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Abstract—The Border Gateway Protocol (BGP) is a distributed
protocol that manages interdomain routing without requiring a
centralized record of which autonomous systems (ASes) connect
to which others. Many methods have been devised to infer the
AS topology from publicly available BGP data, but none provide
a general way to handle the fact that the data are notoriously
incomplete and subject to error. This paper describes a method
for reliably inferring AS-level connectivity in the presence of
measurement error using Bayesian statistical inference acting on
BGP routing tables from multiple vantage points. We employ a
novel approach for counting AS adjacency observations in the
AS-PATH attribute data from public route collectors, along with
a Bayesian algorithm to generate a statistical estimate of the
AS-level network. Our approach also gives us a way to evaluate
the accuracy of existing reconstruction methods and to identify
advantageous locations for new route collectors or vantage points.

I. INTRODUCTION

Global Internet routing relies on the Border Gateway Pro-
tocol (BGP) to route traffic between Autonomous Systems
(ASes). Obtaining a reliable representation of the AS network
is relevant to many applications, including inferring business
relationships between ASes [1]-[3], identifying politically
driven Internet dynamics [4], [5], and simulating routing
protocols [6]. However, there is no central record of the AS
network topology; it must be inferred from publicly available
routing data, such as those from the RIPE Routing Information
Service (RIPE RIS) [7] and RouteViews [8]. Existing methods
for reconstructing the AS topology from public BGP routing
table data typically rely on ad hoc assumptions and heuristics
when choosing which edges to include [1], [3], [9] and
do not rigorously account for the many sources of error in
routing data, including unintentionally misconfigured ASes,
intentional traffic manipulation (e.g., path poisoning), and the
constant churn arising from changes in AS routing policies.
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Inaccuracies arising from these issues can generate incorrect
edge relationships and harm related applications [10].

Here we use formal statistical inference methods [11], [12]
to infer, for each pair of ASes in the network, the probability
that an edge exists between them given a set of possibly
unreliable observations. We collect routing tables from public
route collectors and obtain edge observations from the AS-
PATH attributes included in their routing information bases
(RIBs). By extracting both positive observations of an edge’s
existence and negative observations of an edge’s absence
from these paths, we maximize the information available. We
employ a statistical model in which each route collector is
treated as an independent mode of observation with its own
error rates, and we use expectation-maximization (EM) to
estimate these error rates and the probability of existence for
each edge in the AS network. Our main contributions are:

o A statistical model of BGP measurement methods as
generators of noisy edge observations, which maximizes
the available information by efficiently counting both
positive and negative edge observations.

« A Bayesian inference method for network reconstruction
applied to the AS topology, a large-scale, path-vector-
based network with noisy route collectors.

¢ A quantitative, information theoretic comparison of our
model to other AS network reconstruction methods.

« An example use case showing how our model can identify
geographic regions of the AS network that would benefit
most from additional measurement information (in the
form of new route collectors).

II. BACKGROUND
A. Sources of Noise in BGP Data

Interdomain routing depends on over 70,000 ASes that
apply their own routing policies to select paths to remote



destinations. BGP can exhibit a wide range of complex
behaviors caused by the interaction of diverse local routing
policies, accidental misconfigurations, intentional attacks, and
the protocol’s own convergence process. For our purposes,
what matters is that each of these phenomena can lead to errors
in observations of AS-level edges in the network topology,
which we treat in our model as noise. We begin by reviewing
several sources of such errors.

a) Local routing policies: Each AS uses local policies
to select, for each destination IP prefix, a preferred path from
the options offered by its neighbors. It also decides whether
or not to propagate the chosen path to additional neighbors.
For example, business relationships may cause an AS to favor
one path over another, or to decide not to advertise a chosen
path to a particular neighbor. Such policies affect which paths
are observed by each route collector and can cause collectors
to miss edges that actually exist.

b) Misconfigurations: Misconfigured ASes may intro-
duce invalid paths containing nonexistent edges, or they may
fail to advertise edges that do exist. Some misconfigurations
are localized to particular vantage points [13]. Others can
prompt BGP session resets that cause many valid paths to
be withdrawn and readvertised in a short period of time [14].

c) Prefix hijacking: Prefix hijacking attacks occur when
an AS announces an IP prefix that belongs to another AS
as its own; see [15]-[17] for several recent examples. Naive
hijacking simply routes traffic along a path of valid AS-level
edges that leads to the wrong destination for the hijacked
prefix. Since all edges are valid, this would not introduce
observational errors at a route collector. In a stealthier attack,
however, an adversary originates a route with a fake “last hop”
that purportedly connects the adversary’s AS to the legitimate
destination AS for the prefix. This can cause a route collector
to erroneously observe this final, nonexistent edge.

d) Path poisoning: An AS can poison an advertised path
by including additional AS numbers that appear to introduce
a loop. This misleads upstream ASes into filtering out the
route as a result of BGP’s built-in loop detection mechanisms.
Path poisoning can be used to manipulate the path that traffic
takes to reach certain destinations [18] or to protect victims
of denial-of-service attacks by blocking unwanted traffic from
senders in particular upstream ASes [19]. For example, an AS
1 originating a prefix may poison its path by including ASes j
and k to trigger loop detection and subsequent route filtering
by ASes j and k. A route collector would then erroneously
observe nonexistent edges such as (4,7) and (7, k); it would
also miss paths from some vantage points.

e) Systematic noise: Beyond these explicit sources of
error, the constant churn of path advertisements and with-
drawals affects the data. Each advertisement or withdrawal,
if propagated to a route collector, causes fluctuations of the
edge observations in the routing tables, and these may not
be observed consistently across all vantage points. Further,
an AS may change its preferred routes at any time which
will eventually propagate to vantage points, creating additional
inconsistencies among route collectors.

Taken together, these sources of error introduce significant
noise in route collectors’ observations of AS-level edges. To
distinguish signal from noise in BGP data, we turn to the
statistical inference methods described in the next subsection.

B. Network Inference

The fundamental problem we face is inferring the structure
of the AS topology from unreliable path data. Recent work
in network science has developed statistical tools for tack-
ling this problem for a broad range of networks across the
sciences [11], [12], [20]-[25]. Instead of producing a single
“best guess” network topology, these methods use generative
models to produce, for each pair of nodes in a network, an
estimate of the probability that they are connected given the
available data. These estimated networks can then be mined to
discover particular patterns and to answer substantive research
questions about the underlying system [26], [27].

In general, these methods consider a network of N nodes
whose structure is represented by an N x /N adjacency matrix
A with elements A;; = 1 when there is an edge between
nodes 7 and j and A;; = 0 otherwise. In our context, nodes
are ASes and edges are direct links. A generative model for
inferring A based on the observational data D comprises two
parts. The data model captures the probability Pr[D|A, 6]
of observing the data D (in our context, the routing tables)
given that the ground truth structure of the network is A.
The network model assigns a prior probability Pr[A|p] to the
structure A, specifying how likely any given network structure
is before making any observations. The parameters 6 and p
capture any additional model parameters (e.g., variances in
measurement data), of which there may be many and whose
values are initially unknown.

By Bayes’ rule, the posterior probability of the unknown
quantities A, 6, and p given the observed data D is

_ Pr[D|A,0]Pr[A|p]Pr 0] Pr[p]
N Pr[D] ’
where Pr [p] and Pr [f] are Bayesian priors on the parameters.
Conversely, the probability of the network structure A alone
given the parameters and observed data is

_ _ Pr[A,0,p|D]

After observing data D, Pr[A, 6, p|D] gives the joint proba-
bility of the network and the parameters while ¢(A) gives the
probability of the network when we already know the param-
eters. Section III motivates the advantages of this generative
modeling framework and Section IV details how we apply it
to our present problem of inferring the AS topology.

Pr[A, 0, p| D] (1

2

III. MOTIVATING EXAMPLE

Suppose we want to infer the topology of an example
network of NV = 6 ASes given the observations in Fig. 1. The
observations consist of paths gathered by two route collectors
at two time steps. Usually paths like these are used to ex-
tract only “positive observations” of the existence of edges—
edges that are seen in at least one path—but here we also
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Fig. 1. Example observations across time and route collectors. Observa-
tions of edge existence (solid lines) and absence (dashed lines) gathered by
route collectors (black nodes) for an example network of N = 6 ASes. Edge
absences are evidenced by missing connections that would shorten a route
among nodes reachable by the route collector (see Section IV-B). Due to
dynamics and error in BGP data, observations can differ across time periods
(rows) and among route collectors (columns).

consider “negative observations” of edges’ non-existence (see
Section IV-B for details). A naive approach might consider
only positive observations by a single route collector in a
single time period. For example, when presented with the top-
left network in Fig. 1, such an approach would conclude that
edges (a,b), (a, f), (b,c), and (c,e) exist while all others
do not. However, extending the observations across multiple
time periods shows that the situation is more complex, as edge
(a, f) for example is seen in the first time period but not in the
second, and vice versa for edge (e, f). A similar issue arises
when comparing the observations of different route collectors:
route collector 71 for example does not observe edge (d, e) in
either time period while route collector ry observes it in both.

How should these discrepancies be reconciled? As we
describe in the next section, our model assumes each route
collector is an independent mode of observation subject to its
own rates of observational error. For each route collector and
time period, we count both the positive (solid) and negative
(dashed) edge observations. We distinguish evidence that an
edge does not exist from a mere lack of data—absence of
evidence is not evidence of absence. Utilizing the maximum
likelihood parameters of our model, we can then compute, for
any pair of ASes in the network, the probability that an edge
exists between them. For edges such as (a, b), (b, ¢), and (c, €)
in Fig. 1 that are positively observed by both route collectors in
both time periods, this probability will be close to 1. For edges
such as (a, ¢), (a, e), and (b, e) that are negatively observed by
both route collectors in both time periods, the probability will
be close to 0. These probabilities can then be used to evaluate
existing BGP network reconstruction methods in terms of our

model’s certainty (Section VI).

As with any method for inferring the AS topology from
BGP routing data, our method cannot make predictions with
high certainty about edges for which there are no observations.
For example, edges (b,d) and (c,d) are never observed as
existing or as missing by either route collector in either time
period. For these edges, our method assigns a probability of
existence that is proportional to the average frequency with
which edges occur in the network as a whole, which is the best
guess in the face of complete lack of data. By locating these
low-certainty edges, our method can also suggest network
regions that would most benefit from additional measurement
in the form of newly constructed route collectors (Section VII).

IV. METHODS

We now detail the components of our statistical inference
approach; see Fig. 2 for an overview.

A. Data Collection

The two best known organizations aggregating routing data
are the RIPE Routing Information Service (RIPE RIS) [7]
and the University of Oregon’s RouteViews Project [8]. These
organizations provide compilations of routes in the form of
routing information bases (RIBs) and route updates (both
announcements and withdrawals). We use data from both RIPE
RIS and RouteViews, downloaded and parsed using CAIDA’s
BGPStream [28]. Our dataset includes observations from the
paths of all 45 publicly available route collectors over five
8-hour time periods! beginning on May 1st, 2021.

B. Observation Counting

The raw routing data are gathered over a series of 1" dis-
crete time periods by M route collectors denoted rq,...,7a7.
During a time period ¢, route collector 7, gathers a set of paths
Py, from its associated vantage points detailing the sequence
of AS nodes included in advertised AS-PATHs for r;. By
taking the union over the paths in Py, ;, we obtain a connected
graph Gy, + representing what route collector 7, observes about
the topology in time period ¢, omitting unreachable ASes.

As mentioned before, a key difference between our approach
and earlier work is our use of evidence about both the existence
and the absence of edges. We say an edge between ASes ¢ and
J is positively observed by route collector 7y in time period
t if (i,7) € G+ Note that such observations are binary: we
only count whether or not an edge is present in G, ¢, not how
many distinct paths in Py, it was present in.?

Negative observations require a different counting method in
order to differentiate between edges that are absent and those
that a route collector simply has no information about. Here we
appeal to standard BGP routing policies which generally prefer
to select and propagate shorter routes over longer ones [29],

"We chose 8-hour time periods since every route collector is guaranteed to
dump at least one RIB in this duration.

2Counting the number of paths an edge appears in instead of using a
binary representation would bias the inference. Route collectors with more
frequent updates generate more observations such that edges closer to those
route collectors would be over-represented in our data.



Observation Counting
Raw Data

RIBs & Route Updates

Inferred AS Topology

Parameter Estimation

€y RPE

& &

EM(maxg, Pr[6, p | D])

D

Fig. 2. Inferring the AS Topology. Raw data: BGP routing data are collected as routing information bases (RIBs) and route updates from the RIPE RIS [7]
and RouteViews [8]. Observation counting: Edge observations are obtained from paths collected by route collectors, e.g., ;. Edges in paths are observed
positively (solid lines) while absent edges whose existence would create shorter paths from rj, are observed negatively (dashed lines). Parameter estimation:
The route collector observational error rates € and the prior p are estimated from the data D using expectation-maximization. Inferred AS topology: The
estimated parameters are used to infer, for each pair of ASes, the posterior probability of an edge existing between them.

[30]. For a route collector r and an AS 4, let d;(ry, i) denote
the number of edges in the shortest (7,%)-path in the graph
Gt An edge between ASes ¢ and j is said to be negatively
observed by route collector 7 in time period ¢ if |d¢(r,i) —
di(ri,7)| > 2 and (4, ) & Gg,; i.e., if the existence of (i, 5)
would have provided a shorter path from rj to either 7 or j
and yet that shorter path was not in the data. As with positive
observations, negative observations are binary.

We recognize the possibility that such an inference of the
non-existence of an edge can be wrong. Observations of an
edge’s absence, like any observation, can be in error—this
is the central premise of our work. For instance, not all
announced paths of the AS network need in fact be as short as
possible, meaning that we may erroneously infer that certain
edges are absent when they are not. As we discuss in the
following section, the extent of such errors is estimated along
with those from other error sources by our inference method.

Our observation counting algorithm (Algorithm 1) takes as
input the graphs Gy, ; represented as (sparse) adjacency matri-
ces for each route collector 7 € {r1,...,rp} and each time
period t € {1,...,T}. It produces a mapping of each AS pair
(i,7) to its observation vector [Ei(;), Fi(jl), cee EZ.(;-M), FZ(jM)}
where Ez(f ) (resp., Fi(jk)) is the number of time periods in
which (7,j) was positively (resp., negatively) observed by
route collector 7. Algorithm 1 is presented as a sequential al-
gorithm for clarity; we discuss its parallel implementation that
efficiently processes the large-scale network of N =~ 73,000
ASes (or roughly 2.66 x 10° AS pairs) in Section VIII-B.

C. The Data and Network Models

As discussed earlier, BGP has many sources of error that
can introduce inaccuracy into our observation counts. In terms
of measurement error, the observations can be broken down
into four types: true positives and negatives (i.e., correct
observations of the presence and absence of edges) and
false positives and negatives (observations of the presence of
nonexistent edges and of the absence of edges that do exist).
We parameterize these error rates by the true positive rate o
and the false positive rate S. No additional parameters are
needed for the true and false negative rates—they are equal to

Algorithm 1 Observation Counting

Input: Graphs G, for route collectors rp €
{r1,...,7a} and time periods t € {1,...,T}.
Output: Mapping D : AS pairs — observation vectors.
Assumes: A breadth-first search function BFS(G, v) that
returns a list of distances from v to all other nodes in G.

1: Initialize D;; < [0,...,0] for all AS pairs (i, j) € V2.

2: for each r, € {ry,...,rn} do

3 for each t € {1,...,T} do

4 Let dk,t — BFS(Gk’t, Tk).

5: for each AS pair (i,j) € V2 do

6: for each ri, € {ry,...,rpr} do

7

8

9

for each t € {1,...,7T} do
if (7, j) € Gk, then
: Update ER g™ + 1.
ij ij
10 else if |dj 1 (1%,%9) — di.«(r%, 7)] > 2 then
11: Update Fi(jk) — Fi(f) + 1L

12: return D.

1—/ and 1—aq, respectively. In practice, not all route collectors
may be equally trustworthy, so we assign each route collector
ri its own true and false positive rates oy, and S.

Letting o« = (a1,...,ay) and B8 = (B1,...,08nM), the
probability of the M route collectors making observations
D;; = [EZ.(;), Fi(;), e Ei(]].”), FZ.(]M)] of an edge between ASes
¢ and j can be written as

M
E® (k)
PrDj|Ai; =1,0] = [ a,” (1—ax)™ 3)

or

) .
Pr[D;j|A;; =0,8] = H Bfij (1- Bk)F"'<j)a @)
k=1

depending on whether or not the edge truly exists in A.
Modeling the measurements of different edges as independent
conditioned on the true structure of the network, the data



model capturing the probability of observing D given the
network structure A and parameters 6 = (a, 3) is given by

Pr[D|A,0] =
[IPrDyl A = 1,00 Pr[Dy|A; = 0,84 . O
i<j

We use a minimal network model Pr[A|p] that assumes all

network edges have the same prior probability p of existing
(i.e., p is analogous to sparsity), yielding

Pr(Alp] = [[ 9 (1= p)' . 6)

i<j
We also assign uniform priors in the interval [0, 1] for the rates
« and 3 and for the prior p, meaning that Pr [f] = Pr[p] = 1.

D. Inferring the AS Topology

We can use the model above to estimate the structure
of the AS network using established methods of statistical
inference [11]. Substituting the definitions of the data and
network models (Egs. 5 and 6) into Eq. 2, we find that
the probability of the network having structure A given the
parameters and observational data can be written in the simple
product form:

g(A) =Pr[Al0,p, D] = [[ Q7 (1 — Qi) ™4, (D

i<j
where
Qij(0,p) =Pr[A;; = 1|0, p, D] =
pPr(Dij|Aij = 1, (8)

pPr[Di;|Aij = 1,a] + (1 — p)Pr[D;;|Ai; = 0, ]

is the posterior probability that an edge exists between ASes
¢ and j given the parameters and data.

In practice, we do not know a priori the values of the
parameters 6 = (ca, 3) and p, so they too must be estimated
from the data. We employ a standard EM algorithm for this
task: the most likely parameters (6*, p*) given the data D are
those that maximize

Pr(0,p|D] = Pr[A,0,p|D] = )
A
H pPI' [DU|A“ = ]., a] + (1 — p)Pr [Dij‘Az‘j = O,,B]
oy Pr (D] ’

where we have used the fact that Pr[f] = Pr[p] = 1. The
value of Q;;(6%, p*) then gives us the posterior probability of
an edge (i, j) existing in the AS topology. We make extensive
use of these probabilities in the following sections.

V. MODEL VALIDATION

There is no ground truth dataset for the AS structure against
which to validate the predictions of our analysis, but we can
use statistical tests to validate our method’s consistency and
determine if the model is a good fit to the data. First, we
can evaluate whether our model draws sensible conclusions
and is capable of accurately representing the observational
data using the common Bayesian validation technique called
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Fig. 3. Posterior predictive check. Distribution of differences between the
number of positive observations per edge in real measurement data and in five
synthetic datasets generated from the observational error rates inferred by our
model. The histogram has 64 bins each of size 5.

a posterior predictive check [31]. In essence, this technique
works by taking the fitted model, using it to generate synthetic
data, and then comparing the results to the real measured
data. Specifically, we use the model to generate a synthetic
network in which each edge (4,j) appears with its inferred
probability @);;, then we generate simulated observations of
these edges with errors introduced according to the fitted val-
ues of the error parameters. We count the positive observations
of each edge and compare them to the counts appearing in
the real data. These two datasets will be similar if the model
captures the structure present in the real data.

Fig. 3 shows the distribution of the difference between the
numbers of positive observations in real and synthetic data
over all edges. We find that the vast majority of AS pairs
have exactly the same number of positive observations in the
synthetic data as in the real data, and that the number of AS
pairs with different numbers of positive observations sharply
decreases as that difference increases. The longer negative tail
in Fig. 3 indicates that the model occasionally predicts too
many positive observations, but these differences are minor
(note the logarithmic scale for the vertical axis), so we deem
the model sufficiently accurate to be put to use.

A complementary check on our method is to ask how
confident we are in the method’s predictions. In effect, what
are the “error bars” on our inferred network structure? As in
any scientific measurement, we want to say not only what we
believe the structure of the network to be but also how sure
we are of that structure.

Our confidence is captured by the edge probabilities @;;. If
Q;; is 1 or 0, then we are certain that the edge between 7 and
J does or does not exist, respectively. If ¢);; = 0.5 then the
edge is equally likely to exist or not and we are maximally
uncertain. Fig. 4 shows a histogram of @;; values for our
May 2021 dataset. The vast majority of AS pairs have very
small probability of being connected, reflecting the sparsity of
the network (note, again, the logarithmic vertical axis). Of the
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Fig. 4. Edge posterior probabilities. Distribution of posterior edge probabili-
ties, Q;;, inferred by the model from the May 2021 dataset (see Section IV-A).

approximately 2.705 x 10° AS pairs, over 99.9% are predicted
to exist with probability @Q;; < 0.1 while fewer than 0.0002%
have intermediate probabilities @;; € [0.1,0.9]. Among edges
that are predicted to exist, most have a @;; close to 1. Thus,
the model has high confidence about most predictions—edges
either almost certainly exist or almost certainly do not exist.

We can quantify our confidence further by computing the
entropy of the edges. For an edge with probability Q);;, the
entropy is defined as

H(Qij) = —Qijlog Qi; — (1 — Q45) log(1 — Q45)-

The entropy measures the uncertainty (or lack of confidence)
in our conclusion. It is zero when ();; is 1 or 0—meaning we
have complete certainty that the edge does or does not exist—
and takes a maximal value of log2 when @;; = 0.5 and the
edge is equally likely to exist or not.

Since our approach models edges as conditionally indepen-
dent, the total entropy of the entire inferred network is simply
the sum over the set V2 of all node pairs > peve H(Qij)
For practical purposes it is useful to normalize this measure
to fall on a meaningful scale. If we have no data about the
network at all, then our method will conclude that all edges
exist with the prior probability p, and hence that the entropy
of the network is H(p) = —plogp — (1 — p)log(1 — p). We
can thus define a normalized entropy per node pair:

1 H(Qij)
V2| (i,j)zevz H(p)
Z Qijlog Qi + (1 — Qy5) log(1 — Qij)
plogp+ (1—p)log(l—p) ~

(10)

Hnorm =

(11

1
~ w2l
Vel (i,9)eV?
which is equal to 0 when we are entirely confident of the
inferred network and 1 when we know nothing about it.

Fig. 5 shows the value of this normalized entropy for our
model’s representation of the AS network based on data from
a single time period and from multiple time periods. As the
figure shows, the model’s confidence increases when using
multiple time periods instead of just one, but then quickly

1.0

0.8
0.6 N e [ — -
S
<
I
0.4
0.2
0.0 i 3 3 4 5

Time Periods Included

Fig. 5. Normalized entropy by number of included time periods. Each
time period represents 8 hours, the longest time period between RIB dumps
for all route collectors available. Normalized entropy is measured by Hyorm,
defined in Eq. 11.

saturates around H,m ~ 0.56. Intuitively, this means that
once the inferred edge probabilities are known, we could
exactly describe the network structure with only 56% of the
information we would have needed if we had no knowledge.
This offers some justification for our use of 7" = 5 time periods
of data—a larger number of time periods will give only a
marginal improvement in the results, at best.

VI. COMPARING NETWORK RECONSTRUCTIONS

Next, we consider several AS network reconstructions,
comparing the edges they identify to the edge posterior prob-
abilities inferred by our model. Intuitively, we desire a re-
construction that includes edges that likely exist and excludes
those that likely do not exist. Most earlier methods, however,
use heuristics such as loop filtering and clique detection to
decide which edges to include. We consider the following
reconstruction methods:

e Naive. Includes any edge appearing in an advertised
path collected by at least one route collector during the
collection period.

e CAIDA AS Relationships [1], [3]. Includes edges cor-
responding to inferred business relationships, which are
obtained by collecting one RIB per route collector per
day for the first five days of a month, compressing path
padding, removing AS sets, filtering out paths containing
loops and those that would separate cliques, and finally,
filtering out unassigned ASes and IXP route servers. We
evaluate two versions of this method: one that includes
multi-lateral peering (MLP) data and one that does not.

o Threshold T. Includes any edge (i,j7) with Q;; > T,
where Q;; is the edge probability inferred by our model.
We generate three such topologies from the inferred edge
probabilities: one that includes all but the least likely
edges (7 = 0.1), another that includes the majority of
likely edges (7 = 0.5), and finally one that includes only
the most likely edges (7 = 0.9).



TABLE I
EVALUATION OF VARIOUS NETWORK RECONSTRUCTIONS

Method log g(A) prec(A) rec(A)
- Naive —9.213 x 10°  0.961 0.839
£ CAIDA AS Rel. —3.043 x 10°  0.855 0.638
T CAIDA AS Rel. (MLP) —4.104 x 10°  0.690 0.641
o Naive —3.303 x 105 0.959 0916
S Threshold 7 = 0.1 —4.547 x 10 0.997 0.916
&  Threshold T = 0.5 —4.492 x 10 0.998 0.916

Threshold 7 = 0.9 —5.236 x 10*  0.999 0.908

We quantify reconstruction quality using the standard log-
probability of the adjacency matrix A under the network
posterior g(A) of Eq. 7:

i<j

which is nonpositive and becomes increasingly negative as
the probability of A being the true structure decreases. We
also report the precision (fraction of edges included in A that
exist according to our model) and recall (fraction of edges that
exist according to our model that are included in A). These
quantities are given by

>icj AijQij 2 i Ai Qi

Zz‘<j Aij 7 Zi<j Qw

Table I shows our results. We find that including both IPv4
and IPv6 routes in a naive reconstruction slightly degrades
precision but significantly improves network probability and
recall over the naive reconstruction that uses only IPv4 routes.
This highlights the importance of including IPv6 data in
network reconstructions; in particular, the difference in recall
indicates that roughly 7.7% of the edges our model believes
exist are only present in IPv6 routes.

The CAIDA AS Relationships reconstructions, both with
and without MLP data, have lower probability, precision, and
recall than those produced by the naive and threshold meth-
ods. From the perspective of our model—and, by extension,
the public routing table data its inference is based on—this
suggests that the heuristics used in the CAIDA reconstruc-
tions include some unlikely edges and exclude some likely
edges. Although the CAIDA reconstructions might erroneously
include non-existent edges, lower precision could also be
explained by inclusion of real edges that are missing from our
model’s data. For example, the low precision of the CAIDA
MLP reconstruction is likely explained in part by its inclusion
of peering relationships between ASes and Internet exchange
points (IXPs), which are not detected by conventional parsing
of public routing tables. Thus, our results do not indicate that
CAIDA reconstructions are strictly wrong, but rather show the
importance of data, i.e., the decisions about which edges to
include or exclude, independently of the inference method.

prec(A) = rec(A) = . (13)

VII. IDENTIFYING SITES FOR NEW ROUTE COLLECTORS

Although our method extracts maximum information from
available observational data, by definition it cannot have high
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Fig. 6. Normalized entropy by number of included route connectors. The
mean (solid line) and standard deviation (shaded area) of normalized entropy
(Eq. 11) over 10 randomly shuffled orderings of the 45 route collectors.

confidence about AS pairs that have conflicting observations
or no observations at all. We leverage this fact to identify
regions of the network where additional measurement in the
form of new route collectors and vantage points would be most
beneficial, addressing a key problem for both BGP network
operators and Internet measurement researchers.

We first establish that including additional route collectors
increases our method’s certainty in its inference. Using the
May 2021 dataset, we randomize the order of the 45 route
collectors ten times and then, for each randomization, fit
our model to the data from the first & route collectors,
for all k& € {1,...,45}. Fig. 6 shows that the normalized
entropy Hporm decreases as more route collectors are added,
reflecting the model’s increasing certainty. However, the nor-
malized entropy of Hom ~ 0.56 obtained with all 45 route
collectors indicates that there is still significant uncertainty
in the data—uncertainty that would be further reduced by
deploying new route collectors in areas of poor measurement.

To identify under-measured network regions, we use an
entropy measure that captures the model’s uncertainty about
the connectivity of a given AS. Specifically, for AS ¢ we define

H(i) =) H(Qy),
J(F#)

(14)

where H(Q;;) is the edge entropy defined in Eq. 10. When
the model is certain about the presence or absence of edges
incident to AS i, H (i) is small; otherwise, H (i) is large.
Fig. 7 shows the distribution of this measure as a function
of several network statistics. Fig. 7A shows that our inference
is well-informed about the vast majority of ASes, but the
long tail points to outliers about which the model lacks
connectivity information. Figs. 7B and 7C show that H (i)
generally decreases as AS connectivity increases (as quantified
by degree and eigenvector centrality), as expected. Again,
the outliers are interesting; although these ASes are well-
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Fig. 8. AS entropy by nation. The five nations from among all nations with
at least 50 registered ASes in which our model has the (A) least certainty and
(B) most certainty with respect to the per-nation mean AS entropy.

connected in the AS network, the model suggests that they
lack definitive connectivity information.

Finally, we investigate whether there are geographical re-
gions of the network with low confidence—nations where we
would like to see new route collectors and vantage points.
We group ASes according to their registered nations, filter out
nations with fewer than 50 ASes, and then rank nations by
their mean AS entropy (Fig. 8). We find that our model is
very confident about the structure of the Iranian Internet. A
possible explanation for the model’s certainty is that Iran’s
state-run Internet architecture is accessible through very few
gateways, has few edges, and is highly stable [4]. The model
has the lowest confidence in Israel, Egypt, Georgia, Bulgaria,
and Iceland, suggesting that establishing new route collectors
or vantage points in these countries would provide valuable
measurement data and lead to more reliable reconstructions.

VIII. DISCUSSION

A. Discussion of Results

We introduced and validated a Bayesian inference procedure
for inferring AS network topology from potentially unreliable
route collector data without the need for annotation of ASes,
use of heuristics, or other outside information. Instead, it

maximizes the available measurement information to assign
probabilities of existence to each edge in the AS topology.

Our comparison of existing network reconstructions high-
lights the importance of leveraging all available data: the naive
reconstructions miss likely edges when excluding IPv6 routes
and include unlikely edges by ignoring negative observations.
But publicly available data may not tell the whole story. The
CAIDA AS Relationships reconstructions differ significantly
from the others, possibly owing to their inclusion of customer-
to-provider peering relationships that do not appear explicitly
in public routing tables. Thus, when using our methods as a
tool for evaluating network reconstructions, lower recall (i.e.,
excluding edges our model believes exist) should cause more
concern than lower precision (i.e., including edges our model
is skeptical of, possibly owing to a lack of data).

Finally, we showed how our method can be used to identify
ASes and national networks for which we lack connectivity
information. The addition of new route collectors increases
our model’s certainty, though the high normalized entropy
indicates our model is realistically cautious about its inference
in the face of significant uncertainty in the data—uncertainty
that other methods fail to acknowledge. This corroborates
the estimation of Roughan et al. [32] that hundreds more
route collectors or vantage points are needed to observe the
AS network accurately. Interestingly, the nations identified
by our study to be most in need of more measurement are
geographically dispersed. Many factors may contribute to the
measurement data that AS pairs provide in route collector
data, such as distance to vantage points and the missing peer
problem [33]. Identifying the factors that most impact regional
information density is an important direction for future work.

B. Optimizations and Implementation Details

The size of the current AS network required several opti-
mizations and implementation decisions related to the general
approach described in Section IV. The May 2021 dataset
contains N ~ 73,000 ASes, so the algorithms repeatedly
iterated over and stored information about N(N — 1)/2 =~



2.66 x 10° unique AS pairs. The observation counting algo-
rithm (Algorithm 1) is easily parallelized to increase runtime
efficiency, but requires more effort to store the mapping of AS
pairs to their observation vectors tracking the number of time
periods each route collector observed each AS pair positively
or negatively. Instead of storing each individual observation
vector, we grouped AS pairs into observation classes, i.e., sets
of AS pairs with the same observation vectors. This produced
a speedup of two orders of magnitude during inference by
reducing the set of interest from the 2.66 x 10° AS pairs to
roughly 1.5 x 107 observation classes.

Observation classes enabled additional optimizations during
the EM computation to estimate the maximum likelihood
parameters o, 3, and p of our model. Our parallel EM
implementation is optimized both for runtime and memory
efficiency, maximizing a value proportional to the log-density
of Eq. 9 to improve numerical stability. Since any edge with
the same observation vector contributes the same value to this
log-density, we iterate over observation classes instead of all
AS pairs, again reducing runtime by two orders of magnitude.

C. Limitations

One useful application of reliable AS network reconstruc-
tions is in early warning of BGP anomalies, including false
route advertisements, prefix hijacking, path poisoning, and
BGP black-holing. There are a variety of existing approaches
to this problem. Distributed anomaly detection algorithms
imbue participating ASes with enhanced security guarantees
and increased mitigation time without centralized coordina-
tion or fundamental changes to BGP [34]. Machine learning
approaches have been used to identify the signatures of
anomalies in BGP time series data [35]-[37]. Others search
for evidence of misbehaving vantage points using information
about the network’s structure [13]; however, certain substruc-
tures appearing in both anomalous and correct data limit the
impact of this approach.

In its current form, our Bayesian inference method is not
a suitable BGP anomaly detection method despite its ability
to infer reliable representations of the AS network topology.
Many BGP anomalies and attacks make use of real edges in
which our model tends to have high certainty. Since edges
that are observed positively tend to be observed positively
by several route collectors across multiple time periods and
rarely have conflicting negative observations, our method
struggles to differentiate false announcements from real edges.
Future modifications to the data preprocessing and observation
counting methods may enable network inference to serve as
an effective anomaly detection scheme.

IX. RELATED WORK

a) BGP Simulation: Several previous studies have lever-
aged simulations of BGP routing policies to understand the
AS network topology. Karlin et al. [34] used simulations to
validate the security advantages of their “Pretty Good BGP”
algorithm over the more costly implementation of RPKI.
Gill et al. [6] performed sensitivity analysis on an ensemble

of simulations to infer valley-free routes from established
AS business relationships. BGP has been simulated to study
convergence properties and evaluate the effectiveness of BGP
architectures [38]—[40]. In contrast to simulation, our domain-
independent Bayesian inference method directly infers AS-
level connectivity from network measurement data, relying on
the density of information contained therein.

b) BGP Topologies: Previously, researchers have used
various inference algorithms to study the structure of the
AS topology. The well-known AS Relationships method [3]
and related methods [10], [41] infer business relationships
between ASes from public routing data, identifying whether
these relationships are peer-to-peer or customer-to-provider.
Most closely related to our approach, Toposcope [42] employs
several methods including Bayesian networks to infer business
relationships. Each of these related works focuses on the
business relationship inference problem, which is distinct
from the edge existence inference problem. Additionally, these
approaches use heuristic filters for selecting paths to use
for inference. Prior to this work, the significance of these
heuristics has not been explored, but the effect of misbehaving
vantage points has been documented [13].

¢) Network Inference Methods: Rigorous statistical tech-
niques [11], [12], [20]-[22] have previously been used to
determine the structure of empirical networks from noisy
data in several application domains including for instance
social networks analysis [23], the analysis of protein-protein
interactions [24], and ecology [25]. A closely related line of
work focuses on inference with incomplete observations [43],
[44], investigating what can be learned about a fixed network
if its structure is queried one or many paths at a time instead of
observed fully. Crucially, these path-based inference methods
assume that whenever an edge is observed in a sample, that
edge must exist; i.e., they assume that uncertainty only arises
from not seeing the whole network in samples. In contrast, our
approach models measurement as imperfect and thus allows
for samples to be affected by error.

X. CONCLUSION

We introduced a statistical inference method for inferring
the AS network topology from noisy, incomplete, path-based
observational data. Our generative model of observational
error allows for differing levels of trust across route collectors
and was demonstrated to pass established statistical validation
tests. We used our model to compare various AS network
reconstruction methods and to identify regions of the network
where our model had low certainty, suggesting countries that
would most benefit from the creation of new route collectors
and vantage points. As global Internet connectivity patterns
evolve to reflect ongoing technological, economic, and po-
litical changes, we hope that the methods presented here
will contribute to more accurate network reconstructions and
better-informed interventions.

The authors have provided public access to their code and
data at https://kirtusleyba.github.io/noisynets.
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