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1. Introduction

Suppose a set of individuals or teams compete with one another in pairwise fashion, as in a
sporting league or chess tournament. The outcome of each game is recorded and your task is to
rank the players or teams from best to worst based on those outcomes. Similar ranking problems
also arise in paired comparison tests in consumer research and behavioural psychology, and in
dominance hierarchies in animals and humans, where individuals compete in pairwise fashion
to establish dominance and the challenge is to estimate the hierarchy of individuals from their
observed interactions.

Ranking problems of this kind have been widely studied for over a century [1-5]. They can
be non-trivial because the outcomes of competitions are not always consistent—better players
sometimes lose and worse players win—but excellent methods exist for computing rankings
nonetheless. Here we study the more complex “multimodal” problem of computing rankings
when there is more than one type or mode of competition between individuals. Many animals,
for instance, compete in a range of different ways. Mountain goats attack opponents with their
horns but also employ a type of rushing attack [6]. Spotted hyenas also use a rushing attack,
or they may bite their opponents [7]. In traditional ranking analyses one treats these modes as
equivalent, but different modes may contribute more or less to establishing dominance and by
exploiting this variation one can perform a more fine-grained analysis that reveals things not
readily accessible via standard methods.

Ranking analyses are frequently couched in the language of wins and losses, but there are
cases where this framing does not apply. In observations of interactions among elementary school
children, for instance, there is often a well established hierarchy but many interactions are not
overtly competitive [8]. One child directing the actions of another, for instance, is commonly
observed and non-competitive but is nonetheless believed to be indicative of dominance. In cases
like this merely performing the action is the equivalent of a win. Similar situations also arise in
animal behaviour, where dominance displays without physical competition are often preferred
by both parties to avoid injury. American bison, for example, do fight one another, but they also
employ a range of non-contact threats including a “nod threat” and a “broadside threat” [9].
Dominance is signalled merely by performing the action.

At the same time, not all actions necessarily indicate dominance: some may indicate
subordination. In the case of schoolchildren, for instance, actions like directing behaviour indicate
dominance, but actions like following, copying, or watching typically indicate subordination [8].
Both dominant and subordinate actions may be useful for inferring hierarchy, but we need to
know which is which in order to analyse them appropriately.

In the work presented here, we explicitly allow for the possibility that different actions can play
different roles in a given setting, but we do not assume that we know the role or valence of any
action in advance. It turns out, however, that one can infer these parameters automatically from
observational data, and once we know the nature of the interactions we can use this information
to make an estimate of the complete ranking of individuals or teams, weighting each interaction
type appropriately. Interactions that are strongly correlated with dominance carry heavy weight;
those that are strongly correlated with subordination do so as well, but with an opposite sign. And
interactions that are only weakly correlated are given low weight. In this way, we can construct a
ranking that correctly allows for the different ways in which individuals interact.

A number of previous authors have studied related problems. Our multimodal ranking is in
some ways reminiscent of the “multivariate” comparisons studied by Davidson and Bradley and
others [10-12]. These authors consider problems of consumer choice in which items or products
are rated by consumers on several criteria, such as a car rated on price, size, fuel economy, and so
forth. A crucial difference between these studies and ours is that our goal is to infer only a single,
one-dimensional ranking of items or individuals, whereas the multivariate approach produces
multiple rankings, one for each criterion. While the multivariate approach can be appropriate
in settings such as consumer choice, the approach of the present paper is more appropriate for
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applications to dominance hierarchies, sport, and other competitions where we either desire or
believe axiomatically that the individuals or teams exist on a single rank scale. Perhaps a closer
parallel to our approach is to be found in the literature on rank aggregation methods [13]. These
are general methods for taking multiple, possibly conflicting rankings of the same set of items or
individuals and combining them to generate a single consensus ranking. (Note that the phrase
“rank aggregation” is also sometimes used to describe the unimodal ranking problem [13,14],
so one must be careful when reading this literature.) Rank aggregation is used for instance to
combine rankings of web pages for output by web search engines [15]. Although they are based
on different principles to our approach, such as numerical minimization of the distance between
rankings, rank aggregation methods could be applied to the types of problems we consider by
generating separate rankings for each criterion or mode and then aggregating them. A related
approach has been taken by Pritikin [16], who also constructs different ranking scales for different
criteria but then performs a factor analysis to construct a consensus measure of merit. Like the
multivariate approach, these methods contrast philosophically with our assumption that there
exists only a single ranking, but the outputs could give similar results in some cases.

More broadly, the multimodal ranking problem belongs to the larger class of studies of
“multiplex networks” [17,18]. The pattern of comparisons or interactions can be thought of as
a network in which the nodes are the individuals or teams and the directed edges between them
represent interactions, with the direction pointing from the winner or instigator of an interaction
to the loser or recipient. The multiple modes of interaction can be thought of as multiple types of
edges between the same set of participants, and such networks—known as multiplex networks
in the literature—have been the subject of a substantial amount of work in recent years [18-20],
including work on ranking problems [21,22], although the particular problem addressed here
does not seem to have received attention.

2. The model

Suppose we have a population of N individuals or teams labelled by u=1... N and a sequence
of contests or interactions between them. Let there be M interactions in total denoted by r =
1... M, let u, be the individual who wins the rth interaction (in cases where there is a winner) or
who instigates the interaction (in cases where there is no winner). Similarly let v, be the loser or
recipient of the rth interaction. For simplicity we assume that there are no ties or draws, although
the approach we describe could be generalized to the case of ties using standard methods [23,24].

For each interaction we assume that there is a dominant individual and a subordinate
individual. It is central to our treatment, however, that the dominant individual need not be
the winner or instigator of the interaction: some games may be won by the weaker player and
some actions may be instigated by a subordinate individual. Moreover, we explicitly allow for
the possibility that the dominant individual in a pair may change from one interaction to another.
In some pairs one individual may always be dominant, but in others the roles may vary. We define
a stance variable o, which indicates which individual is dominant during interaction r: the stance
is 1 if the winner u; is the dominant individual and 0 if the loser v, is dominant. (To simplify the
discussion we will henceforth refer to u, as the “winner”, but this should be taken to include the
instigator in cases where merely performing an action is equivalent to a win, and similarly for
losses.)

The distinction here between the dominant individual and the winner is crucial. In the
conventional theory of unimodal paired comparisons no distinction is made between these: the
winner is dominant by definition. In the multimodal case, however, this approach is insufficient
because it fails to separate the properties of the individuals from the properties of the interactions.
It would not allow, for instance, for a situation in which one type of interaction is always
instigated by the dominant individual and another by the subordinate individual. The model
proposed here allows for the possibility that different interaction types may have different
probabilities of being instigated or won, even by the same individual.
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We assume the stance o is independent for each interaction and model it using a standard
Bradley-Terry model of dominance [1-3]. We define a score or ranking s, for each individual u
and we assume that the probability p.. of individual u dominating over individual v on any
particular interaction is a function f(sy — sy) of the difference of their scores. In the Bradley-
Terry model this function is chosen to be the logistic function f(s) =1/(1 + e~ *), which means
that

e’
These probabilities are invariant under a uniform shift of all the scores s, by an additive constant,
so one commonly introduces some normalization or standardization to fix the origin of the score
scale. Here we do this by fixing the average score to be zero, so that s =0 indicates an average
individual who is equally likely to be dominant or subordinate.
For convenience, one also often introduces the shorthand A\, = ¢°*, so that

Ay

= 2.2
Au+ Ao’ 22)

Puv
and we will do that here. Following Zermelo [1] we refer to Ay as a strength parameter or simply
a strength. Note that for the average individual with s = 0 we have A = e’ = 1, so the probability
po of an individual with strength parameter A dominating against the average individual is

A

TAT @3

Po
and hence A = pg/(1 — po). Thus X has a simple interpretation: it is the odds of dominating against
the average individual.

The winner of an interaction need not, as we have said, be the dominant individual. Sometimes
the winner is the subordinate individual and the frequency with which this happens may depend
on the type of the interaction. Let there be T" interaction types, labelled by t =1...T. We define
another parameter gq;, which we call the valence probability, equal to the probability that the
currently dominant individual wins an interaction of type ¢ (and 1 — ¢; is the probability that
the subordinate individual wins).

Given these definitions, we can now write down an expression for the likelihood of occurrence
of a particular sequence of wins and losses. Consider an interaction r with winner u, loser v, and
type t. The probability of the stance taking value o, =1 is equal to pys and the probability that
0 =0is 1 — pyy. In general,

PYAD Vs

P(UT|)\u7)\v):pZZ(1_puv)l_UT: SV W
u v

(2.4)

Given the value of o we can calculate the probability that individual v did indeed win: if o =
1, so that u is dominant, then the probability is g¢; if o =0, so that u is subordinate, then the
probability is 1 — ;. Denoting the observation data for interaction r by ., these probabilities can
be compactly combined as

P(zrlor,qt) =q7" (1 —qt)lfg". (2.5)
Then the probability that the stance is o and u wins is

P(xr, 00| u, v, qt) = P(xr|or, gt) P(or|Au, Av) = (puvqt)m' [(1 — puv) (1 - qt)] e

or _ l1—or
_ (Quar) [AAu (+1Av qt)] _ (2.6)

Finally, under the assumption that interactions r are independent of one another (conditioned on
the values of Ay and ¢;), the likelihood of the entire set of M observations is the product of this
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expression over all r, which gives

M

(Au,t,)7 Ao, (1 = g2,)]
P(z,0|\, q) H N Mo )

1—0,

2.7)

where the unsubscripted variables z, o, A, and ¢ indicate the complete sets of data and parameters.
Our goal is to use Eq. (2.7) to estimate the values of A, and g; for all individuals v and all
interaction types ¢.

3. EM algorithm

One might imagine that the next step in the calculation would be to sum over the variables o in
Eq. (2.7), which can be done easily to give an expression for P(z|), ¢) thus:

M
A i T + A i 1 - T
Plrg) =Y Ple,olnq) = [] 2t el o), 61
o r=1 r r

Then we could maximize this expression by differentiating with respect to A and ¢ to find
maximum-likelihood estimates of the parameters, or alternatively maximize its logarithm, which
is equivalent and usually simpler. Though the derivatives can be done, however, they yield
a complicated set of implicit equations with no easy solution. Instead, therefore, we adopt a
different approach, making use of an expectation-maximization (EM) algorithm.

Instead of maximizing log P(z|),q) directly, we apply Jensen’s inequality, which says for
any set of non-negative quantities z; and weights m; satisfying >, m; =1 that log}_, z; >
> milog(z;/m;). Applied to the present case, this gives

log P(z|\,q) =log ¥ P(z, A, q) > (o %, (3.2)
g o

where 7 (o) is any probability distribution over the set o of stance variables satisfying >~ 7(0) =

1. The exact equality is achieved—and hence the right-hand side of (3.2) maximized—when

Pla,olhg) L) Do (L= a,)] ™7 Hw

— — (1—m)t=or, 3.3
S, P@o g L udr, + Ao (= ar,)] ) 3

)\u,.qt
Ty = L 3.4
" Xungt, + Ao, (1— ) G4

and we have used Egs. (2.7) and (3.1). The quantity m can be interpreted as the posterior
likelihood that u; is the dominant participant in interaction .

Since the choice (3.3) maximizes the right-hand side of (3.2) and simultaneously makes the two
sides equal, a further maximization with respect to A and ¢ will then achieve our goal of finding
the maximum-likelihood values of these parameters. Equivalently, a double maximization of the
right-hand side with respect to both 7 (o) and the parameters ), ¢ will achieve the same goal. In an
EM algorithm we perform this double maximization by alternately and repeatedly maximizing
with respect to 7(co) and with respect to A, ¢ until convergence is reached. The first we do using
Egs. (3.3) and (3.4) and the second by differentiation as follows.
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Substituting from Egs. (2.7) and (3.3) into (3.2) and neglecting terms that do not depend on A, ¢,
we find that

Zﬂ'(g) log P(z, 0|\, q)

= Z {H 7o (1 — WT)I,UT:| Z [GT log(Au,.qt,.) + (1 — o) log[/\vr(l — th,)] —log(Aw, + )\yr)}

T

= [m 10g(Aur i) + (1 — 77) log[Au, (1 = g,)] — log( A, + )\UT)}

r
=Y Suubuw [mrlog Ay + (1 — 77) log Ay — log(Au + Av)]

T uv

+ 30> tt[mrlog g + (1 — mr) log(1 — gr)], 3.5)

T t

where ¢, is the Kronecker delta. Now we differentiate this expression to calculate the maximum-
likelihood estimates of the parameters. Differentiating with respect to ¢; gives the straightforward

result
q Zr 6trt7Tr
= = -
2o Ot,t

Calculating the A parameters is a little more complicated. Differentiating (3.5) with respect to \;
and setting the result to zero, we get

6u, iTr + 51),,1'(1 - 7T1") |: 5uz 61),.1'
T T _ L T — 0 3‘7
ZT: Ai zr: VRIS VL WP v ' 62)
which can be rearranged into the form

Y b+ (1= m)6y,4)
= Zu Alu/(kz + )\u) ’ (38)

(3.6)

where
Aij = [6u,i0,5 + Ou,0v,i] (39)

T
is the total number of times that ¢ and j interact. Equation (3.8) can be solved for \; by simple
iteration starting from any convenient set of initial values \; > 0. This iterative procedure can
be thought of as a variation on the well-known algorithm of Zermelo [1] for the traditional
Bradley-Terry model with just a single mode of interaction. (For small problems with only a few
individuals or teams it may be faster to solve (3.7) directly by Newton’s method or Fisher scoring,
but the speed advantage is relatively small and for larger instances the simple iterative approach
is faster because it does not require a matrix inversion. On balance, we recommend the iterative
approach in most cases.)
The full algorithm for computing a ranking now consists of the following steps:

(i) Choose initial values for the parameters A\, and ¢; for all individuals « and interaction
types ¢. These values can for instance be chosen at random.
(if) Compute the quantities 7, from Eq. (3.4).
(iif) Compute new estimates of the valence probabilities ¢; from Eq. (3.6).
(iv) Compute new estimates of the strengths A, by iterating Eq. (3.8) to convergence.
(v) Normalize the A so that the average individual has rank score zero, which is equivalent
to dividing by the geometric mean of the A, thus:

A
-
(T 2e) /Y

(vi) Repeat from step 2 until overall convergence is achieved.

(3.10)

10000000 V 208 4 0014 Bu0-BuysiandAieiosieforeds:



Note that, by contrast with EM algorithms in some other applications, this algorithm is
guaranteed to always converge to the global maximum of the likelihood, Eq. (3.1). It is true
generally that an EM algorithm must converge to some maximum of the likelihood, but it is
possible, depending on initial conditions, to find a local rather than global maximum. In the
present case, however, the likelihood has only a single maximum, a property it inherits from
the original Bradley-Terry model [1], and hence convergence to the global maximum is assured.

The end result of the algorithm is a complete set of strengths A, that specify the ranking of
the individuals—higher A, implies higher ranking. If we wish, we can convert these parameters
back to the original scores s,, = log Ay, which are more symmetric and arguably easier to interpret.
A minor technical issue is that the likelihood of Eq. (3.1) is invariant under the change Ay — 1/,
gt — 1 — ¢ for all w and ¢, meaning that, depending on the initial conditions, the final ranking may
end up being upside down, so that the most dominant individuals have the lowest scores and the
most subordinate ones have the highest. If this happens one need merely invert all the values of
the Ay to set them the right way up.

4. Prior on the strength parameters

The procedure described in the previous section amounts to a complete algorithm for calculating
the maximum-likelihood values of all the parameters in our model. In some cases, however,
this method gives poor results, for well understood reasons. Maximum-likelihood estimates of
Bradley-Terry style models can perform poorly because they give undue weight to very large and
very small values of the scores s,,. This is because the maximum-likelihood approach effectively
assumes an (improper) uniform prior on s, but s, has infinite support s, € [—00, +00], so all but
a vanishing fraction of the prior weight is on arbitrarily large values. This results in a number
of well-known problems, particularly that the value of s, for any individual who is dominant
in every interaction is automatically infinite, which makes it impossible to tell any two such
individuals apart.

One solution to these problems is to impose a more appropriate prior on s, and a natural
choice is a logistic prior [25,26]. Consider again the quantity po defined in Eq. (2.3), which is the
probability that an individual with strength A dominates against the average individual:

po=——=—". @.1)

In the absence of any information to the contrary, we assume this probability to be uniformly
distributed between zero and one—the minimally informative or maximum-entropy prior
P(pg) = 1. Then the corresponding prior on the score s is

_ dpo dpo 1
P(S)fp(po)gfgfm, 4.2)

which is the logistic distribution. This is the prior we use in our work.

Now instead of maximizing the likelihood of Eq. (2.7) we maximize the posterior probability,
assuming that the prior on ¢ is also uniform. It is important to recognize that the resulting
estimate, like all maximum a posteriori (MAP) estimates, depends on the parametrization of the
likelihood, and specifically in this case on whether we maximize with respect to s, or Ay. The
maximum with respect to one will not in general lie in the same place as the maximum with
respect to the other. In our work we consider the s,, to be the more fundamental set of variables
and maximize the posterior distribution

P(s,q, 0]z) = P(x, 0|5, q) L) (4.3)

H
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with respect to s. With P(s) as in Eq. (4.2) and uniform P(q), and changing variables back to A,
this gives us

M 1-0,. N

11 Queae,)7 o, (0= qe, )] 7" Au

P(s,q,0lz) =] | S 555 (4.4)
r=1 i T u=1

In addition to regularizing the score parameters, the addition of the prior also eliminates the
invariance of the model under a uniform shift of the scores and hence eliminates the need to
normalize them. (Note that, although we have for convenience changed variables to Ay, Eq. (4.4)
still represents the probability of s, and not of Ay. The probability of A\, would have a different
form because there would be an additional Jacobian factor.)

With the addition of the extra term in (4.4), the derivation of the algorithm proceeds as before.
Equations (3.4) and (3.6) for the quantities 7 and ¢; remain unchanged, while the equation for
the strengths \,, now becomes

1+ (b, + (1 — )6y, 4]
T2 A D)+ 3, A/ + )

Other than this change, and the omission of the now-unnecessary normalization step, the
algorithm is the same as before.

Ai (4.5)

5. Resulis

We demonstrate our approach with example applications to a set of computer-generated test data
and to three real-world data sets, an animal dominance hierarchy, a human hierarchy, and an
example from competitive team sport.

Synthetic tests

As a first demonstration of our approach we present the results of a set of tests using synthetic
(computer-generated) data. In these tests we generated a large number of random data sets with
N =100 individuals each and interactions between pairs chosen uniformly at random (a random
graph in the language of network theory). Because the sparsity of the interactions can affect our
ability to perform accurate inference, we study cases with both relatively dense interactions (M =
5000) and sparser ones (M = 1000). Tests were also performed with two different choices of the
number of interaction types, T'= 5 and 10. The winners of the interactions were generated using
the model of Section 2 with independent scores s, drawn from the logistic distribution of Eq. (4.2)
and valence probabilities g; drawn uniformly in an interval [gmin, gmax] for various values of gpin
and gmax as described below.

For each choice of M, T, qmin, and gmax we generated 1000 data sets and analysed each
one by the MAP estimation method of Section 4 and also by fitting to a traditional unimodal
Bradley-Terry model in which all interactions are considered equivalent—the standard procedure
for calculations of dominance hierarchies for example. Following each analysis we ranked the
fictional participants according to their inferred scores s, and computed a Spearman rank
correlation between these inferred ranks and the ground-truth ranks implied by the original
scores used to generate the data, thereby testing our ability to recover the true ranking of the
individuals. The results are shown in Table 1.

We explore three different choices for the valence probabilities g;. In the first column of results
in Table 1 we choose values of ¢; uniformly at random in the interval [0.5,1]. This means that
all interactions are dominant in the sense of being instigated or won by the dominant individual
more often than not. In this situation our method does well at recovering the ground-truth ranking
with Spearman R? > 0.5 in all cases, but the standard Bradley-Terry analysis does almost as well.
This is expected since the standard method assumes that indeed all interactions are dominant.
There is nonetheless some daylight between the two methods—our method does better by a small
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Table 1. The results of tests of our method on computer-generated data, compared with analyses of the same data
using a standard ranking algorithm that assumes all interactions to be equivalent. All generated examples have N = 100
individuals and interactions placed between pairs chosen uniformly at random. Values of the number of interactions M and
number of interaction types 1" are as listed and values of ¢ are chosen uniformly at random in the intervals shown. The
results are Spearman R? values between the inferred ranking of the individuals and the ground-truth ranking calculated
from the parameters used to generate the data, averaged over 1000 random instances. In each entry x/y the first
number z is the result from the method of this paper and the second y is from the traditional ranking calculation. Standard
errors are less than 41 in the final digit in all cases.

Spearman R? (this paper)/(traditional)
M T]05<q¢<1l 025<q<1 0<qg<l
5000 5 0.88/0.83 0.83/0.53 0.88/0.42
5000 10 | 0.89/0.85 0.85/0.52 0.89/0.29
1000 5| 0.53/0.50 0.43/0.24 0.54/0.17
1000 10 | 0.54/0.52 0.41/0.22 0.54/0.11

margin in all cases because it is able to use the fact that some interactions are more strongly
indicative of dominance than others.

The difference becomes more pronounced in the remaining columns of the table. In the last
column we choose values of ¢; in the interval [0, 1], so that interactions are equally likely to
indicate dominance or subordination. In this case our method has a large advantage, since it
can estimate the valence of the interactions from the data while the standard method cannot,
and we see that there is indeed a large difference between the results for the two methods in
this regime—our method continues to do well at recovering the true ranking while the standard
method performs poorly.

The middle column gives results for the intermediate case where ¢; falls in the interval [0.25, 1],
which represents a situation in which most interactions indicate dominance but a few do not.
Again we see in this situation that the method of this paper significantly outperforms the standard
analysis because it is able to discern the valence of the interactions.

The effect on the results of the number of interaction types 7" is small for both our method
and the traditional ranking. The effect of the number of observations M on the other hand is
more pronounced: our method returns excellent results for all cases with M = 5000, no matter
the values of the other parameters, but is noticeably poorer for the sparser case of M = 1000. The
traditional method also performs poorly for M = 1000, although in most cases it does poorly for
M = 5000 too.

To summarize, our method gives modestly improved rankings in situations where all
interactions are indicative of dominance and substantially improved rankings in situations where
they are not. Even in cases where the difference between the methods is small, however, the
results may be interesting for other reasons. In particular, our method also gives an estimate of
the valence probability g; for each interaction type, which can be of interest in its own right, as
we see in the following sections.

Dominance hierarchy in vervet monkeys

We now turn to applications of our method to real-world data. Our first example application is to
a classic animal dominance hierarchy. We analyse observations reported by Vilette et al. [27] of 66
wild vervet monkeys in the Samara Private Game Reserve in South Africa between January 2015
and December 2017. The authors report a total of 11 664 agonistic encounters between pairs of
monkeys, divided into eight types: charge, chase, displace, facial, lunge, physical, supplant, and
vocal. A few other types, such as “scream” and “grab”, were recorded but were rare—less than 1%
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Figure 1. The valence probabilities g+ for the vervet monkey interactions of Vilette et al. [27] as analysed using the
methods of this paper. These represent the probability that the given interaction will be instigated by a dominant individual,
so that values approaching one indicate dominant behaviours and values approaching zero indicate subordinate ones. In
this case all behaviours are dominant on balance, but some more so than others.

of the total—and were removed from the data for our analysis, as were interactions whose type
was unknown. The remaining data were analysed using the MAP estimation method of Section 4.

Figure 1 shows the inferred values of the valence probabilities g; for each of the interaction
types. Recall that these values tell us, for each interaction type, the probability that the interaction
will be instigated by the dominant individual of a pair. Values ¢; > % indicate interactions that
are dominant on average and in this case we find (not surprisingly) that all interaction types
are dominant, but that they vary in their degree of dominance. “Displace” and “supplant”, for
instance, while being arguably the least physical of the interactions, are the most indicative of
dominance, while “chase” is the least indicative. “Chase” has a valence probability of only 0.728,
implying that more than a quarter of the time it is not the chaser but the chasee who is the
dominant individual in a pair. Such interactions are thus less reliable indicators of dominance
than “displace” and “supplant”.

In addition to being informative in their own right, these values now allow us to make a
more accurate estimate of the dominance hierarchy: our method automatically weights more (or
less) heavily those interactions that strongly (or weakly) indicate dominance. To illustrate this
effect, we show in Fig. 2 a comparison of the rankings of the monkeys, from 1 to 66, computed
first as above and second assuming that all interactions are equivalent and equally indicative
of dominance. If the two sets of rankings agreed perfectly all points in the figure would lie on
the dashed line, but, as the figure shows, there are some significant differences between them—
monkeys who are ranked either higher or lower by our method, up to 17 places different in the
most extreme case.

Student social network

For our second example we analyse social interactions among the students in a 7th grade class in
Victoria, Australia, as compiled by Vickers and Chan [28]. In this study the authors interviewed
29 students in a single school class and asked them three questions: (1) who do you get on with
in the class, (2) who are your best friends in the class, and (3) who do you prefer to work with?
The answers to these three questions define three different types of directed relations between
the students. These particular relations are not intrinsically competitive and hence we might not
necessarily expect them to define a hierarchy. However, in other work on friendship among school
students it has been found that claims of friendship define a clear hierarchy [29,30], and the same
turns out to be true in the present case: using the methods described in this paper we find a
strong hierarchy hidden in the data of Vickers and Chan, as shown in Fig. 3. In this network
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Figure 2. Scatter plot of the rankings of the vervet monkeys. Rankings were computed in two ways: using the method
of this paper and by conventional methods that assume all interactions to be equally informative (equivalent to assuming
that the valence probability g¢ is 1 for all interaction types). The strength parameters A,, were computed in both ways then
the monkeys were sorted in order of their strengths from highest to lowest to give the rankings plotted here.

visualization the nodes represent the students, the directed connections indicate answers to the
survey questions, and the vertical position of each node on the page indicates the rank score sy
assigned to it by the analysis, so that nodes higher up the page are more highly ranked. As we
can see, most edges in the network run in an upward direction, meaning that students say they
get on with, are friends with, or prefer to work with others who are above them in the hierarchy.

On the one hand, this may seem counterintuitive, since one might imagine that friendship and
co-working relations should be symmetric: if A is friends with B then surely B is friends with A
as well? On the other hand, it is common for children (and perhaps adults too) to make or claim
“aspirational” connections: they want to be friends with higher status others [29-31]. These effects
lead to asymmetries in reported social networks that can be used, as here, to infer hierarchy.

Figure 4 shows the values of the parameters g¢; for the three types of connection in this case
and here we also find something interesting. The first type (“who do you get on with?”) is
relatively weakly indicative of hierarchy, but for the second and third types (“best friends” and
“work with”) the most probable value of ¢; is 1, implying that these types of connections are
maximally indicative of hierarchy. Moreover, because the value of ¢; is the same for these types
the algorithm treats them in an identical way, which means effectively that there are only two
types of connections in these data. The “best friends” and “work with” interactions are flattened
into a single combined interaction type by the analysis. We have encountered similar flattening
of the data in some other examples we have analysed, including animal hierarchies, professional
networks, and some online social networks.

American football competition

Ranking methods are often applied in sport and athletic competition to rank players or teams.
As a demonstration of this type of application we apply our method to professional American
football. American football provides an interesting example because, unlike association football,
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Figure 4. Values of the valence probabilities g: for the three types of interactions in the student data of Vickers and
Chan [28].

it consists of discrete “plays”, in which one team (the offense) has possession of the ball and
tries to advance it up the field against the other team (the defense). There are different types
of plays teams use to do this, including running plays (the ball is carried by a runner), passing
plays (the ball is thrown), and punts (the ball is kicked). Here we analyse these individual plays
as interactions between the teams and compute a ranking of teams based on the pattern of
interactions in all (regular season) games in a given playing season.

10000000 V 908 4 0014 Bio-BuiysiandAisioosieoreds:



0.4 R
L ® [ J
7
L ° P s ]
0.2 ° o 8 .
L P 7 |
o ) X2
(o]
2 oL e e e ° |
[ ] [
'é ® ) /( ¢
=4 ° 7
e [} [}
7 ]
I . -
0.2 - - o o i
: P s g ° °
FR>—0.453 o ]
0.4+ R
I L L L | L L L | L L L | L L L | L L L ]
0 0.2 0.4 0.6 0.8 1

Fraction of games won

Figure 5. The rank scores s,, of the 32 American football teams in the analysis described here for the 2015 NFL season,
plotted against the fraction of games they won in the same season.

A key aspect of this analysis is that we use no information about the actual success of the
plays—whether they advance the ball, for instance, or whether any points are scored. Moreover,
we specifically remove from the data compulsory plays such as kickoffs and conversions that
implicitly signal point scoring, so the only information available to the algorithm is which types
of plays the teams choose to run. (We do include field goals, which score points, because these are
optional and hence are revealing from a strategic point of view.)

Even without explicit indicators of success, however, we can extract a meaningful ranking of
the teams. Figure 5 shows an example for the 2015 season of the US National Football League
using data from Yurko et al. [32]. With 36 030 interactions in total, this example is the largest
in this paper, but our algorithm nonetheless runs quickly. Total running time for the calculation
was 11 seconds on a standard laptop computer (circa 2022). The figure shows the inferred rank
score sy of each of the 32 teams in the league plotted against their actual success during the
season, represented by the fraction of games they won. Although the correlation between the
two measures is not perfect, it is substantial and significant (R? =0.453, p < 0.0001). Note that
we should not expect perfect correlation even if our rankings were perfectly accurate, since it
is an important aspect of commercially successful spectator sports that they contain an element
of randomness. If the higher ranked team always won there would be little suspense about the
outcome of a game and correspondingly little motivation to watch, so the existence of any method
that could reliably predict game winners would be a clear sign of an unsuccessful sport (which
American football certainly is not).

One might suppose our success at ranking the teams to be a result of the simple fact that
winning teams run more plays than losing teams, because they are in possession of the ball more
often, but this is not the case. In fact there is hardly any difference between the number of plays
run by the best and worst teams: the top ten teams in our ranking for the 2015 season, for instance,
ran an average of 1134 plays in total during the regular season while the bottom ten actually ran
a slightly larger number of 1169.
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Figure 6. The valence probabilities g; for each of the five play types used in the ranking of American football teams.

The ranking of teams is signalled not by the number of plays, but by which plays the teams run.
Figure 6 shows the values of the valence probabilities ¢; for each of the five play types included in
our analysis. By contrast with our previous examples, not all types of plays indicate dominance.
Two types do clearly signal dominance—running plays and field goals—with values of g; well
above 3. The remaining three, however, signal subordination. Of these, the punt is only used to
get rid of the ball when a team knows they are likely to lose it anyway, and hence is a naturally
subordinate trait. And a sack—the player with the ball gets tackled before they can move it up the
field—is a clear sign of team weakness. More surprising is that passing plays, where the ball is
thrown, are also a sign of weakness. In general passing plays are some of the most spectacular and
successful plays in American football, so one might ask why they are indicative of subordination.
The answer may be that passing plays are challenging to execute and often fail, because for
instance the thrown ball is not caught or is intercepted by the opposing team. This means that
weaker teams have to make more attempts to achieve successful passing plays than stronger
teams and hence, on balance, passing plays are indicative of weakness. For instance, during the
2015 season the top ten teams in our ranking made an average of 504 passing plays each while
the bottom ten made an average of 620.

6. Conclusions

In this paper we have considered the problem of ranking a set of individuals or teams based on
pairwise comparisons when there are multiple types of comparison. Examples include animal
dominance hierarchies in which animals use a range of different behaviours to establish or signal
dominance, and sporting competitions in which teams use a range of different moves or plays
against their opponents. We have shown that even if one does not know in advance either the
ranking of the individuals or what information each type of interaction conveys, it is possible to
infer both from observed interactions. We have described an efficient method for doing this which
combines an expectation-maximization algorithm with a variant of the Bradley-Terry model.

We have presented a number of example applications of the method, including applications to
animal and human dominance hierarchies, and an application to the sport of American football.
The method provides a way to sensitively infer rankings taking all interaction types into account
and weighting each one appropriately given the information it contains. At the same time the
results shed light on the interactions themselves, telling us, without need for other input, whether
each type of interaction is indicative of dominance or subordination, and to what extent.

Natural extensions of the work reported here include the exploration of alternative models
for multimodal comparisons, including generalizations of popular models for the unimodal
case such as Thurstonian models [3,33] or models that allow for dependencies between
observations [5]. One could also consider goodness of fit measures to assess the success of our
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model or any other, model selection to choose between alternatives, or more elaborate inference
procedures for the current model, including fully Bayesian approaches similar to those applied in
the unimodal case [25,34], which would have the advantage of making the ranking independent
of the parametrization of the model. These extensions, however, we leave for future work.
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Code and data

Complete computer code implementing the method of this paper, along with example data, is
available in the supplementary materials. Also included is a program to generate synthetic data
as used in the tests in Section 5. The data for the examples on vervet monkeys, 7th grade students,
and American football in Section 5 are all previously published and publicly available.
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