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primary mathematical tool for analysing the structure
of many kinds of complex systems, ranging from the
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in network analysis is the calculation of quantities
that reside on the nodes of a network, such as
centrality measures, probabilities or model states. In
this perspective article we discuss message passing
methods, a family of techniques for performing such
calculations, based on the propagation of information
between the nodes of a network. We introduce the
message passing approach with a series of examples,
give some illustrative applications and results, and
discuss the deep connections between message
passing and phase transitions in networks. We also
point out some limitations of the message passing
approach and describe some recently-introduced
methods that address these limitations.
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1. Introduction

A network, for the purposes of this paper, is a set of points joined together in pairs by lines, as
shown in Fig. 1. In the nomenclature of the field the points are called nodes or vertices and the lines
are called edges. Networks provide a convenient tool for representing the pattern of connections
or interactions within complex systems of many types. The Internet, for example, is a network
of computers joined by data communications. The Web is a network of pages connected by
hyperlinks. Biochemical networks, such as metabolic networks and protein interaction networks,
are networks of chemicals and their interactions. And there is a long history of the quantitative
study of social networks, which means not only modern online networks like Facebook and
Twitter, but also offline social networks such as networks of friendship, collaboration and
acquaintance, and the contact networks over which diseases spread. Figure 1, for instance, shows
the patterns of collaboration among a group of scientists. In recent decades a large body of
knowledge has built up concerning methods for analysing and interpreting network data, and
databases have been assembled containing data sets and measurements for thousands of different
networks. For an introduction to this vibrant and fascinating field see Refs. [1-5].

Development of the theory and practice of network analysis has been a multidisciplinary
undertaking spanning mathematics, computer science, physics, statistics, the social sciences
and other fields and has incorporated techniques from many areas, including linear algebra
and spectral theory, probability and combinatorics, randomized models, statistics and machine
learning, random matrix theory and a wide range of numerical methods. In this paper we focus on
a less well known but powerful class of methods variously called message passing, belief propagation
or cavity methods. These methods have theoretical foundations going back to the 1930s [6] but in
their modern incarnation they were first formulated by Pearl in the 1980s [7]. They have been
widely applied to problems in computer science and, less commonly, statistical physics and other
fields [8-10]. In the network applications we consider here the first goal of message passing
methods is to calculate properties of individual nodes in networks, such as the state they are
in at a given time, but message passing can also be applied to the calculation of global network
properties and can serve as a starting point for further analyses, for example of structural phase
transitions in networks.
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Figure 1. A small social network representing the pattern of collaborations among a group of 379 scientists.
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Figure 2. Most networks consist of one large group or giant component of connected nodes (circled) and multiple small
components or unconnected single nodes.

We begin in the following section by introducing message passing on networks with some
simple examples, then in Section 3 we show how the message passing equations for a network
define a dynamical system whose fixed points and bifurcations correspond to phase transitions in
the network. In Section 4 we give a number of further examples of the method, illustrating its use
both as a computational tool and as a doorway to understanding phase transitions. In Section 5
we discuss a fundamental limitation of traditional message passing methods—that they are
exact only on locally loop-free networks—and we describe a recently introduced approach that
sidesteps this limitation, allowing message passing to be applied to a wide variety of networks,
no matter what their structure. In Section 6 we offer our conclusions.

2. Message passing

We begin our discussion with a simple example to demonstrate the message passing method.
Figure 2 illustrates a prominent feature of almost all networks, the so-called giant component. In
most networks a significant fraction of the nodes are connected to form a large contiguous cluster
or giant component, as shown in the centre of the figure, while the remainder of the nodes are
grouped into a number of small components, shown around the edges. Networks do not normally
contain more than one giant component because the chances of two such components existing
yet not being connected together is vanishingly slim. At the same time a network with no giant
component is, for most practical purposes, not really a network at all and so would not be studied
in the first place. As a result, almost every network of scientific or technological importance has
the qualitative structure shown in Fig. 2.

Let us consider the following question: given a complete network of n nodes and a specified
node within that network, does the node in question belong to the giant component? To be more
precise, we will define the giant component to be the largest component of connected nodes in the
network (a slight abuse of nomenclature, but one that will cause us no problems here). There exist
simple computer algorithms that will traverse a network and construct all of its components,
allowing us to answer our question quickly, but here, for illustrative purposes, we will take a
different approach.

Let the n nodes in our network be labelled by i =1...n in any convenient order and let s;
be the probability that node 7 does not belong to the giant component. This is a somewhat trivial
example, since j; is always either 0 or 1—either the node belongs to the giant component or it
doesn’t—but it is a useful example nonetheless and we will soon get to more complex ones.

The crucial point to notice is that node ¢ is not in the giant component if and only if none of its
network neighbours are in the giant component. If even one of its neighbours belongs to the giant
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Figure 3. Node 7 is connected to the giant component via its neighbour j. Its other neighbour & is also connected to the
giant component, but only via 7, so k cannot be responsible for ¢’s connection to the giant component.

component then i also belongs. Hence we might write

JEN;

where N is the set of nodes that are neighbours of 7. This equation says the probability that i is
not in the giant component is equal to the probability that none of its neighbours are.

Trivial though it seems, however, this equation is wrong for two reasons, one obvious and one
more subtle. The first and more obvious reason is that it assumes independence of the neighbours.
In multiplying the probabilities 1; we are assuming that the membership of one neighbour in the
giant component is independent of the membership of another. This is violated if, for instance,
two neighbours are connected by an edge, in which case either both are in the giant component
or neither is, so their probabilities 1; are correlated. Normally when applying message passing
methods one assumes independence, which may be correct, at least approximately, in some
cases but definitely is not in others. We will, for the moment, make the same assumption of
independence here, but in Section 5 we will show how to relax it and apply message passing
to networks where the states of nodes are correlated.

Even assuming that probabilities are independent, however, there is another reason why
Eq. (2.1) is incorrect. Consider Fig. 3, which shows a possible configuration of the network around
node i. In this example, node 7 is connected to the giant component via one of its neighbours j
and this means in turn that its other neighbour & is also connected to the giant component via i.
Thus i has a neighbour k in the giant component but k is not, and cannot be, i’s link to the
giant component, since k is itself only connected via i. So the question of whether i is in the
giant component is not merely a matter of whether ¢’s neighbour is in the giant component:
i’s neighbour must be connected to the giant component by some route other than via i itself.

We can modify Eq. (2.1) to account for this by making one simple change: we remove node ¢
from the network before applying the equation, which automatically disconnects any nodes
whose only connection to the giant component was via i. Any remaining neighbours j who are
still connected to the giant component must be connected by some other route and it is these
neighbours that we care about.

We define a new quantity ;. ; to be the probability that node j is not in the giant component
of the network when i is removed. Then the correct equation is

i = H Hi—j- (22)
JEN;

This equation will now correctly tell us if 7 is in the giant component.

To use this equation we still need to compute ;. ; itself. The probability that j is not in the
giant component after ¢ has been removed from the network is equal to the probability that none
of j’s neighbours other than i is in the giant component. Hence

picj =[] tjcs- (2.3)
kENj
ki
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Figure 4. Application of the method of Egs. (2.2) and (2.3) to a small network. The converged values of y; are all either
zero or one and the colours of the nodes indicate the values.

This is a message passing equation. We can think of the probability p;, ; as a “message” that
node 7 receives from its neighbour j. Node j transmits the probability that it is not in the giant
component. This probability is in turn calculated from the messages that j receives from its other
neighbours according to Eq. (2.3).

There are two equations of the form (2.3) for every edge in the network—one going in either
direction along the edge—for a total of 2m equations, where m is the number of edges in the
network. If we can solve these 2m equations for the 2m variables ;. ; then we can substitute
the results into Eq. (2.2) and calculate the probabilities ;. In practice, the solution is normally
computed by simple iteration. We choose any suitable set of starting values for the 11;,;, such as
random values in (0, 1) for instance, and iterate (2.3) to convergence.

Figure 4 shows what happens when we do this on a small example network. The colours of
the nodes in the figure represent the values of p; for each node and, as expected, there are only
two values in this case, zero and one, indicating whether a node is in the giant component or not.
As we can see, the calculation has correctly identified all the nodes in the largest component of
the network.

(a) A more substantial example: Percolation

The example of the previous section illustrates the basic message passing approach, but it is
relatively trivial. Let us see how to apply the method to a less trivial example. Percolation is
a random process used, among other things, to model of the spread of disease over contact
networks and the robustness of networks to failure of their connections [5,11,12]. In the
percolation process we “occupy” edges in a network uniformly at random with some probability p
and observe the clusters of nodes connected together by the occupied edges. (Technically this is
“edge percolation.” One can also study node percolation, where it is the nodes that are occupied,
but we will not do so here.) If p is small there will be only small clusters, but for large enough p
there will be one (and only one) giant cluster plus, potentially, some small clusters as well. In
between these two regimes lies the percolation transition, the value p. at which a giant cluster
first forms. Because of the random nature of the edge occupation process, there can be some
fluctuation in pe, but the value becomes more and more narrowly concentrated as the size of the
network grows.

10000000 V 208 4 001d Buio-BuysiandAeiosieforeds



s ‘.‘3;"@ ‘
4 3\9""“ "\v‘

AI"‘..J?‘\‘

Figure 5. Application of Egs. (2.4) and (2.5) to a small network. The colours of the nodes indicate the probability of
belonging to the giant percolation cluster, calculated from p;, with red corresponding to higher probability and blue to
lower.

It is only a small step from the methods of the previous section to the calculation of the
probability that a node in a network belongs to the giant percolation cluster for given p. And
because percolation is a probabilistic process, this is now a true probability, taking not just the
values zero and one but any value in between. Our presentation follows the line of argument
given by Karrer et al. [13] and Hamilton and Pryadko [14].

Let y1;.;j be the probability that node j does not belong to the giant cluster if 7 is removed from
the network. There are two ways for i to not be connected to the giant cluster via its neighbour j.
The first is that the edge between ¢ and j is unoccupied, which happens with probability 1 —
p. The second is that the edge is occupied (probability p) but j is itself not in the giant cluster
(probability 41;.;). So the total probability is 1 — p + pu;; and the overall probability y; that ¢
is not in the giant cluster is given by a product over neighbours of  thus:

pi= ] O =p+ppicy). (24)
JEN;
Now we repeat the same argument to calculate ;. ; itself. The probability that j is not in the
giant cluster when i is removed from the network is equal to the probability that j is not connected
to the giant cluster via any of its neighbours other than i:

Mij = H (1 —p+pujci) (2.5)

keEN;

k#i
These are the message passing equations for percolation on a network and again we solve them
by iteration from any suitable initial condition. Figure 5 shows the result for a small network. The
colours of the nodes in this figure indicate the probability that a node belongs to the giant cluster.
Note how the nodes around the periphery of the network have lower probability than those in

the centre.

Unlike the giant component calculation of Section 2, this percolation calculation offers
something that cannot be achieved with simpler numerical means. There exist algorithms that can
find the giant cluster in a percolation system, but they do so only for one individual realization of
the randomly occupied edges. If one wanted to calculate the probability p; of being in the giant
cluster, one would have to run such an algorithm many times for many random realizations and
average the results, which would be a complicated and computationally demanding process, and
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Figure 6. The size of the giant cluster as a function of occupation probability p for edge percolation on the network of
Fig. 5, calculated using the message passing method of Egs. (2.4), (2.5) and (2.6). The vertical dashed line indicates
the expected position of the percolation transition from Eq. (3.4).

one moreover that would yield only an approximate answer, subject to statistical sampling error.
Message passing on the other hand directly yields the value of p;, averaged over all realizations
of the randomness, in a single calculation.

One can also extend the method to calculate other properties of the percolation process,
including global properties. For instance, we can calculate the average size of the giant cluster
as follows. We define a variable s; that is 1 if ¢ belongs to the giant cluster and 0 if it does not.
Then the probability distribution of this variable is (1 — u;)®! u%fs"' and the size of giant cluster
as a fraction of network size is (1/n) 3, s;. Hence the expected size S of the giant cluster is

S=2 E 281} h_[(l - Hi)siﬂg_Si} - % DS sl )i
{51}

3 [ 51':0,1

7 7

_1_lzn: . (2.6)
= n,lm' :
=

Figure 6 shows the value of this quantity as a function of p for the same small network as in Fig. 5.
The figure displays the classic percolation transition behaviour, with no giant cluster for small p
and an abrupt phase transition—around p = 0.43 in this case—at which a giant cluster appears.
We study this phase transition in detail in the following section.

3. Phase transitions

The message passing method is a useful tool for numerical calculation of node properties on
networks as well as certain global quantities. As mentioned in the introduction, however, message
passing can also be used as the foundation for further analytic calculations, especially with regard
to phase transitions in networks. In this section we illustrate this point for the case of percolation.

As can be seen in Fig. 6, percolation shows a phase transition at a critical occupation
probability p. between a percolating state in which there exists a giant cluster and a non-
percolating state with no giant cluster and small clusters only. When we are below this transition,
where p < p¢, the probability ;. ; that node j is not in the giant cluster is, by definition, 1 for
all 4, j. Looking at the message passing equations, Eq. (2.5), we see that this is in fact a solution
of the equations for any value of p—setting 1, ; =1 for all 4, j just gives “1=1". So does this

H
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mean that there is never a giant cluster in the network? It does not, because the outcome of the
message passing calculation depends not only on whether this solution exists but also on whether
the calculation actually returns this solution, versus some other solution.

We can think of the iteration of Eq. (2.5) as a discrete-time dynamical system that moves us
around the space defined by the set of probabilities 1;. ;. The crucial question we need to answer
is whether this process converges to the trivial solution y;; = 1. If it does, then there is no giant
cluster in the network. If it converges to some other (nontrivial) solution, then there is a giant
cluster. Another way to say the same thing is that there is no giant cluster if the trivial solution is
a stable fixed point of the iteration. If it is unstable then there is a giant cluster.

This now gives us a simple method for determining whether there is a giant cluster: we
linearize to find the stability of the trivial fixed point. We write ;. ; =1 — ¢;.; (with a negative
sign since ;. ; < 1) and substitute into Eq. (2.5) to get

1l—€ej= H (1—pejeg)=1-p Z €jek +O(E). (3.1)
kENj keN}
k#1 k#i

Hence, close to the fixed point we have the linear form

€icj =P Z € k- (3.2)
kENj
ki

Alternatively we can write this in matrix format as
e =pBe, (3.3)

where € is the 2m-element vector with elements ¢;,_; and B is a 2m x 2m non-symmetric matrix
with one row and column for each directed edge i <— j and elements chosen so as to correctly
reproduce Eq. (3.2). By inspection, this requires B;, j < = d;1(1 — 03;). The resulting matrix,
known as the Hashimoto edge-incidence matrix or more commonly the non-backtracking matrix,
appears in a number of contexts in network theory, including the study of community detection
algorithms [15] and centrality metrics [16].

The trivial fixed point is unstable if a small € grows under the iteration of Eq. (3.3), which is
equivalent to saying that pA > 1, where X is the leading eigenvalue of B. Thus there will be a giant
cluster if and only if p > 1/X and hence we conclude that

Pc = 2 (34)

is the percolation threshold on the network [13,14]. Applying this approach to the network of
Fig. 5 the resulting value of pc is shown as the vertical dashed line in Fig. 6 and closely matches
the apparent phase transition point at which the giant cluster appears.

Thus by considering the properties of the message passing equations as a dynamical system we
have been able to derive a new formal result about the position of the percolation phase transition
on networks.

4. Other applications of message passing

Message passing can be applied to a wide range of other calculations on networks. We give three
illustrative examples in this section.

(@) The Ising model

The large class of finite-temperature spin models in physics, which includes the Ising model, the
Heisenberg model, the XY model, and spin-glass and random-field models, can be treated using
message passing methods [8,17]. Let us take as an example the Ising model in zero magnetic field,
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which is defined on a general network by the Hamiltonian
H:_%ZAijSisja (41)
ij
where s; = £1 is an Ising spin on node i and A;; is an element of the adjacency matrix A of the

network with value A;; = 1 if there exists an edge between nodes i and j and 0 otherwise.
We can usefully rewrite this Hamiltonian by “centring” it around a particular node i thus:

H=— Z [SiSj—’—kg\:/, [sjsk-i-lezj\:/ [Sksl +H}

JEN;

ki I#]
== > [sis; + hicj(s7)], (4.2)
JEN;
where
h“_j (Sj) = Z [sjsk + Z |:5k:5l + .. :|:| = Z [sjsk + hj(—k(sk)] . (4.3)
kEN; leEN}, keN;
ki I#j ki

Equation (4.2) correctly counts each interaction s;s; exactly once, so long as no nodes appear in
more than one of the sums, which is equivalent to saying that there are no paths between the spins
around the central node i, other than via ¢ itself. As with our percolation example, we will, for the
moment, assume this to be the case. In Section 5 we show how to remove this assumption. Note
also that while our notation h; ;(s;) explicitly includes only the dependence on s, the value of
hi—j(sj) does depend on other spins as well. The latter however will be summed over shortly
and so will play no further role.

As we have said, message passing methods are particularly useful for calculating properties
of individual nodes. Let us take as an example the calculation of the probability within the Ising
model that the spin s; has a particular value r» = 1. At inverse temperature g this probability is
given by the Boltzmann average

Pls; =] Z ls;=re 77, 4.4)

where Z =5 {s:} e PH is the partition function and 1 is the indicator function which is 1 if x is
true and 0 otherwise. Using Eq. (4.2), the sum in the numerator can be expanded as

lei—Te PH _ Zexp(ﬂ S sy + hicj(s))] ) [T I 35 eflrestheste

JEN; JEN; kgN; Si Sk
jia

IR I (4.5)

JEN; 8j kEN; Sk
ki
' s .
Now we define a message fi;,; accordmg to

piej=5— [ Do, (46)
Ziej ng Sk

where Z;_jisa normalizing factor chosen to make Z s=+1 M j = 1. Then
Pls;=r] H Zeﬁ Z’H—j/‘l’Z(—j Z H ﬁr,uufj te ﬁr,u;;j) 4.7)
]EN s JEN;
with uf‘f_ ; denoting the value of pirj for s==+1and

VA
Zi=————. (4.8)
’ HjeM Zij
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The partition function Z is difficult to calculate directly, but evaluating (4.7) only requires Z;,
which can be done easily by noting that >, _ | P[s; =r] =1, s0

Zi= Y T (7 uies+e T uiy). (4.9)
r=+1jeN;

To use Eq. (4.7) we still need the values of the messages 17, ;, which we can calculate from
Egs. (4.3) and (4.6) thus:

o eBhiei(r) _ Blrsithjer(si)]
= TIE A TIEY
k¢gN; Sk kKEN; IEN; Sk si
k#i k;éi l#j
H Zeﬁrsk H Zeﬁhjl—k (sk)
Ziej kEN; sk I¢N; st
k;él l#7
Brs s
|| DT (4.10)
Zicj keN; s
k;éz
or
1 _ _
pieg =7 T " ufcr+ e i) (4.11)
v kEN;
ki

Since Z;;j is defined to make >__ . p;, ; =1, its value is given by

Zicj=>_ I " nicp+e 7 i p)- (4.12)
r==x1 keNj;
ey

Equations (4.11) and (4.12) define the message passing process for the Ising model and as
before can be solved by simple iteration, starting for instance from random values. Once the
values converge, we can calculate the probability that s; =+1 from Eq. (4.7), and from these
probabilities we can calculate other quantities of interest. For example, the average magnetization
m; = (s;) at node ¢ is given by m; = P[s; = +1] — P[s; = —1] and from this one can calculate the
global average magnetization m = (1/n) Y, m;.

The message passing equations also give us a way to calculate the partition function Z of the
Ising model, something that is difficult to do by other methods such as Monte Carlo simulation.
Rearranging Eq. (4.8) we have

Z=27; [ Zicy, (4.13)
JEN;
so we can calculate the partition function directly from the quantities Z; and Z;.;, which are
evaluated as part of the message passing process. From Z we can then calculate other quantities
such as the free energy, which is F' = —B" 1 og Z=—B"1(log Z; + Zje/\fi log Z;« ;) or, if we
prefer a more symmetric formulation,

L (Z lou i + 3 0821 ). (14

Z(*‘]

where the second sum is over all directed edges i <— j in the network.

Figure 7 shows results for average magnetization calculated by message passing on a small
network. The Ising model in zero field is up-down symmetric, so one might imagine the value
of m would just be zero, but this is not the case. The message passing calculation displays
spontaneous symmetry breaking, just as the Ising model itself does. Zero magnetization implies
that all spins are equally likely to be up or down, so ,u;t_ =M= % for all 7, j, and Eq. (4.11)
does have such a solution, but it also has two other solutions, one where we have uz ;> % and

My ;< % on average and one where we have the reverse, and for these solutions m is nonzero. As
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Figure 7. The magnetization of an Ising model on a small network as a function of temperature T'=1/43, calculated
from Egs. (4.7) and (4.11). The vertical dashed line indicates the expected position of the ferromagnetic phase transition,
calculated from the leading eigenvalue of the non-backtracking matrix using Eq. (4.17).

a simple example, in the low-temperature limit 5 — oo it is straightforward to see that ujf_ ;=1
and 0 are solutions, which correspond to all spins up and all spins down.

Which solution the message passing process converges to depends on whether the solutions
are stable or unstable under the iteration of Eq. (4.11). In particular, if the symmetric solution
at u;t_ TR = % is unstable then we must converge to one of the other, symmetry-broken
solutions and hence we get a nonzero magnetization, indicating that we are below the symmetry-
breaking phase transition, in the ferromagnetic regime of the model. Conversely, if we converge
to the symmetric solution then we are above the transition. As with percolation, therefore, the
point at which the symmetric solution for the Ising model undergoes a bifurcation from stable to
unstable corresponds to the phase transition.

We can check for stability by once again expanding about the symmetric point. Observing that
iy =1— u;t_j and putting ,uii(_j = %(1 + € ;) in Eq. (4.11) we have

1 _
s(1+ €ij)= 7 [T 3P0+ ecn) +e P (1—ejp)]
(e kENj
ki
= 1 H (cosh,B + €k sinhﬁ)
Z“;j kGNj
ki
N1
_ (cosh )=~ [1 +tanhB ejﬁk} +0(e%), (4.15)
Zij Ken,
ki

where |Vj| is the degree of node j, ie., the number of its neighbours. Making the same
substitution in Eq. (4.12) gives just Z;. ; = 2(cosh ﬁ)‘le*l, and hence, neglecting terms of
order €2, the linearized message passing equations are

€+ =tanh 3 Z €k (4.16)

keN;

ki
This has the same form as Eq. (3.2) for the percolation case and carries the same implication:
just as the critical occupation probability for percolation satisfies Ap. =1, where A is the leading
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eigenvalue of the non-backtracking matrix, so the critical temperature of the Ising model satisfies
Atanh 8. =1, or

B¢ = arctanh % (4.17)

The corresponding value of the critical temperature T = 1/, is marked as the vertical dashed
line in Fig. 7 and agrees nicely with the apparent transition point between m > 0 and m = 0.

(b) Graph spectra

The eigenvalue spectrum of the adjacency matrix of a graph or network plays a central role in
several aspects of the theory of networks, including the calculation of centrality measures [18],
behaviour of dynamical systems on networks [19], percolation properties [13], community
detection [20] and network epidemiology [5]. Complete matrix spectra can be calculated
numerically by standard means such as the QR algorithm [21], but this approach is slow and
limited to relatively small networks, up to about 10000 nodes. As another example of message
passing, we here show how one can use the method to calculate graph spectra in very competitive
running times, especially on sparse graphs. Our presentation follows that of [22,23].
One can write the spectrum of a network in terms of the spectral density

o) =135 = ), (4.18)

where \; are the eigenvalues of the adjacency matrix and §(x) is the Dirac delta function. There

are a variety of analytic forms for the delta function, but for our purposes a useful one is the

Lorentzian or Cauchy distribution in the limit of zero width:
n/m

§(z)= lim —"— 1 lim Im -
n—0+t < +1n T n—0+ T +1n

, (4.19)

where n — 0 means that 7 tends to zero from above. Substituting for 6(z) in Eq. (4.18) we then
have
o(z) = N lim Im Y ; (4.20)
nT -0t AT — A +in

In our calculations we will focus on the complex generalization of the spectral density

p(z) =— Z L :flﬂTr(zIfA)*l, (4.21)

nmw z— N\ n
1=1

where I is the n x n identity matrix and A is the adjacency matrix as previously. If we can
calculate this quantity then the real spectral density p(x) of Eq. (4.20) is given by setting z = = + in,
taking the imaginary part, and then taking the limit as  — 0.
Expanding the matrix inverse in (4.21) as a power series in z and taking the trace term by term
gives
1 STrA
p(z) = — nnz ;::0 o

r

(4.22)

But the trace of A" is equal to the number of closed (potentially self-intersecting) walks of length
on a network—walks that start and end at the same node and traverse exactly r edges along the
way. So if we can count closed walks we can evaluate Eq. (4.22), and hence calculate the spectral
density of our network.

To count closed walks, we first consider the more limited problem of counting closed walks
that start from a specified node and return to the same node for the first and only time on their

final step. Walks that return only once like this we call excursions. Let us denote by ngf_) ; the
number of excursions that start from node 4, take their first step along the edge from ¢ to j, and

return to ¢ after exactly r steps. If the neighbours of i are connected to one another other than via 4
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Figure 8. An excursion from node i traverses the edge from 7 to one of its neighbours 7, then makes any number of
further excursions via other neighbours k of node j before traversing the edge from j to ¢ again and ending.

itself, either directly by edges or by other short paths, then it is possible for an excursion to return
to ¢ along a different edge from the one it left by. As with our other message passing calculations
we will assume for the moment that this is not the case. (Again, we will show in Section 5 how
to relax this assumption.) Thus, all excursions that start by traversing the edge (4, j) return along
this same edge.

Generically, every excursion of length » now has the structure shown in Fig. 8: it first traverses
the edge from i to j, then it makes some number m (possibly zero) of separate excursions from j

via neighbours k (not including ¢) and then it traverses the edge from j to ¢ back again and stops
()

at i after a total of 7 steps. This observation allows us to express the number of excursions n;,” ;

self-consistently in the form

TR I Do ol | D S ol WY | - M1
m=0 k;e;\@ k],cne;.i\(j ri=1 rm=1
171 m7F

In this expression the product ;" ; n( “L represents the number of combinations of excursions
from j that have lengths r1...7mm and proceed via neighbours k1 ...kmn of j (not necessarily
distinct). The lengths and first steps are summed over all possibilities and the indicator function
ensures that only those combinations whose lengths add up to » — 2 are allowed, the remaining
two steps being reserved for traversing the edge (i, j) in either direction.

Now we define a message p;;(z) by

oo ()

14—

piej(z) =D —*
r=1

I DI DIRSD ol | oRtp of LSS | ]

r=1 m=0 Lk1 ENj km€eN;] Lri=1 rm=1
ky i Forn #i
1 & nﬁfil
SEPVDES ol [DoR olb I 6
m=0Lk1EN; kpmeN;]l Lri=1 r,=11u=1
ki#i ki
1 o) m 0 ;2;@ 1 0o m
S| T ALY 5 o)
m=0 u=1Lk,eN; r,=1 =0 LkeN k#i
k:;éz
1/22

- . (4.24)
1 =2 ken; kati Mjk(2)
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Figure 9. The spectral density of a 10 000-node network calculated in two ways: first using the standard QR algorithm to
compute all eigenvalues and then calculating a histogram of the results (grey), and second using the message passing
equations, (4.24) and (4.27), with n = 0.01 (solid curve).

This is our message passing equation, which we solve in the normal fashion by iteration. Once
(") of closed walks of length
starting and ending at node ¢ as a composition of any number m of excursions via the nodes in i’s
neighbourhood:

we have the values of the messages we can write the total number n,

mzi{z Y HZ Z}]lz Tu:THnﬂ—k (4.25)

m=0"j;eEN; JmENG;T Fri=1 rm=1

Then, by a derivation similar to that of (4.24), we have

(7") n
Z = A =n+y. ! : (4.26)
r=0 r=1 =1 i=1 1- E]G/\ﬁ u“‘](z)

And substituting this result into Eq. (4.22) and neglecting the initial +n, which will disappear
anyway when we take the imaginary part, we get our expression for the complex spectral density

n

p(z):—%zliz L (4.27)

i1 FEN; i (2)

Taking the imaginary part now gives us p(z).

This procedure gives us a complete recipe for calculating the spectral density of a network
using message passing. We can use it for numerical calculations by setting z = = + in for small
but nonzero 7, explicitly iterating to convergence the message passing equations of (4.24) with
this value of z and taking the imaginary part of (4.27) to find the spectral density at x. Figure 9
shows an example application to a network of n = 10 000 nodes. Also shown in the figure are the
results of direct numerical calculations using the QR algorithm and the agreement between the
two is good.

As with our other message passing methods, one can also use the equations for the spectral
density as the basis for further analytic computations. To give a simple example, consider a
random d-regular network, i.e.,, a network in which every node has d edges but the nodes
are otherwise connected together at random. When the number of nodes n is large, the
neighbourhood of every node in such a network looks identical: each node has d neighbours,
each of which has d neighbours, and so on. This means that the messages ;. ; on all edges have

10000000 V 908 Y 0014 B10-BuiysiandAisioos|eoreds:



- Group 1
Probability w,,

Group 2

Probability w,,

Group 3

Figure 10. Many networks display community structure, in which the network divides into tightly-knit groups of nodes, with
many connections within groups but few connections between them. The stochastic block model imitates this structure by
placing edges randomly between node pairs with probabilities w;s that depend on the groups 7, s that the nodes belong
to.

the same value p(z) for any z, so Eq. (4.27) becomes

1
and the message passing equations (4.24) take the simple form
2
1/z (4.29)

w(z) = —————-.
N S 6
This last result can be rearranged into the quadratic equation (d — 1)u? — 4 1/2% =0 and,
computing the solutions, substituting into Eq. (4.28) and taking the imaginary part, we find that

4(d—1) — z?

pla) = (d/2m) =5 (430)

)
This is the well-known spectrum of Kesten and McKay for the random regular graph [24], but
derived here by a different—and shorter—method than the traditional one.

The same approach can be extended to other model networks as well. For instance, it can be
easily modified for networks in which the number of edges at nodes—their degree—alternates
between two different values, or more generally to the large class of “equitable random graphs,”
which can have nodes of many different degrees [25]. By making some further approximations,
the same method can also be used to calculate the spectrum of the configuration model [23],
perhaps the most important structural model in the theory of networks [26,27].

(c) Community detection

As our final example of message passing we look at an application to one of the classic problems
in the study of networks: community detection. Many real-world networks have large-scale
structure of the kind sketched in Fig. 10, in which the network nodes are divided into some
number of groups or communities, with dense connections within groups but only sparser
connections between groups. Structure of this kind often reflects functional divisions between
nodes, and the ability to find such structure in unlabelled network data can be an invaluable tool
for understanding the link between form and function in networked systems [20].

There are a large number of techniques for detecting communities in networks, but one of the
most promising, and also most mathematically principled, makes use of a fit to a statistical model
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of community structure, as illustrated in Fig. 10. Briefly, suppose we take n nodes and divide them
among g groups numbered 1...q. Then we place edges at random such that each pair of nodes
is connected independently with probability wrs which depends on the groups r and s that the
nodes belong to. Thus two nodes in group 1 would be connected with probability w11 and nodes
in groups 1 and 2 would be connected with probability w12. This model of a network is known as
the stochastic block model [28], and if the diagonal probabilities wy are larger than the off-diagonal
ones it generates a random network with classic community structure of the kind shown in the
figure.

The community detection method that we focus on here involves fitting this model (or one of
its variants [29-31]) to observed network data by the method of maximum a posteriori probability.
Suppose we observe a network with adjacency matrix A = [A;;], which we hypothesize was
generated from the stochastic block model. If s; denotes the community to which node 7 belongs
then the probability of generating this network is

Aij 1—A;;
PlAJs] = [ w&, (1 = ws;s;) 7, (4.31)
i<j
where s = [s;] is the vector of community assignments and the sum over values ¢ < j ensures that
we count each node pair only once. By Bayes’ rule we now have

P[A|s|P 1 Asj e
P[SlA]:[PJEA]}[S]:ZIZIWSi il;[jwsisj-(l 7(‘)81_5],)1 4 , (4.32)

where for convenience we have defined Z = P[A] and we assume a categorical prior P[s] on the
group assignments in which each node is assigned to group s with prior probability s which we
choose.

Fitting the model to the observed network involves finding the most likely values of both
the community assignments s; and the parameters 7, wrs by maximizing (4.32). Finding the
parameter values is a relatively straightforward task—it can be accomplished using a standard
expectation-maximization (EM) algorithm. Finding the community assignments, on the other
hand, is more difficult and it is this task that we address here, assuming that we already know the
values of the parameters.

We focus on calculating the probability ¢{ = P[s; = r] that node ¢ is assigned to group r. We
will not go into the derivation of the message passing equations in detail—see Refs. [32,33] for
a discussion—but, briefly, we define a set of messages y;,_; that satisfy the message passing

equations
VX
M?ej = Zir H(l - Z QZ‘WS) H Zwrsu(;‘ek (4.33)
i k s kEN; s
ki

In terms of these messages

i = Z (- Yajere) T[ Swranics @39
1 j s

JEN; s
while the normalizing factors Z; and Z;,; are chosen so that 3~ ¢; =1and . pj,_; =1 for all
2, 7.

Equation (4.33) is solved by simple iteration, starting for instance from random values, then
the results are substituted into Eq. (4.34) to calculate g . Figure 11 shows an example application
to a small network with two communities. The colours of the nodes indicate the probability that
the node belongs to group 1 (red) or group 2 (blue). As we can see, the method has ably found the
two groups of nodes in the network, with only a few nodes incorrectly assigned.

Message passing provides an efficient and practical algorithm for community detection in
networks, but perhaps the most interesting result to come out of this approach is a more formal
one. Like the other message passing applications we have seen, the equations for community
detection can be used as a starting point for further calculations, particularly focusing on phase
transition behaviour. Decelle et al. [32] considered what happens when one applies the message
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Figure 11. A small network with two communities, indicated by the shaded regions. The colours of the nodes correspond
to the values of the message passing probabilities ¢} from Eq. (4.34) and in this case the message passing algorithm
has successfully found the two communities, with only a few nodes incorrectly assigned.

passing method to a network that was itself generated from the stochastic block model. In the
simplest case, suppose we generate a network with an even number 7 of nodes divided into two
equally sized groups, and suppose the edge probabilities wys take just two values, wi, whenr =s
(within-group edges) and wout when r # s (between-group edges).

Decelle et al. observe that in this situation the message passing equations, Eq. (4.33), have
a symmetric solution p;, ; = % for all i, j,r, which also implies ¢; = % If the message passing
iteration converges to this solution then it has failed to find any community structure in the
network—every node is identically assigned, half-and-half, to both communities. Thus the
algorithms fails if the symmetric solution is a stable fixed point of the iteration. Only if it is
unstable can we find a nontrivial solution. As with our other message passing examples, it turns
out that there is a bifurcation at which the fixed point changes from stable to unstable. This
bifurcation is driven by changing values of the parameters wj, and wout. As the values get close
together the empirical distinction between within- and between-group edges becomes smaller
and smaller, since the two have almost the same probability, and hence there is less and less signal
of the communities embedded in the structure of the network. Beyond a certain point the signal
becomes so weak that the algorithm fails to find anything, which is indicated by the symmetric
fixed point becoming stable.

For the simple two-group example considered here, Decelle et al. showed that the transition

falls at the point where
Cin — Cout = V/ 2(Cin + Cout), (4.35)

with ¢, = nwin and cout = nwout- When the difference cj, — cout is smaller than this the algorithm
fails to find the communities in the network. This transition point is known as the detectability
threshold of the network.

But now we make a crucial observation. The calculation we have described is based on a fit of
the stochastic block model to a network that was itself generated from the same model. But there
is no better method for extracting the parameters of a network (or any data set) than fitting it to
the model from which it was truly generated. This means that no other method for detecting the
communities in this network can work better than the one described here. Hence if this method
fails then all methods must fail. So all methods must fail below the detectability threshold.

This is a remarkable result. The question of whether there are communities in the network
and where they are has a well-defined answer in this case: we know the communities in this
artificial network because we put them in the network ourselves. And yet, provably, no algorithm
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is able to find those communities. In other words, there are questions about networks for which
there exist answers, and yet no method can ever find those answers. We might imagine, if we are
clever enough and work hard enough, that we should be able to answer any question, but the
work of Decelle ef al. tells us this is not so. Some questions—even questions with well-defined
answers—are unanswerable.

However, the result tells us more than this. This is not merely a statement about theoretical
calculations and algorithms, but also about processes going on in the real world. Suppose there
were some process taking place on a network, such as a social process or a biological process,
whose outcome depended on whether there were communities in the network. Then that process
would constitute an algorithm for detecting communities: it would give one outcome if there were
communities present and another if there were not. Below the detectability threshold, however,
no such algorithm can exist, which implies in turn that no such real-world process can exist either.

In a way, this is good news. It tells us that we only care about community structure when we
are above the detectability threshold. If the structure in a network is undetectable then it can have
no effect on any real-world outcome and so it doesn’t matter whether it is present or not. Thus we
only care about the easy cases of community detection, not the hard ones.

5. Loopy networks and correlated messages

In our discussion so far we have assumed that the neighbours j of a node 7 are not directly
connected to one another by single edges or other short paths, or equivalently that our
network contains no short loops. This assumption was necessary, for instance, to ensure that the
probabilities of neighbours belonging to the giant cluster were independent in our percolation
example, or that all walks that started along a particular edge returned along the same edge in
our graph spectrum example.

A network that contains no loops at all is called a tree, and message passing methods are exact
on trees. Message passing methods are not exact but typically work well on networks that have
only long loops but no short ones. For instance, correlations between percolation probabilities on
different nodes typically fall off exponentially with distance through the network, so the presence
of long connecting paths introduces only small correlations and correspondingly small errors in
our message passing results.

Many real networks, however, including especially social and biological networks, exhibit a
high density of short loops, particularly triangles, the shortest loops of all. On such “loopy”
networks the message passing methods we have described do not work well, giving poor
approximations to the true answers for the problems they are designed to solve [34]. Indeed in
some cases the message passing iteration may fail to converge at all on loopy networks, falling
into limit cycles or chaotic trajectories instead. A number of efforts have been made to remedy
these issues, with varying degrees of success [10,34,35]. In this section we describe some recent
developments that offer a principled framework for bypassing the problem and creating message
passing methods that work on loopy networks [36,37].

First, we need to make precise what we mean by a loop. A cycle in a network is a non-self-
intersecting walk that starts and ends at the same node. “Non-self-intersecting” here means
that no edge is traversed more than once in the walk. Consider Fig. 12a, which shows the
neighbourhood of a certain node 7 in a network. Highlighted in blue are two cycles of length 3
starting (and ending) at i. Figure 12b shows two cycles of length 4 on the same network,
highlighted in red and green. The latter two cycles, however, are qualitatively different from
one another in an important way. The cycle in red follows edges that were already part of the
cycles of length 3 in panel (a). If we know about the cycles of length 3 then, in a sense, we already
know about this cycle of length 4 too. The cycle in green, however, is new in that it contains some
edges we have not seen in any shorter cycle. We call this a primitive cycle. A primitive cycle from
node i is a cycle starting and ending at ¢ such that at least one of its edges is not contained in any
shorter cycle from node 4. This concept of the primitive cycle is central to understanding how to
generalize message passing methods to loopy networks.
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Figure 12. (a) Two cycles of length 3 in a small network, both starting and ending at the same node <. (b) Two cycles of
length 4 in the same network. The cycle in green is a primitive cycle but the cycle in red is not because it is composed
entirely of edges that were already present in the cycles of length 3.

Suppose we have a network that contains primitive cycles up to some length 7 only and no
longer primitive cycles. It may contain longer non-primitive cycles—potentially many of them—
but the longest primitive cycle, from any node anywhere in the network, has length r or less. For
such a network we can write exact message passing equations according to the following recipe.

Around each node ¢ in the network we construct a neighbourhood N; that consists of the
nodes and edges immediately adjacent to i plus all nodes and edges that lie on primitive cycles
starting at 7 (of any length up to the network maximum of ). Figure 13 shows an example
of such a neighbourhood in a network with maximum cycle length r = 4. For a network with
r =2, which is the smallest possible value, the neighbourhoods are the same as in our previous
calculations, and the method reduces to standard message passing in this case. But for r > 2 the
neighbourhoods may contain additional edges and nodes. Note that while, as we have said,
there may also be non-primitive cycles starting from 4, including ones of length greater than r,
these are automatically contained within i’s neighbourhood, since they are by definition made up
entirely of edges that belong to primitive cycles of length r or less, which are themselves contained
within the neighbourhood. Thus under this definition all cycles starting from ¢, of any length, are
contained within the neighbourhood of .

In our extended message passing scheme, node 7 receives messages p;«; from all nodes j
in N;. This means that some messages may come from nodes that are not directly connected
to ¢ via an edge. As in normal message passing the messages from neighbourhood nodes are
themselves calculated from other messages received from outside the neighbourhood—see Fig. 13
again. But here a useful simplification occurs. Since the neighbourhood i includes all cycles of
any length that start from node ¢, it follows that there are no paths connecting the nodes sending
messages into the neighbourhood, other than through the neighbourhood itself. It there were,
they would create cycles outside the neighbourhood, of which, by hypothesis, there are none.
This observation is sufficient now to reestablish independence among the incoming messages
and allow us to write message passing equations that work on these loopy networks.

This is not quite the whole story, however, for several reasons. First, as discussed at the start
of this section, even in standard message passing we normally allow long loops in the network,
since these introduce only small errors. We can do the same here. We stipulate that the network
should contain no primitive cycles of length greater than r except “long” cycles, meaning ones
long enough that the correlations they introduce are small in some sense. Second, it still remains
to specify how we combine the messages coming into a node to calculate the node’s properties,
and this can be nontrivial. We will see an example in a moment. Third, real networks typically
do not have a sharp cutoff in the length of their cycles as we have assumed, but instead have
primitive cycles of all lengths, up to some (usually large) maximum. In practice, we approximate
such networks by counting loops only up to some chosen length and ignoring longer loops. This
turns out often to be an excellent approximation. Again we will see an example shortly.
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Figure 13. The neighbourhood N; denoted by the nodes and edges in black and grey contains all primitive cycles of
length four or less starting and ending at <. Node 7 receives messages from all other nodes in this neighbourhood, which
themselves receive messages from their neighbourhoods. Node 7, for instance, receives messages from the nodes in
blue, but not from the grey nodes of V;, which are excluded as described in the text. We denote the blue neighbourhood
by N« ;. Note that, according to our definitions, \V; ; necessarily meets A; at only a single node—node j—and also
that there cannot be any paths between pairs of neighbourhoods such as AV, ; (in blue) and N; ., (in red), other than
through N itself. If either of these conditions were violated then there would be primitive cycles of length longer than four
starting from <.

(a) Example: Percolation

As an application of message passing on loopy networks let us look again at percolation with
edge occupation probability p, and specifically at the calculation of the probability that a node
in a network belongs to the giant percolation cluster. The first step in solving this problem is to
construct the neighbourhood around each node, including all primitive cycles of length r or less,
for some value of r that we choose. See Fig. 13 again for an example. Now each node j in the
neighbourhood of ¢ transmits a message p; ; with value equal to the probability that node j is
not connected to the giant cluster when ¢ and all of its neighbourhood N; (except for j itself) are
removed from the network. As in Section 2, this removal ensures that we ignore any nodes j that
are only connected to the giant cluster via A;.

The probability p; that 7 itself is not in the giant cluster is now equal to the probability that it is
not connected to the giant cluster via any of the nodes j in ;. This probability still requires some
effort to calculate. Figure 14 shows what is involved. The edges in the neighbourhood N; may be
occupied (with probability p) or not (probability 1 — p) and for every possible configuration I; of
occupied edges within the neighbourhood let o;;(I7;) =1 if there is at least one path of occupied
edges from 7 to j within AV; and 0 otherwise. For instance, there is a path from i to j in Fig. 14, so
0;j = 1 for this configuration.

Now the total probability that 7 is not connected to the giant cluster is given by

oij (L%
pwi=>" P[] T i, (5.1)
r; JEN;

with P[I;]=p™(1 — p)k—m being the probability of occurrence of the edge configuration I7,
where k is the number of edges in the neighbourhood and m is the number that are occupied
in configuration I';. Note how the product in Eq. (5.1) computes the total probability that none of
the nodes j to which i is connected belong to the giant cluster and the sum averages this quantity
over the probability distribution of configurations I;.
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Figure 14. The bold edges in this diagram represent ones that are occupied, and for any configuration I; of occupied
edges in the neighbourhood N; of node 4 the probability that ¢ is connected to the giant cluster depends on the
probabilities for each of the nodes j in N; that are reachable along an occupied path. Similarly, the probability that
node j is connected to the giant cluster in turn depends on the probabilities for each of its reachable neighbours & in

Nic ;.

There are 2¥ possible configurations of the k edges in the neighbourhood and hence naive
evaluation of the sum in (5.1) takes time exponential in the neighbourhood size. For small values
of the cycle length r the neighbourhoods will also be small, and hence the sum may be tractable.
For larger values it may be necessary to approximate it. A convenient way of doing this is by
Monte Carlo sampling of configurations. It turns out that one need only sample a small number
of configurations to get accurate answers: ten or so is often sufficient. The reason is that one
normally samples similar numbers of configurations for every neighbourhood in the network,
and the effective number of configurations of the whole network that get sampled is the product
of the numbers in each neighbourhood. If one samples ten configurations in the neighbourhood
of each node then one is effectively sampling 10" configurations of the entire network, which is
typically a very large number and more than sufficient to give good convergence of the results.

We still need to calculate the values of the messages themselves, which can be done by a
similar method. Since f;.; depends only on connections outside N;, we define a modified
neighbourhood N j, which is the normal neighbourhood N; with cycles up to length r, minus
all nodes and edges in ;. Then

i (Does
picj=»_ Pl ] #;Tf_k;(c ), (5.2)
Fiej k?E-/vw—j

where I';_; is a configuration of occupied edges in Ny ; and 0k (i) = 1 if there is at least
one occupied path from j to k in I, ; and 0 otherwise.

Equation (5.2) we solve in the standard manner by iteration from any suitable set of starting
values, then the converged values are used in (5.1) to calculate y;. From this probability we can
also calculate other quantities of interest, such as the expected size S of the giant cluster, which is
given as before by Eq. (2.6).

Figure 15 shows an example calculation performed on a real-world network, a social network
of 13861 nodes with a high density of triangles and other short loops. The plot shows the size
of the giant percolation cluster as a function of the edge occupation probability p, calculated in
three ways. The circles are the results of high-precision direct Monte Carlo simulations (not using
message passing), which are laborious to perform but should give an accurate ground-truth result
for comparison. The dashed line is calculated using the standard message-passing method of
Eq. (2.5), which does not account for loops, and which does reasonably well in this case but shows
clear deviations from the ground truth. The solid line shows the method of this section, accounting
for loops of length up to four, and, as we can see, this calculation now agrees with the ground truth
to high accuracy.

It is an open question what the maximum cycle length is that should be incorporated in a
calculation like this in order to get good results. In our work we have found that one can truncate
the calculation at surprisingly small cycle lengths—three, four or five—and still get excellent

10000000 V 908 4 0014 Bio-BuiysiandAisioosieoreds: H



l } o000 -0 M

' I 1
g o8l ]
= I ]
Q F 4
g 06 ]
g i 1
[ t 1
© 04r ) ) ) T
IS I Direct simulation ]
“ ook ——  With loops 1
“r Without loops 1

0 K ‘ L L1 L ]

0 0.2 0.4 0.6 0.8 1

Occupation probability p

Figure 15. Size of the giant cluster for percolation on a large social network of 13861 nodes. The points are results from
direct simulation calculations and should be indicative of the ground truth in this case. The solid curve shows the results
of a message passing calculation using Egs. (5.1) and (5.2), including all cycles up to length four. The dashed line shows
what happens when cycles are neglected. After Cantwell and Newman [36].

results, but the exact rate of convergence and the size of the errors introduced are presumably
a function of the network structure and the nature of the dependence is not well understood.

The methods described here can also be extended to other message passing calculations on
loopy networks, including the calculation of matrix spectra and the solution of spin models and
other probabilistic models [36,37]. As an example, Fig. 16 shows a calculation of the spectral
density of the adjacency matrix of a large software network—a PGP trust network—and again
the message passing calculation compares favourably with the ground truth. It can also be
significantly faster than traditional numerical methods, putting calculations for larger networks
within reach: spectra for networks of over 300000 nodes have been calculated using these
methods on standard (non-parallel) hardware [36], something that would be impossible using
traditional methods.

6. Conclusions

In this paper we have examined the use of message passing methods for the calculation of node
properties on networks. These methods work by expressing the properties of each node in terms
of those of its neighbours, leading to a set of self-consistent equations that are solved by numerical
iteration. This approach has a number of advantages over more conventional numerical methods,
being computationally efficient, especially on sparse networks, and allowing one to compute
ensemble averages in a single calculation rather than by averaging over repeated simulations. We
have given example applications of message passing to the calculation of percolation properties
of networks, the evaluation of graph spectra, community detection in networks and the solution
of thermal spin models such as the Ising model.

In addition to its use for numerical methods, we have also described how message passing
forms the foundation for further analytic calculations, particularly of phase transition properties.
One can regard the iteration of the message passing equations as a discrete-time dynamical
system, whose bifurcations correspond to phase transitions of the original system under study.
Examples include the percolation transition in percolation models, the ferromagnetic transition
in the Ising model and the detectability threshold for community detection.
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Figure 16. The adjacency matrix spectrum of a 10 680-node PGP network, a combination social/software network of trust
relations between PGP keys and their owners. The histogram shows the distribution of eigenvalues from direct calculations
using standard numerical methods, while the curve shows the spectral density from message passing including loops of
length up to three. After Cantwell and Newman [36].

Finally, we have discussed a shortcoming of the message passing method, at least as it is
traditionally formulated, that it works poorly on networks containing short loops because of loss
of independence between the states of nearby nodes. We have reviewed recent work that provides
a way around this shortcoming by defining messages that pass not only between immediately
adjacent nodes but also between nodes within larger neighbourhoods that completely enclose
the problematic loops. This approach leads to more complicated message passing equations but
appears to give excellent results in example applications such as percolation and the calculation
of matrix spectra.
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