rate constants, for example, from 7.1 s−1 for RNAse H  
[39] to 1.4 × 103 s−1 for RNAse A [40]. Polymerases add 
to latency as a function of polymer length and poly
merization speed, with polymerization rates spanning 
roughly 1–1000 nucleotides (nt) per second, or roughly 
three orders of magnitude slower than restriction en
donucleases [41,42]. Enzymatic systems would slow 
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further if the substrates they act on were in super
saturating amounts. Thus, in optimal conditions, one 
might estimate speeds on the orders of 1–103 computa
tions per second per molecule, scaling linearly with 
system size. This would be 6 orders of magnitude slower 
than conventional silicon processors. However, when 
considering the parallelizability and density of DNA, 
and assuming an aqueous solubility of ∼1018 DNA mo
lecules per mL (for 200-nt molecules), one might 
achieve 1018–1021 computations per second per mL, over 
9 orders of magnitude faster than modern gigahertz 
processors of similar volume. 

Intra- and intermolecular hybridization of DNA mole
cules is important in nearly all forms of computation. 
Rate constants for hairpin formation range from sub
milliseconds to tens of milliseconds and increase with 
hairpin length. For example, the rate constant of closure 
of DNA hairpins with ∼5–9-nt long loops is approxi
mately 1 × 106 s−1 [43]. Hybridization of ∼20-nt single- 
stranded DNAs to each other ranges from 1 × 106 to 
1 × 107 s−1mol−1 [44]. These rates apply only to intra- and 
intermolecular associations, while more complex strand 
displacements would involve longer timescales. In
dividual intermolecular and hairpin-based events could 
operate roughly 2–3 orders of magnitude slower than a 
single processor in personal computers, respectively 
(megahertz compared with gigahertz, respectively). 
Again, assuming 200-nt long DNA with an aqueous so
lubility of ∼1018 DNA molecules per mL, one might 
achieve 1024–1025 computations per second per mL. 
Therefore, enzymatic and intra- and intermolecular in
teraction rate constants, considering the density and 

hence computational parallelizability of DNA, suggest 
considerable net speed advantages over electronic 
systems. 

At the next length scale, molecules must first find each 
other in space to react or hybridize. Without mixing, 
molecules diffuse with diffusion coefficients on the 
order of 1–1000 µm2 s−1 depending on their size, from 
small 20-nt single-stranded DNA or RNA to large 40-kb 
+ plasmids [45–47], respectively. For molecules with the 
largest diffusion coefficients, this would suggest a root 
mean square displacement of only up to 1 mm over 
15 hours (< r2 >  = qiDt, where qi = 6, D is the diffusion 
coefficient, and t is time). Therefore, macromolecular 
mixing either through convection or oscillating electric 
fields will be necessary. Macromolecular mixing rates 
may be limited by direct negative impacts on the sta
bility of the DNA and may also scale nonlinearly with 
total volume size, molecular density, fluid viscosity, and 
vessel geometry. Relatedly, the copy number of unique 
sequences will likely be important as subsets of mole
cules must interact within a reasonable timeframe. In 
addition, as molecule length increases, entanglement 
effects may affect mixing as well as diffusion. Despite 
these considerations, there is room for optimism. While 
substantial work will be needed to advance our under
standing and control of mixing specifically in nucleic 
acid systems, assuming mixing times of even several 
hours (∼10−5 s−1) could be practical. With parallel com
putation in 1 mL of fluid, one might still achieve an 
impressive ∼1013 computations per second (10−5 s−1 

mixing * 1018 s−1 mL−1 enzymatic reaction). This re
presents just one physical manipulation of many 

Figure 2  
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Schematic of computational configurations. Molecular interactions such as hybridization and enzymatic reaction can provide foundational limitations 
of a system, but macroscale factors such as speed of diffusion must also be considered. System configuration plays the most important role in 
computation capability, as requirements for specific design, incubation times, and physical manipulations may greatly extend latencies of 
computation. Created with BioRender.com.   
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required in most nucleic acid-based computational sys
tems to date. For example, pipetting, mixing, purifica
tions, and sequencing add to computational latency. Yet, 
even for these processes that slow computational speed 
by another one or two orders of magnitude, the net 
theoretical computation speed possible within 1 mL of 
fluid may still exceed silicon-based processors. 

While we have focused on computational speed and 
scalability, molecular computation may also offer savings 
in energy usage. Experimental comparisons of electronic 
and DNA computing systems by Perumal et al. found 
energy usage by the DNA system to be approximately 
one order of magnitude lower than electronic systems  
[20]. The chemical energy equivalent of 1 W is ap
proximately 7 × 1022 molecules of ATP. If each molecule 
of ATP supports a computation or operation, then mo
lecular computing can perform 7 × 1022 computations per 
Watt [48]. Supercomputers, by comparison, can perform 
1 × 1010 operations per Watt [49]. By this admittedly 
optimistic estimation, DNA could yield an improvement 
in energy usage of approximately 12 orders of magni
tude, providing substantial room for practical energy 
inefficiencies not yet determined in the design of DNA 
computers (Figure 2). 

Conclusions 
In summary, the biophysical and dynamic characteristics 
of relevant molecular processes suggest nucleic acid 
computation could offer advantages over silicon-based 
processors for certain applications, with the key property 
being the incredible information density of DNA con
ferring highly parallel and volumetrically dense compu
tation. Continued advances in our fundamental 
understanding and engineering capabilities of molecular 
through macroscale properties will be important. 
However, although the properties of basic reactions 
underlying each step of a molecular computation are 
important considerations and provide a general guide to 
creating practically scaled systems, the key barriers ap
pear to be macroscale: those of operational complexity/ 
scalability and system reusability. A concerted focus by 
the field on these challenges of system design and 
configuration may yield breakthroughs. New designs 
must continue to reduce or modularize components 
while increasing computational power and must mini
mize slow physical operations. Indeed, recent advances 
and the consistent creativity of the field over the past 
three decades suggest reasonable hope. 
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