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Networks and network computations have become a

primary mathematical tool for analysing the structure

of many kinds of complex systems, ranging from the

Internet and transportation networks to biochemical

interactions and social networks. A common task

in network analysis is the calculation of quantities

that reside on the nodes of a network, such as

centrality measures, probabilities or model states. In

this perspective article we discuss message passing

methods, a family of techniques for performing such

calculations, based on the propagation of information

between the nodes of a network. We introduce the

message passing approach with a series of examples,

give some illustrative applications and results, and

discuss the deep connections between message

passing and phase transitions in networks. We also

point out some limitations of the message passing

approach and describe some recently-introduced

methods that address these limitations.
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1. Introduction

A network, for the purposes of this paper, is a set of points joined together in pairs by lines, as

shown in Fig. 1. In the nomenclature of the field the points are called nodes or vertices and the lines

are called edges. Networks provide a convenient tool for representing the pattern of connections

or interactions within complex systems of many types. The Internet, for example, is a network

of computers joined by data communications. The Web is a network of pages connected by

hyperlinks. Biochemical networks, such as metabolic networks and protein interaction networks,

are networks of chemicals and their interactions. And there is a long history of the quantitative

study of social networks, which means not only modern online networks like Facebook and

Twitter, but also offline social networks such as networks of friendship, collaboration and

acquaintance, and the contact networks over which diseases spread. Figure 1, for instance, shows

the patterns of collaboration among a group of scientists. In recent decades a large body of

knowledge has built up concerning methods for analysing and interpreting network data, and

databases have been assembled containing data sets and measurements for thousands of different

networks. For an introduction to this vibrant and fascinating field see Refs. [1–5].

Development of the theory and practice of network analysis has been a multidisciplinary

undertaking spanning mathematics, computer science, physics, statistics, the social sciences

and other fields and has incorporated techniques from many areas, including linear algebra

and spectral theory, probability and combinatorics, randomized models, statistics and machine

learning, random matrix theory and a wide range of numerical methods. In this paper we focus on

a less well known but powerful class of methods variously called message passing, belief propagation

or cavity methods. These methods have theoretical foundations going back to the 1930s [6] but in

their modern incarnation they were first formulated by Pearl in the 1980s [7]. They have been

widely applied to problems in computer science and, less commonly, statistical physics and other

fields [8–10]. In the network applications we consider here the first goal of message passing

methods is to calculate properties of individual nodes in networks, such as the state they are

in at a given time, but message passing can also be applied to the calculation of global network

properties and can serve as a starting point for further analyses, for example of structural phase

transitions in networks.

Figure 1. A small social network representing the pattern of collaborations among a group of 379 scientists.
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Figure 5. Application of Eqs. (2.4) and (2.5) to a small network. The colours of the nodes indicate the probability of

belonging to the giant percolation cluster, calculated from µi, with red corresponding to higher probability and blue to

lower.

It is only a small step from the methods of the previous section to the calculation of the

probability that a node in a network belongs to the giant percolation cluster for given p. And

because percolation is a probabilistic process, this is now a true probability, taking not just the

values zero and one but any value in between. Our presentation follows the line of argument

given by Karrer et al. [13] and Hamilton and Pryadko [14].

Let µi←j be the probability that node j does not belong to the giant cluster if i is removed from

the network. There are two ways for i to not be connected to the giant cluster via its neighbour j.

The first is that the edge between i and j is unoccupied, which happens with probability 1−

p. The second is that the edge is occupied (probability p) but j is itself not in the giant cluster

(probability µi←j). So the total probability is 1− p+ pµi←j and the overall probability µi that i

is not in the giant cluster is given by a product over neighbours of i thus:

µi =
∏

j∈Ni

(1− p+ pµi←j). (2.4)

Now we repeat the same argument to calculate µi←j itself. The probability that j is not in the

giant cluster when i is removed from the network is equal to the probability that j is not connected

to the giant cluster via any of its neighbours other than i:

µi←j =
∏

k∈Nj

k 6=i

(1− p+ pµj←k). (2.5)

These are the message passing equations for percolation on a network and again we solve them

by iteration from any suitable initial condition. Figure 5 shows the result for a small network. The

colours of the nodes in this figure indicate the probability that a node belongs to the giant cluster.

Note how the nodes around the periphery of the network have lower probability than those in

the centre.

Unlike the giant component calculation of Section 2, this percolation calculation offers

something that cannot be achieved with simpler numerical means. There exist algorithms that can

find the giant cluster in a percolation system, but they do so only for one individual realization of

the randomly occupied edges. If one wanted to calculate the probability µi of being in the giant

cluster, one would have to run such an algorithm many times for many random realizations and

average the results, which would be a complicated and computationally demanding process, and
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Figure 6. The size of the giant cluster as a function of occupation probability p for edge percolation on the network of

Fig. 5, calculated using the message passing method of Eqs. (2.4), (2.5) and (2.6). The vertical dashed line indicates

the expected position of the percolation transition from Eq. (3.4).

one moreover that would yield only an approximate answer, subject to statistical sampling error.

Message passing on the other hand directly yields the value of µi, averaged over all realizations

of the randomness, in a single calculation.

One can also extend the method to calculate other properties of the percolation process,

including global properties. For instance, we can calculate the average size of the giant cluster

as follows. We define a variable si that is 1 if i belongs to the giant cluster and 0 if it does not.

Then the probability distribution of this variable is (1− µi)
siµ1−si

i and the size of giant cluster

as a fraction of network size is (1/n)
∑

i si. Hence the expected size S of the giant cluster is

S =
∑

{si}

[

1

n

∑

i

si

][

∏

i

(1− µi)
siµ1−si

i

]

=
1

n

∑

i

∑

si=0,1

si(1− µi)
siµ1−si

i

= 1−
1

n

n
∑

i=1

µi. (2.6)

Figure 6 shows the value of this quantity as a function of p for the same small network as in Fig. 5.

The figure displays the classic percolation transition behaviour, with no giant cluster for small p

and an abrupt phase transition—around p= 0.43 in this case—at which a giant cluster appears.

We study this phase transition in detail in the following section.

3. Phase transitions

The message passing method is a useful tool for numerical calculation of node properties on

networks as well as certain global quantities. As mentioned in the introduction, however, message

passing can also be used as the foundation for further analytic calculations, especially with regard

to phase transitions in networks. In this section we illustrate this point for the case of percolation.

As can be seen in Fig. 6, percolation shows a phase transition at a critical occupation

probability pc between a percolating state in which there exists a giant cluster and a non-

percolating state with no giant cluster and small clusters only. When we are below this transition,

where p < pc, the probability µi←j that node j is not in the giant cluster is, by definition, 1 for

all i, j. Looking at the message passing equations, Eq. (2.5), we see that this is in fact a solution

of the equations for any value of p—setting µi←j = 1 for all i, j just gives “1 = 1”. So does this
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mean that there is never a giant cluster in the network? It does not, because the outcome of the

message passing calculation depends not only on whether this solution exists but also on whether

the calculation actually returns this solution, versus some other solution.

We can think of the iteration of Eq. (2.5) as a discrete-time dynamical system that moves us

around the space defined by the set of probabilities µi←j . The crucial question we need to answer

is whether this process converges to the trivial solution µi←j = 1. If it does, then there is no giant

cluster in the network. If it converges to some other (nontrivial) solution, then there is a giant

cluster. Another way to say the same thing is that there is no giant cluster if the trivial solution is

a stable fixed point of the iteration. If it is unstable then there is a giant cluster.

This now gives us a simple method for determining whether there is a giant cluster: we

linearize to find the stability of the trivial fixed point. We write µi←j = 1− ǫi←j (with a negative

sign since µi←j ≤ 1) and substitute into Eq. (2.5) to get

1− ǫi←j =
∏

k∈Nj

k 6=i

(1− pǫj←k) = 1− p
∑

k∈Nj

k 6=i

ǫj←k +O(ǫ2). (3.1)

Hence, close to the fixed point we have the linear form

ǫi←j = p
∑

k∈Nj

k 6=i

ǫj←k. (3.2)

Alternatively we can write this in matrix format as

ǫ= pBǫ, (3.3)

where ǫ is the 2m-element vector with elements ǫi←j and B is a 2m× 2m non-symmetric matrix

with one row and column for each directed edge i← j and elements chosen so as to correctly

reproduce Eq. (3.2). By inspection, this requires Bi←j,k←l = δjk(1− δil). The resulting matrix,

known as the Hashimoto edge-incidence matrix or more commonly the non-backtracking matrix,

appears in a number of contexts in network theory, including the study of community detection

algorithms [15] and centrality metrics [16].

The trivial fixed point is unstable if a small ǫ grows under the iteration of Eq. (3.3), which is

equivalent to saying that pλ> 1, where λ is the leading eigenvalue of B. Thus there will be a giant

cluster if and only if p > 1/λ and hence we conclude that

pc =
1

λ
(3.4)

is the percolation threshold on the network [13,14]. Applying this approach to the network of

Fig. 5 the resulting value of pc is shown as the vertical dashed line in Fig. 6 and closely matches

the apparent phase transition point at which the giant cluster appears.

Thus by considering the properties of the message passing equations as a dynamical system we

have been able to derive a new formal result about the position of the percolation phase transition

on networks.

4. Other applications of message passing

Message passing can be applied to a wide range of other calculations on networks. We give three

illustrative examples in this section.

(a) The Ising model

The large class of finite-temperature spin models in physics, which includes the Ising model, the

Heisenberg model, the XY model, and spin-glass and random-field models, can be treated using

message passing methods [8,17]. Let us take as an example the Ising model in zero magnetic field,
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which is defined on a general network by the Hamiltonian

H =− 1
2

∑

ij

Aijsisj , (4.1)

where si =±1 is an Ising spin on node i and Aij is an element of the adjacency matrix A of the

network with value Aij = 1 if there exists an edge between nodes i and j and 0 otherwise.

We can usefully rewrite this Hamiltonian by “centring” it around a particular node i thus:

H =−
∑

j∈Ni

[

sisj +
∑

k∈Nj

k 6=i

[

sjsk +
∑

l∈Nk

l 6=j

[

sksl + . . .
]]]

=−
∑

j∈Ni

[

sisj + hi←j(sj)
]

, (4.2)

where

hi←j(sj) =
∑

k∈Nj

k 6=i

[

sjsk +
∑

l∈Nk

l 6=j

[

sksl + . . .
]]

=
∑

k∈Nj

k 6=i

[

sjsk + hj←k(sk)
]

. (4.3)

Equation (4.2) correctly counts each interaction sisj exactly once, so long as no nodes appear in

more than one of the sums, which is equivalent to saying that there are no paths between the spins

around the central node i, other than via i itself. As with our percolation example, we will, for the

moment, assume this to be the case. In Section 5 we show how to remove this assumption. Note

also that while our notation hi←j(sj) explicitly includes only the dependence on sj , the value of

hi←j(sj) does depend on other spins as well. The latter however will be summed over shortly

and so will play no further role.

As we have said, message passing methods are particularly useful for calculating properties

of individual nodes. Let us take as an example the calculation of the probability within the Ising

model that the spin si has a particular value r=±1. At inverse temperature β this probability is

given by the Boltzmann average

P [si = r] =
1

Z

∑

{si}

✶si=r e
−βH , (4.4)

where Z =
∑

{si}
e−βH is the partition function and ✶x is the indicator function which is 1 if x is

true and 0 otherwise. Using Eq. (4.2), the sum in the numerator can be expanded as

∑

{si}

✶si=r e
−βH =

∑

{si}

exp

(

β
∑

j∈Ni

[

rsj + hi←j(sj)
]

)

=
∏

j∈Ni

∏

k/∈Ni

k 6=i

∑

sj

∑

sk

eβ[rsj+hi←j(sj)]

=
∏

j∈Ni

∑

sj

eβrsj
∏

k/∈Ni

k 6=i

∑

sk

eβhi←j(sj). (4.5)

Now we define a message µs
i←j according to

µs
i←j =

1

Zi←j

∏

k/∈Ni

k 6=i

∑

sk

eβhi←j(s), (4.6)

where Zi←j is a normalizing factor chosen to make
∑

s=±1 µ
s
i←j = 1. Then

P [si = r] =
1

Z

∏

j∈Ni

∑

s

eβrsZi←jµ
s
i←j =

1

Zi

∏

j∈Ni

(

eβrµ+
i←j + e−βrµ−i←j

)

, (4.7)

with µ±i←j denoting the value of µs
i←j for s=±1 and

Zi =
Z

∏

j∈Ni
Zi←j

. (4.8)
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The partition function Z is difficult to calculate directly, but evaluating (4.7) only requires Zi,

which can be done easily by noting that
∑

r=±1 P [si = r] = 1, so

Zi =
∑

r=±1

∏

j∈Ni

(

eβrµ+
i←j + e−βrµ−i←j

)

. (4.9)

To use Eq. (4.7) we still need the values of the messages µs
i←j , which we can calculate from

Eqs. (4.3) and (4.6) thus:

µr
i←j =

1

Zi←j

∏

k/∈Ni

k 6=i

∑

sk

eβhi←j(r) =
1

Zi←j

∏

k∈Nj

k 6=i

∏

l/∈Nj

l 6=j

∑

sk

∑

sl

eβ[rsk+hj←k(sk)]

=
1

Zi←j

∏

k∈Nj

k 6=i

∑

sk

eβrsk
∏

l/∈Nj

l 6=j

∑

sl

eβhj←k(sk)

=
1

Zi←j

∏

k∈Nj

k 6=i

∑

s

eβrsµs
j←k, (4.10)

or

µr
i←j =

1

Zi←j

∏

k∈Nj

k 6=i

(

eβrµ+
j←k + e−βrµ−j←k

)

. (4.11)

Since Zi←j is defined to make
∑

r=±1 µ
r
i←j = 1, its value is given by

Zi←j =
∑

r=±1

∏

k∈Nj

k 6=i

(

eβrµ+
j←k + e−βrµ−j←k

)

. (4.12)

Equations (4.11) and (4.12) define the message passing process for the Ising model and as

before can be solved by simple iteration, starting for instance from random values. Once the

values converge, we can calculate the probability that si =±1 from Eq. (4.7), and from these

probabilities we can calculate other quantities of interest. For example, the average magnetization

mi = 〈si〉 at node i is given by mi = P [si =+1]− P [si =−1] and from this one can calculate the

global average magnetization m= (1/n)
∑

i mi.

The message passing equations also give us a way to calculate the partition function Z of the

Ising model, something that is difficult to do by other methods such as Monte Carlo simulation.

Rearranging Eq. (4.8) we have

Z =Zi

∏

j∈Ni

Zi←j , (4.13)

so we can calculate the partition function directly from the quantities Zi and Zi←j , which are

evaluated as part of the message passing process. From Z we can then calculate other quantities

such as the free energy, which is F =−β−1 logZ =−β−1(logZi +
∑

j∈Ni
logZi←j) or, if we

prefer a more symmetric formulation,

F =−
1

nβ

(

∑

i

logZi +
∑

i←j

logZi←j

)

, (4.14)

where the second sum is over all directed edges i← j in the network.

Figure 7 shows results for average magnetization calculated by message passing on a small

network. The Ising model in zero field is up-down symmetric, so one might imagine the value

of m would just be zero, but this is not the case. The message passing calculation displays

spontaneous symmetry breaking, just as the Ising model itself does. Zero magnetization implies

that all spins are equally likely to be up or down, so µ+
i←j = µ−i←j =

1
2 for all i, j, and Eq. (4.11)

does have such a solution, but it also has two other solutions, one where we have µ+
i←j >

1
2 and

µ−i←j <
1
2 on average and one where we have the reverse, and for these solutions m is nonzero. As
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Figure 7. The magnetization of an Ising model on a small network as a function of temperature T = 1/β, calculated

from Eqs. (4.7) and (4.11). The vertical dashed line indicates the expected position of the ferromagnetic phase transition,

calculated from the leading eigenvalue of the non-backtracking matrix using Eq. (4.17).

a simple example, in the low-temperature limit β→∞ it is straightforward to see that µ±i←j = 1

and 0 are solutions, which correspond to all spins up and all spins down.

Which solution the message passing process converges to depends on whether the solutions

are stable or unstable under the iteration of Eq. (4.11). In particular, if the symmetric solution

at µ+
i←j = µ−i←j =

1
2 is unstable then we must converge to one of the other, symmetry-broken

solutions and hence we get a nonzero magnetization, indicating that we are below the symmetry-

breaking phase transition, in the ferromagnetic regime of the model. Conversely, if we converge

to the symmetric solution then we are above the transition. As with percolation, therefore, the

point at which the symmetric solution for the Ising model undergoes a bifurcation from stable to

unstable corresponds to the phase transition.

We can check for stability by once again expanding about the symmetric point. Observing that

µ−i←j = 1− µ+
i←j and putting µ±i←j =

1
2 (1± ǫi←j) in Eq. (4.11) we have

1
2 (1 + ǫi←j) =

1

Zi←j

∏

k∈Nj

k 6=i

1
2

[

eβ(1+ ǫj←k) + e−β(1− ǫj←k)
]

=
1

Zi←j

∏

k∈Nj

k 6=i

(

coshβ + ǫj←k sinhβ
)

=
(coshβ)|Nj |−1

Zi←j

[

1 + tanhβ
∑

k∈Nj

k 6=i

ǫj←k

]

+O(ǫ2), (4.15)

where |Nj | is the degree of node j, i.e., the number of its neighbours. Making the same

substitution in Eq. (4.12) gives just Zi←j = 2(coshβ)|Nj |−1, and hence, neglecting terms of

order ǫ2, the linearized message passing equations are

ǫi←j = tanhβ
∑

k∈Nj

k 6=i

ǫj←k. (4.16)

This has the same form as Eq. (3.2) for the percolation case and carries the same implication:

just as the critical occupation probability for percolation satisfies λpc = 1, where λ is the leading
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eigenvalue of the non-backtracking matrix, so the critical temperature of the Ising model satisfies

λ tanhβc = 1, or

βc = arctanh
1

λ
. (4.17)

The corresponding value of the critical temperature Tc = 1/βc is marked as the vertical dashed

line in Fig. 7 and agrees nicely with the apparent transition point between m> 0 and m= 0.

(b) Graph spectra

The eigenvalue spectrum of the adjacency matrix of a graph or network plays a central role in

several aspects of the theory of networks, including the calculation of centrality measures [18],

behaviour of dynamical systems on networks [19], percolation properties [13], community

detection [20] and network epidemiology [5]. Complete matrix spectra can be calculated

numerically by standard means such as the QR algorithm [21], but this approach is slow and

limited to relatively small networks, up to about 10 000 nodes. As another example of message

passing, we here show how one can use the method to calculate graph spectra in very competitive

running times, especially on sparse graphs. Our presentation follows that of [22,23].

One can write the spectrum of a network in terms of the spectral density

ρ(x) =
1

n

n
∑

i=1

δ(x− λi), (4.18)

where λi are the eigenvalues of the adjacency matrix and δ(x) is the Dirac delta function. There

are a variety of analytic forms for the delta function, but for our purposes a useful one is the

Lorentzian or Cauchy distribution in the limit of zero width:

δ(x) = lim
η→0+

η/π

x2 + η2
=−

1

π
lim

η→0+
Im

1

x+ iη
, (4.19)

where η→ 0+ means that η tends to zero from above. Substituting for δ(x) in Eq. (4.18) we then

have

ρ(x) =−
1

nπ
lim

η→0+
Im

n
∑

i=1

1

x− λi + iη
. (4.20)

In our calculations we will focus on the complex generalization of the spectral density

ρ(z) =−
1

nπ

n
∑

i=1

1

z − λi
=−

1

nπ
Tr(zI−A)−1, (4.21)

where I is the n× n identity matrix and A is the adjacency matrix as previously. If we can

calculate this quantity then the real spectral density ρ(x) of Eq. (4.20) is given by setting z = x+ iη,

taking the imaginary part, and then taking the limit as η→ 0+.

Expanding the matrix inverse in (4.21) as a power series in z and taking the trace term by term

gives

ρ(z) =−
1

nπz

∞
∑

r=0

TrAr

zr
. (4.22)

But the trace of Ar is equal to the number of closed (potentially self-intersecting) walks of length r

on a network—walks that start and end at the same node and traverse exactly r edges along the

way. So if we can count closed walks we can evaluate Eq. (4.22), and hence calculate the spectral

density of our network.

To count closed walks, we first consider the more limited problem of counting closed walks

that start from a specified node and return to the same node for the first and only time on their

final step. Walks that return only once like this we call excursions. Let us denote by n
(r)
i←j the

number of excursions that start from node i, take their first step along the edge from i to j, and

return to i after exactly r steps. If the neighbours of i are connected to one another other than via i
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Figure 9. The spectral density of a 10 000-node network calculated in two ways: first using the standard QR algorithm to

compute all eigenvalues and then calculating a histogram of the results (grey), and second using the message passing

equations, (4.24) and (4.27), with η= 0.01 (solid curve).

This is our message passing equation, which we solve in the normal fashion by iteration. Once

we have the values of the messages we can write the total number n
(r)
i of closed walks of length r

starting and ending at node i as a composition of any number m of excursions via the nodes in i’s

neighbourhood:

n
(r)
i =

∞
∑

m=0

[

∑

j1∈Ni

. . .
∑

jm∈Ni

][ ∞
∑

r1=1

. . .
∞
∑

rm=1

]

✶
∑

u
ru=r

m
∏

u=1

n
(ru)
j←ku

. (4.25)

Then, by a derivation similar to that of (4.24), we have

∞
∑

r=0

TrAr

zr
= n+

∞
∑

r=1

n
∑

i=1

n
(r)
i

zr
= n+

n
∑

i=1

1

1−
∑

j∈Ni
µi←j(z)

. (4.26)

And substituting this result into Eq. (4.22) and neglecting the initial +n, which will disappear

anyway when we take the imaginary part, we get our expression for the complex spectral density

ρ(z) =−
1

nπz

n
∑

i=1

1

1−
∑

j∈Ni
µi←j(z)

. (4.27)

Taking the imaginary part now gives us ρ(x).

This procedure gives us a complete recipe for calculating the spectral density of a network

using message passing. We can use it for numerical calculations by setting z = x+ iη for small

but nonzero η, explicitly iterating to convergence the message passing equations of (4.24) with

this value of z and taking the imaginary part of (4.27) to find the spectral density at x. Figure 9

shows an example application to a network of n= 10 000 nodes. Also shown in the figure are the

results of direct numerical calculations using the QR algorithm and the agreement between the

two is good.

As with our other message passing methods, one can also use the equations for the spectral

density as the basis for further analytic computations. To give a simple example, consider a

random d-regular network, i.e., a network in which every node has d edges but the nodes

are otherwise connected together at random. When the number of nodes n is large, the

neighbourhood of every node in such a network looks identical: each node has d neighbours,

each of which has d neighbours, and so on. This means that the messages µi←j on all edges have
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of community structure, as illustrated in Fig. 10. Briefly, suppose we take n nodes and divide them

among q groups numbered 1 . . . q. Then we place edges at random such that each pair of nodes

is connected independently with probability ωrs which depends on the groups r and s that the

nodes belong to. Thus two nodes in group 1 would be connected with probability ω11 and nodes

in groups 1 and 2 would be connected with probability ω12. This model of a network is known as

the stochastic block model [28], and if the diagonal probabilities ωrr are larger than the off-diagonal

ones it generates a random network with classic community structure of the kind shown in the

figure.

The community detection method that we focus on here involves fitting this model (or one of

its variants [29–31]) to observed network data by the method of maximum a posteriori probability.

Suppose we observe a network with adjacency matrix A= [Aij ], which we hypothesize was

generated from the stochastic block model. If si denotes the community to which node i belongs

then the probability of generating this network is

P [A|s] =
∏

i<j

ω
Aij
sisj (1− ωsisj )

1−Aij , (4.31)

where s= [si] is the vector of community assignments and the sum over values i < j ensures that

we count each node pair only once. By Bayes’ rule we now have

P [s|A] =
P [A|s]P [s]

P [A]
=

1

Z

∏

i

πsi
∏

i<j

ω
Aij
sisj (1− ωsisj )

1−Aij , (4.32)

where for convenience we have defined Z = P [A] and we assume a categorical prior P [s] on the

group assignments in which each node is assigned to group s with prior probability πs which we

choose.

Fitting the model to the observed network involves finding the most likely values of both

the community assignments si and the parameters πr, ωrs by maximizing (4.32). Finding the

parameter values is a relatively straightforward task—it can be accomplished using a standard

expectation-maximization (EM) algorithm. Finding the community assignments, on the other

hand, is more difficult and it is this task that we address here, assuming that we already know the

values of the parameters.

We focus on calculating the probability qsi = P [si = r] that node i is assigned to group r. We

will not go into the derivation of the message passing equations in detail—see Refs. [32,33] for

a discussion—but, briefly, we define a set of messages µr
i←j that satisfy the message passing

equations

µr
i←j =

πr
Zi←j

∏

k

(

1−
∑

s

qskωrs

)

∏

k∈Nj

k 6=i

∑

s

ωrsµ
s
j←k. (4.33)

In terms of these messages

qri =
πr
Zi

∏

j

(

1−
∑

s

qsjωrs

)

∏

j∈Ni

∑

s

ωrsµ
s
i←j , (4.34)

while the normalizing factors Zi and Zi←j are chosen so that
∑

r q
r
i = 1 and

∑

r µ
r
i←j = 1 for all

i, j.

Equation (4.33) is solved by simple iteration, starting for instance from random values, then

the results are substituted into Eq. (4.34) to calculate qri . Figure 11 shows an example application

to a small network with two communities. The colours of the nodes indicate the probability that

the node belongs to group 1 (red) or group 2 (blue). As we can see, the method has ably found the

two groups of nodes in the network, with only a few nodes incorrectly assigned.

Message passing provides an efficient and practical algorithm for community detection in

networks, but perhaps the most interesting result to come out of this approach is a more formal

one. Like the other message passing applications we have seen, the equations for community

detection can be used as a starting point for further calculations, particularly focusing on phase

transition behaviour. Decelle et al. [32] considered what happens when one applies the message
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is able to find those communities. In other words, there are questions about networks for which

there exist answers, and yet no method can ever find those answers. We might imagine, if we are

clever enough and work hard enough, that we should be able to answer any question, but the

work of Decelle et al. tells us this is not so. Some questions—even questions with well-defined

answers—are unanswerable.

However, the result tells us more than this. This is not merely a statement about theoretical

calculations and algorithms, but also about processes going on in the real world. Suppose there

were some process taking place on a network, such as a social process or a biological process,

whose outcome depended on whether there were communities in the network. Then that process

would constitute an algorithm for detecting communities: it would give one outcome if there were

communities present and another if there were not. Below the detectability threshold, however,

no such algorithm can exist, which implies in turn that no such real-world process can exist either.

In a way, this is good news. It tells us that we only care about community structure when we

are above the detectability threshold. If the structure in a network is undetectable then it can have

no effect on any real-world outcome and so it doesn’t matter whether it is present or not. Thus we

only care about the easy cases of community detection, not the hard ones.

5. Loopy networks and correlated messages

In our discussion so far we have assumed that the neighbours j of a node i are not directly

connected to one another by single edges or other short paths, or equivalently that our

network contains no short loops. This assumption was necessary, for instance, to ensure that the

probabilities of neighbours belonging to the giant cluster were independent in our percolation

example, or that all walks that started along a particular edge returned along the same edge in

our graph spectrum example.

A network that contains no loops at all is called a tree, and message passing methods are exact

on trees. Message passing methods are not exact but typically work well on networks that have

only long loops but no short ones. For instance, correlations between percolation probabilities on

different nodes typically fall off exponentially with distance through the network, so the presence

of long connecting paths introduces only small correlations and correspondingly small errors in

our message passing results.

Many real networks, however, including especially social and biological networks, exhibit a

high density of short loops, particularly triangles, the shortest loops of all. On such “loopy”

networks the message passing methods we have described do not work well, giving poor

approximations to the true answers for the problems they are designed to solve [34]. Indeed in

some cases the message passing iteration may fail to converge at all on loopy networks, falling

into limit cycles or chaotic trajectories instead. A number of efforts have been made to remedy

these issues, with varying degrees of success [10,34,35]. In this section we describe some recent

developments that offer a principled framework for bypassing the problem and creating message

passing methods that work on loopy networks [36,37].

First, we need to make precise what we mean by a loop. A cycle in a network is a non-self-

intersecting walk that starts and ends at the same node. “Non-self-intersecting” here means

that no edge is traversed more than once in the walk. Consider Fig. 12a, which shows the

neighbourhood of a certain node i in a network. Highlighted in blue are two cycles of length 3

starting (and ending) at i. Figure 12b shows two cycles of length 4 on the same network,

highlighted in red and green. The latter two cycles, however, are qualitatively different from

one another in an important way. The cycle in red follows edges that were already part of the

cycles of length 3 in panel (a). If we know about the cycles of length 3 then, in a sense, we already

know about this cycle of length 4 too. The cycle in green, however, is new in that it contains some

edges we have not seen in any shorter cycle. We call this a primitive cycle. A primitive cycle from

node i is a cycle starting and ending at i such that at least one of its edges is not contained in any

shorter cycle from node i. This concept of the primitive cycle is central to understanding how to

generalize message passing methods to loopy networks.
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Figure 15. Size of the giant cluster for percolation on a large social network of 13 861 nodes. The points are results from

direct simulation calculations and should be indicative of the ground truth in this case. The solid curve shows the results

of a message passing calculation using Eqs. (5.1) and (5.2), including all cycles up to length four. The dashed line shows

what happens when cycles are neglected. After Cantwell and Newman [36].

results, but the exact rate of convergence and the size of the errors introduced are presumably

a function of the network structure and the nature of the dependence is not well understood.

The methods described here can also be extended to other message passing calculations on

loopy networks, including the calculation of matrix spectra and the solution of spin models and

other probabilistic models [36,37]. As an example, Fig. 16 shows a calculation of the spectral

density of the adjacency matrix of a large software network—a PGP trust network—and again

the message passing calculation compares favourably with the ground truth. It can also be

significantly faster than traditional numerical methods, putting calculations for larger networks

within reach: spectra for networks of over 300 000 nodes have been calculated using these

methods on standard (non-parallel) hardware [36], something that would be impossible using

traditional methods.

6. Conclusions

In this paper we have examined the use of message passing methods for the calculation of node

properties on networks. These methods work by expressing the properties of each node in terms

of those of its neighbours, leading to a set of self-consistent equations that are solved by numerical

iteration. This approach has a number of advantages over more conventional numerical methods,

being computationally efficient, especially on sparse networks, and allowing one to compute

ensemble averages in a single calculation rather than by averaging over repeated simulations. We

have given example applications of message passing to the calculation of percolation properties

of networks, the evaluation of graph spectra, community detection in networks and the solution

of thermal spin models such as the Ising model.

In addition to its use for numerical methods, we have also described how message passing

forms the foundation for further analytic calculations, particularly of phase transition properties.

One can regard the iteration of the message passing equations as a discrete-time dynamical

system, whose bifurcations correspond to phase transitions of the original system under study.

Examples include the percolation transition in percolation models, the ferromagnetic transition

in the Ising model and the detectability threshold for community detection.
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Figure 16. The adjacency matrix spectrum of a 10 680-node PGP network, a combination social/software network of trust

relations between PGP keys and their owners. The histogram shows the distribution of eigenvalues from direct calculations

using standard numerical methods, while the curve shows the spectral density from message passing including loops of

length up to three. After Cantwell and Newman [36].

Finally, we have discussed a shortcoming of the message passing method, at least as it is

traditionally formulated, that it works poorly on networks containing short loops because of loss

of independence between the states of nearby nodes. We have reviewed recent work that provides

a way around this shortcoming by defining messages that pass not only between immediately

adjacent nodes but also between nodes within larger neighbourhoods that completely enclose

the problematic loops. This approach leads to more complicated message passing equations but

appears to give excellent results in example applications such as percolation and the calculation

of matrix spectra.
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