ELSEVIER

Available online at www.sciencedirect.com

ScienceDirect

Current Opinion in

Biotechnology

A molecular assessment of the practical potential of

DNA-based computation

Rachel E Polak '** and Albert J Keung'

The immense information density of DNA and its potential for
massively parallelized computations, paired with rapidly
expanding data production and storage needs, have fueled a
renewed interest in DNA-based computation. Since the
construction of the first DNA computing systems in the 1990s,
the field has grown to encompass a diverse array of
configurations. Simple enzymatic and hybridization reactions to
solve small combinatorial problems transitioned to synthetic
circuits mimicking gene regulatory networks and DNA-only
logic circuits based on strand displacement cascades. These
have formed the foundations of neural networks and diagnostic
tools that aim to bring molecular computation to practical
scales and applications. Considering these great leaps in
system complexity as well as in the tools and technologies
enabling them, a reassessment of the potential of such DNA
computing systems is warranted.
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Background

The excitement motivating early DNA-based computa-
tion derived from two related properties of DNA: 1) its
immense information density and 2) the potential for
extreme-scale parallelized computations. Yet, it also
faced high costs, scaling challenges, and concerns over
potential fundamental biophysical limits. In recent
years, surging data storage and computational needs and
concomitant energy usage have brought additional at-
tention to alternative computing platforms. According to

Check for
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the International Energy Agency, data centers alone
account for 1-1.5% of global energy use [1]. Such con-
cerns, as well as advances in multiple aspects of nucleic
acid technologies, have fueled a renewed interest in
DNA-based technologies. Here, we succinctly review
different classes of DNA-based computation that
leverage nucleic acid hybridization, strand displacement,
and enzymatic activitiecs. We then reassess the chal-
lenges of cost, scaling, and biophysical limits in the
context of contemporary technologies and under-
standings.

Computation leveraging nucleic acid
hybridization

The first DNA computer, built in 1994 by Leonard
Adelman, solves an instance of the Hamiltonian Path
problem, or the ‘traveling salesman’ problem [2]. This
well-known problem seeks a path through a directed
graph that begins and ends at specified nodes and in-
cludes each node only once (Figure 1a). DNA oligomers
represent each node and edge within the graph, with
edges being partially complementary to both their
source and destination nodes. Specific assembly of these
edges and nodes through ligation and subsequent size
selection of product DNAs generates all paths through
the graph that adhere to user-specified rules such as
paths must pass through each node exactly once. This
small-scale computation sparked a new field, including
work that also leveraged nucleic acid assembly and hy-
bridization events, including logical operations executed
by RNA-DNA hybridization [3] or computing based on
self-assembling DNA tiles and DNA origami [4,5].

Computation leveraging strand
displacements

Nucleic acid hybridization extends to situations where
multiple molecules compete for hybridization. A parti-
cularly important form of this occurs in toehold-medi-
ated strand displacement, where a single-stranded DNA
molecule anneals to a complementary single-stranded
region of an otherwise double-stranded molecule, using
this ‘toehold’ to displace the originally hybridized strand
and form a new double-stranded molecule (Figure 1b)
[6]. Such reactions are relatively easily controlled
through toechold length and sequence [7]. Seelig et al.
first applied such strand displacement to DNA circuits
[8], performing logic operations via ‘gates’ represented
by double- or multistranded molecules containing ex-
posed toehold regions. As an example, AND gates

www.sciencedirect.com

Current Opinion in Biotechnology 2023, 81:102940


http://www.sciencedirect.com/science/journal/09581669
mailto:ajkeung@ncsu.edu
https://doi.org/10.1016/j.copbio.2023.102940
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102940&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.copbio.2023.102940&domain=pdf

2 Systems Biology

Figure 1

A. Nucleic Acid Hybridization: Combinatorial Self-Assembly and the Traveling Salesman Problem
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Molecular mechanisms underlying computation strategies (a) Nucleic acid hybridization: Combinatorial self-assembly and the Traveling Salesman

Problem. Nodes were represented by a specified sequence with edge sequences complementary to both the 3’-end of its origin node sequence and
the 5’-end of its destination node. Edges leading to or from 0 to 6 were complementary to the full sequence of those nodes. When combined in a one-
pot ligation reaction, these complementary regions ligated to form strands encoding possible paths. The double-stranded sequences were then PCR-
amplified with primers annealing to the sequences of nodes 0 and 6, satisfying the requirement that each path enters at node 0 and exits at node 6.
These products were selected for the correct size by gel electrophoresis. To isolate paths containing every node, Adelman then used sequential
affinity purification to pull down each node in turn and verified the correct final sequence through graduated PCR. (b) Strand displacement:
Classification via neural network. Cascading strand displacement converts an input molecule into an intermediate strand through a weight molecule, in
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proportion to the initial concentration of the input. The intermediate interacts with a summation gate to produce a strand representing the weighted
sum. This weighted sum strand participates in a pairwise annihilation reaction that performs the WTA function, in which weighted sums are compared
with known digits, or ‘memories,” and only the most similar remembered digit given as output. This occurs on the molecular level via 1:1 deactivation of
distinct weighted sums through hybridization, leaving only the most prevalent weighted sum molecule active. This ‘winner’ may continue to signal

restoration that produces an output strand and leads to fluorescence of a reporter molecule. Weight concentrations were assigned based on the color
value (darkness of writing) of each of 100 pixels within the image. Values of input symbols were compared with the values of representative images of
digits through the network, and the most similar digit reported as output. (c) Enzymatic activities: Classification via neural network. The PEN DNA

toolbox mechanism is used to generate a short output strand upon addition of the input strands, implementing positive weight, while also producing a
drain molecule that hybridizes and deactivates the output, acting as the negative weight. These weights were tuned using additional template strands
that competed for the inputs but produced a nonfunctional molecule. Interaction of the output strand and drain strand performed the thresholding, as
output molecules that overcome the drain mechanism remain available for an amplification step using an additional template strand. This generates

more output strands to interact with the reporter molecule to generate fluorescent signal. Created with Biorender.com.

require two input strands to be present for successful
displacement of the output strand, while OR gates re-
quire only one input. This system design became widely
popular and formed the foundation of many modern
systems [9-13]. Cascading strand displacement, where
the displaced strand from one tochold reaction acts as
the input for a subsequent toehold, also confers the
possibility of reducing manual inputs required for com-
putation [8].

Qian et al. implemented logic functions encoded by
strand displacement cascades to create the first DNA-
based neural network [10]. Nearly a decade later, Cherry
and Qian scaled this to a ‘winner-take-all’ (WTA) clas-
sifier of handwritten digits from the Modified National
Institute of Standards and Technology database (Figure
1b) [12]. The system takes a series of input strands re-
presenting pixels of a digit, with each strand indicating
the presence of ink in its assigned pixel. These input
strands are compared with pixelated images of known
digits encoded through ‘weight’ strands, and the simi-
larity is computed as (i.e. physically results in) a high or
low concentration of a weighted sum molecule. The
WTA function is a pairwise annihilation reaction where
competing weighted sum molecules are turned to
‘waste’ in a 1:1 ratio by successively hybridizing to an
‘annihilator’ molecule. This leaves only the most pre-
valent weighted sum molecule having excess single-
stranded DNA available to release a reporter molecule
through yet another strand displacement, indicating the
digit most similar to the input. This classifier explores
the functionality of neural networks at an impressive
scale, analyzing up to 100 pixels of input digits. This
scale highlights a key challenge in constructing large
DNA-only systems: strand complexity. Even using a
WTA function, which involves fewer components than
noncompetitive networks, the most intensive computa-
tion in this example requires over 300 distinct DNA
molecules.

Computation leveraging enzymatic activities

While deriving most of their computational capabilities
through nucleic acid hybridization, some early DNA
computation systems also leveraged enzymes, including

ligases, RNAseH, and polymerase [3,14,15]. Though
enzymatic systems were eclipsed by DNA-only systems
for nearly two decades, especially by strand displace-
ment systems, new enzymatic circuits and networks
have been recently developed. The ‘PEN DNA toolbox’
[16] has since become a critical tool in enzyme-driven
computation, including an enzymatic neural network
[17]. The PEN DNA toolbox relies on a polymerase,
exonuclease, and nickase to build basic networks
through which sequences are synthesized, released, and
degraded. A single-stranded DNA molecule acts as a
primer for a single-stranded template molecule. The
polymerase generates the desired sequence from the
template, and a nickase cuts the newly generated strand.
The reaction occurs at a temperature greater than the
melting temperature of the shorter sequences but lower
than that of the longer template strands. Cleavage by the
nickase thus releases the shorter primer and newly
synthesized molecule [16]. Okumura et al. used this to
construct neural networks that compute both simpler
linear classification (Figure 1c) and more complex non-
linear classification [17].

Algorithms and applications

The highly parallelized nature of DNA computation,
which stems from the ability to operate on all molecules
in a solution at once, lends itself to problems requiring
prohibitively high numbers of operations. Large combi-
natorial or NP-complete problems involving exhaustive
searches have been targeted for parallelization, as mas-
sive problem spaces may be searched in parallel using
DNA systems [18]. For example, in Adelman’s self-as-
sembling computation, all oligomers hybridize to com-
plementary sequences in a one-pot-style reaction [2]. An
algorithm solving an instance of the Knight Problem
(what are all chess board configurations of knights with
no knight attacking another?) operates on a combina-
torial library of possible solutions, eliminating all but the
correct strands following given input parameters [3,19].
Perumal et al. compared a DNA-based computer with an
electronic computer in the solving of the Subset Sum
Problem (an established NP-complete problem), noting
the DNA system’s linear run time compared with the
exponential run time of the electronic system [20].
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The advent of DNA-based neural networks has also
enabled construction of increasingly complex DNA
classifiers. Networks built of layered DNA-based circuits
that can operate simultaneously may prove another ef-
fective use of parallel molecular computing and increase
the speed of pattern recognition. Diagnostic DNA clas-
sifiers have already been trained to recognize mRNA
expression patterns characteristic of cancer [21] or of
bacterial and viral infection [22] with a reaction time as
short as 20 min. Such classifiers have also been applied to
image analysis, most notably in Cherry and Qian’s ana-
lysis of handwritten digits [12].

Modern advances through hybrid systems,
modularity, and materials

The above are salient examples reflecting common
themes within DNA computing; however, a much wider
array of systems exists. Hybrid systems such as the logic
circuits designed by Song et al. simplified strand dis-
placement logic circuits by using single-stranded gates
with a strand-displacing polymerase in place of addi-
tional DNA molecules [23]. Other endeavors to-
ward minimizing the number of unique strands required
for each computation include the use of switching cir-
cuits [24] and convolutional neural networks [25]. Phy-
sical constraints can also alter computation speed and
complexity, and implementations of modularity and in-
terfaces with inorganic phases and materials are begin-
ning to address them. Okumura et al. distributed their
computational network among emulsion droplets that
could be exposed to varied inputs, allowing distinct,
highly parallelized reactions using identical base com-
ponents [17]. Chatterjee et al. explored modularity by
constructing strand displacement circuits tethered to an
origami scaffold, using spatial proximity to control in-
teracting species [26]. This allowed the reuse of mole-
cules throughout the system, minimizing complexity
while also speeding computation by minimizing dis-
tances traveled by interacting elements. Engelen et al.
demonstrated the use of a supramolecular polymer for a
similar purpose, in place of DNA origami scaffolding
[27]. Such innovations have continued to increase com-
puting power and speed while minimizing components
required.

Perceived bottlenecks and feasibility

Cost

One of the most prominent concerns regarding DNA-
based computation at scale is the cost of DNA synthesis.
For example, Faulhammer et al.’s 1024-molecule com-
binatorial library of ~250 base pair strands [3] would cost
over $4000 from leading DNA synthesis companies,
while Cherry and Qian’s network remembering three
100-bit patterns required 305 molecules of less than 40
base pairs [12] and would cost ~$1000 [28]. Though
these prices remain prohibitively high, there is high

demand for increasingly affordable DNA synthesis
technologies from the biological sciences, biopharma,
and bioengineering including DNA-based data storage
[29-31]. This has spurred substantial innovation. Enzy-
matic methods, including terminal deoxynucleotidyl
transferase, show promise and have been predicted to
lower cost by 1-2 orders of magnitude [32]. Yet, this
alone would be unlikely to support economically feasible
DNA-based computation. Fortunately, for DNA-based
computation, synthesis of completely arbitrary and fully
custom DNA sequences may not be necessary, and ra-
ther the combinatorial assembly of a fixed set of DNA
blocks into longer strands can achieve theoretical costs
rivaling if not bettering the cost of equivalent amounts of
contemporary electronic or tape-based storage media.
This is an approach already recognized and actively
being advanced by academic and industrial groups
[33-36]. In addition, there are efforts to demonstrate the
ability to reuse strands without needing to synthesize de
novo for each distinct computation [5,37].

DNA sequencing is of perhaps lesser current concern
given output readouts could be substantially smaller
than the computational substrates, and the cost of DNA
sequencing has been dropping faster than that of DNA
synthesis [38]. Furthermore, many computing systems
do not require sequencing for readout, and may use
electromagnetic outputs [11,12,17,24]. Therefore, while
cost presents a significant current obstacle for both DNA
synthesis and sequencing, there is reason to be opti-
mistic that these barriers will be overcome sufficiently to
support practical applications of DNA-based computa-
tion at scale.

Computation speeds

If costs are presumed solvable, a greater challenge may
be latency. The high information density of DNA and its
massively parallel architecture is countered by the in-
herently slower biophysical and chemical processes and
events, as well as of physical sample handling steps,
compared with semiconductor-based computation. This
trade-off will inform the practicality of such systems, and
perhaps present targets for research and development.
We can begin at the smallest spatial scale and consider
the speed of enzymatic reactions, hybridization events,
and strand displacements.

The kinetics of enzymatic reactions can be used to as-
sess their potential contribution to the latency of DNA
computation. Enzymatic cleavage involves a broad range
of rate constants, for example, from 7.1 s™! for RNAse H
[39] to 1.4 x 10 57! for RNAse A [40]. Polymerases add
to latency as a function of polymer length and poly-
merization speed, with polymerization rates spanning
roughly 1-1000 nucleotides (nt) per second, or roughly
three orders of magnitude slower than restriction en-
donucleases [41,42]. Enzymatic systems would slow

Current Opinion in Biotechnology 2023, 81:102940
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Schematic of computational configurations. Molecular interactions such as hybridization and enzymatic reaction can provide foundational limitations
of a system, but macroscale factors such as speed of diffusion must also be considered. System configuration plays the most important role in
computation capability, as requirements for specific design, incubation times, and physical manipulations may greatly extend latencies of

computation. Created with BioRender.com.

further if the substrates they act on were in super-
saturating amounts. Thus, in optimal conditions, one
might estimate speeds on the orders of 1-10° computa-
tions per second per molecule, scaling linearly with
system size. This would be 6 orders of magnitude slower
than conventional silicon processors. However, when
considering the parallelizability and density of DNA,
and assuming an aqueous solubility of ~10'"® DNA mo-
lecules per mL (for 200-nt molecules), one might
achieve 10"®-10%' computations per second per mL, over
9 orders of magnitude faster than modern gigahertz
processors of similar volume.

Intra- and intermolecular hybridization of DNA mole-
cules is important in nearly all forms of computation.
Rate constants for hairpin formation range from sub-
milliseconds to tens of milliseconds and increase with
hairpin length. For example, the rate constant of closure
of DNA hairpins with ~5-9-nt long loops is approxi-
mately 1 x 10° s7! [43]. Hybridization of ~20-nt single-
stranded DNAs to each other ranges from 1x10° to
1x 107 s"'mol™" [44]. These rates apply only to intra- and
intermolecular associations, while more complex strand
displacements would involve longer timescales. In-
dividual intermolecular and hairpin-based events could
operate roughly 2-3 orders of magnitude slower than a
single processor in personal computers, respectively
(megahertz compared with gigahertz, respectively).
Again, assuming 200-nt long DNA with an aqueous so-
lubility of ~10'® DNA molecules per mL, one might
achieve 10**-10* computations per second per mL.
Therefore, enzymatic and intra- and intermolecular in-
teraction rate constants, considering the density and

hence computational parallelizability of DNA, suggest
considerable net speed advantages over electronic
systems.

At the next length scale, molecules must first find each
other in space to react or hybridize. Without mixing,
molecules diffuse with diffusion coefficients on the
order of 1-1000 pm* s™' depending on their size, from
small 20-nt single-stranded DNA or RNA to large 40-kb
+ plasmids [45-47], respectively. For molecules with the
largest diffusion coefficients, this would suggest a root
mean square displacement of only up to 1 mm over
15 hours (<r*> =q;Dt, where q; =6, D is the diffusion
coefficient, and t is time). Therefore, macromolecular
mixing either through convection or oscillating electric
fields will be necessary. Macromolecular mixing rates
may be limited by direct negative impacts on the sta-
bility of the DNA and may also scale nonlinearly with
total volume size, molecular density, fluid viscosity, and
vessel geometry. Relatedly, the copy number of unique
sequences will likely be important as subsets of mole-
cules must interact within a reasonable timeframe. In
addition, as molecule length increases, entanglement
effects may affect mixing as well as diffusion. Despite
these considerations, there is room for optimism. While
substantial work will be needed to advance our under-
standing and control of mixing specifically in nucleic
acid systems, assuming mixing times of even several
hours (~10’5 s™!) could be practical. With parallel com-
putation in 1 mL of fluid, one might still achieve an
impressive ~10"* computations per second (107 s~
mixing * 10" s7' mL™" enzymatic reaction). This re-
presents just one physical manipulation of many
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required in most nucleic acid-based computational sys-
tems to date. For example, pipetting, mixing, purifica-
tions, and sequencing add to computational latency. Yet,
even for these processes that slow computational speed
by another one or two orders of magnitude, the net
theoretical computation speed possible within 1 mL of
fluid may still exceed silicon-based processors.

While we have focused on computational speed and
scalability, molecular computation may also offer savings
in energy usage. Experimental comparisons of electronic
and DNA computing systems by Perumal et al. found
energy usage by the DNA system to be approximately
one order of magnitude lower than electronic systems
[20]. The chemical energy equivalent of 1W is ap-
proximately 7 x 10°* molecules of ATP. If each molecule
of ATP supports a computation or operation, then mo-
lecular computing can perform 7 x 10** computations per
Watt [48]. Supercomputers, by comparison, can perform
1x 10" operations per Watt [49]. By this admittedly
optimistic estimation, DNA could yield an improvement
in energy usage of approximately 12 orders of magni-
tude, providing substantial room for practical energy
inefficiencies not yet determined in the design of DNA
computers (Figure 2).

Conclusions

In summary, the biophysical and dynamic characteristics
of relevant molecular processes suggest nucleic acid
computation could offer advantages over silicon-based
processors for certain applications, with the key property
being the incredible information density of DNA con-
ferring highly parallel and volumetrically dense compu-
tation. Continued advances in our fundamental
understanding and engineering capabilities of molecular
through macroscale properties will be important.
However, although the properties of basic reactions
underlying each step of a molecular computation are
important considerations and provide a general guide to
creating practically scaled systems, the key barriers ap-
pear to be macroscale: those of operational complexity/
scalability and system reusability. A concerted focus by
the field on these challenges of system design and
configuration may vyield breakthroughs. New designs
must continue to reduce or modularize components
while increasing computational power and must mini-
mize slow physical operations. Indeed, recent advances
and the consistent creativity of the field over the past
three decades suggest reasonable hope.
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