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Abstract—The Border Gateway Protocol (BGP) is a distributed
protocol that manages interdomain routing without requiring a
centralized record of which autonomous systems (ASes) connect
to which others. Many methods have been devised to infer the
AS topology from publicly available BGP data, but none provide
a general way to handle the fact that the data are notoriously
incomplete and subject to error. This paper describes a method
for reliably inferring AS-level connectivity in the presence of
measurement error using Bayesian statistical inference acting on
BGP routing tables from multiple vantage points. We employ a
novel approach for counting AS adjacency observations in the
AS-PATH attribute data from public route collectors, along with
a Bayesian algorithm to generate a statistical estimate of the
AS-level network. Our approach also gives us a way to evaluate
the accuracy of existing reconstruction methods and to identify
advantageous locations for new route collectors or vantage points.

I. INTRODUCTION

Global Internet routing relies on the Border Gateway Pro-

tocol (BGP) to route traffic between Autonomous Systems

(ASes). Obtaining a reliable representation of the AS network

is relevant to many applications, including inferring business

relationships between ASes [1]–[3], identifying politically

driven Internet dynamics [4], [5], and simulating routing

protocols [6]. However, there is no central record of the AS

network topology; it must be inferred from publicly available

routing data, such as those from the RIPE Routing Information

Service (RIPE RIS) [7] and RouteViews [8]. Existing methods

for reconstructing the AS topology from public BGP routing

table data typically rely on ad hoc assumptions and heuristics

when choosing which edges to include [1], [3], [9] and

do not rigorously account for the many sources of error in

routing data, including unintentionally misconfigured ASes,

intentional traffic manipulation (e.g., path poisoning), and the

constant churn arising from changes in AS routing policies.
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Inaccuracies arising from these issues can generate incorrect

edge relationships and harm related applications [10].

Here we use formal statistical inference methods [11], [12]

to infer, for each pair of ASes in the network, the probability

that an edge exists between them given a set of possibly

unreliable observations. We collect routing tables from public

route collectors and obtain edge observations from the AS-

PATH attributes included in their routing information bases

(RIBs). By extracting both positive observations of an edge’s

existence and negative observations of an edge’s absence

from these paths, we maximize the information available. We

employ a statistical model in which each route collector is

treated as an independent mode of observation with its own

error rates, and we use expectation-maximization (EM) to

estimate these error rates and the probability of existence for

each edge in the AS network. Our main contributions are:

• A statistical model of BGP measurement methods as

generators of noisy edge observations, which maximizes

the available information by efficiently counting both

positive and negative edge observations.

• A Bayesian inference method for network reconstruction

applied to the AS topology, a large-scale, path-vector-

based network with noisy route collectors.

• A quantitative, information theoretic comparison of our

model to other AS network reconstruction methods.

• An example use case showing how our model can identify

geographic regions of the AS network that would benefit

most from additional measurement information (in the

form of new route collectors).

II. BACKGROUND

A. Sources of Noise in BGP Data

Interdomain routing depends on over 70,000 ASes that

apply their own routing policies to select paths to remote



destinations. BGP can exhibit a wide range of complex

behaviors caused by the interaction of diverse local routing

policies, accidental misconfigurations, intentional attacks, and

the protocol’s own convergence process. For our purposes,

what matters is that each of these phenomena can lead to errors

in observations of AS-level edges in the network topology,

which we treat in our model as noise. We begin by reviewing

several sources of such errors.

a) Local routing policies: Each AS uses local policies

to select, for each destination IP prefix, a preferred path from

the options offered by its neighbors. It also decides whether

or not to propagate the chosen path to additional neighbors.

For example, business relationships may cause an AS to favor

one path over another, or to decide not to advertise a chosen

path to a particular neighbor. Such policies affect which paths

are observed by each route collector and can cause collectors

to miss edges that actually exist.

b) Misconfigurations: Misconfigured ASes may intro-

duce invalid paths containing nonexistent edges, or they may

fail to advertise edges that do exist. Some misconfigurations

are localized to particular vantage points [13]. Others can

prompt BGP session resets that cause many valid paths to

be withdrawn and readvertised in a short period of time [14].

c) Prefix hijacking: Prefix hijacking attacks occur when

an AS announces an IP prefix that belongs to another AS

as its own; see [15]–[17] for several recent examples. Naive

hijacking simply routes traffic along a path of valid AS-level

edges that leads to the wrong destination for the hijacked

prefix. Since all edges are valid, this would not introduce

observational errors at a route collector. In a stealthier attack,

however, an adversary originates a route with a fake “last hop”

that purportedly connects the adversary’s AS to the legitimate

destination AS for the prefix. This can cause a route collector

to erroneously observe this final, nonexistent edge.

d) Path poisoning: An AS can poison an advertised path

by including additional AS numbers that appear to introduce

a loop. This misleads upstream ASes into filtering out the

route as a result of BGP’s built-in loop detection mechanisms.

Path poisoning can be used to manipulate the path that traffic

takes to reach certain destinations [18] or to protect victims

of denial-of-service attacks by blocking unwanted traffic from

senders in particular upstream ASes [19]. For example, an AS

i originating a prefix may poison its path by including ASes j

and k to trigger loop detection and subsequent route filtering

by ASes j and k. A route collector would then erroneously

observe nonexistent edges such as (i, j) and (j, k); it would

also miss paths from some vantage points.

e) Systematic noise: Beyond these explicit sources of

error, the constant churn of path advertisements and with-

drawals affects the data. Each advertisement or withdrawal,

if propagated to a route collector, causes fluctuations of the

edge observations in the routing tables, and these may not

be observed consistently across all vantage points. Further,

an AS may change its preferred routes at any time which

will eventually propagate to vantage points, creating additional

inconsistencies among route collectors.

Taken together, these sources of error introduce significant

noise in route collectors’ observations of AS-level edges. To

distinguish signal from noise in BGP data, we turn to the

statistical inference methods described in the next subsection.

B. Network Inference

The fundamental problem we face is inferring the structure

of the AS topology from unreliable path data. Recent work

in network science has developed statistical tools for tack-

ling this problem for a broad range of networks across the

sciences [11], [12], [20]–[25]. Instead of producing a single

“best guess” network topology, these methods use generative

models to produce, for each pair of nodes in a network, an

estimate of the probability that they are connected given the

available data. These estimated networks can then be mined to

discover particular patterns and to answer substantive research

questions about the underlying system [26], [27].

In general, these methods consider a network of N nodes

whose structure is represented by an N ×N adjacency matrix

A with elements Aij = 1 when there is an edge between

nodes i and j and Aij = 0 otherwise. In our context, nodes

are ASes and edges are direct links. A generative model for

inferring A based on the observational data D comprises two

parts. The data model captures the probability Pr [D|A, θ]
of observing the data D (in our context, the routing tables)

given that the ground truth structure of the network is A.

The network model assigns a prior probability Pr [A|ρ] to the

structure A, specifying how likely any given network structure

is before making any observations. The parameters θ and ρ

capture any additional model parameters (e.g., variances in

measurement data), of which there may be many and whose

values are initially unknown.

By Bayes’ rule, the posterior probability of the unknown

quantities A, θ, and ρ given the observed data D is

Pr [A, θ, ρ|D] =
Pr [D|A, θ] Pr [A|ρ] Pr [θ] Pr [ρ]

Pr [D]
, (1)

where Pr [ρ] and Pr [θ] are Bayesian priors on the parameters.

Conversely, the probability of the network structure A alone

given the parameters and observed data is

q(A) = Pr [A|θ, ρ,D] =
Pr [A, θ, ρ|D]

Pr [θ, ρ|D]
. (2)

After observing data D, Pr [A, θ, ρ|D] gives the joint proba-

bility of the network and the parameters while q(A) gives the

probability of the network when we already know the param-

eters. Section III motivates the advantages of this generative

modeling framework and Section IV details how we apply it

to our present problem of inferring the AS topology.

III. MOTIVATING EXAMPLE

Suppose we want to infer the topology of an example

network of N = 6 ASes given the observations in Fig. 1. The

observations consist of paths gathered by two route collectors

at two time steps. Usually paths like these are used to ex-

tract only “positive observations” of the existence of edges—

edges that are seen in at least one path—but here we also















2.66 × 109 unique AS pairs. The observation counting algo-

rithm (Algorithm 1) is easily parallelized to increase runtime

efficiency, but requires more effort to store the mapping of AS

pairs to their observation vectors tracking the number of time

periods each route collector observed each AS pair positively

or negatively. Instead of storing each individual observation

vector, we grouped AS pairs into observation classes, i.e., sets

of AS pairs with the same observation vectors. This produced

a speedup of two orders of magnitude during inference by

reducing the set of interest from the 2.66 × 109 AS pairs to

roughly 1.5 × 107 observation classes.

Observation classes enabled additional optimizations during

the EM computation to estimate the maximum likelihood

parameters α, β, and ρ of our model. Our parallel EM

implementation is optimized both for runtime and memory

efficiency, maximizing a value proportional to the log-density

of Eq. 9 to improve numerical stability. Since any edge with

the same observation vector contributes the same value to this

log-density, we iterate over observation classes instead of all

AS pairs, again reducing runtime by two orders of magnitude.

C. Limitations

One useful application of reliable AS network reconstruc-

tions is in early warning of BGP anomalies, including false

route advertisements, prefix hijacking, path poisoning, and

BGP black-holing. There are a variety of existing approaches

to this problem. Distributed anomaly detection algorithms

imbue participating ASes with enhanced security guarantees

and increased mitigation time without centralized coordina-

tion or fundamental changes to BGP [34]. Machine learning

approaches have been used to identify the signatures of

anomalies in BGP time series data [35]–[37]. Others search

for evidence of misbehaving vantage points using information

about the network’s structure [13]; however, certain substruc-

tures appearing in both anomalous and correct data limit the

impact of this approach.

In its current form, our Bayesian inference method is not

a suitable BGP anomaly detection method despite its ability

to infer reliable representations of the AS network topology.

Many BGP anomalies and attacks make use of real edges in

which our model tends to have high certainty. Since edges

that are observed positively tend to be observed positively

by several route collectors across multiple time periods and

rarely have conflicting negative observations, our method

struggles to differentiate false announcements from real edges.

Future modifications to the data preprocessing and observation

counting methods may enable network inference to serve as

an effective anomaly detection scheme.

IX. RELATED WORK

a) BGP Simulation: Several previous studies have lever-

aged simulations of BGP routing policies to understand the

AS network topology. Karlin et al. [34] used simulations to

validate the security advantages of their “Pretty Good BGP”

algorithm over the more costly implementation of RPKI.

Gill et al. [6] performed sensitivity analysis on an ensemble

of simulations to infer valley-free routes from established

AS business relationships. BGP has been simulated to study

convergence properties and evaluate the effectiveness of BGP

architectures [38]–[40]. In contrast to simulation, our domain-

independent Bayesian inference method directly infers AS-

level connectivity from network measurement data, relying on

the density of information contained therein.

b) BGP Topologies: Previously, researchers have used

various inference algorithms to study the structure of the

AS topology. The well-known AS Relationships method [3]

and related methods [10], [41] infer business relationships

between ASes from public routing data, identifying whether

these relationships are peer-to-peer or customer-to-provider.

Most closely related to our approach, Toposcope [42] employs

several methods including Bayesian networks to infer business

relationships. Each of these related works focuses on the

business relationship inference problem, which is distinct

from the edge existence inference problem. Additionally, these

approaches use heuristic filters for selecting paths to use

for inference. Prior to this work, the significance of these

heuristics has not been explored, but the effect of misbehaving

vantage points has been documented [13].

c) Network Inference Methods: Rigorous statistical tech-

niques [11], [12], [20]–[22] have previously been used to

determine the structure of empirical networks from noisy

data in several application domains including for instance

social networks analysis [23], the analysis of protein-protein

interactions [24], and ecology [25]. A closely related line of

work focuses on inference with incomplete observations [43],

[44], investigating what can be learned about a fixed network

if its structure is queried one or many paths at a time instead of

observed fully. Crucially, these path-based inference methods

assume that whenever an edge is observed in a sample, that

edge must exist; i.e., they assume that uncertainty only arises

from not seeing the whole network in samples. In contrast, our

approach models measurement as imperfect and thus allows

for samples to be affected by error.

X. CONCLUSION

We introduced a statistical inference method for inferring

the AS network topology from noisy, incomplete, path-based

observational data. Our generative model of observational

error allows for differing levels of trust across route collectors

and was demonstrated to pass established statistical validation

tests. We used our model to compare various AS network

reconstruction methods and to identify regions of the network

where our model had low certainty, suggesting countries that

would most benefit from the creation of new route collectors

and vantage points. As global Internet connectivity patterns

evolve to reflect ongoing technological, economic, and po-

litical changes, we hope that the methods presented here

will contribute to more accurate network reconstructions and

better-informed interventions.

The authors have provided public access to their code and

data at https://kirtusleyba.github.io/noisynets.
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