

1      **Depth drives the distribution of microbial ecological functions in the coastal western**  
2      **Antarctic Peninsula**

3      Avishek Dutta<sup>1,2,3\*</sup>, Elizabeth Connors<sup>1</sup>, Rebecca Trinh<sup>4</sup>, Natalia Erazo<sup>1</sup>, Srishti Dasarathy<sup>1</sup>,  
4      Hugh W. Ducklow<sup>4</sup>, Deborah K. Steinberg<sup>5</sup>, Oscar M. Schofield<sup>6</sup>, Jeff S. Bowman<sup>1,7</sup>

5      <sup>1</sup>Integrative Oceanography Division, Scripps Institution of Oceanography, UC San Diego, La  
6      Jolla, CA 92093, USA

7      <sup>2</sup>Department of Geology, University of Georgia, Athens, GA 30602, USA

8      <sup>3</sup>Savannah River Ecology Laboratory, University of Georgia, Aiken, SC 29808, USA

9      <sup>4</sup>Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory,  
10     Columbia University, Palisades, NY 10964, USA

11     <sup>5</sup>Department of Biological Science, Virginia Institute of Marine Science, William & Mary,  
12     Gloucester Point, VA 23062, USA

13     <sup>6</sup>Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, NJ 08901,  
14     USA

15     <sup>7</sup>Center for Microbiome Innovation, UC San Diego, La Jolla, CA 92093, USA

16     **Corresponding Author:**

17     Avishek Dutta

18     E-mail ID: avishek.dutta@uga.edu

19     **Abstract**

20     The Antarctic marine environment is a dynamic ecosystem where microorganisms play an  
21     important role in key biogeochemical cycles. Despite the role that microbes play in this ecosystem,  
22     little is known about the genetic and metabolic diversity of Antarctic marine microbes. In this  
23     study we leveraged DNA samples collected by the Palmer Long Term Ecological Research  
24     (LTER) project to sequence shotgun metagenomes from 48 key locations across the marine  
25     ecosystem of the western Antarctic Peninsula. We developed an *in silico* metagenomics pipeline  
26     (iMAGine) for processing metagenomic data and constructing metagenome-assembled genomes  
27     (MAGs), identifying a diverse genomic repertoire related to the carbon, sulfur, and nitrogen cycles.  
28     A novel analytical approach based on gene coverage was used to understand the differences in  
29     microbial community functions across depth and region. Our results showed that microbial  
30     community functions were partitioned based on depth. Bacterial members harbored diverse genes  
31     for carbohydrate transformation, indicating the availability of processes to convert complex

32 carbons into simpler bioavailable forms. We generated 137 dereplicated MAGs giving us a new  
33 perspective on the role of prokaryotes in the coastal western Antarctic Peninsula. In particular, the  
34 presence of autotrophic prokaryotes capable of autotrophic and heterotrophic lifestyles indicated  
35 a metabolically flexible community, which we hypothesize enables survival under rapidly  
36 changing conditions. Overall, the study identified key microbial community functions and created  
37 a valuable sequence library collection for future Antarctic genomics research.

38 **1. Introduction**

39 Marine microorganisms play an important role in regulating biogeochemical cycles (Green et al.,  
40 2008). They are key drivers of the transformation of carbon-, nitrogen-, and sulfur-containing  
41 compounds in the environment. Changes in environmental conditions impact microbial  
42 communities, which in turn exert control over many environmental parameters (Thompson et al.,  
43 2017; Dutta et al., 2022). The ecological outcomes of the rapid environmental change are well  
44 documented for the western Antarctic Peninsula (wAP) (Meredith and King, 2005; Clarke et al.,  
45 2007; Bowman et al., 2016, 2017), home to multiple long-term observing programs. Large shifts  
46 in bacterial production relative to primary production signal radically different outcomes for  
47 primary production from one year to another (Bowman et al., 2016). The metabolic potential of  
48 the heterotrophic bacterial community is presumed to play a strong role in determining what  
49 primary production gets recycled by the microbial food web. However, we know little about the  
50 genomic makeup of the bacteria and archaea responsible for bacterial production and other marine  
51 microbial processes along the wAP (Bowman et al., 2018).

52 Heterotrophic bacterial populations are intimately linked to phytoplankton blooms and play an  
53 essential role in the transformation of phytoplankton-derived organic matter (Buchan et al., 2014).  
54 Phytoplankton are a direct source of dissolved organic carbon (DOC) for heterotrophic bacteria in  
55 the photic zone. Below the photic zone, heterotrophs reprocess DOC and degrade sinking particles  
56 to generate new DOC. The timing of the seasonal phytoplankton bloom, its composition, and its  
57 intensity are strongly influenced by physical processes along the wAP. For example, conditions  
58 that favor large diatoms are thought to transfer carbon more efficiently to krill and upper trophic-  
59 level consumers (Saba et al., 2014). Alternatively, strong winds and reduced sea ice cover can lead  
60 to lower levels of primary production and smaller phytoplankton cells, in turn leading to high rates  
61 of bacterial production compared to primary production (Bowman et al., 2016). Recent trends and

62 future climate scenarios suggest an increase in wind and a reduction in sea ice for the Antarctic  
63 peninsula (Siegert et al., 2019) and, presumably, a strengthened microbial food web. To better  
64 understand the metabolic capabilities of wAP marine bacterial communities, we applied  
65 metagenomics to a historic sample library of microbial DNA collected by the Palmer Long Term  
66 Ecological Research (LTER) project to better understand how bacterial communities will respond  
67 to future environmental change along the wAP.

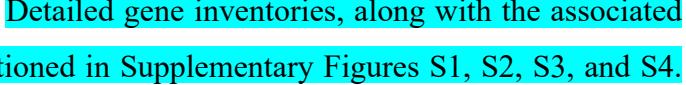
68 Most primary production along the wAP is attributed to eukaryotic phytoplankton (Schofield et  
69 al., 2018; Lin et al., 2021). However, dark carbon fixation is likely to be a significant process  
70 below the photic zone and during the polar night. Though well appreciated for the global ocean  
71 (Baltar and Herndl, 2019), surprisingly little is known about the distribution of prokaryotic carbon  
72 fixation mechanisms in the Antarctic marine environment. Previous analysis of fosmid libraries  
73 from contrasting summer and winter communities along the wAP identified gammaproteobacterial  
74 sulfur-oxidizing (GSO) chemolithotrophs (Grzymski et al., 2012). Other works using 16S rRNA  
75 gene surveys have shown these taxa to be widely distributed in the coastal Antarctic (Bowman and  
76 Deming, 2017; Bowman et al., 2017). Alternate prokaryotic carbon fixation strategies for the wAP  
77 may rely on energy obtained from nitrification (Bowman et al., 2016). **This study aimed to**  
78 **understand the microbial community functions in the marine ecosystem of coastal wAP.** We  
79 applied a novel analytical approach based on the gene coverage to investigate the distribution of  
80 genes and reconstructed metagenome-assembled genomes (MAGs) to understand the pathways  
81 associated with prokaryotic carbon fixation and utilization. We combined observations of genes  
82 diagnostic of carbon fixation with genes for catabolic processes to identify autotrophic,  
83 mixotrophic, and heterotrophic guilds among wAP marine prokaryotes.

84 **2. Methods**

85 ***2.1. Sample collection***

86 Forty-eight samples were selected covering different depth horizons (0-275 m) on the Palmer  
87 LTER sampling grid (lines 100-600, covering latitudes 67.566533 °S to 63.96565 °S) (Waters and  
88 Smith, 1992) and locations of special significance such as Palmer Canyon, Armstrong Reef, and  
89 the coastal LTER time-series near Palmer Station (Figure 1). The selection of samples was made  
90 based on three different parameters: (i) higher abundances of unclassified taxa based on 16S rRNA  
91 amplicon sequence data, (ii) depth profile, and (iii) variations in latitude. A detailed description of

92 the samples used in this study is given in Supplementary Table S1. Forty-two samples were  
93 collected during the austral summer of 2019-2020, and four samples were collected during the  
94 austral summer of 2018-2019. The remaining two samples were collected in January 2017 and  
95 November 2018. We grouped the sampled into three depth horizons: shallow (0-40 m), medium  
96 (50-75 m), and deep (100-275 m). The depth categorization was done based on mixed layer depth,  
97 temperature, and salinity as reported previously in Schofield et al., 2018 and Seyitmuhammedov  
98 et al., 2022. There were 23 samples collected from the shallower depth, whereas 11 and 14 samples  
99 were collected from the medium-depth and deeper horizons, respectively. The samples were also  
100 categorized into three regions based on Palmer LTER lines: Northern (Line 400 and north of Line  
101 400), Southern (south of Line 400), and Palmer Canyon (near Palmer Station on Anvers Island)  
102 (Supplementary Table S1). There were 14 samples collected from the Northern region, whereas  
103 16 and 18 samples were collected from Palmer Canyon and the Southern region, respectively. For  
104 each sample, approximately 1 L of seawater was filtered through a sterile 0.2  $\mu$ m Supor membrane  
105 disc filter (Pall Corporation, Port Washington, NY, USA) and stored at -80 °C until extraction.


## 106 **2.2.DNA extraction, sequencing, and metagenome analysis**

107 DNA was extracted from the filters using the MagMAX Microbiome Ultra nucleic acid extraction  
108 kit and KingFisher Flex extraction system following the manufacturer's protocols. The extracted  
109 DNA was sequenced at the UC San Diego Microbiome Core for shotgun metagenome sequencing  
110 on the Illumina NovaSeq platform. Sequencing was done across multiple lanes in two runs (24  
111 samples for each run). The average depth of sequencing for the second run (an average of ~427  
112 million paired-end reads per sample) was higher compared to the first run (an average of ~55  
113 million paired-end reads per sample) to facilitate a separate analysis that will be reported  
114 elsewhere. To avoid memory limitation, samples from the second run were down-sampled using  
115 reformat.sh, a script from the BBMap package (Bushnell, 2014), to ~55 million paired-end reads  
116 per sample. The raw metagenomic data for 48 samples were processed and analyzed using the *in*  
117 *silico* Metagenomics Pipeline (iMAGine) using default parameters  
118 (<https://github.com/avishekdutta14/iMAGine>). iMAGine uses fastp (Chen et al., 2018) for  
119 filtering, metaSPAdes (Nurk et al., 2017) for assembling the reads, QUAST (Gurevich et al., 2013)  
120 for analyzing the assembly quality, bwa-mem (v0.7.17) for aligning the raw reads to the assembly  
121 (Li, 2013), samtools for modifying alignment files (Li et al., 2009), metabat2 (Kang et al., 2019)

122 for binning contigs, and checkM (Parks et al., 2015) for quality assessment of the bins. The  
123 assembled contigs from iMAGine were used for further analyses.

124 Genes were predicted from contigs with Prodigal v2.6.3 (Hyatt et al., 2010) using the ‘meta’ flag.  
125 The predicted genes were annotated using emapper v2.1.5 (Cantalapiedra et al., 2021) based on a  
126 Diamond search (Buchfink et al., 2014). The following arguments were used for search filtering  
127 in emapper: --evaluate 0.001 (e-value threshold), --score 60 (minimum hit bit score), --pident 40  
128 (minimum percentage identity), --query\_cover 20 (minimum percentage query coverage), and --  
129 subject\_cover 20 (minimum percentage subject coverage). The database used for annotation was  
130 eggNOG DB v5.0.2 (Huerta-Cepas et al., 2019).  In this study, taxfin.sh (a part of iMAGine) was  
131 used for keeping genes affiliated to domain bacteria and archaea. Coverage of each gene (average  
132 gene fold) was determined using gene\_fold\_counter.sh (a part of iMAGine), which takes in the  
133 alignment map file (sam output from iMAGine), removes unmapped reads and reads mapped to  
134 multiple locations using samtools (with parameters -F 0x904), uses pileup.sh script from the  
135 BBMap package to calculate the average coverage of the contigs and maps back average contig  
136 coverage to the genes on those contigs. To enable comparison across metagenomes, all the genes  
137 were scaled based on Eqt 1:

138 
$$\text{Normalized gene coverage of a sample} = \frac{\text{Total average gene coverage}}{\text{Total } rpoB \text{ (K03043) coverage}} \quad (1)$$

139 For gene-specific analysis, KEGG orthologs from the emapper outputs were considered. Genes  
140 mapping to more than one ortholog were not considered for the analysis. Key genes involved in  
141 different processes of carbon, nitrogen, and sulfur cycles were selected based on KEGG pathways,  
142 whereas genes involved in carbohydrate transformation were selected based on previously  
143 published literature (Bergauer et al., 2018).  Detailed gene inventories, along with the associated  
144 pathways considered in this study, are mentioned in Supplementary Figures S1, S2, S3, and S4.  
145 The KEGG ortholog for *rpoB* i.e. K03043 was used as a reference for normalization in this study.  
146 The genes involved in methane oxidation considered in this study (*pmoA-amoA*, *pmoB-amoB*, and  
147 *pmoC-amoC*) also play an important role in ammonia oxidation (a key step in nitrification).  
148 Similarly, it has been seen before that the variations of the same gene responsible for dissimilatory  
149 sulfate reduction (considered in this study) are also involved in sulfur oxidation (Loy et al., 2009).

150 Bins with completeness higher than 70% and contamination lower than 5% were considered  
151 MAGs. Similar cutoffs were used in a previous study (Parks et al., 2017). For further analysis,  
152 MAGs were dereplicated with dRep v3.2.2 (Olm et al., 2017) using a secondary ANI threshold of  
153 0.96 and goANI as the algorithm for secondary clustering. The minimum genome completeness  
154 was set to 70%, and the maximum genome contamination was set to 5% for dereplication. All the  
155 other dereplication parameters were kept default. The taxonomy of the dereplicated MAGs was  
156 assessed using the GTDB-Tk v1.5.0 based on reference database version release 202 (Chaumeil et  
157 al., 2020). The multiple sequence alignment output of domain-specific marker genes from GTDB-  
158 Tk was used for constructing a phylogenomic tree with RAxML-ng (Kozlov et al., 2019). Tree  
159 construction used the WAG amino-acid substitution model and MAGs belonging to Chloroflexota  
160 and Thermoproteota as outgroups for bacteria- and archaea-specific phylogenomic trees,  
161 respectively. The default number of starting trees was used (ten random and ten parsimony-based)  
162 and one thousand bootstrap replicates were used for confidence scoring of the final tree.

163 The number of reads mapped to each MAG was calculated using the mag\_abund.py script present  
164 in the iMAGine repository  
165 ([https://github.com/avishhekuttal4/iMAGine/blob/main/Utilities/mag\\_abund.py](https://github.com/avishhekuttal4/iMAGine/blob/main/Utilities/mag_abund.py)), and the  
166 average reads per secondary cluster (as obtained from dRep analyses) was obtained to understand  
167 average reads mapped per dereplicated MAGs.

### 168 ***2.3. Determination of putative metabolic lifestyle in MAGs***

169 Functional annotation of MAGs was conducted using two different methods. To identify functional  
170 guilds, genes were predicted using Prodigal v2.6.3 and annotated using Ghost Koala (Kanehisa et  
171 al., 2016), whereas DRAM 1.4.0 was used to assess pathway completeness and categorize different  
172 microbial metabolisms (Shaffer et al., 2020). Though it is hard to ascertain the exact metabolic  
173 lifestyle of the MAGs given the limitation imposed by genome completeness, we described the  
174 putative metabolisms based on combinations of diagnostic metabolic pathways. All the  
175 annotations for metabolic lifestyle assessment were based on DRAM analysis. Glucose utilization  
176 (GU) and carbon fixation (CF) pathways having greater than 70% completeness in a MAG were  
177 considered in this study. GU, indicative of the use of exogenous fixed carbon, was assessed by the  
178 presence of the Embden Meyerhof pathway and/or the Entner-Doudoroff pathway. CF was  
179 assessed based on the presence of either of the three carbon fixing pathways (3-Hydroxypropionate

180 bicycle, Arnon–Buchanan cycle, and Calvin cycle) found in the MAGs. Sulfur oxidation (SO)  
181 capability was determined based on the presence of the SOX system and/or the presence of the *dsr*  
182 gene. Nitrification (NI) capability was determined based on the presence of either ammonia  
183 oxidation genomic repertoire and/or gene involved in the conversion of nitrite to nitrate.  
184 Denitrification (DNR) capability was determined based on the presence of either one of the genes  
185 involved in the following processes: (i) genes involved in the conversion of nitrate to nitrite, (ii)  
186 genes involved in the conversion of nitrite to nitric oxide, and/or (iii) genes involved in the  
187 conversion of nitric oxide to nitrous oxide. We described each MAG as a putative autotroph,  
188 mixotroph, or heterotroph based on the presence of diagnostic metabolic pathways. Autotrophs  
189 were determined by the presence of CF and absence of GU, heterotrophs by the presence of GU  
190 and absence of CF, and mixotrophs by the presence of both GU and CF.

191 **2.4. Statistical analyses**

192 All the statistical analyses were carried out in R and R Studio (Team, 2015). Principal Coordinates  
193 Analysis (PCoA) of Bray-Curtis dissimilarity based on the normalized gene coverage across  
194 different samples was performed using the phyloseq package (McMurdie and Holmes, 2013). For  
195 this PCoA, we considered key genes responsible for carbon, nitrogen, sulfur, and carbohydrate  
196 transformations (Supplementary Figure S1, S2, S3, S4). A PERMANOVA test was conducted  
197 using the ‘adonis2’ function of the Vegan package (Oksanen et al., 2007) to test whether different  
198 sample groups had different centroids. The average distance from the median was calculated based  
199 on a dispersion test using the ‘betadisper’ function of the Vegan package, which was followed by  
200 a permutation test of multivariate homogeneity of group dispersions using the ‘permute’ function  
201 of the Vegan package. Boxplots were made to analyze the differences in process abundances across  
202 different depth profiles. The Kruskal-Wallis test for significance was used to determine whether  
203 the overall changes were significant, whereas the Wilcoxon test was used to find the pairwise  
204 significance. Heatmap and cluster analyses were carried out with the pheatmap package (Kolde,  
205 2019) and based on normalized gene coverage. Column clustering, which displayed the clustering  
206 of different samples, was based on Bray–Curtis dissimilarity. Each row, depicting normalized  
207 gene coverage, was scaled using min-max scaling and clustered based on correlation. To  
208 understand the clustering of MAGs based on genomic repertoire, genes obtained from Ghost Koala  
209 analysis were mapped to each dereplicated MAGs using custom R scripts, and Non-Metric

210 Multidimensional Scaling (NMDS) of a binary matrix based on the presence or absence of all  
211 genes constraining different metabolic categories were performed using Vegan. All the statistical  
212 analyses for the MAGs were conducted based on dereplicated MAGs, except for the mapped read  
213 coverage analysis. For mapped read coverage, all the MAGs were considered. A web-based tool  
214 (<https://bioinformatics.psb.ugent.be/webtools/Venn/>) was used to generate Venn diagrams to find  
215 the overlap across different metabolic categories to determine metabolic lifestyle of the MAGs.

216 **3. Results**

217 ***3.1. Microbial community function***

218 Microbial community functions varied across depths (Figure 2). Three distinct clusters were  
219 observed for deep, medium-deep, and shallow samples with minor overlaps based on normalized  
220 gene coverage (PERMANOVA,  $p = 0.001$ ). One of the medium-deep samples (Armstrong Reef)  
221 clustered with the shallower-depth samples. Dispersion among sample groups differed according  
222 to depth ( $p = 0.001$ ). The average distance from the median was highest for shallower depth  
223 samples, followed by medium-deep and deeper samples. The samples were also significantly  
224 different (PERMANOVA,  $p = 0.011$ ) based on region (Southern, Northern, and Palmer Canyon).  
225 However, the separation of samples was more pronounced for depth than region according to the  
226 PERMANOVA F-ratio (  $F_h = 10.224$ , and  $F_{region} = 2.6985$ ). We conducted a detailed study of  
227 carbon, nitrogen, sulfur, and carbohydrate metabolism-specific genes based on normalized gene  
228 coverage to understand the differential abundances of functional genes across different depth  
229 horizons and regions.

230 ***3.1.1. Carbon cycle***

231  genes involved in prokaryotic dark carbon fixation, carbon monoxide oxidation, fermentation,  
232 methane oxidation, and photoheterotrophy were explored to understand carbon transformation and  
233 their distribution in the wAP. Varied abundances of groups of genes involved in different carbon  
234 transformation processes were observed across different depths (Supplementary Figure S1). Genes  
235 associated with dark carbon fixation were found to be significantly higher in the deeper samples  
236 compared to medium-depth ( $p = 9 \times 10^{-7}$ ) and shallower samples ( $p = 0.00085$ ) (Figure 3A). The  
237 abundance of the genes involved in CO oxidation varied across depths. The deeper samples  
238 harbored significantly greater CO oxidation gene coverages compared to shallower ( $p = 0.00096$ )

239 and medium-deep samples ( $p = 4.4 \times 10^{-5}$ ) (Figure 3B). A similar trend was observed for genes  
240 involved in fermentation and methane metabolism (Figures 3C and 3D).

241 **3.1.2. *Sulfur cycle***

242 The abundance of genes involved in the oxidation and reduction of sulfur species varied across  
243 depths (Supplementary Figure S2). Normalized coverages of genes involved in sulfur oxidation  
244 were found to be significantly higher in the shallower samples compared to medium-depth ( $p =$   
245  $0.0051$ ) and deeper samples ( $p = 3.9 \times 10^{-5}$ ) (Figure 4A). On the contrary, normalized coverage of  
246 genes involved in dissimilatory sulfate reduction were found to be significantly higher in the  
247 deeper samples compared to medium-depth ( $p = 9 \times 10^{-7}$ ) and shallower samples ( $p = 6.9 \times 10^{-6}$ )  
248 (Figure 4B). Normalized coverage of genes involved in thiosulfate to sulfide reduction was found  
249 to be the highest in the deeper samples, followed by medium-depth and shallower samples (Figure  
250 4C).

251 **3.1.3. *Nitrogen cycle***

252 The abundances of the genes involved in oxidation and reduction of nitrogen species also varied  
253 with depth (Supplementary Figure S3). The average coverages of the genes involved in  
254 nitrification were significantly higher in the deeper horizons of the water column compared to  
255 medium-depth ( $p = 0.0051$ ) and shallower horizons ( $p = 4.1 \times 10^{-7}$ ) (Figure 5A). Similarly, the  
256 abundance of genes involved in denitrification and dissimilatory nitrate reduction to ammonia  
257 (DNRA) was found to be significantly higher in deeper samples compared to medium-deep  
258 (Denitrification:  $p = 5.4 \times 10^{-6}$ ; DNRA:  $p = 0.00012$ ) and shallower depth (Denitrification:  $p = 3.9$   
259  $\times 10^{-9}$ ; DNRA:  $p = 0.026$ ) samples (Figures 5B and 5C). Genes involved in urea utilization were  
260 also observed in all the wAP samples. Urea-utilizing gene coverages were found to be significantly  
261 higher in the deeper horizon samples compared to samples from the medium depth ( $p = 4.5 \times 10^{-7}$ )  
262 and shallower depth ( $p = 0.00013$ ) horizons (Figure 5D).

263 **3.1.4. *Carbohydrate transformations***

264 We further analyzed genes involved in the transformation of glycoprotein, cellulose, chitin, pectin,  
265 starch, xylans, and xyloglucans to understand the carbohydrate pool and transformation  
266 capabilities of microorganisms across different depth horizons of the wAP (Supplementary Figure  
267 S4). Cellulose, pectin (RGI), starch, and xyloglucans metabolizing gene coverages were found to

268 be significantly higher in the shallower depth samples compared to medium-deep (Cellulose:  $p =$   
269 0.00033; pectin [RGI]:  $p = 8.6 \times 10^{-5}$ ; starch:  $p = 0.0095$ ; and xyloglucans:  $p = 0.0051$ ) and deeper  
270 samples (cellulose:  $p = 2.7 \times 10^{-5}$ ; pectin [RGI]:  $p = 1.8 \times 10^{-6}$ ; starch:  $p = 0.00074$ ; and  
271 xyloglucans:  $p = 2.3 \times 10^{-5}$ ) (Figures 6 A,B,C,D). Abundances of chitin metabolizing genes were  
272 significantly higher in deeper samples compared to the samples from medium depth ( $p = 8.7 \times 10^{-5}$ )  
273 and shallow samples ( $p = 0.0029$ ) (Figure 6E).

274 **3.2. Distribution, taxonomy, and metabolic profiles of MAGs**

275 A total of 2940 bins were obtained from 48 samples. Of these, 612 bins with genome completeness  
276 of more than 70% and contamination of less than 5% were considered MAGs and used for further  
277 analysis. These 612 MAGs were filtered down to 609 MAGs by dRep based on genome quality  
278 and were dereplicated to a final set of 137 MAGs. 137 MAGs (representing 609 MAGs) covered  
279 13.11%, 5.96%, and 2.12% of the total filtered reads from deep, medium-deep, and shallow  
280 samples, respectively (Figure 7). The most abundant MAG found in the shallower waters was  
281 affiliated with Bacteroidota (represented by ANT-68) (Figure 7A). This MAG was exclusively  
282 observed in the shallow environments of the coastal wAP. Among these 137 MAGs, 64 MAGs  
283 were unique to deep samples, whereas 19 and 15 MAGs were unique to the medium and shallow  
284 horizons, respectively. 11 MAGs were found in all three depth horizons, and the remaining 28  
285 MAGs were found in two of the three horizons (medium and deep: 18, shallow and medium: 9,  
286 and shallow and deep: 1). When sorted by region, 33 MAGs represented MAGs unique to the  
287 Southern region, whereas 32 and 4 MAGs represented MAGs unique to the Palmer Canyon and  
288 Northern region, respectively. 21 MAGs were found in all three regions, and the remaining 47  
289 MAGs were found in two of the three regions (Southern – Palmer Canyon: 30, Southern –  
290 Northern: 14, and Northern – Palmer Canyon: 3). The most abundant MAG found in the medium-  
291 depth waters was affiliated with family SAR324 (represented by ANT-96) (Figure 7B). This MAG  
292 was observed in the medium-depth and deeper samples. ANT-96 was also found to be the most  
293 abundant MAG in deeper waters (Figure 7C). Considering the proportion of reads that mapped to  
294 each MAG, the overall highest average mapped read percentage was also found in ANT-96 (2.11%  
295  $\pm 1.22\%$ ; representing 7 MAGs from different samples). Detailed genome statistics of the 137  
296 MAGs are present in Supplementary Table S2.

297 The MAGs were taxonomically diverse. Of 137 MAGs, 10 MAGs were affiliated with the domain  
298 Archaea, and 127 MAGs were affiliated with Bacteria. Average nucleotide identity (ANI) or  
299 relative evolutionary divergence (RED) values were analyzed for each MAG based on reference  
300 genomes from GTDB using GTDB-Tk. RED values were calculated when the MAGs were unable  
301 to be classified based on ANI. ANI values greater than 0.95 were obtained for 40 MAGs (2  
302 archaeal MAGs and 38 bacterial MAGs), whereas RED values (ranging between 0.660 to 0.998)  
303 were obtained for the rest of the MAGs (Supplementary Table S3). Nine of the archaeal MAGs  
304 were affiliated with the phylum Thermoplasmatota whereas one was affiliated with  
305 Thermoproteota (Figure 8A). Among the ten archaeal MAGs, two MAGs had formal taxonomic  
306 nomenclature (as indicated in International Code of Nomenclature of Prokaryotes) at the genus level  
307 (*Nitrosopumilus* and *Thalassarchaeum*), and one of the Thermoplasmatota MAGs had a separate  
308 branch from the root of the phylogenomic tree. Bacterial MAGs were assigned to 13 different  
309 phyla (Figure 8B). The highest number of MAGs were affiliated with Proteobacteria (53 MAGs),  
310 followed by 17 and 14 MAGs affiliated with Planctomycetota and Verrucomicrobiota,  
311 respectively. Out of 127 bacterial MAGs, 61, 28, and 5 MAGs had a formal taxonomic  
312 nomenclature at the family, genus, and species levels, respectively. Two bacterial MAGs affiliated  
313 with class Alphaproteobacteria (ANT-120) and phylum Planctomycetota (ANT-49) had RED  
314 values lower than 0.70. Detailed taxonomy classifications of all 137 MAGs are present in  
315 Supplementary Table S3. It was interesting to note that one of the MAGs classified as  
316 Myxococcota by GTDB-Tk clustered with Proteobacterial MAGs on the phylogenomic tree  
317 (Figure 8B).

318 Distinct groups of MAGs were observed when clustered according to their metabolic profiles. The  
319 NMDS plot indicated that the metabolic profiles of bacterial populations were phylum-specific,  
320 with minor overlaps among phyla (Figure 9). Distinct clusters for archaeal and bacterial MAGs  
321 were observed on the PCoA plot based on genomic repertoire (PERMANOVA,  $p = 0.001$ )  
322 (Supplementary Figure S5). Specific gene sets and pathways were studied to determine the  
323 metabolic capabilities of the MAGs (Supplementary Table S4 and Supplementary Figure S6).

### 324 **3.2.1. Role of MAGs in carbon transformation**

325 Capabilities of glucose utilization and carbon fixation were analyzed based on different pathways.  
326 Since these pathways have multiple enzymes involved in them, pathways having  $\geq 70\%$

327 completeness in a MAG were considered as the presence of the pathway in the MAG. The details  
328 of the pathways and the completeness profiles are described in Supplementary Table S4. The  
329 capability to use externally fixed carbon was studied based on the presence of the Embden  
330 Meyerhof and Entner–Doudoroff pathways. These two pathways help in the conversion of glucose  
331 into pyruvate. 75 MAGs covering ten phyla had the capability of performing the Embden  
332 Meyerhof pathway, whereas 42 MAGs covering seven phyla had genomic repertoires for the  
333 Entner–Doudoroff pathway. The pentose phosphate pathway was observed in 88 MAGs covering  
334 11 phyla. The citrate cycle (Krebs cycle) was observed in 112 MAGs, whereas the glyoxylate cycle  
335 was observed in 40 MAGs. Three carbon fixation pathways *viz.* 3-Hydroxypropionate bicycle,  
336 Arnon–Buchanan cycle (reductive citrate cycle), and Calvin cycle (reductive pentose phosphate  
337 cycle) were observed among the MAGs. Capabilities of the Arnon–Buchanan cycle were present  
338 in a higher number of MAGs (56 MAGs) compared to the Calvin cycle (present in 26 MAGs) and  
339 3-Hydroxypropionate bicycle (present in 8 MAGs). 3-Hydroxypropionate bicycle was only  
340 present in Proteobacterial MAGs, whereas Arnon–Buchanan cycle was distributed over MAGs  
341 affiliated to Proteobacteria, Verrucomicrobiota, Actinobacteriota, Planctomycetota,  
342 Chloroflexota, Thermoplasmatota, SAR324, and Latescibacterota. Calvin cycle was present in  
343 MAGs affiliated to Proteobacteria, Actinobacteriota, Chloroflexota, Bacteroidota,  
344 Planctomycetota, Gemmatimonadota, and SAR324.

345 The ability to produce or catabolize small-chain fatty acids and alcohols was studied based on the  
346 presence of certain genes in the genomic inventories of the MAGs. Capabilities of alcohol  
347 production (EC 1.1.1.1) were found in 53 MAGs, with the majority of the MAGs affiliated with  
348 Proteobacteria. The presence of genes encoding for phosphate acetyltransferase (EC 2.3.1.8)  
349 and/or acetate kinase (EC 2.7.2.1) was studied to understand acetate metabolism in the MAGs.  
350 Genes encoding for acetate metabolizing enzymes were found in 21 MAGs which were affiliated  
351 with six different phyla (Proteobacteria, Verrucomicrobiota, Planctomycetota, Actinobacteriota,  
352 Latescibacterota, and Bacteroidota). Genes encoding for L-lactate metabolizing enzyme (L-lactate  
353 dehydrogenase) were found in 19 MAGs, which were affiliated with the Proteobacteria,  
354 Actinobacteriota, Verrucomicrobiota, and Planctomycetota, whereas genes encoding for D-lactate  
355 metabolizing enzyme (D-lactate dehydrogenase) were found in five MAGs affiliated with  
356 Proteobacteria, Verrucomicrobiota, and Bacteroidota. The gene encoding for propionate

357 metabolism (propionate CoA transferase) was found in three MAGs affiliated with two different  
358 phyla (Proteobacteria and Verrucomicrobiota).

359 Genes encoding for carbohydrate-active enzymes were studied to understand the polysaccharide-  
360 degrading capabilities of the MAGs. Genes encoding for enzymes involved in breaking down  
361 amorphous cellulose were found in 30 MAGs affiliated with seven different phyla (Proteobacteria,  
362 Planctomycetota, Bacteroidota, Myxococcota, Verrucomicrobiota, Actinobacteriota, and  
363 Latescibacterota), whereas genes encoding for the enzyme involved in breaking down crystalline  
364 cellulose was found in 11 MAGs covering five phyla (Planctomycetota, Proteobacteria,  
365 Verrucomicrobiota, Actinobacteriota, and Myxococcota). Genes coding for chitin-degrading  
366 enzymes were found in 85 MAGs (found in all phyla detected in this study except for MAGs  
367 affiliated with Thermoproteota, Chloroflexota, and Thermoplasmatota), whereas genes for starch-  
368 degrading enzymes were found in 15 MAGs having affiliation with five phyla (Proteobacteria,  
369 Verrucomicrobiota, Planctomycetota, Actinobacteriota, and Latescibacterota). Genes encoding  
370 enzymes that can perform Xylan and xyloglucan (major components of hemicellulose) degradation  
371 were found in 23 and 40 MAGs, respectively. MAGs with the ability to degrade xylan were  
372 affiliated with Proteobacteria, Bacteroidota, Myxococcota, Planctomycetota, Actinobacteriota,  
373 and Latescibacterota, whereas MAGs with the ability to degrade xyloglucan were affiliated to  
374 Proteobacteria, Bacteroidota, Verrucomicrobiota, Planctomycetota, Myxococcota,  
375 Latescibacterota, and Marinisomatota. Genes encoding pectin degradation enzymes were found in  
376 31 MAGs (having affiliation with Proteobacteria, Verrucomicrobiota, Planctomycetota,  
377 Bacteroidota, Latescibacterota, Marinisomatota, Gemmatimonadota, Acidobacteriota, and  
378 Chloroflexota).

379 ***3.2.2. Role of MAGs in sulfur and nitrogen transformation***

380 Genes involved in thiosulfate oxidation were found in 26 MAGs having affiliations with five phyla  
381 (Proteobacteria, Gemmatimonadota, Acidobacteriota, and SAR324) (Supplementary Figure S6).  
382 Three proteobacterial MAGs were found to harbor genes for dissimilatory sulfate reduction.

383 Genes involved in ammonia oxidation were found in two proteobacterial MAGs and in one  
384 archaeal MAG (affiliated to Thermoproteota). Genes involved in the conversion of nitrite to nitrate  
385 (one of the steps in nitrification) were found in two proteobacterial MAGs. Genes involved in the  
386 conversion of nitrate to nitrite (one of the steps in denitrification or dissimilatory nitrate reduction

387 to ammonia) were found in two proteobacterial MAGs. Enzymes involved in the conversion of  
388 nitrite to nitric oxide (a key step in denitrification) were found in 14 different MAGs covering  
389 eight phyla (Proteobacteria, Actinobacteriota, Thermoproteota, Gemmatimonadota,  
390 Verrucomicrobiota, Acidobacteriota, Bacteroidota, and Nitrospinota), whereas enzymes involved  
391 in the conversion of nitric oxide to nitrous oxide (an additional step in denitrification) were found  
392 in two proteobacterial MAGs.

### 393 **3.3. Putative metabolic lifestyles of MAGs**

394 Overlaps across these categories are reported in Figures 8 and 10A. It was found that the average  
395 genome sizes of the mixotrophs were significantly higher compared to heterotrophs ( $p = 0.0001$ )  
396 and autotrophs ( $p = 0.02$ ) (Figure 10B). In the shallower depth samples, a significantly high  
397 mapped read percentage was observed in the mixotrophic MAGs ( $n = 37$  MAGs), while compared  
398 to the autotrophic ( $n = 2$  MAGs) and heterotrophic MAGs ( $n = 52$  MAGs) (mixotroph vs.  
399 autotrophs,  $p = 0.054$ ; mixotroph vs. heterotroph,  $p = 1.5 \times 10^{-5}$ ) (Figure 10C). In the medium and  
400 deeper samples, the mapped read percentages for mixotrophic, autotrophic, and heterotrophic  
401 MAGs were not significantly different.

#### 402 **3.3.1. Putative mixotrophs**

403 Four categories of mixotrophs covering 52 dereplicated MAGs were obtained (Supplementary  
404 Figure S6 and Supplementary Table S4). Only one MAG (ANT-6) recovered from a deeper  
405 horizon sample and classified as *Paraburkholderia* was found to harbor genes from all four  
406 categories of metabolism (GU, CF, SO, and NI). There were 12 MAGs that harbored genes from  
407 GU, CF, and SO (11 affiliated to Proteobacteria and one affiliated to Gemmatimonadota), whereas  
408 there was only one MAG that harbored genes from GU, CF, and NI (affiliated to Proteobacteria).  
409 There were 38 MAGs that harbored the genes from GU and CF metabolism categories only  
410 (affiliated to Proteobacteria, Actinobacteriota, Verrucomicrobiota, Planctomycetota,  
411 Chloroflexota, Bacteroidota, Latescibacterota, and SAR324).

#### 412 **3.3.2. Putative autotrophs**

413 Three categories of autotrophs covering 20 dereplicated MAGs were obtained (Supplementary  
414 Table S4). There were three MAGs harboring genes for CF and SO (affiliated with  
415 Gammaproteobacteria), whereas there was only one MAG harboring gene for CF and NI (affiliated

416 with Gammaproteobacteria). There were 16 MAGs that had genomic repertoire for CF but lacked  
417 genes for SO and NI (affiliated with Proteobacteria, Thermoplasmatota, Planctomycetota,  
418 Chloroflexota, Actinobacteriota, and Verrucomicrobiota).

419 **3.3.3. *Putative heterotrophs***

420 Two categories of heterotrophs covering 35 dereplicated MAGs were observed in this study  
421 (Supplementary Figure S6 and Supplementary Table S4). One of the categories harbored genes for  
422 GU and SO, which was found in five different MAGs (affiliated to Proteobacteria and SAR324).  
423 The other category solely harbored genes for GU and was found in 30 MAGs (affiliated to  
424 Proteobacteria, Bacteroidota, Verrucomicrobiota, Planctomycetota, Actinobacteriota, SAR324,  
425 and Myxococcota).

426 **4. Discussion**

427 Our analysis reveals the diverse genomic repertoire contained among marine bacteria and archaea  
428 along the coastal wAP. PCoA based on normalized gene coverage across 48 samples suggested  
429 that microbial community functions were strongly partitioned by depth, with the highest variation  
430 in microbial community function observed in the shallower samples (0-40 m). A possible  
431 explanation is that this higher variance results from a more dynamic environment in the shallower  
432 waters than in the deeper environments.

433 Primary production in the coastal Antarctic is attributed primarily to phytoplankton (Arrigo et al.,  
434 2008). However, prokaryotic dark carbon fixation can be significant in deep and polar oceans  
435 (Alonso-Sáez et al., 2010; Williams et al., 2012; Connelly et al., 2014), and previous work has  
436 identified the genomic signatures of dark carbon fixation along the wAP (Grzymski et al., 2012).  
437 We observed genes indicative of dark carbon fixation in numerous MAGs representing multiple  
438 phyla. This suggests that in addition to eukaryotic carbon fixation, prokaryotic dark carbon fixation  
439 can also be a source of fixed carbon in the Antarctic marine ecosystem,  and the conventional  
440 viewpoint of marine primary production (Buchan et al., 2014). We are not aware of any studies  
441 that attempt to quantify dark carbon fixation inputs to coastal Antarctic ecosystems. However,  
442 previous work suggests oceanic primary production estimates would increase by 5 %–22 % when  
443 total dark dissolved organic carbon fixation is included (Baltar and Herndl, 2019). Moreover, the  
444 normalized coverage of genes related to dark carbon fixation was found to be higher in deeper

445 waters compared to the waters from medium-deep and shallower horizons in the coastal wAP  
446 suggesting that the dearth of phytoplankton-fixed carbon in the deeper waters selects for  
447 microorganisms capable of fixing carbon in the dark. This lack of photosynthate as an electron  
448 donor in deeper water is further supported by the presence of higher normalized gene coverage of  
449 CO oxidation genes. Lappan et al. (2023) previously reported an enrichment of CO hydrogenase  
450 (an enzyme involved in CO oxidation) in temperate mesopelagic waters and suggested that CO  
451 oxidation is favored in energy-limited waters at depths where primary production is low.

452 The normalized gene coverages for processes preferred in hypoxic/anoxic environments, such as  
453 fermentation, dissimilatory sulfate reduction, thiosulfate to sulfide reduction, denitrification, and  
454 DNRA, were found to be higher in the water samples from the deeper horizons (>100 m).  Although  
455 oxygen drawdown is observed below the photic zone in the wAP (Cape et al., 2019), the water  
456 column typically remains sufficiently oxic to support aerobic processes, including nitrification and  
457 methane oxidation in deeper waters. We suggest two explanations for the presence of anaerobic  
458 pathways here. First, the organisms harboring these pathways may be facultative anaerobes that  
459 can dwell in multiple environments of the wAP. This is supported by the presence of certain MAGs  
460 capable of using oxygen (presence of cytochrome c oxidase and F-Type ATPases genes) and  
461 nitrate (presence of genes involved in denitrification) as terminal electron acceptors. Second, these  
462 microbial populations may come from fecal pellets and sinking detritus that harbor  
463 microenvironments that support the growth of anaerobic microbial populations.

464 Due to high levels of primary production, the coastal wAP harbors a diverse and abundant  
465 carbohydrate pool. The source of these carbohydrates includes phytoplankton or zooplankton such  
466 as  (Oijen et al., 2003; Yu et al., 2020). We observed a diverse genomic repertoire for  
467 degrading carbohydrates derived from phytoplankton and zooplankton. This suggests a link  
468 between the microeukaryotic and prokaryotic populations in the Antarctic. Moreover, higher  
469 abundances of microorganisms capable of degrading cellulose, xyloglucans, pectin, and starch  
470 were observed in the upper water column, consistent with the greater phytoplankton biomass  
471 expected there. This distribution suggests that carbohydrates are readily turned over in the upper  
472 water column, possibly reducing vertical export. This is further supported by the presence of  
473 prokaryotic dark carbon fixing pathways in the deeper environment of coastal wAP. Several  
474 MAGs having the capability to degrade polysaccharide was also observed in the medium-deep and

475 deeper horizon of the wAP. This suggests that these microbial populations may be associated with  
476 the sinking detritus material, which helps in the conversion of complex carbohydrates to simpler  
477 carbon compounds that can be used by other heterotrophs.

478 Varied metabolic flexibility was observed in several MAGs. ANT-6, affiliated to  
479 *Paraburkholderia fungorum* was found to have the most diverse genomic repertoire based on the  
480 presence of heterotrophic and autotrophic pathways. The genomic repertoire suggests that they can  
481 perform carbon fixation and also utilize glucose. The mixotrophic behavior of *Paraburkholderia*  
482 has been reported previously (Herpell et al., 2020). Interestingly, ANT-6 also harbored genes  
483 involved in thiosulfate oxidation, nitrification, and denitrification. Sulfite oxidation was previously  
484 observed in *Paraburkholderia caledonica* PHRS4 (BioCyc ID: PWY-5276). Even though varied  
485 metabolic traits of the genus *Paraburkholderia* are well known, the presence of genomic  
486 machinery related to autotrophic and heterotrophic lifestyle, along with the presence of thiosulfate  
487 oxidation, nitrification, and denitrification capability in a single strain, is not reported elsewhere  
488 to the best of our knowledge. The genome size of ANT-6 was found to be the highest (9.3 Mbp)  
489 among all the other MAGs constructed. The genome size of ANT-6 is in the range of genome sizes  
490 of other *Paraburkholderia* strains (Wang et al., 2021), which is bigger than “typical” bacterial  
491 genomes (Land et al., 2015). The metabolic flexibility of *Paraburkholderia* is consistent with its  
492 bigger genomes size. Previous reports of the presence of *Paraburkholderia* in the Antarctic  
493 environment (Malard et al., 2022) also support the presence of ANT-6 in the Antarctic.

494 A high number of mixotrophic MAGs (52 MAGs) were observed compared to exclusively  
495 heterotrophic (35) and autotrophic (20) MAGs. The prevalence of mixotrophy was also previously  
496 reported in Arctic prokaryotic genomes (Royo-Llonch et al., 2021). In the shallow samples of the  
497 coastal wAP, the abundances of mixotrophic MAGs were found to be significantly higher  
498 compared to heterotrophic and autotrophic MAGs, whereas, in the deeper samples, the abundances  
499 of the mixotrophic MAGs were not significantly different compared to autotrophic and  
500 heterotrophic MAGs. This suggests a strong pressure for metabolic flexibility, potentially a  
501 response to the seasonal boom-bust cycle of photosynthetic primary production. This is in line  
502 with the higher variations of genomic repertoire in the shallower samples compared to medium-  
503 depth and deeper samples. We hypothesize that dynamic environments select microbial  
504 populations with a diverse genomic repertoire, including the capacity to switch between

505 heterotrophic and autotrophic lifestyles. Moreover, the genome size of the mixotrophs was found  
506 to be significantly larger compared to the autotrophs and heterotrophs. This is in accordance with  
507 a previous study where they reported larger genome sizes of the generalist compared to the  
508 specialist (Sriswasdi et al., 2017). However, it should be taken into account that higher  
509 completeness of MAGs is required to ascertain a particular function or metabolic lifestyle with  
510 greater confidence.

511 Several of our MAGs were only distantly related to the genomes of type strains. A MAG classified  
512 as Myxococcota (MAG name here) by GTDB-Tk clustered with Proteobacterial MAGs on the  
513 phylogenomic tree (Figure 8B) which might be due to its novel taxonomy. There might also be two  
514 other reasons for this: (i) lower completeness of the Myxococcota genome (75.54 % completeness)  
515 and/or (ii) close relatedness of Myxococcota genome with Proteobacterial genomes, which can be  
516 supported by recent classification of Myxococcota as a new separate phylum, which was earlier  
517 assigned to class Deltaproteobacteria (Murphy et al., 2021). Only 40 MAGs had ANI values higher  
518 than 0.95 when compared to the genomes from the GTDB reference database. Based on our current  
519 analyses, we found that only 70, 30, and 5 MAGs had a formal taxonomic nomenclature at the  
520 family, genus, and species levels, respectively. We were unable to determine the metabolic  
521 lifestyle of the MAG (ANT-120, affiliated to Alphaproteobacteria) having the lowest RED value  
522 (0.66). Similarly, there were 29 other MAGs for which we were unable to determine the metabolic  
523 lifestyle based on the criteria we used in this study.  Although this might be a limitation imposed by  
524 genome completeness, there are chances of the presence of novel metabolic pathways in them.

525 This study used high-throughput metagenomics to understand the microbial role in the marine  
526 ecosystem of the wAP. A streamlined metagenomic sequence analysis pipeline (iMAGine) was  
527 developed to process data and reconstruct MAGs. Our pipeline enabled a coverage-based approach  
528 to understand how genes were partitioned by depth and region. With this approach, we identified  
529 diverse groups of microorganisms contributing to the carbon, sulfur, and nitrogen cycle along the  
530 coastal wAP. Distinct microbial metabolisms were observed across different depth horizons. In  
531 particular, higher abundances of mixotrophic MAGs compared to heterotrophic and autotrophic  
532 MAGs were found in the shallower waters, suggesting that the dynamic pelagic environment of  
533 the coastal wAP has selected microbial populations which can adapt to rapidly changing nutrient  
534 availability. Metabolic profiles of the MAGs were phylum specific, indicating a strong link

535 between functional guilds and taxonomy. Our results highlight the novel genetic and metabolic  
536 diversity present within Antarctic marine ecosystems and the need for future studies based on  
537 cultivable microbes to better understand the distribution of phenotypic and genotypic traits.

538 **Data availability**

539 Sequence data for metagenomics reads from 48 samples, along with 137 dereplicated MAGs, can  
540 be found under NCBI BioProject ID PRJNA894514. The MAGs have been deposited at GenBank  
541 under the accession JAPKAB000000000- JAPKFH000000000.

542 **Author Contributions**

543 AD and JB designed the study and developed the first draft of the manuscript. AD developed the  
544 iMAGine pipeline and conducted the analysis with assistance from JB. EC, RT, NE, and SD  
545 collected the samples and edited the manuscript. EC conducted DNA extractions and processed  
546 samples for sequencing. HD, DS, and OS contributed to the study design and writing.

547 **Acknowledgment**

548 We would like to thank the staff of Palmer Station and the crew of *ARSV Laurence Gould* for their  
549 assistance. This work was funded by NSF-OPP 1846837 to JSB, NSF-OPP 1440435 to HD, and  
550 NSF-OPP 2023425 to OS. JSB was partly supported by a Simons Foundation Early Career Marine  
551 Microbial Ecology and Evolution fellowship. NE was funded through a SENECKT graduate  
552 fellowship. This publication includes data generated at the UC San Diego IGM Genomics Center  
553 utilizing an Illumina NovaSeq 6000 that was purchased with funding from a National Institutes of  
554 Health SIG grant (#S10 OD026929).

555 **Reference**

556 Alonso-Sáez, L., Galand, P. E., Casamayor, E. O., Pedrós-Alió, C., and Bertilsson, S. (2010).  
557 High bicarbonate assimilation in the dark by Arctic bacteria. *ISME Journal* 4, 1581–1590.  
558 doi: 10.1038/ismej.2010.69.

559 Arrigo, K. R., van Dijken, G. L., and Bushinsky, S. (2008). Primary production in the Southern  
560 Ocean, 1997-2006. *J Geophys Res Oceans* 113. doi: 10.1029/2007JC004551.

561 Baltar, F., and Herndl, G. J. (2019). Ideas and perspectives: Is dark carbon fixation relevant for  
562 oceanic primary production estimates? *Biogeosciences* 16, 3793–3799. doi: 10.5194/bg-16-  
563 3793-2019.

564 Bergauer, K., Fernandez-Guerra, A., Garcia, J. A. L., Sprenger, R. R., Stepanauskas, R.,  
565 Pachiadaki, M. G., et al. (2018). Organic matter processing by microbial communities  
566 throughout the Atlantic water column as revealed by metaproteomics. *Proceedings of the*  
567 *National Academy of Sciences* 115, E400–E408.

568 Bowman, J. S., Amaral-Zettler, L. A., Rich, J. J., Luria, C. M., and Ducklow, H. W. (2017).  
569 Bacterial community segmentation facilitates the prediction of ecosystem function along the  
570 coast of the western Antarctic Peninsula. *ISME Journal* 11, 1460–1471. doi:  
571 10.1038/ismej.2016.204.

572 Bowman, J. S., and Deming, J. W. (2017). Wind-driven distribution of bacteria in coastal  
573 Antarctica: evidence from the Ross Sea region. *Polar Biol* 40, 25–35. doi: 10.1007/s00300-  
574 016-1921-2.

575 Bowman, J. S., Kavanaugh, M. T., Doney, S. C., and Ducklow, H. W. (2018). Recurrent  
576 seascape units identify key ecological processes along the western Antarctic Peninsula.  
577 *Glob Chang Biol* 24, 3065–3078. doi: 10.1111/gcb.14161.

578 Bowman, J. S., van Mooy, B. A. S., Lowenstein, D. P., Fredricks, H. F., Hansel, C. M., Gast, R.,  
579 et al. (2021). Whole Community Metatranscriptomes and Lipidomes Reveal Diverse  
580 Responses Among Antarctic Phytoplankton to Changing Ice Conditions. *Front Mar Sci* 8.  
581 doi: 10.3389/fmars.2021.593566.

582 Bowman, J. S., Vick-Majors, T. J., Morgan-Kiss, R., Takacs-Vesbach, C., Ducklow, H. W., and  
583 Priscu, J. C. (2016). Microbial Community Dynamics in Two Polar Extremes: The Lakes of  
584 the McMurdo Dry Valleys and the West Antarctic Peninsula Marine Ecosystem. *Bioscience*  
585 66, 829–847. doi: 10.1093/biosci/biw103.

586 Buchan, A., LeCleir, G. R., Gulvik, C. A., and González, J. M. (2014). Master recyclers: features  
587 and functions of bacteria associated with phytoplankton blooms. *Nat Rev Microbiol* 12,  
588 686–698. doi: 10.1038/nrmicro3326.

589 Buchfink, B., Xie, C., and Huson, D. H. (2014). Fast and sensitive protein alignment using  
590 DIAMOND. *Nat Methods* 12, 59–60. doi: 10.1038/nmeth.3176.

591 Bushnell, B. (2014). BBMap: a fast, accurate, splice-aware aligner. Lawrence Berkeley National  
592 Lab.(LBNL), Berkeley, CA (United States).

593 Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P., and Huerta-Cepas, J. (2021).  
594 eggNOG-mapper v2: Functional Annotation, Orthology Assignments, and Domain  
595 Prediction at the Metagenomic Scale. *Mol Biol Evol* 38, 5825–5829. doi:  
596 10.1093/molbev/msab293.

597 Cape, M. R., Vernet, M., Pettit, E. C., Wellner, J., Truffer, M., Akie, G., et al. (2019).  
598 Circumpolar deep water impacts glacial meltwater export and coastal biogeochemical  
599 cycling along the west Antarctic Peninsula. *Front Mar Sci* 6. doi:  
600 10.3389/fmars.2019.00144.

601 Chaumeil, P. A., Mussig, A. J., Hugenholtz, P., and Parks, D. H. (2020). GTDB-Tk: A toolkit to  
602 classify genomes with the genome taxonomy database. *Bioinformatics* 36, 1925–1927. doi:  
603 10.1093/bioinformatics/btz848.

604 Chen, S., Zhou, Y., Chen, Y., and Gu, J. (2018). Fastp: An ultra-fast all-in-one FASTQ  
605 preprocessor. in *Bioinformatics* (Oxford University Press), i884–i890. doi:  
606 10.1093/bioinformatics/bty560.

607 Clarke, A., Murphy, E. J., Meredith, M. P., King, J. C., Peck, L. S., Barnes, D. K. A., et al.  
608 (2007). Climate change and the marine ecosystem of the western Antarctic Peninsula.  
609 *Philosophical Transactions of the Royal Society B: Biological Sciences* 362, 149–166. doi:  
610 10.1098/rstb.2006.1958.

611 Connelly, T. L., Baer, S. E., Cooper, J. T., Bronk, D. A., and Wawrik, B. (2014). Urea uptake  
612 and carbon fixation by marine pelagic bacteria and archaea during the Arctic summer and  
613 winter seasons. *Appl Environ Microbiol* 80, 6013–6022.

614 Dutta, A., Goldman, T., Keating, J., Burke, E., Williamson, N., Dirmeier, R., et al. (2022).  
615 Machine Learning Predicts Biogeochemistry from Microbial Community Structure in a  
616 Complex Model System. Available at: <https://journals.asm.org/journal/spectrum>.

617 Green, J. L., Bohannan, B. J. M., and Whitaker, R. J. (2008). Microbial biogeography: From  
618 taxonomy to traits. *Science* (1979) 320, 1039–1043. doi: 10.1126/science.1153475.

619 Grzymski, J. J., Riesenfeld, C. S., Williams, T. J., Dussaq, A. M., Ducklow, H., Erickson, M., et  
620 al. (2012). A metagenomic assessment of winter and summer bacterioplankton from  
621 Antarctica Peninsula coastal surface waters. *ISME Journal* 6, 1901–1915. doi:  
622 10.1038/ismej.2012.31.

623 Gurevich, A., Saveliev, V., Vyahhi, N., and Tesler, G. (2013). QUAST: quality assessment tool  
624 for genome assemblies. *Bioinformatics* 29, 1072–1075.

625 Herpell, J. B., Schindler, F., Bejtović, M., Fragner, L., Diallo, B., Bellaire, A., et al. (2020). The  
626 Potato Yam Phyllosphere Ectosymbiont Paraburkholderia sp. Msb3 Is a Potent Growth  
627 Promotor in Tomato. *Front Microbiol* 11. doi: 10.3389/fmicb.2020.00581.

628 Huerta-Cepas, J., Szklarczyk, D., Heller, D., Hernández-Plaza, A., Forsslund, S. K., Cook, H., et  
629 al. (2019). EggNOG 5.0: A hierarchical, functionally and phylogenetically annotated  
630 orthology resource based on 5090 organisms and 2502 viruses. *Nucleic Acids Res* 47,  
631 D309–D314. doi: 10.1093/nar/gky1085.

632 Hyatt, D., Chen, G.-L., Locascio, P. F., Land, M. L., Larimer, F. W., and Hauser, L. J. (2010).  
633 Prodigal: prokaryotic gene recognition and translation initiation site identification.  
634 Available at: <http://www.biomedcentral.com/1471-2105/11/119>.

635 Kanehisa, M., Sato, Y., and Morishima, K. (2016). BlastKOALA and GhostKOALA: KEGG  
636 Tools for Functional Characterization of Genome and Metagenome Sequences. *J Mol Biol*  
637 428, 726–731. doi: 10.1016/j.jmb.2015.11.006.

638 Kang, D. D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., et al. (2019). MetaBAT 2: an  
639 adaptive binning algorithm for robust and efficient genome reconstruction from  
640 metagenome assemblies. *PeerJ* 7, e7359–e7359. doi: 10.7717/peerj.7359.

641 Kolde, R. (2019). Package ‘pheatmap.’ Available at: <https://cran.r-project.org/web/packages/pheatmap/pheatmap.pdf>.

643 Kozlov, A. M., Darriba, D., Flouri, T., Morel, B., and Stamatakis, A. (2019). RAxML-NG: A  
644 fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference.  
645 *Bioinformatics* 35, 4453–4455. doi: 10.1093/bioinformatics/btz305.

646 Land, M., Hauser, L., Jun, S. R., Nookaew, I., Leuze, M. R., Ahn, T. H., et al. (2015). Insights  
647 from 20 years of bacterial genome sequencing. *Funct Integr Genomics* 15, 141–161. doi:  
648 10.1007/s10142-015-0433-4.

649 Lappan, R., Shelley, G., Islam, Z. F., Leung, P. M., Lockwood, S., Nauer, P. A., et al. (2023).  
650 Molecular hydrogen in seawater supports growth of diverse marine bacteria. *Nat Microbiol.*  
651 doi: 10.1038/s41564-023-01322-0.

652 Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM.  
653 Available at: <http://arxiv.org/abs/1303.3997>.

654 Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., et al. (2009). The Sequence  
655 Alignment/Map format and SAMtools. *Bioinformatics* 25, 2078–2079. doi:  
656 10.1093/bioinformatics/btp352.

657 Lin, Y., Moreno, C., Marchetti, A., Ducklow, H., Schofield, O., Delage, E., et al. (2021). Decline  
658 in plankton diversity and carbon flux with reduced sea ice extent along the Western  
659 Antarctic Peninsula. *Nat Commun* 12. doi: 10.1038/s41467-021-25235-w.

660 Loy, A., Duller, S., Baranyi, C., Mußmann, M., Ott, J., Sharon, I., et al. (2009). Reverse  
661 dissimilatory sulfite reductase as phylogenetic marker for a subgroup of sulfur-oxidizing  
662 prokaryotes. *Environ Microbiol* 11, 289–299. doi: 10.1111/j.1462-2920.2008.01760.x.

663 Malard, L. A., Avila-Jimenez, M. L., Schmale, J., Cuthbertson, L., Cockerton, L., and Pearce, D.  
664 A. (2022). Aerobiology over the Southern Ocean – Implications for bacterial colonization of  
665 Antarctica. *Environ Int* 169. doi: 10.1016/j.envint.2022.107492.

666 McLeod, D. J., Hallegraeff, G. M., Hosie, G. W., and Richardson, A. J. (2012). Climate-driven  
667 range expansion of the red-tide dinoflagellate *Noctiluca scintillans* into the Southern Ocean.  
668 *J Plankton Res* 34, 332–337. doi: 10.1093/plankt/fbr112.

669 McMurdie, P. J., and Holmes, S. (2013). phyloseq: an R package for reproducible interactive  
670 analysis and graphics of microbiome census data. *PLoS One* 8, e61217.

671 Meredith, M. P., and King, J. C. (2005). Rapid climate change in the ocean west of the Antarctic  
672 Peninsula during the second half of the 20th century. *Geophys Res Lett* 32, 1–5. doi:  
673 10.1029/2005GL024042.

674 Murphy, C. L., Yang, R., Decker, T., Cavalliere, C., Andreev, V., Bircher, N., et al. (2021).  
675 Genomes of novel myxococcota reveal severely curtailed machineries for predation and  
676 cellular differentiation. *Appl Environ Microbiol* 87. doi: 10.1128/AEM.01706-21.

677 Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P. A. (2017). metaSPAdes: a new  
678 versatile metagenomic assembler. *Genome Res* 27, 824–834.

679 Oijen, T. van Leeuwe, M. A. van, and Gieskes, W. W. C. (2003). Variation of particulate  
680 carbohydrate pools over time and depth in a diatom-dominated plankton community at the  
681 Antarctic Polar Front. *Polar Biol* 26, 195–201. doi: 10.1007/s00300-002-0456-x.

682 Oksanen, J., Kindt, R., Legendre, P., O'Hara, B., Stevens, M. H. H., Oksanen, M. J., et al.  
683 (2007). The vegan package. *Community ecology package* 10, 631–637.

684 Olm, M. R., Brown, C. T., Brooks, B., and Banfield, J. F. (2017). DRep: A tool for fast and  
685 accurate genomic comparisons that enables improved genome recovery from metagenomes  
686 through de-replication. *ISME Journal* 11, 2864–2868. doi: 10.1038/ismej.2017.126.

687 Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P., and Tyson, G. W. (2015).  
688 CheckM: assessing the quality of microbial genomes recovered from isolates, single cells,  
689 and metagenomes. *Genome Res* 25, 1043–1055.

690 Parks, D. H., Rinke, C., Chuvochina, M., Chaumeil, P. A., Woodcroft, B. J., Evans, P. N., et al.  
691 (2017). Recovery of nearly 8,000 metagenome-assembled genomes substantially expands  
692 the tree of life. *Nat Microbiol* 2, 1533–1542. doi: 10.1038/s41564-017-0012-7.

693 Plum, C., Hillebrand, H., and Moorthi, S. (2020). Krill vs salps: dominance shift from krill to  
694 salps is associated with higher dissolved N:P ratios. *Sci Rep* 10, 5911. doi: 10.1038/s41598-  
695 020-62829-8.

696 Royo-Llonch, M., Sánchez, P., Ruiz-González, C., Salazar, G., Pedrós-Alió, C., Sebastián, M., et  
697 al. (2021). Compendium of 530 metagenome-assembled bacterial and archaeal genomes  
698 from the polar Arctic Ocean. *Nat Microbiol* 6, 1561–1574. doi: 10.1038/s41564-021-00979-  
699 9.

700 Saba, G. K., Fraser, W. R., Saba, V. S., Iannuzzi, R. A., Coleman, K. E., Doney, S. C., et al.  
701 (2014). Winter and spring controls on the summer food web of the coastal West Antarctic  
702 Peninsula. *Nat Commun* 5. doi: 10.1038/ncomms5318.

703 Schofield, O., Brown, M., Kohut, J., Nardelli, S., Saba, G., Waite, N., et al. (2018). Changes in  
704 the upper ocean mixed layer and phytoplankton productivity along the West Antarctic  
705 Peninsula. *Philosophical Transactions of the Royal Society A: Mathematical, Physical and*  
706 *Engineering Sciences* 376. doi: 10.1098/rsta.2017.0173.

707 Seyitmuhammedov, K., Stirling, C. H., Reid, M. R., van Hale, R., Laan, P., Arrigo, K. R., et al.  
708 (2022). The distribution of Fe across the shelf of the Western Antarctic Peninsula at the start  
709 of the phytoplankton growing season. *Mar Chem* 238. doi:  
710 10.1016/j.marchem.2021.104066.

711 Shaffer, M., Borton, M. A., McGivern, B. B., Zayed, A. A., la Rosa, S. L. 0003 3527 8101,  
712 Soden, L. M., et al. (2020). DRAM for distilling microbial metabolism to automate the  
713 curation of microbiome function. *Nucleic Acids Res* 48, 8883–8900. doi:  
714 10.1093/nar/gkaa621.

715 Siegert, M., Atkinson, A., Banwell, A., Brandon, M., Convey, P., Davies, B., et al. (2019). The  
716 Antarctic Peninsula under a 1.5°C global warming scenario. *Front Environ Sci* 7. doi:  
717 10.3389/fenvs.2019.00102.

718 Sriswasdi, S., Yang, C. C., and Iwasaki, W. (2017). Generalist species drive microbial dispersion  
719 and evolution. *Nat Commun* 8. doi: 10.1038/s41467-017-01265-1.

720 Team, Rs. (2015). RStudio: integrated development for R. *RStudio, Inc., Boston, MA URL*  
721 <http://www.rstudio.com> 42, 84.

722 Thompson, L. R., Sanders, J. G., McDonald, D., Amir, A., Ladau, J., Locey, K. J., et al. (2017).  
723 A communal catalogue reveals Earth's multiscale microbial diversity. *Nature* 551, 457–463.  
724 doi: 10.1038/nature24621.

725 Wang, K., Wu, Y., Ye, M., Yang, Y., Asiegbu, F. O., Overmyer, K., et al. (2021). Comparative  
726 Genomics Reveals Potential Mechanisms of Plant Beneficial Effects of a Novel Bamboo-  
727 Endophytic Bacterial Isolate Paraburkholderia sacchari Suichang626. *Front Microbiol* 12.  
728 doi: 10.3389/fmicb.2021.686998.

729 Waters, K. J., and Smith, R. C. (1992). Palmer LTER: A sampling grid for the Palmer LTER  
730 program. *Antarct J US* 27, 236–239.

731 Williams, T. J., Long, E., Evans, F., Demaere, M. Z., Lauro, F. M., Raftery, M. J., et al. (2012).  
732 A metaproteomic assessment of winter and summer bacterioplankton from Antarctic  
733 Peninsula coastal surface waters. *ISME Journal* 6, 1883–1900. doi: 10.1038/ismej.2012.28.

734 Yu, Y., Liu, X., Miao, J., and Leng, K. (2020). Chitin from Antarctic krill shell: Eco-preparation,  
735 detection, and characterization. *Int J Biol Macromol* 164, 4125–4137. doi:  
736 10.1016/j.ijbiomac.2020.08.244.

737

738

739 **Figure Legend**

740 **Figure 1:** Sample locations in the western Antarctic Peninsula. S - only shallower samples  
741 analyzed, M- only medium-depth samples analyzed, D - only deeper samples analyzed, S-M-D –  
742 samples collected from deep, medium, and shallow environments analyzed.

743 **Figure 2:** Principal coordinates analysis (PCoA) of Bray-Curtis dissimilarity based on normalized  
744 gene coverage across 48 samples. Symbol shape and color indicates sample region and depth,  
745 respectively.

746 **Figure 3:** Boxplot showing the distribution of different carbon cycle genes related to (A) carbon  
747 fixation, (B) CO oxidation, (C) fermentation, and (D) methane oxidation across different depth  
748 horizons of the WAP. Normalized coverages of genes grouped in each of these categories are listed  
749 in Supplementary Figure S1. A pairwise comparison for significance was conducted using the  
750 Wilcoxon test.

751 **Figure 4:** Boxplot showing the distribution of different sulfur cycle genes related to (A) sulfur  
752 oxidation, (B) dissimilatory sulfate reduction, and (C) thiosulfate to sulfide reduction across  
753 different depth horizons of the WAP. Normalized coverages of genes grouped in each of these  
754 categories are listed in Supplementary Figure S2. A pairwise comparison for significance was  
755 conducted using the Wilcoxon test.

756 **Figure 5:** Boxplot showing the distribution of different nitrogen cycle genes related to (A)  
757 nitrification, (B) denitrification, (C) dissimilatory nitrate reduction to ammonia (DNRA), and (D)  
758 urea utilization across different depth horizons of the WAP. Normalized coverages of genes  
759 grouped in each of these categories are listed in Supplementary Figure S3. A pairwise comparison  
760 for significance was conducted using the Wilcoxon test.

761 **Figure 6:** Boxplot showing the distribution of different carbohydrate transformation genes related  
762 to (A) cellulose, (B) pectin RGI, (C) starch, (D) xyloglucan, and (E) chitin degradation across  
763 different depth horizons of the WAP. Normalized coverages of genes grouped in each of these  
764 categories are listed in Supplementary Figure S4. A pairwise comparison for significance was  
765 conducted using the Wilcoxon test.

766 **Figure 7:** rage abundance of 137 dereplicated MAGs across (A) Shallow, (B) Medium, and  
767 (C) Deep Waters of the coastal wAP. Each dereplicated MAG represents multiple MAGs from  
768 different samples. The average abundance of each dereplicated MAG represents the average  
769 abundance of all the MAGs it represents from a particular depth horizon.

770 **Figure 8:** Maximum-likelihood phylogenomic analysis of 137 dereplicated MAGs based on (A)  
771 archaeal and (B) bacterial marker genes from GTDB-Tk analysis. Detailed genome statistics and  
772 taxonomy are provided in Supplementary Table S3, and the detailed pathways and functions are  
773 provided in Supplementary Table S4. Phylum, completeness %, contamination %, and bootstrap  
774 legends are domain-specific, whereas depth, region, and function are common for bacteria and  
775 archaea. Depth (represented by a star) and region (represented by a right triangle)  
776 symbols are present on the terminal node and terminal branch, respectively. The circle symbols  
777 in the outermost layer depict the functional capabilities of each MAG. All the carbohydrates  
778 mentioned represent the presence of enzymes capable of degrading them. Xylan and/or xyloglucan  
779 degrading enzymes are represented by hemicellulose in this figure. The hyphenated legends for  
780 depth represent MAGs found in multiple depth horizons, whereas hyphenated legends for regions  
781 represent MAGs found in multiple regions.

782 **Figure 9:** Non-Metric Multidimensional Scaling (NMDS) of binary matrix based on the presence  
783 or absence of genes predicted by Ghost Koala across 127 dereplicated bacterial MAGs.  
784 Abbreviations of metabolic categories as used in the CAP analysis are as follows: GU: Glucose

785 utilization; CF: carbon fixing pathways; NI: nitrification; SO: sulfur oxidation; DNR –  
786 Denitrification; DSR – Dissimilatory sulfite reduction.

787 **Figure 10:** Comparison of MAGs having different metabolic lifestyles (A) Venn Diagram  
788 showing overlaps among different metabolic categories of the MAGs. GU: Glucose utilization;  
789 CF: carbon fixing pathways; NI: nitrification; SO: sulfur oxidation.  Boxplot showing genome  
790 sizes of MAGs related to different metabolic lifestyles. The details of the genome sizes and  
791 metabolic lifestyle of each MAG are reported in Supplementary Table 3.  Boxplot showing  
792 mapped read percentage of MAGs having different metabolic lifestyles in shallower depth  
793 samples. For the boxplots, a pairwise comparison for significance was conducted using the  
794 Wilcoxon test.

795

796 **Supplementary Table Legend**

797 **Table S1:** Sample metadata for 48 samples

798 **Table S2:** Detailed genome statistics of 137 MAGs

799 **Table S3:** Detailed taxonomic classification-based genome summary

800 **Table S4:** Metabolic profiles of 137 MAGs

801

