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The task of ranking individuals or teams, based on

a set of comparisons between pairs, arises in various

contexts, including sporting competitions and the

analysis of dominance hierarchies among animals

and humans. Given data on which competitors

beat which others, the challenge is to rank the

competitors from best to worst. Here we study

the problem of computing rankings when there are

multiple, potentially conflicting types of comparison,

such as multiple types of dominance behaviours

among animals. We assume that we do not know

a priori what information each behaviour conveys

about the ranking, or even whether they convey

any information at all. Nonetheless we show that it

is possible to compute a ranking in this situation

and present a fast method for doing so, based

on a combination of an expectation-maximization

algorithm and a modified Bradley-Terry model. We

give a selection of example applications to both animal

and human competition.
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1. Introduction

Suppose a set of individuals or teams compete with one another in pairwise fashion, as in a

sporting league or chess tournament. The outcome of each game is recorded and your task is to

rank the players or teams from best to worst based on those outcomes. Similar ranking problems

also arise in paired comparison tests in consumer research and behavioural psychology, and in

dominance hierarchies in animals and humans, where individuals compete in pairwise fashion

to establish dominance and the challenge is to estimate the hierarchy of individuals from their

observed interactions.

Ranking problems of this kind have been widely studied for over a century [1–5]. They can

be non-trivial because the outcomes of competitions are not always consistent—better players

sometimes lose and worse players win—but excellent methods exist for computing rankings

nonetheless. Here we study the more complex “multimodal” problem of computing rankings

when there is more than one type or mode of competition between individuals. Many animals,

for instance, compete in a range of different ways. Mountain goats attack opponents with their

horns but also employ a type of rushing attack [6]. Spotted hyenas also use a rushing attack,

or they may bite their opponents [7]. In traditional ranking analyses one treats these modes as

equivalent, but different modes may contribute more or less to establishing dominance and by

exploiting this variation one can perform a more fine-grained analysis that reveals things not

readily accessible via standard methods.

Ranking analyses are frequently couched in the language of wins and losses, but there are

cases where this framing does not apply. In observations of interactions among elementary school

children, for instance, there is often a well established hierarchy but many interactions are not

overtly competitive [8]. One child directing the actions of another, for instance, is commonly

observed and non-competitive but is nonetheless believed to be indicative of dominance. In cases

like this merely performing the action is the equivalent of a win. Similar situations also arise in

animal behaviour, where dominance displays without physical competition are often preferred

by both parties to avoid injury. American bison, for example, do fight one another, but they also

employ a range of non-contact threats including a “nod threat” and a “broadside threat” [9].

Dominance is signalled merely by performing the action.

At the same time, not all actions necessarily indicate dominance: some may indicate

subordination. In the case of schoolchildren, for instance, actions like directing behaviour indicate

dominance, but actions like following, copying, or watching typically indicate subordination [8].

Both dominant and subordinate actions may be useful for inferring hierarchy, but we need to

know which is which in order to analyse them appropriately.

In the work presented here, we explicitly allow for the possibility that different actions can play

different roles in a given setting, but we do not assume that we know the role or valence of any

action in advance. It turns out, however, that one can infer these parameters automatically from

observational data, and once we know the nature of the interactions we can use this information

to make an estimate of the complete ranking of individuals or teams, weighting each interaction

type appropriately. Interactions that are strongly correlated with dominance carry heavy weight;

those that are strongly correlated with subordination do so as well, but with an opposite sign. And

interactions that are only weakly correlated are given low weight. In this way, we can construct a

ranking that correctly allows for the different ways in which individuals interact.

A number of previous authors have studied related problems. Our multimodal ranking is in

some ways reminiscent of the “multivariate” comparisons studied by Davidson and Bradley and

others [10–12]. These authors consider problems of consumer choice in which items or products

are rated by consumers on several criteria, such as a car rated on price, size, fuel economy, and so

forth. A crucial difference between these studies and ours is that our goal is to infer only a single,

one-dimensional ranking of items or individuals, whereas the multivariate approach produces

multiple rankings, one for each criterion. While the multivariate approach can be appropriate

in settings such as consumer choice, the approach of the present paper is more appropriate for
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applications to dominance hierarchies, sport, and other competitions where we either desire or

believe axiomatically that the individuals or teams exist on a single rank scale. Perhaps a closer

parallel to our approach is to be found in the literature on rank aggregation methods [13]. These

are general methods for taking multiple, possibly conflicting rankings of the same set of items or

individuals and combining them to generate a single consensus ranking. (Note that the phrase

“rank aggregation” is also sometimes used to describe the unimodal ranking problem [13,14],

so one must be careful when reading this literature.) Rank aggregation is used for instance to

combine rankings of web pages for output by web search engines [15]. Although they are based

on different principles to our approach, such as numerical minimization of the distance between

rankings, rank aggregation methods could be applied to the types of problems we consider by

generating separate rankings for each criterion or mode and then aggregating them. A related

approach has been taken by Pritikin [16], who also constructs different ranking scales for different

criteria but then performs a factor analysis to construct a consensus measure of merit. Like the

multivariate approach, these methods contrast philosophically with our assumption that there

exists only a single ranking, but the outputs could give similar results in some cases.

More broadly, the multimodal ranking problem belongs to the larger class of studies of

“multiplex networks” [17,18]. The pattern of comparisons or interactions can be thought of as

a network in which the nodes are the individuals or teams and the directed edges between them

represent interactions, with the direction pointing from the winner or instigator of an interaction

to the loser or recipient. The multiple modes of interaction can be thought of as multiple types of

edges between the same set of participants, and such networks—known as multiplex networks

in the literature—have been the subject of a substantial amount of work in recent years [18–20],

including work on ranking problems [21,22], although the particular problem addressed here

does not seem to have received attention.

2. The model

Suppose we have a population of N individuals or teams labelled by u= 1 . . . N and a sequence

of contests or interactions between them. Let there be M interactions in total denoted by r=

1 . . .M , let ur be the individual who wins the rth interaction (in cases where there is a winner) or

who instigates the interaction (in cases where there is no winner). Similarly let vr be the loser or

recipient of the rth interaction. For simplicity we assume that there are no ties or draws, although

the approach we describe could be generalized to the case of ties using standard methods [23,24].

For each interaction we assume that there is a dominant individual and a subordinate

individual. It is central to our treatment, however, that the dominant individual need not be

the winner or instigator of the interaction: some games may be won by the weaker player and

some actions may be instigated by a subordinate individual. Moreover, we explicitly allow for

the possibility that the dominant individual in a pair may change from one interaction to another.

In some pairs one individual may always be dominant, but in others the roles may vary. We define

a stance variable σr which indicates which individual is dominant during interaction r: the stance

is 1 if the winner ur is the dominant individual and 0 if the loser vr is dominant. (To simplify the

discussion we will henceforth refer to ur as the “winner”, but this should be taken to include the

instigator in cases where merely performing an action is equivalent to a win, and similarly for

losses.)

The distinction here between the dominant individual and the winner is crucial. In the

conventional theory of unimodal paired comparisons no distinction is made between these: the

winner is dominant by definition. In the multimodal case, however, this approach is insufficient

because it fails to separate the properties of the individuals from the properties of the interactions.

It would not allow, for instance, for a situation in which one type of interaction is always

instigated by the dominant individual and another by the subordinate individual. The model

proposed here allows for the possibility that different interaction types may have different

probabilities of being instigated or won, even by the same individual.
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We assume the stance σr is independent for each interaction and model it using a standard

Bradley-Terry model of dominance [1–3]. We define a score or ranking su for each individual u

and we assume that the probability puv of individual u dominating over individual v on any

particular interaction is a function f(su − sv) of the difference of their scores. In the Bradley-

Terry model this function is chosen to be the logistic function f(s) = 1/(1 + e−s), which means

that

puv =
esu

esu + esv
. (2.1)

These probabilities are invariant under a uniform shift of all the scores su by an additive constant,

so one commonly introduces some normalization or standardization to fix the origin of the score

scale. Here we do this by fixing the average score to be zero, so that s= 0 indicates an average

individual who is equally likely to be dominant or subordinate.

For convenience, one also often introduces the shorthand λu = esu , so that

puv =
λu

λu + λv
, (2.2)

and we will do that here. Following Zermelo [1] we refer to λu as a strength parameter or simply

a strength. Note that for the average individual with s= 0 we have λ= e0 = 1, so the probability

p0 of an individual with strength parameter λ dominating against the average individual is

p0 =
λ

λ+ 1
, (2.3)

and hence λ= p0/(1− p0). Thus λ has a simple interpretation: it is the odds of dominating against

the average individual.

The winner of an interaction need not, as we have said, be the dominant individual. Sometimes

the winner is the subordinate individual and the frequency with which this happens may depend

on the type of the interaction. Let there be T interaction types, labelled by t= 1 . . . T . We define

another parameter qt, which we call the valence probability, equal to the probability that the

currently dominant individual wins an interaction of type t (and 1− qt is the probability that

the subordinate individual wins).

Given these definitions, we can now write down an expression for the likelihood of occurrence

of a particular sequence of wins and losses. Consider an interaction r with winner u, loser v, and

type t. The probability of the stance taking value σr = 1 is equal to puv and the probability that

σ= 0 is 1− puv . In general,

P (σr|λu, λv) = pσr

uv(1− puv)
1−σr =

λσr

u λ1−σr

v

λu + λv
. (2.4)

Given the value of σr we can calculate the probability that individual u did indeed win: if σr =

1, so that u is dominant, then the probability is qt; if σr = 0, so that u is subordinate, then the

probability is 1− qt. Denoting the observation data for interaction r by xr , these probabilities can

be compactly combined as

P (xr|σr, qt) = qσr

t (1− qt)
1−σr . (2.5)

Then the probability that the stance is σr and u wins is

P (xr, σr|λu, λv, qt) = P (xr|σr, qt)P (σr|λu, λv) = (puvqt)
σr

[

(1− puv)(1− qt)
]1−σr

=
(λuqt)

σr [λv(1− qt)]
1−σr

λu + λv
. (2.6)

Finally, under the assumption that interactions r are independent of one another (conditioned on

the values of λu and qt), the likelihood of the entire set of M observations is the product of this
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expression over all r, which gives

P (x, σ|λ, q) =

M
∏

r=1

(λur
qtr )

σr [λvr (1− qtr )]
1−σr

λur
+ λvr

, (2.7)

where the unsubscripted variables x, σ, λ, and q indicate the complete sets of data and parameters.

Our goal is to use Eq. (2.7) to estimate the values of λu and qt for all individuals u and all

interaction types t.

3. EM algorithm

One might imagine that the next step in the calculation would be to sum over the variables σr in

Eq. (2.7), which can be done easily to give an expression for P (x|λ, q) thus:

P (x|λ, q) =
∑

σ

P (x, σ|λ, q) =
M
∏

r=1

λur
qtr + λvr

(1− qtr )

λur
+ λvr

. (3.1)

Then we could maximize this expression by differentiating with respect to λ and q to find

maximum-likelihood estimates of the parameters, or alternatively maximize its logarithm, which

is equivalent and usually simpler. Though the derivatives can be done, however, they yield

a complicated set of implicit equations with no easy solution. Instead, therefore, we adopt a

different approach, making use of an expectation-maximization (EM) algorithm.

Instead of maximizing logP (x|λ, q) directly, we apply Jensen’s inequality, which says for

any set of non-negative quantities zi and weights πi satisfying
∑

i πi = 1 that log
∑

i zi ≥
∑

i πi log(zi/πi). Applied to the present case, this gives

logP (x|λ, q) = log
∑

σ

P (x, σ|λ, q)≥
∑

σ

π(σ) log
P (x, σ|λ, q)

π(σ)
, (3.2)

where π(σ) is any probability distribution over the set σ of stance variables satisfying
∑

σ π(σ) =

1. The exact equality is achieved—and hence the right-hand side of (3.2) maximized—when

π(σ) =
P (x, σ|λ, q)

∑

σ P (x, σ|λ, q)
=

∏

r

(

λur
qtr

)σr

[

λvr
(1− qtr )

]1−σr

∏

r

[

λur
qtr + λvr

(1− qtr )
] =

∏

r

πσr

r (1− πr)
1−σr , (3.3)

where

πr =
λur

qtr
λur

qtr + λvr
(1− qtr )

(3.4)

and we have used Eqs. (2.7) and (3.1). The quantity πr can be interpreted as the posterior

likelihood that ur is the dominant participant in interaction r.

Since the choice (3.3) maximizes the right-hand side of (3.2) and simultaneously makes the two

sides equal, a further maximization with respect to λ and q will then achieve our goal of finding

the maximum-likelihood values of these parameters. Equivalently, a double maximization of the

right-hand side with respect to both π(σ) and the parameters λ, q will achieve the same goal. In an

EM algorithm we perform this double maximization by alternately and repeatedly maximizing

with respect to π(σ) and with respect to λ, q until convergence is reached. The first we do using

Eqs. (3.3) and (3.4) and the second by differentiation as follows.
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Substituting from Eqs. (2.7) and (3.3) into (3.2) and neglecting terms that do not depend on λ, q,

we find that
∑

σ

π(σ) logP (x, σ|λ, q)

=
∑

σ

[

∏

r

πσr

r (1− πr)
1−σr

]

∑

r

[

σr log(λur
qtr ) + (1− σr) log

[

λvr
(1− qtr )

]

− log(λur
+ λvr

)
]

=
∑

r

[

πr log(λur
qtr ) + (1− πr) log

[

λvr
(1− qtr )

]

− log(λur
+ λvr

)
]

=
∑

r

∑

uv

δuruδvrv
[

πr log λu + (1− πr) log λv − log(λu + λv)
]

+
∑

r

∑

t

δtrt
[

πr log qt + (1− πr) log(1− qt)
]

, (3.5)

where δab is the Kronecker delta. Now we differentiate this expression to calculate the maximum-

likelihood estimates of the parameters. Differentiating with respect to qt gives the straightforward

result

qt =

∑

r δtrtπr
∑

r δtrt
. (3.6)

Calculating the λ parameters is a little more complicated. Differentiating (3.5) with respect to λi
and setting the result to zero, we get

∑

r

δuriπr + δvri(1− πr)

λi
−

∑

r

[

δuri

λi + λvr

+
δvri

λur
+ λi

]

= 0, (3.7)

which can be rearranged into the form

λi =

∑

r

[

πrδuri + (1− πr)δvri

]

∑

u Aiu/(λi + λu)
, (3.8)

where

Aij =
∑

r

[

δuriδvrj + δurjδvri
]

(3.9)

is the total number of times that i and j interact. Equation (3.8) can be solved for λi by simple

iteration starting from any convenient set of initial values λi > 0. This iterative procedure can

be thought of as a variation on the well-known algorithm of Zermelo [1] for the traditional

Bradley-Terry model with just a single mode of interaction. (For small problems with only a few

individuals or teams it may be faster to solve (3.7) directly by Newton’s method or Fisher scoring,

but the speed advantage is relatively small and for larger instances the simple iterative approach

is faster because it does not require a matrix inversion. On balance, we recommend the iterative

approach in most cases.)

The full algorithm for computing a ranking now consists of the following steps:

(i) Choose initial values for the parameters λu and qt for all individuals u and interaction

types t. These values can for instance be chosen at random.

(ii) Compute the quantities πr from Eq. (3.4).

(iii) Compute new estimates of the valence probabilities qt from Eq. (3.6).

(iv) Compute new estimates of the strengths λu by iterating Eq. (3.8) to convergence.

(v) Normalize the λu so that the average individual has rank score zero, which is equivalent

to dividing by the geometric mean of the λu thus:

λu←
λu

(
∏N

v=1
λv

)1/N
. (3.10)

(vi) Repeat from step 2 until overall convergence is achieved.
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Note that, by contrast with EM algorithms in some other applications, this algorithm is

guaranteed to always converge to the global maximum of the likelihood, Eq. (3.1). It is true

generally that an EM algorithm must converge to some maximum of the likelihood, but it is

possible, depending on initial conditions, to find a local rather than global maximum. In the

present case, however, the likelihood has only a single maximum, a property it inherits from

the original Bradley-Terry model [1], and hence convergence to the global maximum is assured.

The end result of the algorithm is a complete set of strengths λu that specify the ranking of

the individuals—higher λu implies higher ranking. If we wish, we can convert these parameters

back to the original scores su = log λu, which are more symmetric and arguably easier to interpret.

A minor technical issue is that the likelihood of Eq. (3.1) is invariant under the change λu→ 1/λu,

qt→ 1− qt for all u and t, meaning that, depending on the initial conditions, the final ranking may

end up being upside down, so that the most dominant individuals have the lowest scores and the

most subordinate ones have the highest. If this happens one need merely invert all the values of

the λu to set them the right way up.

4. Prior on the strength parameters

The procedure described in the previous section amounts to a complete algorithm for calculating

the maximum-likelihood values of all the parameters in our model. In some cases, however,

this method gives poor results, for well understood reasons. Maximum-likelihood estimates of

Bradley-Terry style models can perform poorly because they give undue weight to very large and

very small values of the scores su. This is because the maximum-likelihood approach effectively

assumes an (improper) uniform prior on su, but su has infinite support su ∈ [−∞,+∞], so all but

a vanishing fraction of the prior weight is on arbitrarily large values. This results in a number

of well-known problems, particularly that the value of su for any individual who is dominant

in every interaction is automatically infinite, which makes it impossible to tell any two such

individuals apart.

One solution to these problems is to impose a more appropriate prior on su and a natural

choice is a logistic prior [25,26]. Consider again the quantity p0 defined in Eq. (2.3), which is the

probability that an individual with strength λ dominates against the average individual:

p0 =
λ

λ+ 1
=

es

es + 1
. (4.1)

In the absence of any information to the contrary, we assume this probability to be uniformly

distributed between zero and one—the minimally informative or maximum-entropy prior

P (p0) = 1. Then the corresponding prior on the score s is

P (s) = P (p0)
dp0
ds

=
dp0
ds

=
1

(es + 1)(e−s + 1)
, (4.2)

which is the logistic distribution. This is the prior we use in our work.

Now instead of maximizing the likelihood of Eq. (2.7) we maximize the posterior probability,

assuming that the prior on q is also uniform. It is important to recognize that the resulting

estimate, like all maximum a posteriori (MAP) estimates, depends on the parametrization of the

likelihood, and specifically in this case on whether we maximize with respect to su or λu. The

maximum with respect to one will not in general lie in the same place as the maximum with

respect to the other. In our work we consider the su to be the more fundamental set of variables

and maximize the posterior distribution

P (s, q, σ|x) = P (x, σ|s, q)
P (s)P (q)

P (x)
(4.3)
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with respect to s. With P (s) as in Eq. (4.2) and uniform P (q), and changing variables back to λu,

this gives us

P (s, q, σ|x) =

M
∏

r=1

(λur
qtr )

σr [λvr (1− qtr )]
1−σr

λur
+ λvr

N
∏

u=1

λu
(λu + 1)2

. (4.4)

In addition to regularizing the score parameters, the addition of the prior also eliminates the

invariance of the model under a uniform shift of the scores and hence eliminates the need to

normalize them. (Note that, although we have for convenience changed variables to λu, Eq. (4.4)

still represents the probability of su and not of λu. The probability of λu would have a different

form because there would be an additional Jacobian factor.)

With the addition of the extra term in (4.4), the derivation of the algorithm proceeds as before.

Equations (3.4) and (3.6) for the quantities πr and qt remain unchanged, while the equation for

the strengths λu now becomes

λi =
1 +

∑

r

[

πrδuri + (1− πr)δvri
]

2/(λi + 1) +
∑

u Aiu/(λi + λu)
. (4.5)

Other than this change, and the omission of the now-unnecessary normalization step, the

algorithm is the same as before.

5. Results

We demonstrate our approach with example applications to a set of computer-generated test data

and to three real-world data sets, an animal dominance hierarchy, a human hierarchy, and an

example from competitive team sport.

Synthetic tests

As a first demonstration of our approach we present the results of a set of tests using synthetic

(computer-generated) data. In these tests we generated a large number of random data sets with

N = 100 individuals each and interactions between pairs chosen uniformly at random (a random

graph in the language of network theory). Because the sparsity of the interactions can affect our

ability to perform accurate inference, we study cases with both relatively dense interactions (M =

5000) and sparser ones (M = 1000). Tests were also performed with two different choices of the

number of interaction types, T = 5 and 10. The winners of the interactions were generated using

the model of Section 2 with independent scores su drawn from the logistic distribution of Eq. (4.2)

and valence probabilities qt drawn uniformly in an interval [qmin, qmax] for various values of qmin

and qmax as described below.

For each choice of M , T , qmin, and qmax we generated 1000 data sets and analysed each

one by the MAP estimation method of Section 4 and also by fitting to a traditional unimodal

Bradley-Terry model in which all interactions are considered equivalent—the standard procedure

for calculations of dominance hierarchies for example. Following each analysis we ranked the

fictional participants according to their inferred scores su and computed a Spearman rank

correlation between these inferred ranks and the ground-truth ranks implied by the original

scores used to generate the data, thereby testing our ability to recover the true ranking of the

individuals. The results are shown in Table 1.

We explore three different choices for the valence probabilities qt. In the first column of results

in Table 1 we choose values of qt uniformly at random in the interval [0.5, 1]. This means that

all interactions are dominant in the sense of being instigated or won by the dominant individual

more often than not. In this situation our method does well at recovering the ground-truth ranking

with Spearman R2 > 0.5 in all cases, but the standard Bradley-Terry analysis does almost as well.

This is expected since the standard method assumes that indeed all interactions are dominant.

There is nonetheless some daylight between the two methods—our method does better by a small
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Table 1. The results of tests of our method on computer-generated data, compared with analyses of the same data

using a standard ranking algorithm that assumes all interactions to be equivalent. All generated examples have N = 100

individuals and interactions placed between pairs chosen uniformly at random. Values of the number of interactions M and

number of interaction types T are as listed and values of qt are chosen uniformly at random in the intervals shown. The

results are Spearman R2 values between the inferred ranking of the individuals and the ground-truth ranking calculated

from the parameters used to generate the data, averaged over 1000 random instances. In each entry x/y the first

number x is the result from the method of this paper and the second y is from the traditional ranking calculation. Standard

errors are less than ±1 in the final digit in all cases.

Spearman R2 (this paper)/(traditional)

M T 0.5≤ qt ≤ 1 0.25≤ qt ≤ 1 0≤ qt ≤ 1

5000 5 0.88/0.83 0.83/0.53 0.88/0.42

5000 10 0.89/0.85 0.85/0.52 0.89/0.29

1000 5 0.53/0.50 0.43/0.24 0.54/0.17

1000 10 0.54/0.52 0.41/0.22 0.54/0.11

margin in all cases because it is able to use the fact that some interactions are more strongly

indicative of dominance than others.

The difference becomes more pronounced in the remaining columns of the table. In the last

column we choose values of qt in the interval [0, 1], so that interactions are equally likely to

indicate dominance or subordination. In this case our method has a large advantage, since it

can estimate the valence of the interactions from the data while the standard method cannot,

and we see that there is indeed a large difference between the results for the two methods in

this regime—our method continues to do well at recovering the true ranking while the standard

method performs poorly.

The middle column gives results for the intermediate case where qt falls in the interval [0.25, 1],

which represents a situation in which most interactions indicate dominance but a few do not.

Again we see in this situation that the method of this paper significantly outperforms the standard

analysis because it is able to discern the valence of the interactions.

The effect on the results of the number of interaction types T is small for both our method

and the traditional ranking. The effect of the number of observations M on the other hand is

more pronounced: our method returns excellent results for all cases with M = 5000, no matter

the values of the other parameters, but is noticeably poorer for the sparser case of M = 1000. The

traditional method also performs poorly for M = 1000, although in most cases it does poorly for

M = 5000 too.

To summarize, our method gives modestly improved rankings in situations where all

interactions are indicative of dominance and substantially improved rankings in situations where

they are not. Even in cases where the difference between the methods is small, however, the

results may be interesting for other reasons. In particular, our method also gives an estimate of

the valence probability qt for each interaction type, which can be of interest in its own right, as

we see in the following sections.

Dominance hierarchy in vervet monkeys

We now turn to applications of our method to real-world data. Our first example application is to

a classic animal dominance hierarchy. We analyse observations reported by Vilette et al. [27] of 66

wild vervet monkeys in the Samara Private Game Reserve in South Africa between January 2015

and December 2017. The authors report a total of 11 664 agonistic encounters between pairs of

monkeys, divided into eight types: charge, chase, displace, facial, lunge, physical, supplant, and

vocal. A few other types, such as “scream” and “grab”, were recorded but were rare—less than 1%
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Figure 2. Scatter plot of the rankings of the vervet monkeys. Rankings were computed in two ways: using the method

of this paper and by conventional methods that assume all interactions to be equally informative (equivalent to assuming

that the valence probability qt is 1 for all interaction types). The strength parameters λu were computed in both ways then

the monkeys were sorted in order of their strengths from highest to lowest to give the rankings plotted here.

visualization the nodes represent the students, the directed connections indicate answers to the

survey questions, and the vertical position of each node on the page indicates the rank score su
assigned to it by the analysis, so that nodes higher up the page are more highly ranked. As we

can see, most edges in the network run in an upward direction, meaning that students say they

get on with, are friends with, or prefer to work with others who are above them in the hierarchy.

On the one hand, this may seem counterintuitive, since one might imagine that friendship and

co-working relations should be symmetric: if A is friends with B then surely B is friends with A

as well? On the other hand, it is common for children (and perhaps adults too) to make or claim

“aspirational” connections: they want to be friends with higher status others [29–31]. These effects

lead to asymmetries in reported social networks that can be used, as here, to infer hierarchy.

Figure 4 shows the values of the parameters qt for the three types of connection in this case

and here we also find something interesting. The first type (“who do you get on with?”) is

relatively weakly indicative of hierarchy, but for the second and third types (“best friends” and

“work with”) the most probable value of qt is 1, implying that these types of connections are

maximally indicative of hierarchy. Moreover, because the value of qt is the same for these types

the algorithm treats them in an identical way, which means effectively that there are only two

types of connections in these data. The “best friends” and “work with” interactions are flattened

into a single combined interaction type by the analysis. We have encountered similar flattening

of the data in some other examples we have analysed, including animal hierarchies, professional

networks, and some online social networks.

American football competition

Ranking methods are often applied in sport and athletic competition to rank players or teams.

As a demonstration of this type of application we apply our method to professional American

football. American football provides an interesting example because, unlike association football,
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Figure 5. The rank scores su of the 32 American football teams in the analysis described here for the 2015 NFL season,

plotted against the fraction of games they won in the same season.

A key aspect of this analysis is that we use no information about the actual success of the

plays—whether they advance the ball, for instance, or whether any points are scored. Moreover,

we specifically remove from the data compulsory plays such as kickoffs and conversions that

implicitly signal point scoring, so the only information available to the algorithm is which types

of plays the teams choose to run. (We do include field goals, which score points, because these are

optional and hence are revealing from a strategic point of view.)

Even without explicit indicators of success, however, we can extract a meaningful ranking of

the teams. Figure 5 shows an example for the 2015 season of the US National Football League

using data from Yurko et al. [32]. With 36 030 interactions in total, this example is the largest

in this paper, but our algorithm nonetheless runs quickly. Total running time for the calculation

was 11 seconds on a standard laptop computer (circa 2022). The figure shows the inferred rank

score su of each of the 32 teams in the league plotted against their actual success during the

season, represented by the fraction of games they won. Although the correlation between the

two measures is not perfect, it is substantial and significant (R2 = 0.453, p < 0.0001). Note that

we should not expect perfect correlation even if our rankings were perfectly accurate, since it

is an important aspect of commercially successful spectator sports that they contain an element

of randomness. If the higher ranked team always won there would be little suspense about the

outcome of a game and correspondingly little motivation to watch, so the existence of any method

that could reliably predict game winners would be a clear sign of an unsuccessful sport (which

American football certainly is not).

One might suppose our success at ranking the teams to be a result of the simple fact that

winning teams run more plays than losing teams, because they are in possession of the ball more

often, but this is not the case. In fact there is hardly any difference between the number of plays

run by the best and worst teams: the top ten teams in our ranking for the 2015 season, for instance,

ran an average of 1134 plays in total during the regular season while the bottom ten actually ran

a slightly larger number of 1169.
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Figure 6. The valence probabilities qt for each of the five play types used in the ranking of American football teams.

The ranking of teams is signalled not by the number of plays, but by which plays the teams run.

Figure 6 shows the values of the valence probabilities qt for each of the five play types included in

our analysis. By contrast with our previous examples, not all types of plays indicate dominance.

Two types do clearly signal dominance—running plays and field goals—with values of qt well

above 1

2
. The remaining three, however, signal subordination. Of these, the punt is only used to

get rid of the ball when a team knows they are likely to lose it anyway, and hence is a naturally

subordinate trait. And a sack—the player with the ball gets tackled before they can move it up the

field—is a clear sign of team weakness. More surprising is that passing plays, where the ball is

thrown, are also a sign of weakness. In general passing plays are some of the most spectacular and

successful plays in American football, so one might ask why they are indicative of subordination.

The answer may be that passing plays are challenging to execute and often fail, because for

instance the thrown ball is not caught or is intercepted by the opposing team. This means that

weaker teams have to make more attempts to achieve successful passing plays than stronger

teams and hence, on balance, passing plays are indicative of weakness. For instance, during the

2015 season the top ten teams in our ranking made an average of 504 passing plays each while

the bottom ten made an average of 620.

6. Conclusions

In this paper we have considered the problem of ranking a set of individuals or teams based on

pairwise comparisons when there are multiple types of comparison. Examples include animal

dominance hierarchies in which animals use a range of different behaviours to establish or signal

dominance, and sporting competitions in which teams use a range of different moves or plays

against their opponents. We have shown that even if one does not know in advance either the

ranking of the individuals or what information each type of interaction conveys, it is possible to

infer both from observed interactions. We have described an efficient method for doing this which

combines an expectation-maximization algorithm with a variant of the Bradley-Terry model.

We have presented a number of example applications of the method, including applications to

animal and human dominance hierarchies, and an application to the sport of American football.

The method provides a way to sensitively infer rankings taking all interaction types into account

and weighting each one appropriately given the information it contains. At the same time the

results shed light on the interactions themselves, telling us, without need for other input, whether

each type of interaction is indicative of dominance or subordination, and to what extent.

Natural extensions of the work reported here include the exploration of alternative models

for multimodal comparisons, including generalizations of popular models for the unimodal

case such as Thurstonian models [3,33] or models that allow for dependencies between

observations [5]. One could also consider goodness of fit measures to assess the success of our
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model or any other, model selection to choose between alternatives, or more elaborate inference

procedures for the current model, including fully Bayesian approaches similar to those applied in

the unimodal case [25,34], which would have the advantage of making the ranking independent

of the parametrization of the model. These extensions, however, we leave for future work.
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Code and data

Complete computer code implementing the method of this paper, along with example data, is

available in the supplementary materials. Also included is a program to generate synthetic data

as used in the tests in Section 5. The data for the examples on vervet monkeys, 7th grade students,

and American football in Section 5 are all previously published and publicly available.
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